开关电源.基于PID控制方式的Buck电路的综合设计

目录

第一章绪论 (1)

1.引言 (1)

第二章实验目的 (2)

第三章实验要求 (3)

3.1设计指标 (3)

3.2 Buck主电路的参数设计 (4)

3.3用Matla软件参数扫描法计算 (5)

3.4原始系统的设计 (6)

3.5补偿网络的设计 (8)

3.6总电路图的仿真 (12)

第四章心得体会 ..................................................................................................................... . (17)

第一章绪论

1.引言

现代自动化控制中,参数的自动控制占有很大的比例,这些控制多采用P、I、D的组合通常情况下,对系统的动态过程利用微分方程经拉普拉斯变换导出时间函数,可得到输出量的时间函数,但要得到系统的动态响应曲线,其计算量庞大。因而在一般情况下对控制结果很难得到精确的预见。矩阵实验室(Matrix laboratory,MATLAB)软件是一个适用于科学计算和工程应用的数学软件系统,历尽20多年的发展,现已是IEEE组织认可的最优化的科技应用软件。该软件有以下特点:数值运算功能强大;编程环境简单;数据可视化功能强;丰富的程序工具箱;可扩展性能强等。开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,开关电源比普通线性电源体积小,轻便化,更便于携带。常用的控制器有比例积分(PI)、比例微分(PD)、比例-积分-微分(PID)等三种类型。PD控制器可以提供超前的相位,对于提高系统的相位裕量、减少调节时间等十分有利,但不利于改善系统的控制精度;PI控制器能够保证系统的控制精度,但会引起相位滞后,是以牺牲系统的快速性为代价提高系统的稳定性;PID控制器兼有二者的优点,可以全面提高系统的控制性能,但实现与调试要复杂一些。本文中介绍基于PID控制器的Buck电路设计。

2.基于PID控制方式的Buck电路的综合设计

Buck变换器最常用的电力变换器,工程上常用的正激、半桥、全桥及推挽等均属于Buck 族。现以Buck变换器为例,根据不同负载电流的要求,设计功率电路,并采用单电压环、电流-电压双环设计控制环路。

第二章实验目的

(1)了解Buck变换器基本结构及工作原理;

(2) 掌握电路器件选择和参数的计算;

(3) 学会使用Matlab仿真软件对所设计的开环降压电路进行仿真;

(4) 学会使用Matlab仿真软件对控制环节的仿真技术;

(5)学会分析系统的静态稳压精度和动态响应速度。

第三章实验要求

3.1设计指标

输入直流电压(V IN):15V;

输出电压(V O):5V;

):5A;

输出电流(I I

N

输出电压纹波(V rr):50mV;

基准电压(V ref):1.5V;

):100kHz。

开关频率(f

s

Buck变换器主电路如图3-1-1所示,其中Rc为电容的等效电阻ESR。

图3-1-1

3.2 Buck 主电路的参数设计

(1)滤波电容参数计算

输出纹波电压只与电容C 的大小有关及R c 有关:

0.2rr rr C L N

V V

R i I =

=? (1) 电解电容生产厂商很少给出ESR ,而且ESR 随着电容的容量和耐压变化很大,但是C 与R c 的乘积趋于常数,约为F Ω*80~50μ。本例中取为F Ω*75μ由式(1)可得R c =50m Ω,C=1500μF 。

(2)滤波电感参数计算

当开关管导通与截止时变换器的基尔霍夫电压方程分别如式(2)、(3)所示:

ON

L

ON L O IN T i L

V V V V ?=--- (2)

OFF

L

D L O T i L

V V V ?=++ (3) 假设二极管的通态压降V D =0.5V ,电感中的电阻压降V L =0.1V ,开关管的导通压降V ON =0.5V 。 又因为

s

ON OFF f T T 1

=

+ (4)

所以由式(2)、(3)、(4)联立可得T

=3.73μS,并将此值回代式(2),可得L=35.062

ON

μH。

3.3用Matla软件参数扫描法计算

当L=35.062uH时,输出电压和电流以及输出电压纹波如图3-3-1所示。

图3-3-1

当L=15uH时,输出电压和电流以及输出电压纹波如图3-3-2所示。

图3-3-2

当L=50uH时,输出电压和电流以及输出电压纹波如图3-3-3所示。

图3-3-3

图3-3-3采用Matlab 的参数扫描功能,有图可得,当L=35uH 时,输出电流I IN =5A ,输出电压

U=5V 。输出电压纹波V rr =50mV ,所以选择L=35.062uH ,理论分析和计算机仿真结果是一致的。

3.4原始系统的设计

(1)设计电压采样网络。在设计开关调节系统时,为消除稳态误差,在低频段,尤其在直流频率点,开环传递函数的幅值要远大于1,即在直流频率点系统为深度负反馈系统。对于深度负反馈系统,参考电压与输出电压之比等于电压采样网络的传递函数,即

0.3ref O

V H V =

= (5)

(2)绘制原始系统的Bode 图。假设电路工作于电流连续模式(CCM),忽略电容等效串联电阻(ESR )的影响,加在PWM 的锯齿波信号峰峰值为V m =1.5V ,R x =3KHz ,R y =1.3KHz ,采用小信号模型分析,给出Buck 变换器传递函数为:

2

00

01()1uo

p p T s T s s Q ωω=??+

++

? ???

(6)

式(6)具有双重极点,对应的控制对象是双重极点型控制对象。 交流小信号模型中电路参数的计算如下: 占空比 0.3O

IN

V D V =

= 直流增益 01

3u IN

M

T HV V ==,0020lg 9.5u u dB T T dB == 双重极点频率

000.692p p f KHz ωπ=

== 品质因数

0 6.5Q ==,0020lg 16.3dB Q Q dB == 其中,1O

L IN

V R I =

,0 4.4p KHz ω==,根据上述计算结果可得到开环传递函数为:

()825

3

5.210 3.5101

T s s s --=

?+?+ (7)

Buck 变换器原始回路增益函数G 0(S )为:

()()()5

0682

21131)

132.06210 5.256101IN C m

V sCR s G s H S L V s s

s s LC R ---+?(7.5?10+=??=+?+?++ 根据原始系统的传递函数可以得到的波特图如图3-4-1所示,MATLAB 的程序如下:

num1=3;

Go=tf(3*[7.5e-5 1],[5.256e-8 32.062e-6 1]) figure(1);

[mag,phase,w]=bode(num1,den1); margin(mag,phase,w)

3.5补偿网络的设计

原始系统主要问题是相位裕度太低、穿越频率太低。改进的思路是在远低于穿越频率f c 处,给补偿网络增加一个零点f Z ,开环传递函数就会产生足够的超前相移,保证系统有足够的裕量;在大于零点频率的附近增加一个极点f P ,并且为了克服稳态误差大的缺点,可以加入倒置零点f L ,为此可以采用如图3-5-1所示的PID 补偿网络。

根据电路写出的PID 补偿网络的传递函数为

(1)(1)

()(1)

L

z

C cm

p

s

s

G s G s

ωωω+

+=+

(8)

式中3

12

0R R R G c +-

=;111C R w z =;221C R w L =;13131C R R R R w p +=

为了提高穿越频率,设加入补偿网络后开环传递函数的穿越频率

是开关频率

的十分之一,即

1010

s

c f f KHz =

= (9) 在这里,假设选择的倒置零点的频率为穿越频率的二十分之一,则有

50020

c

L f f Hz =

= (10) 设相位裕度52m ?=o ,则PID 补偿网络的参数计算值如下: 零点频率

10 3.4z f f KHz === 极点频率

1029p f f KHz ===

直流增益

2

2

010123.30.73c cm p f G f ????==?= ?

? ????? 零点角频率 221.352z z f KHz ωπ== 极点角频率 2182.12p p f KHz ωπ== 倒置零点角频率 2 3.14L L f KHz ωπ== 根据上面计算数据,得出补偿网络的传递函数为

()()()

2

0.0468123.373.1625.49C s s G s s s

++=

+ (11)

根据PID 补偿网络的传递函数可以得到的波特图如图3-5-2所示

52m ?=o

用PID 补偿网络作为控制器后,开环传递函数为

()00

2

0001111L z u c p p p s s T s T G s s s Q ωωωωω????++ ???????=????????+++ ? ? ? ???

?????

? (12) 根据上面的传递函数,可以绘制出加PID 补偿网络后的传递函数Bode 图如图3-5-3所示,MATLAB 的程序如下:

Go=tf([1],[0.054 0.036 1])

num=conv([4.683e-5 1],[23.3 73162]); den=[5.49e-6 1 0]; Gc=tf(num,den) G=series(Go,Gc) bode(Go);hold on; bode(Gc);hold on; bode(G);hold on; grid on;

假设补偿网络中C i =1μF ,依据前面的方法计算后,选用R iz =47Ω,R f =1235Ω,R ip =6Ω,C f =258nF 。由图

8

可以看出,补偿后,f c =10KHz ,相位裕度ψ

m =50,高频段f>f

p

,补偿后的系统回路增益在f

c

处提升

至0dB,且以-40dB/dec的斜率下降,能够有效地抑制高频干扰。

3.6总电路图的仿真

(1)总电路图的设计,见图3-6-1

图3-6-1

(2)总电路的仿真图3-6-2

图3-6-2

如何减小超调量

关于由于开环传涵的超调量较大,有两种方法可以解决,第一种采用软启动,第二种是改变补偿网络的传涵,由于得到的图已经满足要求,所以采取软启动,这样就降低了图形的超调量。

第四章心得体会

这次设计电路,让我不仅了解了Buck变换器基本结构及工作原理,掌握了电路器件选择和参数的计算,并且学会使用Matla仿真软件对所设计的开环降压电路进行仿真,使自己对电子又有了更加深刻的了解。通过实验测试的数据表明,这一开关电路短路保护电源具有良好的实用性,是防止低电压电路短路引起的不良后果的有效方法,造价较低可以大范围的使用。

这次设计电路也培养了我如何去把握一件事情,如何去做一件事情,又如何完成一件事情。在设计过程中,与同学分工设计,和同学们相互探讨,相互学习,相互监督。让我得到了很多收获。

参考文献

张晋格主编《控制系统CAD仿真》机械工业出版社,2004

张建生主编《现代仪器电源》科学出版社,2005

王兆安,黄俊主编《电力电子技术》机械工业出版社,2000

邵裕森主编《过程控制及仪表》上海交通大学出版社 2007

黄忠霖,周向明主编《控制系统MATLAB计算及仿真实训》国防工业出版社

陈丽兰主编《自动控制原理》电子工业出版社 2006

【美】Katsuhiko Oagta著《现代控制工程》(第四版)电子工业出版社 2003

相关主题
相关文档
最新文档