信号分解与合成实验报告

信号分解与合成实验报告
信号分解与合成实验报告

实验二 信号分解与合成

--谢格斯 110701336 聂楚飞110701324

一、实验目的

1、观察电信号的分解。

2、掌握带通滤波器的有关特性测试方法。

3、观测基波和其谐波的合成。

二、实验内容

1、观察信号分解的过程及信号中所包含的各次谐波。

2、观察由各次谐波合成的信号。

三、预备知识

1、了解李沙育图相关知识。

2、课前务必认真阅读教材中周期信号傅里叶级数的分解以及如何将各次谐波进行叠加

等相关内容。

四、实验仪器

1、信号与系统实验箱一台(主板)。

2、电信号分解与合成模块一块。

3、20M 双踪示波器一台。

五、实验原理

任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。对周期信号由它的

傅里叶级数展开式可知,各次谐波为基波频率的整数倍。而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅度均趋向无限小,但其相对大小是不同的。

通过一个选频网络可以将电信号中所包含的某一频率成份提取出来。本实验采用性能较

佳的有源带通滤波器作为选频网络,因此对周期信号波形分解的实验方案如图2-3-1所示。 将被测方波信号加到分别调谐于其基波和各次奇谐波频率的一系列有源带通滤波器电

路上。从每一有源带通滤波器的输出端可以用示波器观察到相应频率的正弦波。本实验所用的被测信号是Hz 531=ω左右的周期信号,而用作选频网络的五种有源带通滤波器的输出

频率分别是543215432ωωωωω、、、、

,因而能从各有源带通滤波器的两端观察到基波和各次谐波。其中,在理想情况下,如方波的偶次谐波应该无输出信号,始终为零电平,而奇次谐波则具有很好的幅度收敛性,理想情况下奇次谐波中一、三、五、七、九次谐波的幅度比应为1:(1/3):(1/5):(1/7):(1/9)。但实际上因输入方波的占空比较难控制在50%,且方波可能有少量失真以及滤波器本身滤波特性的有限性都会使得偶次谐波分量不能达到理想零的情况。

六、实验步骤

1、把系统时域与频域分析模块插在主板上,用导线接通此模块“电源接入”和主板上

的电源(看清标识,防止接错,带保护电路),并打开此模块的电源开关。

2、调节函数信号发生器,使其输出Hz 53左右(其中在Hz Hz 56~50之间进行选择,

使其合成的效果更好)的方波(要求方波占空比为50%,这个要求较为严格),峰峰值为5V

左右。将其接至该实验模块的各带通滤波器的“输入”端,用示波器观察各带通滤波器的输

出。(注:观察频率时,可打开实验箱上的频率计实验模块。即按下该模块电源开关S2。)

3、用示波器的两个探头,直接观察基波与三次谐波的相位关系,或者采用李沙育图的

方法,同时考察其幅度关系,看其相位差是否为零,幅度之比是否为3:1(可以用相应带通

滤波器中的调幅和调相电位器进行相关的调节,保证了相位和幅度满足实验的要求,以下

的步骤中均可用到调相和调幅,使我们认识到调相和调幅在信号分解和合成的重要性)。

4、将方波分解所得基波和三次谐波,用导线与其对应的插孔相连,观测加法器的输出“合

成”波形,并记录所得的波形。

5、同时考察基波、三次谐波、五次谐波的相位和幅度的关系,还是用李沙育图观察其

相位关系,用观察法使其幅度关系为5:3:1,。

6、验证各高次谐波与基波之间的相位差是否为零。可用李沙育图形法进行测量,其方

法如下:

用导线将函数发生器的方波输出端与带通滤波器输入端连接起来,即把方波信号分先后

送入各带通滤波器,如图2-3-1所示。

图2-3-1 信号分解的过程

具体方法一:基波与标准同频同相信号相位比较(李沙育相位测量法)

把函数信号发生器模块产生的正弦波电压调至5V (峰峰值),使其送入示波器的X 轴,

再把BPF-1ω的基波送入Y 轴,示波器采用X-Y 方式显示,观察李沙育图形。(注:当滤波

器的增益不为1时,即X 轴和Y 轴信号幅度不一致时,在090=Φ时其李沙育图形并不为

圆,而是椭圆,但其是垂直椭圆,与00900<Φ<时的椭圆并不相同。)

当两信号相位差为00时,波形为一条直线;当两信号相位差为0

90时,波形为一个圆;

当两信号相位差为00900<Φ<时,波形为椭圆,如图3-2所示。

00900<Φ<时:??

? ??=ΦB A arcsin

00=Φ 090=Φ 图2-3-2 李沙育图形

具体方法二:基波与各高次谐波相位比较(李沙育频率测试法)

把BPF-1ω处的基波送入示波器的X 轴,再分别把BPF-13ω、BPF-15ω处的高次谐波

送入Y 轴,示波器采用X-Y 方式显示,观察李沙育图形。

当基波与三次谐波相位差为00(即过零点重合)、0

90、1800时,波形分别如图3-3所示。

00=Φ 090=Φ 0180=Φ

图2-3-3 基波与三次谐波相位的观察

以上是三次谐波与基波产生的典型的Lissajous 图,通过图形上下端及两旁的波峰个数,

确定频率比,即3:1,实际上可用同样的方法观察五次谐波与基波的相移和频比,其应为5:1。

7、方波波形合成

(1)将函数发生器输出的Hz 53左右(其中在Hz Hz 56~50之间进行选择,使其输出的

效果更好)方波信号送入各带通滤波器输入端。

(2)在五个带通滤波器输出端逐个测量各谐波输出幅度,

(3)用示波器观察并记录加法器输出端基波与各奇次谐波的叠加波形,如图2-3-4所示。

图2-3-4 基波与三次和五次谐波叠加后的波形七、实验报告

比较基波与三次谐波不同相位差的波形和频率幅度

相位差为φ=0o相位差为φ=90o

相位差Φ=180o

基波、三次谐波、五次谐波间的合成。

基波与三次谐波的合成基波与五次谐波的合成

基波、三次谐波、五次谐波的合

三、

八、分析相位、幅值在波形合成中的作用

相位对单个波形来说影响波的位置,即改变初相位能使波在时域坐标轴上左右移动。在波的叠加过程中,波的相位则会使得叠加波形的形状发生很大改变

而幅度的话影响合成波的幅度大小

周期信号的分解与合成

实验一周期信号的分解与合成 一、实验目的 1.用同时分析法观测50Hz 非正弦周期信号的频谱。 2.观测基波和其谐波的合成。 二、实验原理 1.一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的2、3、4、...、n 等倍数分别称二次、三次、四次、...、n 次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。 2.不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。 3.一个非正弦周期函数可用傅里叶级数来表示,级数各项系数之间的关系可用一各个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表1-1 表1-1 各种不同波形的傅里叶级数表达式(下) 1.方波

2.三角波 3.半波 4.全波 5.矩形波 三、预习要求 在做实验前必须认真复习教材中关于周期性信号傅利叶级数分解的有关内容。 四、实验内容 1. 50HZ方波信号的频谱。 2. 周期矩形脉冲的频谱;脉冲宽度为1;周期为4;则基波角频率为0.5pi 3. 使用不同频率的谐波合成方波信号;注意观察随着谐波数的增加合成的波形发生的变化。 4. 使用不同频率的谐波合成矩形脉冲信号;注意观察随着谐波数的增加合成的波形。 五、思考题 1.什么样的周期性函数没有直流分量和余弦项?

附: 1. 50HZ方波信号的频谱。 >> w1= ; %基波角频率 >> n=0:1:30; >>bn= ; %三角级数中系数bn,参考书p122 >> stem(n*w1,bn),grid on >> xlabel('\omega(rad/s)'),ylabel('bn') >> title('方波信号频谱分析图') 2. 周期矩形脉冲的频谱;脉冲宽度为1;周期为4;则基波角频率为0.5pi tao= ; w1= ; n=-15:1:15; fn= ; %矩形脉冲级数系数fn,参考书p130,用matlab自带函数sinc stem(n,fn),grid on xlabel('n'); ylabel('Fn'); title('周期矩形脉冲的频谱图'); 3. %使用不同频率的谐波合成方波信号;注意观察随着谐波数的增加合成的波形 %发生的变化。 t=-1:0.001:1; omega=2*pi; y=square(2*pi*t,50); plot(t,y);grid on xlabel('t'); ylabel('周期方波信号'); axis([-1 1 -1.5 1.5]); n_max=[1 3 5 11 47]; N=length(n_max); for k=1:N n=1:2:n_max(k); b=4./(pi*n); x=b*sin(omega*n'*t); figure; plot(t,y) hold on; plot(t,x); hold off; xlabel('t'); ylabel('部分和的波形');

数字信号处理实验一

一、实验目的 1. 通过本次实验回忆并熟悉MATLAB这个软件。 2. 通过本次实验学会如何利用MATLAB进行序列的简单运算。 3. 通过本次实验深刻理解理论课上的数字信号处理的一个常见方法——对时刻n的样本附近的一些样本求平均,产生所需的输出信号。 3. 通过振幅调制信号的产生来理解载波信号与调制信号之间的关系。 二、实验内容 1. 编写程序在MATLAB中实现从被加性噪声污染的信号中移除噪声的算法,本次试验采用三点滑动平均算法,可直接输入程序P1.5。 2. 通过运行程序得出的结果回答习题Q1.31-Q1.33的问题,加深对算法思想的理解。 3. 编写程序在MATLAB中实现振幅调制信号产生的算法,可直接输入程序P1.6。 4. 通过运行程序得出的结果回答习题Q1.34-Q1.35的问题,加深对算法思想的理解。 三、主要算法与程序 1. 三点滑动平均算法的核心程序: %程序P1.5 %通过平均的信号平滑 clf; R=51; d=0.8*(rand(R,1)-0.5);%产生随噪声 m=0:R-1; s=2*m.*(0.9.^m);%产生为污染的信号 x=s+d';%产生被噪音污染的信号 subplot(2,1,1); plot(m,d','r-',m,s,'g--',m,x,'b-.');

xlabel('时间序号n');ylabel('振幅'); legend('d[n]','s[n]','x[n]'); x1=[0 0 x];x2=[0 x 0];x3=[x 0 0]; y=(x1+x2+x3)/3; subplot(2,1,2); plot(m,y(2:R+1),'r-',m,s,'g--'); legend('y[n]','s[n]'); xlabel('时间序号n');ylabel('振幅'); 2. 振幅调制信号的产生核心程序:(由于要几个结果,因此利用subplot函数画图) %程序P1.6 %振幅调制信号的产生 n=0:100; m=0.1;fH=0.1;fL=0.01; m1=0.3;fH1=0.3;fL1=0.03; xH=sin(2*pi*fH*n); xL=sin(2*pi*fL*n); y=(1+m*xL).*xH; xH1=sin(2*pi*fH1*n); xL1=sin(2*pi*fL1*n); y1=(1+m1*xL).*xH; y2=(1+m*xL).*xH1; y3=(1+m*xL1).*xH; subplot(2,2,1); stem(n,y); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.1;fH=0.1;fL=0.01;'); subplot(2,2,2); stem(n,y1); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.3;fH=0.1;fL=0.01;'); subplot(2,2,3); stem(n,y2); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.3;fH=0.3;fL=0.01;'); subplot(2,2,4); stem(n,y3); grid;

数字信号处理实验报告

一、实验名称:基本信号的产生 二、实验目的:I 利用MATLAB 产生连续信号并作图 II 利用MATLAB 产生离散序列并作图 III 利用MATLAB 进行噪声处理 三、 实验内容: I 利用MATLAB 产生下列连续信号并作图 ①X(t)=-2u(t-1),-1=0); plot(t,x); 图形如右: ② X(t)=-(e^-0.1t)*sin(2/3*t),0

-1.5-1 -0.5 0.5 1 1.5 2 II 利用MATLAB 产生下列离散序列并作图 ① X(t)=1,-5<=t<=5 else 0,-15<=t<=15 MATLAB 程序如下: k= -15: 15; x=[zeros(1,10),ones(1,11),zeros(1,10)]; stem(k,x) 图形如下: ② X(t)=0.9^k*(cos(0.25*pi*k)+sin(0.25*pi*p),-20

数字信号处理实验报告一

武汉工程大学 数字信号处理实验报告 姓名:周权 学号:1204140228 班级:通信工程02

一、实验设备 计算机,MATLAB语言环境。 二、实验基础理论 1.序列的相关概念 2.常见序列 3.序列的基本运算 4.离散傅里叶变换的相关概念 5.Z变换的相关概念 三、实验内容与步骤 1.离散时间信号(序列)的产生 利用MATLAB语言编程产生和绘制单位样值信号、单位阶跃序列、指数序列、正弦序列及随机离散信号的波形表示。 四实验目的 认识常用的各种信号,理解其数字表达式和波形表示,掌握在计算机中生成及绘制数字信号波形的方法,掌握序列的简单运算及计算机实现与作用,理解离散时间傅里叶变换,Z变换及它们的性质和信号的频域分

实验一离散时间信号(序列)的产生 代码一 单位样值 x=2; y=1; stem(x,y); title('单位样值 ') 单位阶跃序列 n0=0; n1=-10; n2=10; n=[n1:n2]; x=[(n-n0)>=0]; stem(n,x); xlabel('n'); ylabel('x{n}'); title('单位阶跃序列');

实指数序列 n=[0:10]; x=(0.5).^n; stem(n,x); xlabel('n'); ylabel('x{n}'); title('实指数序列');

正弦序列 n=[-100:100]; x=2*sin(0.05*pi*n); stem(n,x); xlabel('n'); ylabel('x{n}'); title('正弦序列');

随机序列 n=[1:10]; x=rand(1,10); subplot(221); stem(n,x); xlabel('n'); ylabel('x{n}'); title('随机序列');

信号处理实验报告、

第一题 如何用计算机模拟一个随机事件,并估计随机事件发生的概率以计算圆周率π。 解: (一)蒙特卡洛方法可用于近似计算圆周率:让计算机每次随机生成两个0到1之间的数,看以这两个实数为横纵坐标的点是否在单位圆内。生成一系列随机点,统计单位圆内的点数与总点数,(圆面积和外切正方形面积之比为π:4),当随机点取得越多时,其结果越接近于圆周率。 代码: N=100000000; x=rand(N,1); y=rand(N,1); count=0; for i=1:N if (x(i)^2+y(i)^2<=1) count=count+1; end end PI=vpa(4*count/N,10) PI = 3.1420384

蒙特卡洛法实验结果与试验次数相关,试验次数增加,结果更接近理论值 (二)18世纪,法国数学家布丰和勒可莱尔提出的“投针问题”,记载于布丰1777年出版的著作中:“在平面上画有一组间距为d的平行线,将一根长度为l (l

信号分解与合成实验报告

实验二信号分解与合成 --谢格斯110701336 聂楚飞110701324 一、实验目的 1、观察电信号的分解。 2、掌握带通滤波器的有关特性测试方法。 3、观测基波和其谐波的合成。 二、实验内容 1、观察信号分解的过程及信号中所包含的各次谐波。 2、观察由各次谐波合成的信号。 三、预备知识 1、了解李沙育图相关知识。 2、课前务必认真阅读教材中周期信号傅里叶级数的分解以及如何将各次谐波进行叠加等相关内容。 四、实验仪器 1、信号与系统实验箱一台(主板)。 2、电信号分解与合成模块一块。 3、20M双踪示波器一台。 五、实验原理 任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。对周期信号由它的 傅里叶级数展开式可知,各次谐波为基波频率的整数倍。而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅度均趋向无限小,但其相对大小是不同的。 通过一个选频网络可以将电信号中所包含的某一频率成份提取出来。本实验采用性能较 佳的有源带通滤波器作为选频网络,因此对周期信号波形分解的实验方案如图2-3-1所示。 将被测方波信号加到分别调谐于其基波和各次奇谐波频率的一系列有源带通滤波器电路上。从每一有源带通滤波器的输出端可以用示波器观察到相应频率的正弦波。本实验所用 的被测信号是 1 53Hz左右的周期信号,而用作选频网络的五种有源带通滤波器的输出 频率分别是「2 2、3 3、4 4、5 5,因而能从各有源带通滤波器的两端观察到基波和各 次谐波。其中,在理想情况下,如方波的偶次谐波应该无输出信号,始终为零电平,而奇次谐波则具有很好的幅度收敛性,理想情况下奇次谐波中一、三、五、七、九次谐波的幅度比应为1: (1/3):(1/5):(1/7):(1/9)。但实际上因输入方波的占空比较难控制在50%,且方 波可能有少量失真以及滤波器本身滤波特性的有限性都会使得偶次谐波分量不能达到理想零的情况。 六、实验步骤 1、把系统时域与频域分析模块插在主板上,用导线接通此模块“电源接入”和主板上 的电源(看清标识,防止接错,带保护电路),并打开此模块的电源开关。 2、调节函数信号发生器,使其输出53Hz左右(其中在50Hz ~ 56Hz之间进行选择,

信号分解与合成实验

深圳大学实验报告课程名称:信号与系统 实验项目名称:信号的分解与合成实验 学院:信息工程工程学院 专业: 电子信息工程 指导教师: 报告人:学号:班级: 实验时间: 实验报告提交时间: 教务处制

电位器W01、W02、W03可以将基波,三次谐波,五次谐波,七次谐波的幅度调节成1:1/3 : 1/5 : 1/7,通过导线将其连接至信号的合成的输入插座IN01、IN02、IN03、IN04J ,通过测试勾可以观察到合成后的波形。 2、验证三次谐波与基波之间的相位差是否为180,五次谐波与基波之间的相位差是否为0.可用李沙育图形法进行测量,其测量方法如下:用导线将函数发生器的方便输出端与带通滤波器输入端连接起来,即把方波信号分先后送入各带通滤波器,如图(1)所示. 具体方法:基波与各高次谐波相位比较(李沙育频率测试法) 把BFP-1ω处的基波送入示波器的X 轴,再分别把BFP-31ω、BFP-51ω处的高次谐波送入Y 轴,示波器采用X —Y 方式显示,观察李沙育图。 当基波与三次谐波相位差为0、90、180时,波形分别如图所示. 以上是三次谐波与基波产生的典型的李沙育图,通过图形上下端及两旁的波峰个数,确定频率比.

五、实验步骤与相应实验结果: 1、把电信号分解与合成模块插在主板上,用导线接通此模块“电源插入”和主板上的电源,并打开此模块的电源开关. 2、调节函数信号发生器,使其输出10KHz左右的方波,占空比为50%,峰峰值为6V左右,如图(2)所示。将其接至该实验模块的“输入端",用示波器观察各次谐波的输出即各次谐波,分别如图(3)、图(4)、图(5)、图(6)所示. 图(2)输出方波信号 图(3)基次谐波图(4)三次谐波 图(5)五次谐波图(6)七次谐波

哈尔滨工程大学 语音信号处理实验报告

实 验 报 告 实验课程名称: 语音信号处理实验 姓名: 班级: 20120811 学号: 指导教师 张磊 实验教室 21B#293 实验时间 2015年4月12日 实验成绩 实验序号 实验名称 实验过程 实验结果 实验成绩 实验一 语音信号的端点检测 实验二 语音信号的特征提取 实验三 语音信号的基频提取

实验一 语音信号的端点检测 一、实验目的 1、掌握短时能量的求解方法 2、掌握短时平均过零率的求解方法 3、掌握利用短时平均过零率和短时能量等特征,对输入的语音信号进行端点检测。 二、实验设备 HP 计算机、Matlab 软件 三、实验原理 1、短时能量 语音信号的短时能量分析给出了反应这些幅度变化的一个合适的描述方法。对于信号)}({n x ,短时能量的定义如下: ∑ ∑∞ -∞ =∞ -∞ =*=-= -= m m n n h n x m n h m x m n w m x E )()()()()]()([222 2、短时平均过零率 短时平均过零率是指每帧内信号通过零值的次数。对于连续语音信号,可以 考察其时域波形通过时间轴的情况。对于离散信号,实质上就是信号采样点符号变化的次数。过零率在一定程度上可以反映出频率的信息。短时平均过零率的公式为: ∑∑-+=∞ -∞=--= ---=1)] 1(sgn[)](sgn[2 1 ) ()]1(sgn[)](sgn[21N n n m w w m n m x m x m n w m x m x Z 其中,sgn[.]是符号函数,即 ? ? ?<-≥=0)(10)(1 )](sgn[n x n x n x

工程信号处理实验报告

( 2011-2012 学年 第二学期) 重庆理工大学研究生课程论文 课程论文题目: 《工程信号处理实验报告》 课程名称 工程信号处理实验 课程类别 □学位课 非学位课 任课教师 谢明 所在学院 汽车学院 学科专业 机械设计及理念 姓名 李文中 学 号 50110802313 提交日期 2012年4月12日

工程信号处理实验报告 姓名:李文中学号:50110802313 实验报告一 实验名称:数据信号采集及采样参数选定 1实验目的 1.1了解信号采集系统的组成,初步掌握信号采集系统的使用。 1.2加深对采样定理的理解,掌握采样参数的选择方法 1.3了解信号采集在工程信号处理中的实际应用,及注意事项。 2 实验原理 2.1 模数转换及其控制 对模拟信号进行采集,就是将模拟信号转换为数字信号,即模/数(A/D)转换,然后送入计算机或专用设备进行处理。模数转换包括三个步骤:(1)采样,(2)量化,(3)编码。采样,是对已知的模拟信号按一定的间隔抽出一个样本数据。若间隔为一定时间 T,则称这种采样为等时间间隔采样。除特别注明外,一般都采用等时间间隔采样;量化,是一种用有限字长的数字量逼近模拟量的过程。编码,是将已经量化的数字量变为二进制数码,因为数字处理器只能接受有限长的二进制数。模拟信号经过这三步转换后,变成了时间上离散、幅值上量化的数字信号。A/D转换器是完成这三个步骤的主要器件。 在信号采集系统中,A/D 转换器与计算机联合使用完成模数转换。用计算机的时钟或用软件产生等间隔采样脉冲控制 A/D 转换器采样。A/D 转换器通过内部电路进行量化与编码,输出有限长的二进制代码。信号采集系统中,通常由以 A/D转换器为核心的接口电路及控制软件,进行信号采集控制。 *注这部分是由本实验所用的信号采集器自动完成的,以上也是实验器材-信号采集器的部分工作原理。以后实验中就不再赘述。 2.2 信号采集的参数选择

典型信号的合成和分解

实验指导书 实验项目名称:典型信号的合成和分解 实验项目性质:普 通 所属课程名称:工程测试技术 实验计划学时:2 一.实验目的 通过本实验熟悉信号的合成、分解原理,了解信号频谱的含义和特点。 二.实验内容和要求 1.周期信号的合成和分解 在有限区间内,凡满足狄里赫利条件的周期信号x(t)都可以展开傅里叶三角函数级数。 001001 ()(cos sin )2 cos()(1,2,3,)2n n n n n n n a x t a n t b n t a A n t n ωωω?∞=∞==++=+-=∑∑ 式中 0a ——常值分量 00/20/202()T T a x t dt T -=? n a ——余弦分量的幅值

00/20/202()cos T n T a x t n tdt T ω-=? n b ——正弦分量的幅值 00/20/202()sin T n T b x t n tdt T ω-=? n A ——n 次谐波的振幅,是n 的偶函数 n A = n ?——n 次谐波的相角,是n 的奇函数 arctan n n n a b ?= 可见,周期信号是由周期信号是由一个或几个、乃至无穷多个不同频率的谐波叠加而成的。也就是说,复杂周期信号是由几个乃至无穷多个简单的周期信号组成的,这些组成的周期信号的频率具有公约数,周期具有公共的周期。 因此,周期信号可以分解成多个乃至无穷多个谐波信号。反过来说,我们可以用一组谐波信号来合 成任意形状的周期信号。 例如对于如右图所示的方 波,其时域描述表达式为 000()()02()02x t x t nT T A t x t T A t =+????<

信号分解与合成实验报告

实验二 信号分解与合成 --谢格斯 110701336 聂楚飞110701324 一、实验目的 1、观察电信号的分解。 2、掌握带通滤波器的有关特性测试方法。 3、观测基波和其谐波的合成. 二、实验内容 1、观察信号分解的过程及信号中所包含的各次谐波。 2、观察由各次谐波合成的信号。 三、预备知识 1、了解李沙育图相关知识. 2、课前务必认真阅读教材中周期信号傅里叶级数的分解以及如何将各次谐波进行叠加等相关内容. 四、实验仪器 1、信号与系统实验箱一台(主板)。 2、电信号分解与合成模块一块。 3、20M双踪示波器一台. 五、实验原理 任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。对周期信号由它的傅里叶级数展开式可知,各次谐波为基波频率的整数倍。而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅度均趋向无限小,但其相对大小是不同的. 通过一个选频网络可以将电信号中所包含的某一频率成份提取出来。本实验采用性能较佳的有源带通滤波器作为选频网络,因此对周期信号波形分解的实验方案如图2-3—1所示。 将被测方波信号加到分别调谐于其基波和各次奇谐波频率的一系列有源带通滤波器电路上。从每一有源带通滤波器的输出端可以用示波器观察到相应频率的正弦波。本实验所用的被测信号是Hz 531=ω左右的周期信号,而用作选频网络的五种有源带通滤波器的输出频 率分别是543215432ωωωωω、、、、 ,因而能从各有源带通滤波器的两端观察到基波和各次谐波.其中,在理想情况下,如方波的偶次谐波应该无输出信号,始终为零电平,而奇次谐波则具有很好的幅度收敛性,理想情况下奇次谐波中一、三、五、七、九次谐波的幅度比应为1:(1/3):(1/5):(1/7):(1/9)。但实际上因输入方波的占空比较难控制在50%,且方波可能有少量失真以及滤波器本身滤波特性的有限性都会使得偶次谐波分量不能达到理想零的情况。 六、实验步骤 1、把系统时域与频域分析模块插在主板上,用导线接通此模块“电源接入"和主板上的电源(看清标识,防止接错,带保护电路),并打开此模块的电源开关. 2、调节函数信号发生器,使其输出Hz 53左右(其中在Hz Hz 56~50之间进行选择,

武汉工程大学数字信号处理实验二时域离散系统及系统响应

实验二时域离散系统及系统响应 一、实验目的 1、掌握求解离散时间系统冲激响应和阶跃响应的方法; 2、进一步理解卷积定理,掌握应用线性卷积求解离散时间系统响应的基本方法; 3、掌握离散系统的响应特点。 二、实验内容 1、请分别用impz 和dstep函数求解下面离散时间系统的冲激响应和阶跃响应。(1)系统的差分方程为:) y n n n y - = (n - + y+ x )2 .0 866 ) ( ( 8.0 64 ( )1 .0 a=[1,-0.8,0.64]; b=[0.866,0,0]; n=20; hn=impz(b,a,n); %冲激响应 gn=dstep(b,a,n); %阶跃响应 subplot(2,1,1),stem(hn,'filled'); %显示冲激响应曲线 title('系统的单位冲激响应'); ylabel('h(n)');xlabel('n'); axis([0,n,1.1*min(hn),1.1*max(hn)]); subplot(2,1,2),stem(gn,'filled'); %显示阶跃响应曲线

title('系统的单位阶跃响应'); ylabel('g(n)');xlabel('n'); axis([0,n,1.1*min(gn),1.1*max(gn)]); 2 4 6 8 10121416 18 20 -0.4 -0.200.20.40.6 0.8系统的单位冲激响应 h (n )n 2 4 6 8 1012 14 16 18 20 11.21.4 1.6系统的单位阶跃响应 g (n ) n (2)系统的系统函数为:2 11 15.01)(---+--=z z z z H a=[1,-1,1]; b=[1,-0.5,0]; n=20; hn=impz(b,a,n); %冲激响应 gn=dstep(b,a,n); %阶跃响应

周期矩形脉冲的分解与合成

周期矩形脉冲的分解与合成

本科实验报告 实验名称:周期矩形脉冲的分解与合成

一、实验目的和要求 ? 进一步了解波形分解与合成原理。 ? 进一步掌握用傅里叶级数进行谐波分析的方法。 ? 分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成。 ? 观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。 ? 观察相位对波形合成中的作用。 二、实验内容和原理 2.1 信号的时域特性与频域特性 时域特性和频域特性是信号的两种不同的描述方式。一个时域上的周期信号,只要满足荻里赫勒(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。由于三角形式的傅里叶级数物理含义比较明确,所以本实验利用三角形式实现对周期信号的分解。 一个周期为T 的时域周期信号()x t ,可以在任意00(,)t t T +区间,精确分解为以下三角形式傅里叶级数,即 0001()(cos sin ) k k k x t a a k t b k t ωω∞ ==++∑ 2.2 矩形脉冲信号的幅度谱 一般利用指数形式的傅里叶级数计算周期信号的幅度谱。 0()jk t k k x t X e ω∞ =-∞ = ∑ (3) 式中0/2 /2 1()T jk t k T X x t e dt T ω--= ? 。计算出指数形式的复振幅k X 后,再利用单边幅 度谱和双边幅度谱的关系:0 2,0 ,0k k X k C X k ?≠?=?=??,即可求出第k 次谐波对应的振

幅。 内容: (1)方波信号的分解。调整“信号源及频率计模块”各主要器件,通过TP1~TP8观察500Hz方波信号的各次谐波,并记录各次谐波的峰峰值。 (2)矩形波信号的分解。将矩形脉冲信号的占空比变为25%,再通过TP1~TP8观察500Hz矩形脉冲信号的各次谐波,并记录各次谐波的峰峰值。 (3)方波的合成。将矩形脉冲信号的占空比再变为50%,通过调节8位拨码开关,观察不同组合的方波信号各次谐波的合成情况,并记录实验结果。 (4)相位对矩形波合成的影响。将SW1调节到“0110”,通过调节8位拨码开关,观察不同组合的方波信号各次谐波的合成情况,并记录实验结果。 三、实验项目 周期矩形脉冲的分解与合成 四、实验器材 信号与系统实验箱一台 双踪示波器一台 五、实验步骤 5.1 方波信号的分解 ①连接“信号源与频率计模块”的模拟输出端口P2与“数字信号处理模块”的模拟输入端口P9; ②将“信号源及频率计模块”的模式切换开关S2置信号源方式,扫频开关S3置off,利用波形切换按钮S4产生矩形波(默认方波,即占空比为50%),利用频率调节按钮ROL1保证信号频率为500Hz; ③将“数字信号处理模块”模块的8位拨码开关调节为“00000000”; ④打开信号实验箱总电源(右侧边),打开S2、S4 两模块供电开关; ⑤用示波器分别观察测试点“TP1~TP7”输出的一次谐波至七次谐波的波形及TP8处输出的七次以上谐波的波形; ⑥根据表1,记录输入信号参数及测试结果。 5.2 矩形波信号的分解 ①按下“信号源及频率计模块”的频率调节按钮ROL1约1秒钟后,数码

信号处理实验报告

数字信号处理 第四次实验报告 一、 实验目的 1.了解离散系统的零极点与系统因果性能和稳定性的关系 2.观察离散系统零极点对系统冲激响应的影响 3.熟悉MATLAB 中进行离散系统零极点分析的常用子函数 4.加深对离散系统的频率响应特性基本概念的理解 5.了解离散系统的零极点与频响特性之间的关系 6.熟悉MATLAB 中进行离散系统分析频响特性的常用子函数,掌握离散系统幅频响应和相频响应的求解方法。 二、实验过程 9.2已知离散时间系统函数分别为 ) 7.05.0)(7.05.0(3 .0)(1j z j z z z H ++-+-= )1)(1(3 .0)() 8.06.0)(8.06.0(3 .0)(32j z j z z z H j z j z z z H ++-+-= ++-+-= 求这些系统的零极点分布图以及系统的冲击响应,并判断系统因果稳定性。 %---------第一式-----------------------------------------------------------------------------% z1=[0.3,0]';p1=[-0.5+0.7j,-0.5-0.7j]';k=1; %z1零点向量矩阵,p1极点向量矩阵,k 系统增益系数---------------------------% [bl,al]=zp2tf(z1,p1,k); %将零极点增益函数转换为系统传递函数 subplot(3,2,1),zplane(bl,al); %zplane 显示离散系统的零极点分布图 ylabel('极点在单位圆内'); subplot(3,2,2),impz(bl,al,20); %impz 绘制系统的冲激响应图 %---------第二式-----------------------------------------------------------------------------% z2=[0,3,0]';p2=[-0.6+0.8j,-0.6-0.8j]'; %z2零点向量矩阵,p2极点向量矩阵---------------------------------------------------% [b2,a2]=zp2tf(z2,p2,k); %将零极点增益函数转换为系统传递函数 subplot(3,2,3),zplane(b2,a2); %zplane 显示离散系统的零极点分布图 ylabel('极点在单位圆上'); subplot(3,2,4),impz(b2,a2,20); %impz 绘制系统的冲激响应图 %---------第三式-----------------------------------------------------------------------------%

实验二、 波形合成与分解

实验二 波形合成与分解 1.实验目的 在理论学习的基础上,通过本实验熟悉信号的合成、分解原理,了解信号频谱的含义,加深对傅里叶变换性质和作用的理解。 2.实验原理 根据傅里叶分析的原理,任何周期信号都可以用一组三角函数)}cos();{sin(00t n t n ωω的组合表示,即: )2sin()2cos()sin()cos()(020201010t b t a t b t a a t x ωωωω++++= 即可以用一组正弦波和余弦波来合成任意形状的周期信号。 3.实验内容 (1) 方波的合成 图示方波是一个奇谐信号,由傅里叶级数可知,它是由无穷个奇次谐波分量 合成的,本实验用图形的方式来表示它的合成。方波信号可以分解为: ,9,7,5,3,1,1)2sin(2)(10=?=∑∞ =n n t nf A t x n ππ 用前5项谐波近似合成50Hz,幅值为3的方波,写出实验步骤。 a.只考察从 0=t s 到10=t s 这段时间内的信号。 b.画出基波分量)sin()(t t y =。 c.将三次谐波加到基波之上,并画出结果,并显示。 3/)*3sin()sin()(t t t y += d.再将一次、三次、五次、七次和九次谐波加在一起。 9/)*9sin(7/)*7sin(5/)*5sin(3/)*3sin()sin()(t t t t t t y ++++= e.合并从基波到十九次谐波的各奇次谐波分量。 f.将上述波形分别画在一幅图中,可以看出它们逼近方波的过程。注意“吉布斯现象”。周期信号傅里叶级数在信号的连续点收于该信号,在不连续点收敛于信号左右极限的平均值。如果我们用周期信号傅里叶级数的部分和来近似周期信号,在不连续点附近将会出现起伏和超量。在实际中,如果应用这种近似,就应该选择足够大的N ,以保证这些起伏拥有的能量可以忽略。 (2) 设计谐波合成三角波的实验,写出实验步骤,并完成实验。

工程信号处理MATLAB实验指导书v1p0_2008完全版

工程信号处理——MATLAB实验指导书—— 伍星机电工程学院KUST-HMI联合实验室 2008.02

目录 1信号分析基础 (3) 1.1实验1典型时间信号的波形图 (3) 1.2实验2信号数据文件的读取与显示 (4) 2确定信号的频谱分析 (4) 2.1实验3周期信号的傅立叶级数三角函数展开式 (4) 2.2实验4非周期信号的傅立叶变换 (4) 2.3实验5时域有限信号的周期延拓 (5) 3时域分析 (5) 3.1实验6自相关和互相关分析 (5) 4随机信号分析 (5) 4.1实验7随机信号的数字特征 (5) 4.2实验8随机信号的功率谱分析 (6) 5系统分析概述 (6) 5.1实验9线性系统的主要性质 (6) 5.2实验10测定系统特性参数的方法 (7) 6模拟信号的离散化 (7) 6.1实验11时域采样定理 (7) 6.2实验12时域截断与泄露 (7) 7离散傅立叶变换 (7) 7.1实验13离散傅立叶变换 (7) 7.2实验14用X K计算信号的频谱 (8) 8快速傅立叶变换及其工程应用 (8) 8.1实验15快速傅立叶变换 (8) 8.2实验16快速傅立叶变换的应用 (9)

【预备知识】 机械工程测试技术、机械控制工程、MATLAB、虚拟仪器技术等。 【资料检索方法】 1.校图书馆相关书籍。 2.校图书馆数据库:维普中文科技期刊全文数据库,万方会议论文全文库, 万方硕博论文全文库,Elsevier外文期刊数据库,国外免费学位论文全文 数据库,超星电子图书系统。 3.互联网搜索引擎:https://www.360docs.net/doc/f912432600.html,,https://www.360docs.net/doc/f912432600.html,,https://www.360docs.net/doc/f912432600.html,。1信号分析基础 1.1实验1典型时间信号的波形图 【实验目的】 (1)熟悉MATLAB环境,掌握与信号处理相关的常用MATLAB语句和命令; (2)熟悉MATLAB生成典型信号的方法; (3)掌握MATLAB绘制信号波形图的方法; (4)掌握M脚本文件和函数文件的编制方法。 【实验内容】 (1)熟悉各种典型信号生成的关键参数,对于大多数的连续时间信号,两个 关键要素是信号的起止时间、信号的幅值、频率等; (2)编制确定信号和随机信号的M自定义函数文件,包括的典型信号如下: z确定信号 周期信号:正弦信号(MySin),三角波信号(MyTri),方波信号(MySquare)。 非周期信号:准周期信号(MyStdPeriod),矩形脉冲信号(MyImpulse),指数衰减正弦信号(MyExpSin)。 z随机信号:白噪声信号(MyWhiteNoise) (3)使用上述M函数产生如下信号: z幅值为5,频率为10Hz的正弦信号; z幅值为1,频率为8Hz的三角波信号; z幅值为2.5,频率为20Hz,占空比为50%的方波信号; z使用两个幅值为1的正弦信号构成一个准周期信号; z幅值为10,脉宽为1,时间范围0~6s的矩形脉冲信号; z幅值为5,频率为20Hz,衰减系数为-10的指数衰减正弦信号; z幅值范围为-3~3的白噪声信号。

数字信号处理实验报告(同名22433)

《数字信号处理》 实验报告 课程名称:《数字信号处理》 学院:信息科学与工程学院 专业班级:通信1502班 学生姓名:侯子强 学号:0905140322 指导教师:李宏 2017年5月28日

实验一 离散时间信号和系统响应 一. 实验目的 1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解 2. 掌握时域离散系统的时域特性 3. 利用卷积方法观察分析系统的时域特性 4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析 二、实验原理 1. 采样是连续信号数字化处理的第一个关键环节。对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。 对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: ?()()()a a x t x t p t = 式中()p t 为周期冲激脉冲,$()a x t 为()a x t 的理想采样。 ()a x t 的傅里叶变换为μ ()a X j Ω: 上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。也即采样信 号的频谱μ()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成 的。因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号 计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即 ()() n P t t nT δ∞ =-∞ = -∑μ1()()*() 21 ()n a a a s X j X j P j X j jn T π∞ =-∞ Ω=ΩΩ= Ω-Ω∑μ()()|j a T X j X e ωω=ΩΩ=

信号的分解与合成

实验十三 信号分解及合成 一、 实验目的 1、 了解和熟悉波形分解与合成原理。 2、 了解和掌握用傅里叶级数进行谐波分析的方法。 二、 实验仪器 1、 双踪示波器 2、 数字万用表 3、 信号源及频率计模块S2 4、 数字信号处理模块S4 三、 实验原理 (一)信号的频谱与测量 信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个时域的周期信号 ()f t ,只要满足狄利克菜(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里 叶级数。 例如,对于一个周期为T 的时域周期信号()f t ,可以用三角形式的傅里叶级数求出它的 各次分量,在区间11(,)t t T +内表示为 () 01 ()cos sin 41,3,5,7,n n n f t a a n t b n t A k Tk ω ∞ ==+Ω+Ω=??? ∑ ()01 ()cos sin n n n f t a a n t b n t ∞ ==+Ω+Ω∑ 即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。 图1 c a

信号的时域特性和频域特性 信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图13-1来形象地表示。其中图(a)是信号在幅度—时间—频率三维坐标系统中的图形;图(b)是信号在幅度一时间坐标系统中的图形即波形图:把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。反映各频率分量幅度的频谱称为振幅频谱。图(c)是信号在幅度—频率坐标系统中的图形即振幅频谱图。反映各分量相位的频谱称为相位频谱。在本实验中只研究信号振幅频谱。周期信号的振幅频谱有三个性质:离散性、谐波性、收敛性。测量时利用了这些性质。从振幅频谱图上,可以直观地看出各频率分量所占的比重。测量方法有同时分析法和顺序分析法。 同时分析法的基本工作原理是利用多个滤波器,把它们的中心频率分别调到被测信号的各个频率分量上。当被测信号同时加到所有滤波器上,中心频率与信号所包含的某次谐波分景频率-致的滤波器便有输出。在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。在本实验中采用同时分析法进行频谱分析,如图132所示。 (二)方波的分解 我们以下图的方波为例:占空比为50% 方波在一个周期内的解析式为:0()2 A t T f t T A t T <≤?? =? -<≤?? 故有 () 01 ()cos sin 41,3,5,7,n n n f t a a n t b n t A k Tk ω ∞ ==+Ω+Ω=??? ∑ 于是,所求级数 b

《语音信号处理》实验报告

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 中南大学 信息科学与工程学院 语音信号处理 实验报告 指导老师:覃爱娜 学生班级:信息0704 学生名称:阮光武 学生学好:0903070430 提交日期:2010年6月18日

实验一 语音波形文件的分析和读取 一、实验的任务、性质与目的 本实验是选修《语音信号处理》课的电子信息类专业学生的基础实验。通过实验: (1)掌握语音信号的基本特性理论:随机性,时变特性,短时平稳性,相关性等; (2)掌握语音信号的录入方式和*.WAV音波文件的存储结构; (3)使学生初步掌握语音信号处理的一般实验方法。 二、实验原理和步骤: WAV文件格式简介 WAV文件是多媒体中使用了声波文件的格式之一,它是以RIFF格式为标准。每个WAV文件的头四个字节就是“RIFF”。WAV文件由文件头和数据体两大部分组成,其中文件头又分为RIFF/WAV文件标识段和声音数据格式说明段两部分。常见的WAV声音文件有两种,分别对应于单声道(11.025KHz采样率、8Bit的采样值)和双声道(44.1KHz采样率、16Bit的采样值)。采样率是指声音信号在“模拟→数字”转换过程中,单位时间内采样的次数;采样值是指每一次采样周期内声音模拟信号的积分值。对于单声道声音文件,采样数据为8位的短整数(short int 00H-FFH);而对于双声道立体声声音文件,每次采样数据为一个16位的整数(int),高八位和低八位分别代表左右两个声道。WAV文件数据块包含以脉冲编码调制(PCM)格式表示的样本。在单声道WAV文件中,道0代表左声道,声道1代表右声道;在多声道WAV文件中,样本是交替出现的。WAV文件的格式见表1。

相关文档
最新文档