马尔可夫预测算法

马尔可夫预测算法
马尔可夫预测算法

尔可夫预测算法

综述

马尔可夫预测法以系统状态转移图为分析对象,对服从给定状态转移率、系统的离散稳定状态或连续时

间变化状态进行分析马尔可夫预测技术是应用马尔可夫链的基本原理和方法研究分析时间序列的变化规律,并预测其未来变化趋势的一种技术。

方法由来

马尔可夫是俄国的一位著名数学家 (1856—1922),20世纪初,他在研究中发现自然界中有一类事物的变化过程仅与事物的近期状况有关,而与事物的过去状态无关。针对这种情况,他提出了马尔可夫预测方法,该方法具有较高的科学性,准确性和适应性,在现代预测方法中占有重要地位。

基础理论

在自然界和人类社会中,事物的变化过程可分为两类:一类是确定性变化过程;另一类是不确定性变化过程。确定性变化过程是指事物的变化是由时间唯一确定的,或者说,对给定的时间,人们事先能够确切地知道事物变化的结果。因此,变化过程可用时间的函数来描述。不确定性变化过程是指对给定的时间,事物变化的结果不止一个,事先人们不能肯定哪个结果一定发生,即事物的变化具有随机性。这样的变化过程称为随机过程一个随机试验的结果有多种可能性,在数学上用一个随机变量(或随机向量)来描述。在许多情况下,人们不仅需要对随机现象进行一次观测,而且要进行多次,甚至接连不断地观测它的变化过程。这就要研究无限多个,即一族随机变量。随机过程理论就是研究随机现象变化过程的概率规律性的。客观事物的状态不是固定不变的,它可能处于这种状态,也可能处于那种状态,往往条件变化,状态也会发生变化状态即为客观事物可能出现或存在的状况,用状态变量表示状态:

???

?

?????=???==,2,1,,2,1t N i i X t 它表示随机运动系统,在时刻),2,1( =t t 所处的状态为),2,1(N i i =。状态

转移:客观事物由一种状态到另一种状态的变化。设客观事物有 N E E E E ...,,321共 N 种状态,其中每次只能处于一种状态,则每一状态都具有N 个转向(包括转向自身),即由于状态转移是随机的,因此,必须用概率来描述状态转移可能性的大小,将这种转移的可能性用概率描述,就是状态转移概率。

概率论中的条件概率:P (A ∣B )就表达了由状态 B 向状态 A 转移的概率,简称为状态转移概率。对于由状态 E i 转移到状态E j 的概率,称它为从 i 到 j 的转移概率,即为:

()

()P E E P E E P P j i i j ij =→==()i x j x n n ==+1它表示由状态E i 经过一步转移到状态E j 的概率。

状态转移概率矩阵具有如下特征:

通常称矩阵 P 为 状态转移概率矩阵,没有特别说明步数时,一般均为一步转移概率矩阵。矩阵中的每一行称之为概率向量。状态转移概率的估算方法有两种:主观概率法和统计估算法。

状态转移概率矩阵完全描述了所研究对象的变化过程。正如前面所指出的,上述矩阵为一步转移概率矩阵。对于多步转移概率矩阵,可按如下定义解释:

若系统在时刻0t 处于状态i ,经过 n 步转移,在时刻n t 处于状态j 。那么,对这种转移的可能性的数量描述称为n 步转移概率。记为: 并令

()

()()

()

()()()

()()()

??

????

?

??=n NN n N n N n N n n n N n n n P P P P P P P P P P 2

1

22221112

11称 ()

n P 为 n 步转移概率矩阵。

多步转移概率矩阵,除具有一步转移概率矩阵的性质外,还具有以下的性质:

记0t 为过程的开始时刻, )})({()0(00i t X X P i ===,则称()()()()(),0,0,0021N P P P P = 为初始状态概率向量。已知马尔科夫链的转移矩阵()

()

k ij

k P P =以及初始状态概率向量()0P ,则任一时刻的状态

概率分布也就确定了:

对1≥k ,记(){}i x P k P k i ==,则由全概率公式有:

()()()

1,,,2,1,01

≥==∑=k N i P P k P N

j k ij j i ,若记向量()()()()(),,,21k P k P k P k P N =则上式可写为

()()()()k k P P P P k P 00==,由此可得()()P k P k P 1-=

在马尔可夫链中,已知系统的初始状态和状态转移概率矩阵,就可推断出系统在任意时刻可能所处的状态。 现在需要研究当 k 不断增大时,()k P 的变化趋势。 一、平稳分布

预备定义:

如存在非零向量()n x x x x X 321,=,使得:

XP X =,其中P 为一概率矩阵,则称 X 为 P 的固定

概率向量。特别地,设()n x x x x X 321,= 为一状态概率向量, P 为状态转移概率矩阵,若XP X = 即:

N j x p

x j N

i ij

i ,2,11

==∑=

称 X 为该马尔可夫链的一个平稳分布性质。

若随机过程某时刻的状态概率向量 P (k ) 为平稳分布,则称过程处于平衡状态。 (X P = X )一旦过程处于平衡状态,则经过一步或多步状态转移之后,其状态概率分布保持不变,也就是说,过程一旦处于平衡状态后将永远处于平衡状态。对于所讨论的状态有限(即N 个状态)的马尔可夫链,平稳分布必定存在。特别地,当状态转移矩阵为正规概率矩阵时,平稳分布唯一。

方法改进

马氏链预测对象要求具有马氏链和平稳过程等均值的特点,而客观世界中的预测问题大量是随时间变化或呈某种变化趋势的非平稳过程如果采用灰色GM (l ,l )模型对预测问题的时序数据进行拟合,找出其变化趋势,则可以弥补马氏链预测的局限。

算法应用

当实际问题可以用马尔可夫链来描述时,首先要确定它的状态空间及参数集合,然后确定它的一步转移概率。关于这一概率的确定,可以由问题的内在规律得到,也可以由过去经验给出,还可以根据观测数据来估计。 例1:

某计算机机房的一台计算机经常出故障,研究者每隔 15 分钟观察一次计算机的运行状态,收集了24小时的数据(共作97次观察)。用1 表示正常状态,用0 表示不正常状态,所得的数据序列如下: 11100100111111 10011110111111001111111110001101101 11101101101011110111011110 1111110011011111 100111

解 设Xn(n=1,…,97)为第n 个时段的计算机状态,可以认为它是一个时齐马氏链,状态空间E={0,1},编写如下Matlab 程序:

a1= '1110010011111110011110111111001111111110001101101';

a2= '111011011010111101110111101111110011011111100111' ;

a=[ a1 a2];

f00=length(findstr('00',a))

f01=length(findstr('01',a))

f10=length(findstr('10',a))

f11=length(findstr('11',a))

或者把上述数据序列保存到纯文本文件data1.txt中,存放在Matlab下的work 子目录中,编写程序如下:

Clc,clear

clc,clear

-209-

format rat

fid=fopen('data1.txt','r');

a=[];

while (~feof(fid))

a=[a fgetl(fid)];

end

for i=0:1

for j=0:1

s=[int2str(i),int2str(j)];

f(i+1,j+1)=length(findstr(s,a));

end

end

fs=sum(f'); for i=1:2

f(i,:)=f(i,:)/fs(i); end f

求得96 次状态转移的情况是:

0 0 → ,8 次; 1 0 → ,18次; 0 1 → ,18次; 1 1 → ,52次, 因此,一步转移概率可用频率近似地表示为 例2:

设一随机系统状态空间{

}4,3,2,1=E ,记录观测系统所处状态如下: 4 3 2 1 4 3 1 1 2 3 2 1 2 3 4 4 3 3 1 1 1 3 3 2 1 2 2 2 4 4 2 3 2 3 1 1 2 4 3 1

若该系统可用马氏模型描述,估计转移概率ij P 解 首先将不同类型的转移数n ij 统计出来分类计入下表 各类转移总和

∑∑j

ij

i

n

等于观测数据中马氏链处于各种状态次数总和减1,而行和n i 是系统从状态i 转移到其

他状态的次数,n ij 是由状态i 到状态j 的转移次数,则p ij 的估计值p ij =i

ij n n .计算得

Matlab 计算程序如下: format rat clc

a=[4 3 2 1 4 3 1 1 2 3 ...

2 1 2

3

4 4 3 3 1 1 ...

1 3 3

2 1 2 2 2 4 4 ...

2 3 2 3 1 1 2 4 3 1];

for i=1:4

for j=1:4

f(i,j)=length(findstr([i j],a));

end

end

f

ni=(sum(f'))'

for i=1:4

p(i,:)=f(i,:)/ni(i);

end

例3:(带有反射壁的随机徘徊)如果在原点右边距离原点一个单位及距原点s ( s>1)个单位处各立一个弹性壁。一个质点在数轴右半部从距原点两个单位处开始随机徘徊。每次分别以概率)p ( 0

s ,以概率p 停在原处。设ξ

n 表示徘徊n步后的质点位置。{ξ

n

,n=1,2,…}是一个马尔可夫链,其状态空间

E={1,2,…,s},写出转移矩阵P.

因此,P为一个s介方程,即

定理1 (柯尔莫哥洛夫——开普曼定理)设{ξ

n

,n=1,2,…}是一个马尔可夫链其状态空间E={1,2,…},则对任意正整数m,n有

其中的I,j∈E

定理2 设P是一个马氏链转移矩阵(P的行向量是概率向量),P)0(是初始分布行向量,则第n步的概率分布是

。n P

P

P)0(

)n(

例4 若顾客的购买是无记忆的,即已知现在顾客购买情况,未来顾客的购买情况 不受过去购买历史的影响,而只与现在购买情况有关。现在市场上供应 A,B,C 三个

不同厂家生产的50 克袋状味精,用“ξn =1”,”ξn =2”,”ξn =3’’分别表示“顾客第n 次购买A,B,C 厂的味精”。显然,{ξn ,n=1,2…}是一个马氏链。若已知第一次顾客购买三个厂味精的概率依次为0.2,0.4,0.4.又知道一般顾客购买的倾向由表2给出。求顾客第四次购买各家味精的概率。 2.3转移概率的渐近性质——极限概率分布

现在我们考虑,随着n 的增大,P n 是否会趋于某一固定量?先考虑一个简单例子: 又若取 ??

??

??=12512

7u , 则 T u u uP ,=为矩阵T

P 的对应于特征值λ=1 的特征 (概 率)向量,u 也称为P 的不动点向量。哪些转移矩阵具有不动点向量?为此我们给出 正则矩阵的概念。

定义4 一个马氏链的正则矩阵P 是正则的,当且仅当存在正整数k,使P k

的每一个元素都是正数。 定理3若P 是一个马氏链正则阵,那么:

1. P 有唯一的不动点向量W,W 的每个分量为正。

2. P 的n 次幂p n

(n 为正整数)随n 的增加趋于矩阵

,的每一行向量均等于不动点向量

例5 信息的传播

一条新闻在 ,,,21n a a a 等人中间传播, 传播的方式是 1a 传

给 2a ,2a 传给3a ,…如此继续下去,每次传播都是由i a 传给1+i a 。每次传播消息的失真概率是,p 10<

设整个传播过程为随机转移过程,消息经过一次传播失真的概率为p ,转移矩阵

P 是正则矩阵。又设V 是初始分布,则消息经过n 次传播后,其可靠程度的概率分为N

P V ? 。 一般地,设时齐马氏链的状态空间为E ,如果对于所有E j i ∈,, ,转移概率)(n P IJ 存在极限 或

则称此链具有遍历性。又若

∑=j

j

,则同时称),(,21 πππ=为链的极限分布。

下面就有限链的遍历性给出一个充分条件。

定理 4 设时齐(齐次)马氏链 {} ,2,1,=n n ξ 的状态空间为 {}n a a a E 21,=,

)(ij p P =是它的一步转移概率矩阵,如果存在正整数m ,使对任意的 ,,E a a j i ∈都

则此链具有遍历性;且有极限分布),,(1N πππ =它是方程组 ∑====N

I ij i

N j p P 1

j ,,1, π

πππ或者的满足

条件 的唯一解。

例6

根据例5 中给出的一般顾客购买三种味精倾向的转移矩阵,预测经过长期的 多次购买之后,顾客的购买倾向如何?

解 这个马氏链的转移矩阵满足定理 4 的条件,可以求出其极限概率分布。为此, 解下列方程组:

编写如下的 Matlab 程序:

format rat

p=[0.8 0.1 0.1;0.5 0.1 0.4;0.5 0.3 0.2]; a=[p'-eye(3);ones(1,3)]; b=[zeros(3,1);1]; p_limit=a\b

或者利用求转移矩阵P 的转置矩阵T

P 的特征值 1 对应的特征(概率)向量,求得极限概率。编写程序如下:

p=[0.8 0.1 0.1;0.5 0.1 0.4;0.5 0.3 0.2]; p=sym(p'); [x,y]=eig(p) for i=1:3

x(:,i)=x(:,i)/sum(x(:,i)); end x

这说明,无论第一次顾客购买的情况如何,经过长期多次购买以后, A 厂产的味精占有市场的7

5

, C B, 两厂产品分别占有市场的

84

13,8411。

2.4 吸收链

马氏链还有一种重要类型—吸收链。 若马氏链的转移矩阵为.

P 的最后一行表示的是,当转移到状态 4 时,将停留在状态 4,状态 4 称为吸收状态。

如果马氏链至少含有一个吸收状态,并且从每一个非吸收状态出发,都可以到达某 个吸收状态,那么这个马氏链被称为吸收链。

具有r 个吸收状态,)(r n s s -=个非吸收状态的吸收链,它的n n ?转移矩阵的标 准形式为

其中 r I 为r 阶单位阵,O 为 r ×s 零阵,R 为 s ×r 矩阵,S 为 s ×s 矩阵。从(4)得 (5)式中的子阵 n

S 表示以任何非吸收状态作为初始状态,经过n 步转移后,处于S 个 非吸收状态的概率。

在吸收链中,令1

)(--=S I F ,则F 称为基矩阵。

对于具有标准形式(即(4)式)转移矩阵的吸收链,可以证明以下定理:

定理 5

吸收链的基矩阵F 中的每个元素,表示从一个非吸收状态出发,过程到达 每个非吸收状态的平均转移次数。

定理 6

设 N=FC ,F 为吸收链的基矩阵, T C ]111[ = ,则N 的每个元素表示从非吸收状态出发,到达某个

吸收状态被吸收之前的平均转移次数。

定理 7

设B=FR=(ij B ),其中F 为吸收链的基矩阵,R 为(4)式中的子阵, 则 ij b ij 表示从非吸收状态i 出发,被吸收状态 j 吸收的概率。

例7

智力竞赛问题

甲、乙两队进行智力竞赛。竞赛规则规定:竞赛开始时,甲、乙两队各记 2 分,在抢答问题时,如果甲队赢得 1 分,那么甲队的总分将增加 1分,同时乙队总分将减少 1 分。当甲(或乙)队总分达到 4分时,竞赛结束,甲(或乙)获胜。根据队员的智力水平,知道甲队赢得 1 分的概率为 p ,失去 1 分的概率为 p ? 1 , 求: (i )

甲队获胜的概率是多少?

(ii )竞赛从开始到结束,分数转移的平均次数是多 少? (ii )

甲队获得 1、2、3 分的平均次数是多少?

分析 甲队得分有 5 种可能,即 0、1、2、3、4,分别记为状态,,,,4321a a a a 其中0a 和 4a 是吸收状态,

321a ,和a a 是非吸收状态。过程是以 2a 作为初始状态。根据

甲队赢得 1分的概率为 p ,建立转移矩阵: 将(6)式改记为标准形式: 其中

????

?

??

???--=??????????-=010

0100

,00001p p p p S p p R , 计算

其中.1p q +=

因为 2a 是初始状态,根据定理 5,甲队获得 1,2,3 分的平均次数为

pq

q

21-,

pq 211-,pq

p

21-。又

根据定理 6,以a 为初始状态,甲队最终获胜的分数转移的平均次数为

pq

212

-

又因为

根据定理 7,甲队最后获胜的概率pq

p b 212

22-=

Matlab 程序如下:

syms p q

r=[q,0;0,0;0,p];

s=[0,p,0;q,0,p;0,q,0];

f=(eye(3)-s)^(-1);f=simple(f) n=f*ones(3,1);n=simple(n) b=f*r;b=simple(b)

应用马尔可夫链的计算方法进行马尔可夫分析, 主要目的是根据某些变量现在的情 况及其变动趋向,来预测它在未来某特定区间可能产生的变动,作为提供某种决策的依 据。

例8

(服务网点的设置问题)为适应日益扩大的旅游事业的需要,某城市的甲、

乙、丙三个照相馆组成一个联营部,联合经营出租相机的业务。游客可由甲、乙、丙三 处任何一处租出相机, 用完后, 还在三处中任意一处即可。 估计其转移概率如下表所示: 今欲选择其中之一附设相机维修点,问该点设在哪一个照相馆为最好?

解 由于旅客还相机的情况只与该次租机地点有关,而与相机以前所在的店址无关, 所以可用 n X 表示相机第n 次被租时所在的店址; “n X =1 ” 、 “n X =2” 、 “ n X =3”

分别表示相机第n 次被租用时在甲、乙、丙馆。则{} 2,1,=n X n 是一个马尔可夫链,其转移矩阵P 由上表给出。考虑维修点的设置地点问题,实际上要计算这一马尔可夫链的极限概率分布。 转移矩阵满足定理 4 的条件,极限概率存在,解方程组 得极限概率.41

8

,4116,4117321===

P p p 由计算看出,经过长期经营后,该联营部的每架照相机还到甲、乙、丙照相馆的概 率分别为

.41

8

,4116,4117 由于还到甲馆的照相机较多,因此维修点设在甲馆较好。但 由于还到乙馆的相机与还到甲馆的相差不多,若是乙的其它因素更为有利的话,比如, 交通较甲方便,便于零配件的运输,电力供应稳定等等,亦可考虑设在乙馆。

马尔可夫预测法还适合以下应用.

1. 在英国,工党成员的第二代加入工党的概率为 0.5,加入保守党的概率为 0.4,

加入自由党的概率为 0.1。而保守党成员的第二代加入保守党的概率为 0.7,加入工党的概率为 0.2,加入自由党的概率为 0.1。而自由党成员的第二代加入保守党的概率为 0.2,加入工党的概率为 0.4,加入自由党的概率为 0.4。求自由党成员的第三代加入工党的概率是多少?在经过较长的时间后,各党成员的后代加入各党派的概率分布是否具有稳定性?

2. 社会学的某些调查结果指出:儿童受教育的水平依赖于他们父母受教育的水

平。调查过程是将人们划分为三类:E类,这类人具有初中或初中以下的文化程度;S 类,这类人具有高中文化程度;C类,这类人受过高等教育。当父或母(指文化程度

较高者)是这三类人中某一类型时,其子女将属于这三种类型中的任一种的概率由下面

给出

问:(i)属于S类的人们中,其第三代将接受高等教育的概率是多少?

(ii)假设不同的调查结果表明,如果父母之一受过高等教育,那么他们的子女总

可以进入大学,修改上面的转移矩阵。

(iii)根据(ii)的解,每一类型人的后代平均要经过多少代,最终都可以接受高等教育?

3. 色盲是? X 链遗传,由两种基因 A和a决定。男性只有一个基因 A或a,女性

有两个基因 Aa AA、或aa,当基因为a或aa时呈现色盲。基因遗传规律为:男性等

概率地取母亲的两个基因之一,女性取父亲的基因外又等概率地取母亲的两个基因之

一。由此可知,母亲色盲则儿子必色盲但女儿不一定。试用马氏链研究:(i)若近亲结婚,其后代的发展趋势如何?若父亲非色盲而母亲色盲,问平均经

多少代,其后代就会变为全色盲或全不色盲,两者的概率各为多少?

(ii)若不允许双方均色盲的人结婚,情况会怎样?

基于马尔可夫排队模型的行程时间预测方法

第34卷 第4期吉林大学学报(工学版) Vol.34 No.4 2004年10月Journal of Jilin University(Engineering and Technology Edition) Oct.2004 文章编号:1671-5497(2004)04-0671-04 基于马尔可夫排队模型的行程时间预测方法 杨志宏1,杨兆升2,于德新2,陈 林2 (1.宝路集团,吉林长春 130022;2.吉林大学交通学院,吉林长春 130022) 摘 要:针对城市交通流诱导系统(U TF GS)亟待解决的综合路段行程时间预测这一关键问题,利用马尔可夫排队模型给出了车辆路段(含信号交叉口)实时行程时间预测的基本公式,并结合实际工程项目对公式中的一些参数进行了简化,提高了模型的实用性。人工调查数据验证表明该模型具有较高的精度。同时给出了相对误差图。 关键词:交通运输工程;城市交通流诱导系统(U TF GS);马尔可夫排队模型;排队等待时间;实时动态行程时间 中图分类号:U491.2 文献标识码:A T ravel time prediction method based on Malcov queuing model YAN G Zhihong1,YAN G Zhaosheng2,YU Dexin2,CHEN Lin2 (1.China B aolu Com pany,Changchun130022,China;2.College of T ransportation,Jilin U niversity,Changchun 130022,China) Abstract:Aiming at the key problem of synthetic Link travel time prediction in Urban Traffic Flow Guidance System(U TF GS).A Vehicle link travel time prediction algorithm based on Malcov Queuing model was presented.With a quantity of traffic measurement data,some model parameters were simplized and confirmed,thus getting a high precision and also making the model more become applicable. K ey w ords:traffic engineering;U TF GS;Malcov queuing model;queuing wait time;real2time dynamic travel time 0 引 言 交通流诱导以交通流预测和实时动态交通分配(D TA)为基础,应用现代通信技术、电子技术、计算机技术等为路网上的出行者提供必要的交通信息,为其指出当前的最佳行驶路线,从而避免盲目出行造成的交通阻塞,到达路网畅通、高效运行的目的[1,2]。交通流诱导的方式一般分为路边显示板式和车内显示屏式两种。前者主要适用于高速公路以及城市路网集体车辆诱导,后者主要适用于城市路网中的个体车辆诱导[2]。 为了准确、快速地给出路网的最佳行驶路线,需要估计路网中各路段的行程时间。路网中的路段均指含一个相邻的下游交叉口(有信号灯控制)的路段。当车辆进入路段后,其行程时间随交通流量的变 收稿日期:2004205219. 基金项目:“十五”国家智能交通重大科技攻关项目(2002BA404A22B). 作者简介:杨志宏(1971-),男,工程师.E2mail:yangzhihong0527@https://www.360docs.net/doc/f91596314.html, 通讯联系人:杨兆升(1938-),男,教授,博士生导师.E2mail:yangzs@https://www.360docs.net/doc/f91596314.html,

马尔可夫预测

4.6 马尔可夫预测 4.6.1 马尔可夫预测法分析概述 马尔可夫是俄国著名的数学家,马尔可夫过程是以马尔可夫名字命名的一种特殊的描述事物发展过程的方法。马尔可夫过程主要用于对企业产品的市场占有率的预测。 众所周知,事物的发展状态总是随着时间的推移而不断地变化的。对于有些事物的发展,需要综合考察其过去与现在的状态,才能预测未来。但有些事物的发展,只要知道现在状态,就可以预测将来的状态而不需要知道事物的过去状态。例如,在下中国象棋时,一个棋子下一步应该怎样走,只与它当前的位置有关,而不需要知道它以前处于什么位置,也不需要知道它是怎么走到当前位置的。这种与过去的取值无关,称为无后效性。这种无后效性的事物的发展过程,就称为马尔可夫过程。 1.一步转移概率与转移概率矩阵 如果变量的状态是可数的,假设有N个,那么从状态i经一步转移到j,都有发生的可能,我们称Pij为一步转移概率。将这些依序排列起来构成的一个矩阵,叫做转移概率矩阵: 转移概率矩阵具有下述性质; (1)矩阵每个元素均非负; (2)矩阵每行元素之各等于1. 2.多步转移概率与转移概率矩阵 在一步转移概率概念的基础上,可导出多步转移概率。若系统在时刻T0处于状态i,经过n步转移,在时刻Tn时处于状态j,这种转移的可能性的数量指标称为n步转移概率,记为P(Xn=j|X0=i)=Pij(n)。n步转移概率矩阵记为

经过计算,可以得到一个有用的结论: 同时,n步转移概率同一步转移概率一样具有下列性质; 2.4.2市场占有率预测分析 1.市场占有率预测分析概述 在市场经济条件下,各企业都十分重视扩大自身产品的市场占有率。因此,预测企业产品市场占有率,也就成为企业十分关心的问题。 市场占有率是指在一定地理范围内,某一类商品因为具有相同的用途或性质而相互竞争,那么在这类商品的整个销售市场上,每一种品牌的产品的销售额(销量)点该类商品总销售额(销量)的份额即为该品牌商品的市场占有率。 2.市场占有率预测分析的基本 市场占有率预测分析的基本步骤如下:假设该地区市场上有三种同类商品。 (1)调查目前市场占有率情况,得到市场占有率向量A 首先,通过抽样调查,了解目前市场占有率情况。根据调查结果,构建市场占有率向量A。则A=(P1 , P2 ,P3) (2)调查消费者的变动情况,计算转移概率矩阵P 通过合理的消费者抽样调整,汇总消费者消费变动的情况,并计算出转移概率矩阵P。则

基于马尔可夫模型的语言发展趋势预测

基于马尔可夫模型的语言发展趋势预测 发表时间:2019-03-14T15:24:06.727Z 来源:《知识-力量》2019年6月中作者:张浩1 姜晓丽1 朱英豪2 [导读] 为了预测世界语言发展趋势,将语言使用者分为两个部分来分别预测其数量。 (1.华北理工大学建筑工程学院,河北唐山 063210;2.华北理工大学以升教育创新基地,河北唐山 063210)摘要:为了预测世界语言发展趋势,将语言使用者分为两个部分来分别预测其数量。对于母语使用者,根据语言区域的自然增长率和净移民率计算出随时间变化的母语使用者的人数。对于第二或第三语言使用者,将影响使用者人数的三种因子归一化处理,利用层次分析法赋予相应的权重后得到各种语言的发展强度数值。建立马尔可夫预测模型模拟若干年后的第二或第三语言使用者数量,并模拟50年内排名前十四的语言的母语使用者数量的变化趋势。关键词:层次分析法;马尔可夫模型;聚类分析;语言使用者 人类不仅仅只掌握母语这一种语言,越来越多的人开始说第二语言甚至第三语言。在考虑某种语言的总使用人数时,需要在母语使用者人数的基础上加上第二或者第三语言使用者人数。根据可能影响语言的使用的因素,模拟各种语言的使用者随时间变化的分布。建立模型预测在未来50年里,英语的母语使用者的数量和语言的总使用者的数量的变化,并考虑它们是否会被另一种语言替代。 1.模型假设 ●忽略小概率灭绝事件,比如重大自然灾害的影响导致某一语言的灭绝等。 ●在几十年的时间里,各个语言区域都是稳定的发展,不会出现特别大的起伏的情况。 ●假设每个国家的移民一旦定居,他们的子孙都以此国家的官方语言为母语。 2.数量预测模型对于语言使用者数量的预测,我们需要将其分为母语使用者和其它的语言使用者(包括第二和第三语言使用者)两个方向来调查。 2.1母语使用者针对国家而言,母语使用者人数与该国家的居民人数直接相关。根据该国家的移民率,我们可以得到母语使用者人数随时间的变化为: 2.2 总使用者对于一种语言的总使用者人数,我们需要全面考虑它的变化,不仅仅考虑语言区域居民人数的增加或者减少,还需要考虑其它的语言使用者的变化。上文我们已经得知母语使用者的数量随时间的变化,下面我们将解决其它的语言使用者的预测问题。 2.2.1三种影响因子根据上文可得,我们将影响语言发展的因素分为区域的综合实力、商业往来和旅游业的发展状况三个部分。针对这三个部分,我们选取三个指标作为影响因子,分别是区域人均GDP、区域贸易对GDP的贡献度、区域国际游客数量。[1~2] 为进行统一,我们将十种语言的三种影响因子均除以该影响因子中的最大值。将得到的新结果运用层次分析法构造判断矩阵,得出三种影响因子的权重向量分别为0.545、0.272、0.183。我们可以得到关于语言发展强度的方程: 2.2.2马尔科夫模型以其亲代的第二语言作为他的初始状态,余下的九种语言是另外的九种状态,建立马尔科夫预测模型[3]。然后基于语言的发展强度,根据两种语言之间的强度比值来确定一个人的语言从一种状态转移到另一种状态的概率值。定义世界十大母语依次用数字0-9表示其语言状态,由此计算状态转移矩阵。 2.3 模型的应用 2. 3.1英语的语言使用者我们搜集到英语语言区域的平均自然增长率和平均净移民率[4]分别为1.04和0.0039,根据公式1我们可以求解得出英语的母语使用者在五十年以后的数量为:(4)

案例九-马尔科夫预测

案例九 马尔科夫预测 一、 市场占有率的预测重点 例1:在北京地区销售鲜牛奶主要由三个厂家提供。分别用1,2,3表示。去年12月份对2000名消费者进行调查。购买厂家1,2和3产品的消费者分别为800,600和600。同时得到转移频率矩阵为: 3202402403601806036060180N ?? ?= ? ??? 其中第一行表示,在12月份购买厂家1产品的800个消费者中,有320名消费者继续购买厂家1的 产品。转向购买厂家2和3产品的消费者都是240人。N 的第二行与第三行的含义同第一行。 (1) 试对三个厂家1~7月份的市场占有率进行预测。 (2) 试求均衡状态时,各厂家的市场占有率。 解:(1)用800,600和600分别除以2000,得到去年12月份各厂家的市场占有率,即初始分布0(0.4,0.3,0.3)p =。 用800,600和600分别去除矩阵N 的第一行、第二行和第三行的各元素,得状态转移矩阵: 0.40.30.30.60.30.10.60.10.3P ?? ?= ? ???

于是,第k 月的绝对分布,或第 月的市场占有率为: 00()(1,2,3,,7)k k P p P k p P =?=L 1k =时,()()10.40.30.30.40.30.30.60.30.10.520.240.240.60.10.3p ?? ? == ? ??? 2k =时,()()()220.40.30.30.520.240.240.4960.2520.252p P P === 3 k =时 , ()()()330.40.30.30.4960.2520.2520.50080.24960.2496p P P === 类似的可以计算出4p ,5p ,6p 和7p 。 现将计算结果绘制成市场占有率变动表,如表所示:

Matlab学习系列34. 马尔可夫预测

33. 马尔可夫预测 马尔可夫预测,是一种预测事件发生的概率的方法。它是基于马尔可夫链,根据事件的目前状况预测其将来各个时刻(或时期)变动状况的一种预测方法。 马尔可夫预测法的基本要求是状态转移概率矩阵必须具有一定的稳定性。因此,必须具有足够的统计数据,才能保证预测的精度与准确性。换句话说,马尔可夫预测模型必须建立在大量的统计数据的基础之上。 (一)经典马尔可夫模型 一、几个概念 状态:指某一事件在某个时刻(或时期)出现的某种结果; 状态转移:事件的发展,从一种状态转变为另一种状态; 马尔可夫过程:在事件的发展过程中,若每次状态的转移都仅与前一时刻的状态有关,而与过去的状态无关,或者说状态转移是无后效性的,则这样的状态转移过程就称为马尔可夫过程。 状态转移概率:在事件的发展变化过程中,从某一种状态出发,下一时刻转移到其它状态的可能性,称为状态转移概率。由状态i E 转为状态j E 的状态转移概率 ()(|)i j j i ij P E E P E E p →== 状态转移概率矩阵:假定某一个事件的发展过程有n 个可能的状

态,即1,,n E E ,则矩阵 1111n n nn p p P p p ????=?????? 其中,ij p 为从状态i E 转为状态j E 的状态转移概率,称为状态转移概率矩阵。 状态转移矩阵满足: (i) 01, ,1,,ij p i j n ≤≤= (ii) 1 1n ij j p ==∑ 二、状态转移矩阵的计算 即求出从每个状态转移到其它任何一个状态的状态转移概率ij p ,一般采用频率近似概率的思想进行计算。 例1某地区农业收成变化的三个状态,即E1“丰收”、E2“平收”和E3“欠收”。下表给出了该地区1960~1999年期间农业收成的状态变化情况(部分)。 计算该地区农业收成变化的状态转移概率矩阵。 datas=xlsread('Agriculture.xlsx');

Markov的各种预测模型的原理与优缺点介绍

Markov的各种预测模型的原理与优缺点介绍 建立有效的用户浏览预测模型,对用户的浏览做出准确的预测,是导航工具实现对用户浏览提供有效帮助的关键。 在浏览预测模型方面,很多学者都进行了卓有成效的研究。AZER提出了基于概率模型的预取方法,根据网页被连续访问的概率来预测用户的访问请求。SARUKKAI运用马尔可夫链进行访问路径分析和链接预测,在此模型中,将用户访问的网页集作为状态集,根据用户访问记录,计算出网页间的转移概率,作为预测依据。SCHECHTER构造用户访问路径树,采用最长匹配方法,寻找与当前用户访问路径匹配的历史路径,预测用户的访问请求。XU Cheng Zhong等引入神经网络实现基于语义的网页预取。徐宝文等利用客户端浏览器缓冲区数据,挖掘其中蕴含的兴趣关联规则,预测用户可能选择的链接。朱培栋等人按语义对用户会话进行分类,根据会话所属类别的共同特征,预测用户可能访问的文档。在众多的浏览模型中,Markov模型是一种简单而有效的模型。Markov模型最早是ZUKERMAN等人于1999年提出的一种用途十分广泛的统计模型,它将用户的浏览过程抽象为一个特殊的随机过程——齐次离散Markov模型,用转移概率矩阵描述用户的浏览特征,并基于此对用户的浏览进行预测。之后,BOERGES等采用了多阶转移矩阵,进一步提高了模型的预测准确率。在此基础上,SARUKKAI建立了一个实验系统[9],实验表明,Markov预测模型很适合作为一个预测模型来预测用户在Web站点上的访问模式。 1 Markov模型 1.1 Markov模型 Markov预测模型对用户在Web上的浏览过程作了如下的假设。 假设1(用户浏览过程假设):假设所有用户在Web上的浏览过程是一个特殊的随机过程——齐次的离散Markov模型。即设离散随机变量的值域为Web空间中的所有网页构成的集合,则一个用户在Web中的浏览过程就构成一个随机变量的取值序列,并且该序列满足Markov性。 一个离散的Markov预测模型可以被描述成三元组,S代表状态空间;A是转换矩阵,表

中天会计事务所马尔可夫模型例题(最完整的例题分析)

中天会计事务所马尔可夫模型例题一、问题分析 中天会计事务所由于公司业务日益繁忙,常造成公司事务工作应接不暇,解决该公司出现的这种问题的有效办法是要实施人力资源的供给预测技术。根据对该公司材料的深入分析,可采用马尔可夫模型这一供给预测方法对该事务所的人力资源状况进行预测。 马尔可夫分析法是一种统计方法,其方法的基本思想是:找出过去人力资源变动的规律,用以来推测未来人力变动的趋势。马尔可夫分析法适用于外在环境变化不大的情况下,如果外在环境变化较大的时候这种方法则难以用过去的经验情况预测未来。马尔可夫分析法的分析过程通常是分几个时期来收集数据,然后在得出平均值,利用这些数据代表每一种职位的人员变动频率,就可以推测出人员的变动情况。 二、项目策划 (一)第一步是编制人员变动概率矩阵表。 根据公司提供的内部资料:公司的各职位人员如下表1所示。 表1:各职位人员表 职位代号人数 合伙人P 40 经理M 80 高级会计师S 120 会计员 A 160 制作一个人员变动概率矩阵表,表中的每一个元素表示从一个时期到另一个时期(如从某一年到下一年)在两个工作之间调动的雇员数量的历年平均百分比(以小数表示)。(注:一般以3—5年为周期来估计年平均百分比。周期越长,根据过去人员变动所推测的未来人员变动就越准确。) 表2:历年平均百分比人员变动概率矩阵表 职位合伙人 P 经理M 高级会计师S 会计员A 职位年度离职升为 合伙 人 离职升为经 理 降为 会计 员 离职升为高级 会计师 离职 2005 0.20 0.08 0.13 0.07 0.05 0.11 0.12 0.11 2006 0.23 0.07 0.27 0.05 0.08 0.12 0.15 0.29 2007 0.17 0.13 0.20 0.08 0.03 0.10 0.17 0.20 2008 0.21 0.12 0.21 0.03 0.07 0.09 0.13 0.19 2009 0.19 0.10 0.19 0.02 0.02 0.08 0.18 0.21 平均0.20 0.10 0.20 0.05 0.05 0.10 0.15 0.20

数学建模之马尔可夫预测

马尔可夫预测 马尔可夫过程是一种常见的比较简单的随机过程。该过程是研究一个系统的 状况及其转移的理论。它通过对不同状态的初始概率以及状态之间的转移概率的研究,来确定状态的变化趋势,从而达到对未来进行预测的目的。 三大特点: (1)无后效性 一事物的将来是什么状态,其概率有多大,只取决于该事物现在所处的状态如何,而与以前的状态无关。也就是说,事物第n 期的状态,只与第n 期内的变化和第n-1期状态有关,而与第n-1期以前的状态无关。 (2)遍历性 不管事物现在所处的状态如何,在较长的时间内马尔可夫过程逐渐趋于稳定状态,而与初始状态无关。 (3)过程的随机性。 该系统内部从一个状态转移到另一个状态是,转变的可能性由系统内部的原先历史情况的概率值表示。 1.模型的应用, ①水文预测, ②气象预测, ③地震预测, ④基金投资绩效评估的实证分析, ⑤混合动力车工作情况预测, ⑥产品的市场占有情况预测。 2.步骤 ①确定系统状态 有的系统状态很确定。如:机床工作的状态可划分为正常和故障,动物繁殖后代可以划分为雄性和雌性两种状态等。但很多预测中,状态需要人为确定。如:根据某种产品的市场销售量划分成滞销、正常、畅销等状态。这些状态的划分是依据不同产品、生产能力的大小以及企业的经营策略来确定的,一般没有什么统一的标准。在天气预报中,可以把降水量划分为旱、正常和涝等状态。 ②计算初始概率()0i S 用i M 表示实验中状态i E 出现的总次数,则初始概率为 ()()0 1 1,2,i i i n i i M S F i n M =≈= =∑L ③计算一步转移概率矩阵

令由状态i E 转移到状态j E 的概率为()|ij j i P P E E =,则得到一步转移概率矩阵为: 1112121 2221 2n n n n nn p p p p p p P p p p ??????=??????L L M M M M L ④计算K 步转移概率矩阵 若系统的状态经过了多次转移,则就要计算K 步转移概率与K 步转移概率矩阵。 K 步转移概率矩阵为: 11121212221 2()k n n k n n nn p p p p p p P k p p p p ??????==??????L L M M M M L ⑤预测及分析 根据转移概率矩阵对系统未来所处状态进行预测,即: () ()111210212221 2K n K n n n nn p p p p p p S S p p p ??????=??????L L M M M M L 例题: 设某企业生产洗涤剂为A 型,市场除A 型外,还有B 型、C 型两种。为了生产经营管理上的需要,某企业要了解本厂生产的A 型洗涤剂在未来三年的市场占有倩况。为此,进行了两项工作,一是进行市场调查,二是利用模型进行预测。 市场调查首先全面了解各型洗涤剂在市场占有情况。年终调查结果:市场洗涤剂目前总容量为100万件,其中A 型占40万,B 型和C 型各占30万。 再者,要调杏顾客购买各型洗涤剂的变动情况。调查发现去年购买A 型产品的顾客,今年仍购A 型产品24万件,转购B 型和C 型产品备占8万件,去年购买B 型产品顾客,今年仍购B 型产品9万件,转购A 型15万件,转购C 型6万件,去年购买C 型产品的顾客,今年仍购C 型产品9万件,转购A 型15万件,转购B 型6万件。计算各型产品保留和转购变动率。 模型的建立: ①计算初始概率 用i M 表示i E 型产品出现的总次数,则初始概率为 ()()0 1 1,2,i i i n i i M S F i n M =≈= =∑L (1) ②计算各类产品保留和转购变动率

马尔科夫预测

第6章 马尔可夫预测 马尔可夫预测方法不需要大量历史资料,而只需对近期状况作详细分析。它可用于产品的市场占有率预测、期望报酬预测、人力资源预测等等,还可用来分析系统的长期平衡条件,为决策提供有意义的参考。 6.1 马尔可夫预测的基本原理 马尔可夫(A.A.Markov )是俄国数学家。二十世纪初,他在研究中发现自然界中有一类事物的变化过程仅与事物的近期状态有关,而与事物的过去状态无关。具有这种特性的随机过程称为马尔可夫过程。设备维修和更新、人才结构变化、资金流向、市场需求变化等许多经济和社会行为都可用这一类过程来描述或近似,故其应用范围非常广泛。 6.1.1 马尔可夫链 为了表征一个系统在变化过程中的特性(状态),可以用一组随时间进程而变化的变量来描述。如果系统在任何时刻上的状态是随机的,则变化过程就是一个随机过程。 设有参数集(,)T ?-∞+∞,如果对任意的t T ∈,总有一随机变量t X 与之对应,则称 {,}t X t T ∈为一随机过程。 如若T 为离散集(不妨设012{,,,...,,...}n T t t t t =),同时t X 的取值也是离散的,则称 {,}t X t T ∈为离散型随机过程。 设有一离散型随机过程,它所有可能处于的状态的集合为{1,2,,}S N =L ,称其为状态空间。系统只能在时刻012,,,...t t t 改变它的状态。为简便计,以下将n t X 等简记为n X 。 一般地说,描述系统状态的随机变量序列不一定满足相互独立的条件,也就是说,系统将来的状态与过去时刻以及现在时刻的状态是有关系的。在实际情况中,也有具有这样性质的随机系统:系统在每一时刻(或每一步)上的状态,仅仅取决于前一时刻(或前一步)的状态。这个性质称为无后效性,即所谓马尔可夫假设。具备这个性质的离散型随机过程,称为马尔可夫链。用数学语言来描述就是: 马尔可夫链 如果对任一1n >,任意的S j i i i n ∈-,,,,121Λ恒有 {}{}11221111,,,n n n n n n P X j X i X i X i P X j X i ----=======L (6.1.1) 则称离散型随机过程{,}t X t T ∈为马尔可夫链。 例如,在荷花池中有N 张荷叶,编号为1,2,...,N 。假设有一只青蛙随机地从这张荷叶上跳到另一张荷叶上。青蛙的运动可看作一随机过程。在时刻n t ,青蛙所在的那张荷叶,称为青蛙所处的状态。那么,青蛙在未来处于什么状态,只与它现在所处的状态()N i i ,,2,1Λ=有关,与它以前在哪张荷叶上无关。此过程就是一个马尔可夫链。 由于系统状态的变化是随机的,因此,必须用概率描述状态转移的各种可能性的大小。 6.1.2 状态转移矩阵 马尔可夫链是一种描述动态随机现象的数学模型,它建立在系统“状态”和“状态转移”的概念之上。所谓系统,就是我们所研究的事物对象;所谓状态,是表示系统的一组记号。当确定了这组记号的值时,也就确定了系统的行为,并说系统处于某一状态。系统状态常表示为向量,故称之为状态向量。例如,已知某月A 、B 、C 三种牌号洗衣粉的市场占有率分别是0.3、0.4、0.3,则可用向量()0.3,0.4,0.3P =来描述该月市场洗衣粉销售的状况。

第6章 马尔科夫预测方法-思考与练习

第6章 马尔科夫预测方法 思考与练习(参考答案) 1.设某市场销售甲、乙、丙三种牌号的同类型产品,购买该产品的顾客变动情况如下:过去买甲牌产品的顾客,在下一季度中有15%的转买乙牌产品,10%转买丙牌产品。原买乙牌产品的顾客,有30%转卖甲牌的,同时有10%转卖丙牌的。原买丙牌产品的顾客中有5%转买甲牌的,同时有15%转买乙牌的。问经营甲种产品的工厂在当前的市场条件下是否有利于扩大产品的销售? 解:状态转移概率矩阵为: 假设市场达到稳定状态时,甲、乙、丙市场占有率分别为 x 1、 x 2、x 3、,则: 所以,在当前的市场条件下,当甲种产品的市场占有率大于0.40时不利于扩大商品的销售;当甲种产品的市场占有率小于0.40时利于扩大商品的销售。 2.某产品每月的市场状态有畅销和滞销两种,三年来有如下记录,见下表。“1” 解:由题可得:畅销状态有 M 1 =20 滞销状态有 M 2=12 从畅销到畅销有 M 11=12 从畅销到滞销有 M 12=7 从滞销到畅销有 M 21=7 从滞销到滞销有 M 22=5 0.750.150.1P=0.30.60.10.050.150.8?? ???? ???? [][]1123123233120.750.150.10.30.60.10.050.150.0.40,0.27,0.3813x x x x x x x x x x x x ?????????=? ????? ?+=+===??

计算状态转移概率矩阵(在计算状态转移概率矩阵时最后一个数据不参加计算,因为它在之后转移到哪里尚不清楚) 一步转移概率矩阵为: ?? ??? ?=?????? 12719 19P 7512 12 二步转移概率矩阵为: = ??????=?????? 2 (2)21271919P P 751212 3.某市三种主要牌号甲乙丙彩电的市场占有率分别为23%、18%、29%,其余市场 为其它各种品牌的彩电所占有。根据抽样调查,顾客对各类彩电的爱好变化为 0.50.10.150.250.10.50.20.20.150.050.50.30.20.20.20.4???????????? 其中矩阵元素 ij a 表示上月购买i 牌号彩电而下月购买 j 牌号彩电的概率;1,i = 2,3,4分别表示甲乙丙和其他牌号彩电。 1) 试建立该市各牌号彩电市场占有率的预测模型,并预测未来3个月各种牌号彩电市场占有率变化情况; 2)假定该市场彩电销售量为4.7万台,预测未来三个月各牌号彩电的销售量; 3)分析各牌号彩电市场占有率变化的平衡状态; 4)假定生产甲牌彩电的企业采取某种经营策略(例如广告宣传等),竭力保持了原有顾客爱好不向其它牌号转移,其余不变。分析彩电市场占有率的平衡状态。 解:(1)市场占有率初始向量为:P (0)=(0.23 0.18 0.29 0.3) 状态转移概率矩阵为: 则第K 期的市场占有率的预测模型为: 0.50.10.150.250.10.50.20.2P=0.150.050.50.30.20.20.20.4?? ?????? ?? ??k k 0.50.10.150.250.10.50.20.2S =P(0)P =(0.230.180.290.3)0.150.050.50.30.20.20.20.4k ???? ? ???????

人力供给预测之马尔科夫模型

人力供给预测之马尔科夫模型 马尔科夫模型是根据历史数据,预测等时间间隔点上的各类人员分布状况。此方法的基本思想是根据过去人员变动的规律,推测未来人员变动的趋势。因此,运用马尔科夫模型时假设——未来的人员变动规律是过去变动规律的延续。既是说,转移率要么是一个固定比率,要么可以通过历史数据以某种方式推算出。 步骤: (1)根据历史数据推算各类人员的转移率,得出转移率的转移矩阵; (2)统计作为初始时刻点的各类人员分布状况; (3)建立马尔科夫模型,预测未来各类人员供给状况。 运用马尔科夫模型可以预测一个时间段后的人员分布,虽然这个时间段可以自由定义,但较为普遍的是以一年为一个时间段,因为这样最为实用。在确定转移率时,最粗略的方法就是以今年的转移率作为明年的转移率,这种方法认为最近时间段的变化规律将继续保持到下一时间段。虽然这样很简便,但实际上一年的数据过于单薄,很多因素没有考虑到,一个数据的误差可能非常大。因为以一年的数据得出的概率很难保证稳定,最好运用近几年的数据推算。在推算时,可以采用简单移动平均法、加权移动平均法、指数平滑法、趋势线外推法等,可以在试误的过程中发现哪种方法推算的转移率最准确。尝试用不同的方法计算转移率,然后用这个转移率和去年的数据来推算今年的实际情况,最后选择与实际情况最相符的计算方法。转移率是一类人员转移到另一类人员的比率,计算出所有的转移率后,可以得到人员转移率的转移矩阵。 转移出i类人员的数量 i类人员的转移率 = (3-1) i类人员原有总量 人员转移率的转移矩阵: P11 P12 (1) P21 P22 (2) P = P31 P32 (3) (3-2) ┇┇┇ P K1 P K2 ……P KK 一般是以现在的人员分布状况作为初始状况,所以只需统计当前的人员分布情况即可。这是企业的基本信息,人力资源部门可以很容易地找到这些数据。 建立模型前,要对员工的流动进行说明。流动包括外部到内部、内部之间、内部到外部的流动,内部之间的流动可以是提升、降职、平级调动等。由于推测的是整体情况,个别特殊调动不在考虑之内。马尔科夫模型的基本表达式为:

马尔科夫预测法

马尔科夫预测案例 一、 市场占有率的预测 例1:在北京地区销售鲜牛奶主要由三个厂家提供。分别用1,2,3表示。去年12月份对2000名消费者进行调查。购买厂家1,2和3产品的消费者分别为800,600和600。同时得到转移频率矩阵为: 3202402403601806036060180N ?? ?= ? ??? 其中第一行表示,在12月份购买厂家1产品的800个消费者中,有320名消费 者继续购买厂家1的 产品。转向购买厂家2和3产品的消费者都是240人。N 的第二行与第三行的含义同第一行。 (1) 试对三个厂家1~7月份的市场占有率进行预测。 (2) 试求均衡状态时,各厂家的市场占有率。 解:(1)用800,600和600分别除以2000,得到去年12月份各厂家的市场占有率,即初始分布0(0.4,0.3,0.3)p =。 用800,600和600分别去除矩阵N 的第一行、第二行和第三行的各元素,得状态转移矩阵: 0.40.30.30.60.30.10.60.10.3P ?? ?= ? ??? 于是,第k 月的绝对分布,或第 月的市场占有率为: 00()(1,2,3,,7)k k P p P k p P =?= 1k =时,()()10.40.30.30.40.30.30.60.30.10.520.240.240.60.10.3p ?? ? == ? ??? 2k =时,()()()220.40.30.30.520.240.240.4960.2520.252p P P === 3 k =时, ()()()330.40.30.30.4960.2520.2520.50080.24960.2496p P P === 类似的可以计算出4p ,5p ,6p 和7p 。

马尔可夫链预测方法及其一类应用【文献综述】

文献综述 数学与应用数学 马尔可夫链预测方法及其一类应用 马尔可夫性是俄国数学家A.A.Mapkov 在1906年最早提出的. 但是, 什么是马尔可夫性呢? 一般来讲,认为它是“相互独立性”的一种自然推广. 设有一串随机事件,...,,...,,121n n A A A A -中(即n A 属于概率空间(P ,,ξΩ)中的σ代数ξ,1≥n ), 如果它们中一个或几个的发生, 对其他事件的发生与否没有影响, 则称这一串事件是相互独立的(用概率空间(P ,,ξΩ)的符号表示, 即))()(11n m n m n n A P A P X I ===, 推广下, 如果在已知,...,1+n n A A 中的某些事件的发生, 与,,...,,121-n A A A 中的事件发生与否无关, 则称这一串事件{1:≥n A n }具有马尔可夫性. 所以说, 马尔可夫性可视为相互独立性的一种自然推广. 从朴素的马尔可夫性, 到抽象出马尔可夫过程的概念, 从最简单的马尔可夫过程到一般的马尔可夫过程, 经历了几十年的发展过程. 它有极其深厚的理论基础, 如拓扑学、函数论、几何学、近世代数、泛函分析. 又有很广泛的应用空间, 如随机分形、近代物理、公共事业中的服务系统、电子信息、计算技术等. 在现实世界中, 有很多过程都是马尔可夫过程, 如软件可靠性测试、传染病受感染的人数、农村剩余劳动力流动趋势预测、液体中微粒所作的布朗运动、产品市场占有率及利润率的变动, 车站排队问题等等, 都可视为马尔可夫过程. 所谓马尔可夫链是指时间连续(或离散)、状态可列、时间齐次的马尔可夫过程. 之所以要研究这种过程, 一方面是由于它的理论比较完整深入, 可以作为一般马尔可夫过程及其他随机过程的借鉴; 二是由于它在自然科学和许多实际问题(如遗传学、教育学、经济学、建筑学、规则论、排队论等)中发挥着越来越大的作用. 自从我国著名数学家、教育家、中科院王梓坤院士在上世纪50年代将马尔可夫理论引入国内以后, 我国数学家对马尔可夫过程的研究也取得了非常好的效果, 在生灭过程的构造和它的积分型泛函的分布、马尔可夫过程的零壹律、Martin 边界与过份函数、马尔可夫过程

论述马尔可夫模型的降水预测方法

随机过程与随机信号处理课程论文

论述马尔可夫模型的降水预测方法 摘要:预测是人们对未知事物或不确定事物行为与状态作出主观的判断。中长 期降水量的预测是气象科学的一个难点问题, 也是水文学中的一个重要问题。今年来,针对降水预测的随机过程多采用随机过程中的马尔可夫链。本文总结了降水预测的马尔可夫预测的多种方法和模型,对其中的各种方法的马尔可夫链进行了比较和分析,得出了一些有用的结论。 关键字:降水预测,随机过程,马尔可夫链,模拟 前言:大气降水是自然界水循环的一个重要环节。尤其在干旱半干旱地区, 降 水是水资源的主要补给来源, 降水量的大小,决定着该地区水资源的丰富程度。因此, 在水资源预测、水文预报中经常需要对降水量进行预报。然而, 由于气象条件的变异性、多样性和复杂性, 降水过程存在着大量的不确定性与随机性, 因此到目前为止还难以通过物理成因来确定出未来某一时段降水量的准确数值。在实际的降水预测中,有时不必预测出某一年的降水量,仅需预测出某个时段内降水的状况既可满足工作需要。因此,预测的范围相应扩大,精度相应提高。因此对降水的预测可采用随机过程的马尔可夫链来实现。 用随机过程中马尔可夫链进行预测是一种较为广泛的预测方法。它可用来预测未来某时间发生的变化, 如预测运输物资需求量、运输市场等等。马尔可夫链, 就是一种随机时间序列, 它表示若已知系统的现在状态, 则系统未来状态的规律就可确定, 而不管系统如何过渡到现在的状态。我们在现实生活中, 有很多情况具有这种属性, 如生物群体的生长与死亡, 一群体增加一个还是减少一个个体, 它只与当前该生物群体大小有关, 而与过去生物群体大小无关。] 本文针对降水预测过程中采用马尔可夫链进行模拟进行了综述和总结。主要的方法有利用传统的马尔可夫链的方法模拟;有采用加权的马尔可夫链模拟来进行预测;还有基于模糊马尔可夫链状模型预测的方法;还有通过聚类分析建立降水序列的分级标准来采用滑动平均的马尔可夫链模型来预测降水量;从这些方法中我们可以看出,马尔可夫链对降水预测有着重要的理论指导意义。 1.随机过程基本原理 我们知道,随机变量的特点是,每次试验结果都是一个实现不可预知的,但为确定的量。而在实际中遇到的许多物理现象,实验所得到的结果是一个随时间变化的随机变量,且用一个或多个随机变量我们有时无法描述很多这种现象的的全部统计规律,这种情况下把随时间变化的随机变量的总体叫做随机过程。对随机过程的定义如下:

马尔科夫预测

第 6 章马尔可夫预测 马尔可夫预测方法不需要大量历史资料,而只需对近期状况作详细分析。它可用于产品的市场占有率预测、期望报酬预测、人力资源预测等等,还可用来分析系统的长期平衡条件,为决策提供有意义的参考。 6.1 马尔可夫预测的基本原理 马尔可夫(A.A.Markov )是俄国数学家。二十世纪初,他在研究中发现自然界中有一类事物的变化过程仅与事物的近期状态有关,而与事物的过去状态无关。具有这种特性的随机过程称为马尔可夫过程。设备维修和更新、人才结构变化、资金流向、市场需求变化等许多经济和社会行为都可用这一类过程来描述或近似,故其应用范围非常广泛。 6.1.1 马尔可夫链 为了表征一个系统在变化过程中的特性(状态),可以用一组随时间进程而变化的变量来描述。如果系统在任何时刻上的状态是随机的,则变化过程就是一个随机过程。 设有参数集T ( , ),如果对任意的t T ,总有一随机变量X t 与之对应,则称{X t ,t T} 为一随机过程。 如若T 为离散集(不妨设T {t0,t1,t2,...,t n,...} ),同时X t的取值也是离散的,则称{X t ,t T} 为离散型随机过程。 设有一离散型随机过程,它所有可能处于的状态的集合为S {1,2,L ,N} ,称其为状态空间。系统只能在时刻 t0,t1,t2,...改变它的状态。为简便计,以下将X t n等简记为X n。 一般地说,描述系统状态的随机变量序列不一定满足相互独立的条件,也就是说,系统将来的状态与过去时刻以及现在时刻的状态是有关系的。在实际情况中,也有具有这样性质的随机系统:系统在每一时刻(或每一步)上的状态,仅仅取决于前一时刻(或前一步)的状态。这个性质称为无后效性,即所谓马尔可夫假设。具备这个性质的离散型随机过程,称为马尔可夫链。用数学语言来描述就是: 马尔可夫链如果对任一n 1,任意的i1,i2, ,i n 1, j S恒有 P X n j X1 i1,X2 i2,L ,X n 1 i n 1 P X n j X n 1 i n 1 (6.1.1)则称离散型随机过程{X t ,t T} 为马尔可夫链。 例如,在荷花池中有N 张荷叶,编号为1,2,..., N 。假设有一只青蛙随机地从这张荷叶上跳到另一张荷叶上。青蛙的运动可看作一随机过程。在时刻t n ,青蛙所在的那张荷叶,称为青蛙所处的状态。那么,青蛙在未来处于什么状态,只与它现在所处的状态i i 1,2, ,N 有关,与它以前在哪张荷叶上无关。此过程就是一个马尔可夫链。 由于系统状态的变化是随机的,因此,必须用概率描述状态转移的各种可能性的大小。 6.1.2 状态转移矩阵 马尔可夫链是一种描述动态随机现象的数学模型,它建立在系统“状态”和“状态转移”的概念之上。所谓系统,就是我们所研究的事物对象;所谓状态,是表示系统的一组记号。当确定了这组记号的值时,也就确定了系统的行为,并说系统处于某一状态。系统状态常表示为向量,故称之为状态向量。例如,已知某月 A 、B 、C 三种牌号洗衣粉的市场占有率分别是0.3、0.4、 0.3,则可用向量P 0.3,0.4,0.3 来描述该月市场洗衣粉销售的状况。

马尔可夫预测方法

马尔可夫预测方法 1马尔可夫预测的性质及运用 对事件的全面预测,不仅要能够指出事件发生的各种可能结果,而且还必须给出每一种结果出现的概率,说明被预测的事件在预测期内出现每一种结果的可能性程度。这就是关于事件发生的概率预测。 马尔可夫(Markov)预测法,就是一种关于事件发生的概率预测方法。它是根据事件的目前状况来预测其将来各个时刻(或时期)变动状况的一种预测方法。马尔可夫预测法是地理预测研究中重要的预测方法之一。 2基本概念 (一)状态、状态转移过程与马尔可夫过程 1.状态 在马尔可夫预测中,“状态”是一个重要的术语。所谓状态,就是指某一事件在某个时刻(或时期)出现的某种结果。一般而言,随着所研究的事件及其预测的目标不同,状态可以有不同的划分方式。譬如,在商品销售预测中,有“畅销”、“一般”、“滞销”等状态;在农业收成预测中,有“丰收”、“平收”、“欠收”等状态;在人口构成预测中,有“婴儿”、“儿童”、“少年”、“青年”、“中年”、“老年”等状态;等等。 2.状态转移过程 在事件的发展过程中,从一种状态转变为另一种状态,就称为状态转移。事件的发展,随着时间的变化而变化所作的状态转移,或者说状态转移与时间的关系,就称为状态转移过程,简称过程。 3.马尔可夫过程 若每次状态的转移都只仅与前一时刻的状态有关、而与过去的状态无关,或者说状态转移过程是无后效性的,则这样的状态转移过程就称为马尔可夫过程。在区域开发活动中,许多事件发展过程中的状态转移都是具有无后效性的,对于这些事件的发展过程,都可以用马尔可夫过程来描述。 (二)状态转移概率与状态转移概率矩阵 1.状态转移概率 在事件的发展变化过程中,从某一种状态出发,下一时刻转移到其它状态的可能性,称为状态转移概率。根据条件概率的定义,由状态E i 转为状态E j 的状态转移概率P (E i →E j )就是条件概率P (E j /E i ),即 P(Ei Ej)=P(Ej/Ei)=Pij → (1) 2.状态转移概率矩阵 假定某一种被预测的事件有E 1,E 2,…,E n ,共n 个可能的状态。记P ij 为从状态E i 转为状态E j 的状态转移概率,作矩阵 1112121 22212n n n n nn P P P P P P P P p p ??????=?????? (2) 则称P 为状态转移概率矩阵。

马尔可夫链预测方法

马尔可夫链预测方法 一、基于绝对分布的马尔可夫链预测方法 对于一列相依的随机变量,用步长为一的马尔可夫链模型和初始分布推算出未来时段的绝对分布来做预测分析方法,称为“基于绝对分布的马尔可夫链预测方法”,不妨记其为“ADMCP 法”。其具体方法步骤如下: 1.计算指标值序列均值x ,均方差s ,建立指标值的分级标准,即确定马尔可夫链的状态空间I ,这可根据资料序列的长短及具体间题的要求进行。例如,可用样本均方差为标准,将指标值分级,确定马尔可夫链的状态空间 I =[1, 2,…,m ]; 2.按步骤1所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3.对步骤2所得的结果进行统计计算,可得马尔可夫链的一步转移概率矩阵1P ,它决定了指标值状态转移过程的概率法则; 4.进行“马氏性” 检验; 5.若以第1时段作为基期,该时段的指标值属于状态i ,则可认为初始分布为 (0)(0,,0,1,0,0)P = 这里P (0)是一个单位行向量,它的第i 个分量为1,其余分量全为0。于是第2时段的绝对分布为 1(1)(0)P P P =12((1),(1),,(1))m p p p = 则第2时段的预测状态j 满足:(1)max{(1),}j i p p i I =∈; 同样预测第k +1时段的状态,则有 1()(0)k P k P P =12((),(),,())m p k p k p k = 得到所预测的状态j 满足: ()max{(),}j i p k p k i I =∈ 6.进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。 二、叠加马尔可夫链预测方法 对于一列相依的随机变量,利用各种步长的马尔可夫链求得的绝对分布叠加来做预测分析,的方法,称为“叠加马尔可夫链预测方法”,不妨记其为“SPMCP 法’。其具体方法步骤如下: 1) 计算指标值序列均值x ,均方差s ,建立指标值的分级标准(相当于确定马尔可夫链的状态空间),可根据资料序列的长短及具体问题的要求进行; 2) 按1)所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3) 对2)所得的结果进行统计,可得不同滞时(步长)的马尔可夫链的转移概率矩阵,它决定了指标值状态转移过程的概率法则; 4) 马氏性检验; 5) 分别以前面若干时段的指标值为初始状态,结合其相应的各步转移概率矩阵即可预测出该时段指标值的状态概率 (6)将同一状态的各预测概率求和作为指标值处于该状态的预测概率,即 ,所对应的i 即为该时段指标值的预测状态。待该时段的指标值确定之后,将其加 入到原序列之中,再重复步骤"(1)一(6)",可进行下时段指标值状态的预测。 (7)可进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。

相关文档
最新文档