第七节多自由度系统中的阻尼

第七节多自由度系统中的阻尼
第七节多自由度系统中的阻尼

第七节 多自由度系统中的阻尼

(教材)

前面介绍了多自由度系统无阻尼系统的振动。对于工程上的各种弹性结构来说,它们振动时总受到各种阻尼力的作用(如材料阻尼、结构阻尼、介质粘性阻尼等等),由于各种阻尼力的机理比较复杂,在分析振动时,常常将各种阻尼力都简化为与速度成正比的粘性阻尼力。而阻尼系数须有工程上的经验公式求出,或由实验数据确定。

有粘性阻尼的n 个自由度系统求响应很困难,其原因在于只有在特定的条件下,用模态分析法才能使运动微分方程解耦。下面分析之。

有阻尼的n 个自由度系统的运动微分方程为

[]{}[]{}[]{}{}()M x C x k x F t ++= (5-60) 式中[]C 是阻尼矩阵,为n ×n 对称矩阵。

由无阻尼自由振动微分方程求得固有频率和振型向量,得正则振型矩阵[]Φ。令 {}[]{}x z =Φ

代入方程(5-60)并前乘以[]T

Φ,得

[][][]{}[][][]{}[][][]{}[]{}

()T T T

T

M z C z k z F t ΦΦ+ΦΦ+ΦΦ=Φ (a )

因 [][]

[][]T

I M =ΦΦ ------ 单位矩阵 [][][][]T

k Λ=ΦΦ

{}[]{}()()T

P t F t =Φ

∴ {}[][][]{}[]{}{}()T

z C z z P t +ΦΦ+Λ= (b )

而[][][]T

C ΦΦ一般不是对角矩阵。因此,模态分析法不能

使式(a )变成一组独立的微分方程组。例如图示系统,已知 123m m m m ===,1234k k k k k ====。已解出

{}{}{}12

31112,

0,2111u u u ???????

??===?????????-??

??

?

?

m 1

m 2m 3

k 3

k 1

2

x 1

x 3

k 2

k 4

c

阻尼矩阵为

[]00

00000

C c ????=??????

{}[]{}12

00011

21000000

1T

u C u c c ??

????

????==-≠??????

??-????

??

∴ [][][]T

C ΦΦ不是对角矩阵。

可以证明,利用系统的无阻尼振型矩阵[]u 或[]Φ使系统 阻尼矩阵[]C 实现对角化的充分必要条件为

[][][][][][]11

C M k k M C --=

特殊情况:

一、 如果原广义坐标的阻尼矩阵[]C 刚好与质量矩阵或刚 度矩阵成正比,或者[]C 是它们的线性组合,即

[][][]C M k αβ=+

其中α和β为正的常数。称这种阻尼为比例阻尼。对于这种比例阻尼,当原广义坐标变换为正则坐标时,正则坐标的阻尼矩阵是对角矩阵:

[][][][]()[]

[][][][][][]

T

n T T

C M k M k αβαβ=Φ+Φ=ΦΦ+ΦΦ

2

1

2

2

2

n

n nn αβωαβωαβω??

+??+??=???

?+????

令第 i 阶模态阻尼为 2

(1,2,.)i ni c i n αβω=+=。对应

的第 i 阶模态阻尼比为

2

(1,2,.)22i ni

i ni ni

c i n αβωζωω+==

=

则正则坐标的阻尼矩阵可写成另外一种形式

[]1122

222n n n n nn C ζωζωζω?????

?=?

???

?

? 可见,比例阻尼是使[]C 成为对角矩阵的一种特殊情形。

二、 工程上大多数情况下,正则坐标中的阻尼矩阵

[][][]T

C ??不是对角矩阵。然而,工程上的大多数振动系

统中,阻尼都比较小,而且由于各种阻尼的机理至今还没有完全搞清楚,精确测定阻尼的大小也还有很多困难。所以往往采用一种近似的方法,把

[][][]1112

12122212

n T n n n nn c c c c c

c C c c c ??????ΦΦ=

???

???

中非对角元素都改为零,而只保留对角元素原有的数值,于

是得到对角阻尼矩阵

[][][][]1122000000T n nn c c

C C c ????

??ΦΦ=

=???

???

上式[]n C 称为正则振型的阻尼矩阵,

ii c 称为第 i 阶正则振型的阻尼系数。如采用相对阻尼比表示,有

[]11

22

222n n n n nn C ζωζωζω?????

?=

?????

?

式中 ,(1,2,.)2ii

i ni

c i n ζω==,为第 i 阶正则振型的相对阻尼比。

对于上面两种情况,用[]n C 代替[][][]T

C ΦΦ之后,方程(b )变成如下形式

{}[]{}[]{}{}()n z C z z P t ++Λ=

它的展开式为

2

11111112222222222()

2()2()n n

n n n n nn n nn n n

z z z P t z z z P t z z z P t ζωωζωωζωω?++=?++=???

?++=? 这是一组n 个相互独立的二阶常系数线性微分方程组,彼此可以独立求解。这样,把有阻尼的多自由度系统的振动问题,

简化为n 个正则坐标的单自由度系统的振动问题。

如果正则坐标的初始值为{}0z 和{}0z ,类似于单自由度系统的结果,应用杜哈美积分,有

()

00

0()

1,2,,()cos sin 1()sin (),i i i ni i ni t i ni i i i di di di

t

t di di i n z z z t e

z t t P e t d ζωζωτζωωω

ωτωττω

?

?

? ? ??

?

---=+=+

+-?

式中 2

1,(1,2,

,)di i ni i n ωζω=-=。

将所得{}z 代入

{}[]{}x z =Φ

就可以得到原广义坐标在有阻尼情况下对激励的响应。

工程振动——模态分析、多自由度系统振动响应

1.复习模态分析理论 1.1单自由度系统频响函数(幅频、相频、实频与虚频、品质因子等) 系统的脉冲响应函数h(t)与系统的频响函数H(ω)是一对傅里叶变换对,与系统的传递函数H(s)是一对拉普拉斯变换对。即有: i ()()e d t H h t t ωω-∞ =? -∞ 1i () ( )e d 2π t h t H ωωω -∞ =?-∞ ()()e d 0 st H s h t t -∞ =? 1 i () ( )e d i 2πi st h t H s σωσ+∞=? -∞ 复频率响应的实部 2 1(/)R e [()]22 2 [1(/) ](2/)n H n n ωωωωω ξωω-= -+ 复频率响应的虚部 2/Im [()]22 2 [1(/)](2/) n H n n ξωω ωωω ξωω =- -+ 单自由度系统频响函数的各种表达式及其特征1 (w )2H k m w j k η=-+,对频响函数特征的描述 采用的几种表达式 1)幅频图:幅值与频率之间的关系曲线 2)相频图:相位与频率之间的关系曲线 3)实频图:实部与频率之间的关系曲线 4)虚频图:虚部与频率之间的关系曲线 5)矢端轨迹图(Nyquist 图) 1.2单自由度结构阻尼系统频响函数的各种表达形式 频响函数的基本表达式:11111 ()22222100 H m k k m j k j j ωω ηωωηωη = = ?=? -+-+-Ω+ 频响函数的极坐标表达式:()|()|j H H e ?ωω=,w H () —幅频特性, a rc ta n 21η?? ? -= ? ? ?-Ω? —相频特性。 频响函数的直角坐标表达式: ()()() R I H H jH ωωω=+, ()() 211()222 1R H k ωη -Ω= ? -Ω+—实频特性, () 1()22 2 1I H k η ωη -=? -Ω+—虚频特性 频响函数的矢量表达式:()()()R I H H ωωω=+H i j 1.3单自由度结构阻尼系统频响函数各种表达式图形及数字特征 幅频特性:1|()|0H k ωη = 固有频率:0D ωω= 阻尼比:00 B A ω ωω ηω ω -?== 相频特性

两自由度系统有阻尼受迫振动

6□ 6-1 两自由度系统有阻尼受迫振动 图6-1 两自由度系统有阻尼受迫振动实验原理图

两自由度系统有阻尼受迫振动 □ 6-2 图6-2 两自由度系统有阻尼受迫振动实验操作界面 两自由度系统有阻尼受迫振动实验操作界面说明 主菜单 存 盘 :将测试数据存盘。按提示输入学号作为文件名。 实验指导 :激活本实验的实验指导文本。 退 出 :退出本操作界面,回到主界面(图2)

虚拟仪器 量程:指示灯为“绿色”表示信号达到半量程,为“黄色”表示信号 两自由度系统有阻尼受迫振动 □ 6-3过载。设置量程使信号超过半量程而不过载可以减小量化误差。 示波器 :选择“显示选择”中的某一选项(共7项),可使示波器显示相 应的内容。 电压表 :选择“1号点”,显示1号传感器的输出电压。选择“2号点”, 显示2号传感器的输出电压。 频率计 :显示加速度信号的频率。 李萨玉图 :观察1号加速度信号和激振信号的李萨玉图。 信号发生器 :输出一定电压和频率的简谐信号。用“On/Off”开启或关闭 信号发生器。 测试数据: 拾取数据 : 将频率计当前的读数和1号、2号传感器当前的输出电压 同时拾取到测试数据表格中。“幅值1”为1号传感器的输出电压,“幅 值2”为2号传感器的输出电压。若重复拾取某一频率的数据,则当 前拾取的数据将覆盖过去拾取的同频率的数据。 重新拾取 : 清除测试数据表格中的全部数据,重新拾取频率计当前的 读数和1#、2#传感器当前的输出电压。 数据检验 : 将测试数据表格中的加速度信号数据绘成幅频曲线(图6 -3)。

图6-3

两自由度系统有阻尼受迫振动 □ 6-4一、实验目的 ? 了解和掌握两自由度系统在简谐激振力作用下受迫振动的一般规律及现 象。 ? 理解两自由度系统固有振型的物理概念。 ? 巩固基本振动测试设备的操作与使用。 二、实验仪器 ? 两自由度系统试件 1件 ? 激振器及功率放大器 1套 ? 加速度传感器(ICP式) 1只 ? ICP电源(即ICP信号调节器)4通道 1台 ? 信号发生器 1台 ? 电压表 1台 ? 频率计 1台 ? 示波器 1台 其中:信号发生器、电压表、频率计和示波器由计算机虚拟提供。 三、实验方法及步骤 1、装配实验系统 ? 按图6-1将综合实验台装配成两自由度系统。 ? 按1节所述的方法和要求安装激振器和加速度传感器。 ? 按图6-1连接各测试设备。 2、将功率放大器“输出调节”旋至最小,“信号选择”置“外接”!打开 各设备电源。 3、从“综合振动综合实验系统”对话框(图2),进入“两自由度系统有阻 尼受迫振动”实验操作界面(图6-2)。 4、使信号发生器的输出频率约为30Hz,输出电压约为1V。调节功率放大 器的“输出调节”,逐渐增大其输出功率直至质量块有明显的振动(用

多自由度系统振动分析典型教案

第2章多自由度系统的振动 基本要点: ①建立系统微分方程的几种方法; ②固有频率、固有振型的概念以及固有振型关于质量和刚度矩阵的加权正交性; ③多自由度系统运动的解耦—模态坐标变换及运用模态叠加法求解振动系统的响应。 引言 多自由度振动系统的几个工程实例;多自由度系统振动分析的特点;多自由度系统振动分析与单自由度系统的区别与联系。 §2.1多自由度系统的振动方程 ●方程的一般形式:质量矩阵、阻尼矩阵、刚度矩阵和激振力 §2.2建立系统微分方程的方法 ●影响系数:刚度影响系数、柔度影响系数 ●刚度矩阵法、柔度矩阵法及这两种方法的特点;Lagrange方程法 §2.3无阻尼系统的自由振动 ●二自由度系统的固有振动:固有频率、固有振型。 ●二自由度系统的自由振动 ●二自由度系统的运动耦合与解耦 弹性耦合,惯性耦合; 振动系统的耦合取决于坐标系的选择; ●多自由度系统的固有振动 固有振动的形式及条件:特征值、特征向量、模态质量、模态刚度; 固有振型的性质:关于质量矩阵和刚度矩阵的加权正交性; 刚体模态; ●运动的解耦:模态坐标变换(主坐标变换)。 ●多自由度系统的自由振动 §2.4无阻尼系统的受迫振动 ●频域分析:动刚度矩阵和频响函数矩阵,频响函数矩阵的振型展开式,系统反 共振问题。 ●时域分析:单位脉冲响应矩阵,任意激励下的响应,模态截断问题,模态加速 度法。 §2.5比例阻尼系统的振动 ●多自由度系统的阻尼:Rayleigh比例阻尼。 ●自由振动 ●受迫振动:频响函数矩阵,单位脉冲响应矩阵,任意激励下的响应。 §2.6一般粘性阻尼系统的振动

●自由振动:物理空间描述,状态空间描述。 ●受迫振动:脉冲响应矩阵,频响函数矩阵,任意激励下的响应。 思考题: ①刚度矩阵和柔度矩阵在什么条件下是互逆的两个矩阵?从物理上和数学两方面加以解 释? ②为什么说模态质量、模态刚度的数值大小没有直接意义? ③证明固有振型关于质量矩阵和刚度矩阵的加权正交性,并讨论其物理意义。 ④在实际的多自由度系统振动分析中,为什么要进行模态截断? 参考书目 1.胡海岩,机械振动与冲击,航空工业出版社,2002 2.故海岩,机械振动基础,北京航空航天大学出版社,2005 3.季文美,机械振动,科学出版社,1985。(图书馆索引号:TH113.1/1010) 4.郑兆昌主编, 机械振动上册,机械工业出版社,1980。(图书馆索引号: TH113.1/1003-A) 5.Singiresu S R, Mechanical vibrations,Longman Prentice Hall, 2004(图书馆索引 号:TH113.1/WR32)

newmark法程序法计算多自由度体系的动力响应

用matlab 编程实现Newmark -β法计算多自由度体系的动力响应 用matlab 编程实现Newmark -β法 计算多自由度体系的动力响应 一、Newmark -β法的基本原理 Newmark-β法是一种逐步积分的方法,避免了任何叠加的应用,能很好的适应非线性的反应分析。 Newmark-β法假定: t u u u u t t t t t t ?ββ??]}{}){1[(}{}{+++-+= (1-1) 2]}{}){2 1 [(}{}{}{t u u t u u u t t t t t t ?γγ???+++-++= (1-2) 式中,β和γ是按积分的精度和稳定性要求进行调整的参数。当β=0.5,γ=0.25时,为常平均加速度法,即假定从t 到t +?t 时刻的速度不变,取为常数

)}{}({2 1 t t t u u ?++ 。研究表明,当β≥0.5, γ≥0.25(0.5+β)2时,Newmark-β法是一种无条件稳定的格式。 由式(2-141)和式(2-142)可得到用t t u ?+}{及t u }{,t u }{ ,t u }{ 表示的t t u ?+}{ ,t t u ?+}{ 表达式,即有 t t t t t t t u u t u u t u }){121 (}{1)}{}({1}{2 ----=++γ?γ?γ?? (1-3) t t t t t t t u t u u u t u }{)21(}1()}{}({}{ ?γ β γβ?γβ??-+-+-=++ (1-4) 考虑t +?t 时刻的振动微分方程为: t t t t t t t t R u K u C u M ????++++=++}{}]{[}]{[}]{[ (1-5) 将式(2-143)、式(2-144) 代入(2-145),得到关于u t +?t 的方程 t t t t R u K ??++=}{}]{[ (1-6) 式中 ][][1 ][][2 C t M t K K ?γβ?γ++ = )}{)12(}){1(}{]([)}){121 (}{1}{1]( [}{}{2 t t t t t t t t u t u u t C u u t u t M R R ?γ β γβ?γβγ?γ?γ?-+-++-+++=+ 求解式(2-146)可得t t u ?+}{,然后由式(2-143)和式(2-144)可解出t t u ?+}{ 和t t u ?+}{ 。 由此,Newmark-β法的计算步骤如下: 1.初始计算: (1)形成刚度矩阵[K ]、质量矩阵[M ]和阻尼矩阵[C ]; (2)给定初始值0}{u , 0}{u 和0}{u ; (3)选择积分步长?t 、参数β、γ,并计算积分常数 2 01t ?γα=,t ?γβ α=1,t ?γα12=,1213 -=γα, 14-= γβα,)2(25-=γ β ?αt ,)1(6β?α-=t ,t ?βα=7; (4)形成有效刚度矩阵][][][][10C M K K αα++=; 2.对每个时间步的计算:

0727第三章 两自由度系统振动(讲)

第三章两自由度系统振动 §3-1 概述 单自由度系统的振动理论是振动理论的基础。在实际工程问题中,还经常会遇到一些不能简化为单自由度系统的振动问题,因此有必要进一步研究多自由度系统的振动理论。 两自由度系统是最简单的多自由度系统。从单自由度系统到两自由度系统,振动的性质和研究的方法有质的不同。研究两自由度系统是分析和掌握多自由度系统振动特性的基础。 所谓两自由度系统是指要用两个独立坐标才能确定系统在振动过程中任何瞬时的几何位置的振动系统。很多生产实际中的问题都可以简化为两自由度的振动系统。例如,车床刀架系统(a)、车床两顶尖间的工件系统(b)、磨床主轴及砂轮架系统(c)。只要将这些系统中的主要结合面(或芯轴)视为弹簧(即只计弹性,忽略质量),将系统中的小刀架、工件、砂轮及砂轮架等视为集中质量,再忽略存在于系统中的阻尼,就可以把这些系统近似简化成图(d)所示的两自由度振动系统的动力学模型。 以图3.1(c)所示的磨床磨头系统为例分析,因为砂轮主轴安装在砂轮架内轴承上,可以近似地认为是刚性很好的,具有集中质量的砂轮主轴系统支承在弹性很好的轴承上,因此可以把它看成是支承在砂轮架内的一个弹簧——质量系统。此外,砂轮架安装在砂轮进刀

拖板上,如果把进刀拖板看成是静止不动的,而把砂轮架与进刀拖板的结合面看成是弹簧,把砂轮架看成是集中的质量,则砂轮架系统又近似地可以看成是支承在进刀拖板上的另一个弹簧——质量系统。这样,磨头系统就可以近似地简化为图示的支承在进刀拖板上的两自由度系统。 在这一系统的动力学模型中,m1是砂轮架的质量,k1是砂轮架支承在进刀拖板上的静刚度,m2是砂轮及其主轴系统的质量,k2是砂轮主轴支承在砂轮架轴承上的静刚度。取每个质量的静平衡位置作为坐标原点,取其铅垂位移x1及x2分别作为各质量的独立坐标。这样x1和x2就是用以确定磨头系统运动的广义坐标。(工程实际中两自由

第3章单自由度体系5(直接积分法)

第三章单自由度体系 直接积分法

主要内容 ?两种直接积分方法 (1)中心差分法 (2)Newmark—β法 ?数值积分的稳定性 ?了解算法阻尼(数值阻尼)现象

1. 数值积分概述(直接积分法,逐步积分法) (Direct Integration Methods, Step-by-Step Methods) 运动方程:In direct integration the equations of equilibrium are integrated using a numerical step-by-step procedure, the term ‘direct ’meaning that prior to the numerical integration, no transformation of equations into a different form is carried out. (K.J. Bathe, Finite Element Procedures, Prentice-Hall, 1996.)Two ideas: (1)运动方程并不在任何时间t 都得到满足,而仅仅是在以时间间隔为Δt 的离散时间点上得到满足。 (2)在时间间隔Δt 内,对位移、速度和加速度的变化作出某些假定。 ()()()mu c t u k t u p t ++=

1. 数值积分概述 常用的数值积分方法: (1)分段解析法; (2)中心差分法; (3)Runge-Kutta法; (4)Houbolt法; (5)平均加速度法; (6)线性加速度法; (7)Newmark—β法; (8)Wilson —θ法; (9)HHT法(Hilber-Hughes-Taylor method); (10)精细积分法; ……

单自由度系统.

第1章 单自由度系统 1.1 总结求单自由度系统固有频率的方法和步骤。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 1.3 叙述用正选弦激励求单自由度系统阻尼比的方法和步骤。 1.4 求图1-33中标出参数的系统的固有频率。 1.5 求图1-34所示系统的固有频率。图中匀质轮A 半径R,重物B 的重量为P/2,弹簧刚度为k. 1.6求图1-35所示系统的固有频率。图中磙子半径为R ,质量为M ,作纯滚动。弹簧刚度为K 。 1.7求图1-36所示齿轮系统的固有频率。已知齿轮A 的质量为A m ,半径为A r ,齿轮B 的质量为B m ,半径为B r ,杆AC 的扭转刚度为A k , ,杆BD 的扭转刚度为B k 。 1.8已知图1-37所示振动系统中,匀质杆长为l ,质量为m ,两弹簧刚度皆为K ,阻尼系数 为C ,求当初始条件00 0==θθ 时

(1)t F t f ωsin )(=的稳态解; (2)t t t f )()(δ=的解; 1.9图1-38所示盒内有一弹簧振子,其质量为m ,阻尼为C ,刚度为K ,处于静止状态,方盒距地面高度为H ,求方盒自由落下与地面粘住后弹簧振子的振动历程及振动频率。 1.10汽车以速度V 在水平路面行使。其单自由度模型如图1-39。设m 、k 、c 已知。路面波动情况可以用正弦函数sin()y h at =表示。求:(1)建立汽车上下振动的数学模型;(2)汽车振动的稳态解。 1.11.若电磁激振力可写为t H t F 02sin )(ω=,求将其作用在参数为m 、 k 、 c 的弹簧振子上的稳态响应。 1.1 2.若流体的阻尼力可写为3x b F d -=,求其等效粘性阻尼。

第三章----单自由度有阻尼系统的振动

第三章 单自由度有阻尼系统的振动 3—1 阻尼的作用与分类 前述无阻尼的振动只是一种理想情况,在这种情况下,机械能守恒,系统保持持续的周期性等幅振动。但实际系统振动时,不可避免要受到各种阻尼的影响,由于阻尼的方向始终与振动体的运动方向相反,因此对系统作负功,不断消耗系统的能量,使自由振动不断衰减最终停止,强迫振动的振幅受到抑制。 阻尼有各种来源,情况比较复杂,主要有下列三种形式。 1.干摩擦阻尼: 两个干燥表面互相压紧并相对运动时所产生的阻尼称为干摩擦阻尼,阻尼大小与两个面之间的法向压力N 成正比,即符合摩擦定律F=fN ,式中f 是摩擦系数。 2.粘性阻尼: 物体以中、低速度在流体中运动时所受到的阻力称为粘性阻尼。有润滑油的滑动面之间 产生的阻尼就是这种阻尼。粘性阻尼与速度的一次方成正比,即x c F ,式中c 为粘性阻尼系 数,它取决于运动物体的形状、尺寸及润滑介质的粘性,单位为N ·s/cm 。物体以较大速度 在流体中运动时(如3m/s 以上),阻尼将与速度的平方成正比,即2 x b F ,式中b 为常数,此种阻尼为非粘性阻尼。 3.结构阻尼、 材料在变形过程中,由内部晶体之间的摩擦所产生的阻尼,称为结构阻尼。其性质比较复杂,阻尼的大小取决与材料的性质。 由于粘性阻尼在数学处理时可使求解大为简化,所以本节先以粘性阻尼为基本模型来分析有阻尼的振动。在遇到非粘性阻尼时则可用等效粘性的办法作近似计算。有关等效粘性阻尼的概念和计算方法在本章后面再作介绍。 3-2具有粘性阻尼的自由振动 单自由度有阻尼振系的力学模型如图3-1所示,包括弹簧、质量及阻尼器。以物体的平衡位置0为原点,建立图示坐标轴x 。则物体运动微分方程为 kx x c x m -=- 式中 : x c 为阻尼力,负号表示阻尼力方向与速度方向相反。

Newmark法求解单自由度

% 单位:N/mm/s/ton function res=Newmark(alpha,C) % 系统设置; T=0.1/alpha; K=(2*3.1415926/T)^2; M=1; % C=0; % 定义参数 h=0.0002; beta=0.25; gamma=0.5; con=zeros(1,7); con(1)=1/(beta*h^2); con(2)=gamma/(beta*h); con(3)=1/(beta*h); con(4)=1/(2*beta)-1; con(5)=gamma/beta-1; con(6)=0.5*h*(gamma/beta-2); con(7)=h*(1-gamma/(2*beta)); % 有效刚度 Ke=K+con(1)*M+con(2)*C; % 定义矩形荷载 t=0:h:1; f=zeros(1,size(t,2)); for i=1:size(t,2) if t(i)==0 f(i)=0; else if t(i)>0 && t(i)<=0.1 f(i)=1000*(3.1415926)^2; else f(i)=0; end end % plot(t,f); % 系统初始条件 u0=0; du0=0; ddu0=0; U=zeros(3,size(t,2)); % 求解 for i=1:(size(t,2)-1) fe=f(i+1)+M*(con(1)*u0+con(3)*du0+con(4)*ddu0)+C*(con(2)*u0+con(5)*du 0+con(6)*ddu0); u1=fe/Ke;

du1=con(2)*(u1-u0)-con(5)*du0+con(7)*ddu0; %计算速度和加速度; ddu1=(f(i+1)-C*du1-K*u1)/M; U(:,i+1)=[u1;du1;ddu1]; u0=u1; du0=du1; ddu0=ddu1; end res=[U;t]; end

多自由度系统中的阻尼

第七节 多自由度系统中的阻尼 (教材6.14) 前面介绍了多自由度系统无阻尼系统的振动。对于工程上的各种弹性结构来说,它们振动时总受到各种阻尼力的作用(如材料阻尼、结构阻尼、介质粘性阻尼等等),由于各种阻尼力的机理比较复杂,在分析振动时,常常将各种阻尼力都简化为与速度成正比的粘性阻尼力。而阻尼系数须有工程上的经验公式求出,或由实验数据确定。 有粘性阻尼的n 个自由度系统求响应很困难,其原因在于只有在特定的条件下,用模态分析法才能使运动微分方程解耦。下面分析之。 有阻尼的n 个自由度系统的运动微分方程为 []{}[]{}[]{}{}()M x C x k x F t ++= (5-60) 式中[]C 是阻尼矩阵,为n ×n 对称矩阵。 由无阻尼自由振动微分方程求得固有频率和振型向量,得正则振型矩阵[]Φ。令 代入方程(5-60)并前乘以[]T Φ,得 [][][]{}[][][]{}[][][]{}[]{} ()T T T T M z C z k z F t ΦΦ+ΦΦ+ΦΦ=Φ (a ) 因 [][][][]T I M =ΦΦ ------ 单位矩阵

∴ {}[][][]{}[]{}{}()T z C z z P t +ΦΦ+Λ= (b ) 而[][][]T C ΦΦ一般不是对角矩阵。因此,模态分析法不能使式(a )变成一组独立的微分方程组。例如图示系统,已知 123m m m m ===,1234k k k k k ====。已解出 阻尼矩阵为 ∵ ∴ [][][]T C ΦΦ不是对角矩阵。 可以证明,利用系统的无阻尼振型矩阵[]u 或[]Φ使系统 阻尼矩阵[]C 实现对角化的充分必要条件为 特殊情况: 一、 如果原广义坐标的阻尼矩阵[]C 刚好与质量矩阵或刚 度矩阵成正比,或者[]C 是它们的线性组合,即 其中α和β为正的常数。称这种阻尼为比例阻尼。对于这种比例阻尼,当原广义坐标变换为正则坐标时,正则坐标的阻尼矩阵是对角矩阵: 令第 i 阶模态阻尼为 2(1,2, .)i ni c i n αβω=+=。对应 的第 i 阶模态阻尼比为 则正则坐标的阻尼矩阵可写成另外一种形式 可见,比例阻尼是使[]C 成为对角矩阵的一种特殊情形。 二、 工程上大多数情况下,正则坐标中的阻尼矩阵 [][][]T C ??不是对角矩阵。然而,工程上的大多数振动系统中,阻尼都比较小,而且由于各种阻尼的机理至今还没有

单自由度系统

第二章 单自由度系统的自由振动 本章以阻尼弹簧质量系统为模型,讨论单自由度系统的自由振动。 §2-1 无阻尼系统的自由振动 无阻尼单自由度系统的动力学模型如图所示。设质量为m ,单位是kg 。弹簧刚度为K ,单位是N /m ,即弹簧单位变形所需的外力。弹簧在自由状态位置如图中虚线所示。当联接质量块后,弹簧受重力W=mg 作用而产生拉伸变形:,同时也产生弹簧恢复力K ,当其等于重力W 时,则处于静平衡位置,即 W=K 若系统受到外界某种初始干扰,使系统静平衡状态遭到破坏.则弹簧力不等于重力,这种不平衡的弹性恢复力,便使系统产生自由振动。首先建立座标,为简便起见,可选静平衡位置为座标原点,建立铅垂方向的座标x ,从原点算起,向下为正,向上为负,表示振动过程中质量块的位置。现设质量m 向下运动 到x ,此时弹簧恢复力为K(+x),显然大于重力W ,由 于力不平衡,质量块在合力作用下,将产生加速度运动,故可按牛顿运动定律(作用于一个质点上所有力的合力,等于该质点的质量和沿合力方向的加速度的乘 积),建立运动方程,取与x 正方向一致的力、加速度、速度为正,可列如下方程 改写为 0=+kx x m && (1-1-1 令 m k p = 2 (1-1-2) 单自由度无阻尼系统自由振动运动方程为 02=+x p x && (1-1-3) 设方程的特解为 st e x = 将上式代入(1-1-3)处特征方程及特征根为 ip s p s ±==+2,1220 则(1-1-3)的通解为 pt D pt C e C e C x ipt ipt sin cos 11+=+=- (1-1-4) C 、 D 为任意积分常数,由运动的初始条件确定,设t=0时 00,x x x x &&== (1-1-5) ()x m x k W F && =+?-= ∑量位静平衡位置 一自由度弹簧—质量系统 ? ==k mg W x &x )

单自由度体系杜哈梅积分

function y=kst(t0,t1,t2,ts,m,b0,b1,w0,c) t0=input('请输入起始时间:t0= ');t1=input('请输入荷载消失时间:t1= ');t2=input('请输入想要的时间:t2= '); ts=input('请输入时间步长:ts= '); m=input('请输入质量:m= ') ;b0=input('请输入荷载截距:b0= ');b1=input('荷载消失时的荷载:b1= ');k=input('请输入刚度:k= ') ; c=input('请输入阻尼比:c= '); w0=sqrt(k/m);w1=w0*sqrt(1-c^2); t=t0:ts:t2; for i=1:(length(t)) x=linspace(t(1),t(length(t))) p=interp1([t0 t1],[b0 b1],t); p(find(isnan(p)==1)) = 0; px=linspace(p(1),p(length(t))); a=px.*exp(c*w0*x).*cos(w1*x); A=trapz(x,a); b=px.*exp(c*w0*x).*sin(w1*x); B=trapz(x,b); y=exp(-c*w0*t).*(A.*sin(w1*t)-B.*cos(w1*t))./(m*w1) v=diff(y) a0=diff(y,2) end ymax=max(y)

figure plot(t,y); 此程序为复合梯形法计算冲击荷载作用下的杜哈梅积分。 以P(t)=-1250000*(t+0.08)的冲击荷载为例,质量:m=6.4;阻尼比c=0.05;刚度:k=34847.77 N/m.将参数输入程序得到以下结果:

第七节多自由度系统中的阻尼

第七节 多自由度系统中的阻尼 (教材) 前面介绍了多自由度系统无阻尼系统的振动。对于工程上的各种弹性结构来说,它们振动时总受到各种阻尼力的作用(如材料阻尼、结构阻尼、介质粘性阻尼等等),由于各种阻尼力的机理比较复杂,在分析振动时,常常将各种阻尼力都简化为与速度成正比的粘性阻尼力。而阻尼系数须有工程上的经验公式求出,或由实验数据确定。 有粘性阻尼的n 个自由度系统求响应很困难,其原因在于只有在特定的条件下,用模态分析法才能使运动微分方程解耦。下面分析之。 有阻尼的n 个自由度系统的运动微分方程为 []{}[]{}[]{}{}()M x C x k x F t ++= (5-60) 式中[]C 是阻尼矩阵,为n ×n 对称矩阵。 由无阻尼自由振动微分方程求得固有频率和振型向量,得正则振型矩阵[]Φ。令 {}[]{}x z =Φ 代入方程(5-60)并前乘以[]T Φ,得 [][][]{}[][][]{}[][][]{}[]{} ()T T T T M z C z k z F t ΦΦ+ΦΦ+ΦΦ=Φ (a )

因 [][] [][]T I M =ΦΦ ------ 单位矩阵 [][][][]T k Λ=ΦΦ {}[]{}()()T P t F t =Φ ∴ {}[][][]{}[]{}{}()T z C z z P t +ΦΦ+Λ= (b ) 而[][][]T C ΦΦ一般不是对角矩阵。因此,模态分析法不能 使式(a )变成一组独立的微分方程组。例如图示系统,已知 123m m m m ===,1234k k k k k ====。已解出 {}{}{}12 31112, 0,2111u u u ??????? ??===?????????-?? ?? ? ? m 1 m 2m 3 k 3 k 1 2 x 1 x 3 k 2 k 4 c 阻尼矩阵为 []00 00000 C c ????=?????? ∵ {}[]{}12 00011 21000000 1T u C u c c ?? ???? ????==-≠?????? ??-???? ??

1 单自由度体系的自由振动

y s y(t) s=-k(y+y s )w=mg F(t)=-m y §1 单自由度体系的自由振动 一、无阻尼的自由振动: 如下图,以单自由度体系为例,设此梁上的集中质量为m ,其重量为W mg =, 梁由于质量的重力引起的质量处的静力位移用s y 表示,与s y 相 应的质量位置称为质量的静力平衡位置。若此质量受到扰动离开了静力平衡位置,当扰动除去后,则体系将发生振动,这样的振动称为体系的自由振动。由于振动的方向与梁轴垂直,故称为横向振动。在此,只讨论微小振幅的振动,由振动引起的内力限于材料的弹性极限以内,用以表示质量运动的方程将为线性微分方程。 1、建立运动方程 建立运动方程常用的基本原理是达朗伯原理(亦称惯性力法或动静法)。 今考虑在振动过程的某一瞬时t ,设质量在此瞬时离开其平衡位置的位移为y ,取质量为隔离体,则在质量上作用有三种力:质量的重量W ,杆件对质量的弹性恢复力S 和惯性力F(t)。根据达朗伯原理,这三个力应成平衡,即 W+S+F(t)=0 (1) 在弹性体系中,弹性恢复力S 为 ()s k y y s =-+

上式中的K 为一常数,称为刚度系数,代表简支梁上使质量在运动方向产生单位位移时需要加在质量上的沿质量运动方向的集中力的量值。式中负号表示s 的指向和位移的方向相反。 而 1y s W k =? 即 y s W k =? 因此,将()s k y y s =-+和y s W k =?代入式(1)得 ()0 F t ky =-+ (2) 上式表明,如果以静力平衡位置作为计算位移的起点,则建立体系的运动方程时,可以不考虑重力W 的影响。这对其他体系的振动(包括受迫振动)也同样适用。 将2 2 ()d y F t m dt =-代入式(2)得: 2 2()0d y m ky t dt += 令2 k m ω= dy y dt = (速度) 2 2 d y y dt = (加速度) 则 2 2 ()0d y m ky t dt += 可变为 2 y y ω+= (3) 此为单自由度体系无阻尼自由振动的运动方程,它反映了这种振动的一般规律。 若采用柔度法建立运动方程(建立位移方程),以静力平衡位置作为计算位移的起点,则梁在质量m 处除惯性力2 2()d y F t m dt =-这个假想的 外荷载作用外,再无其他外力作用。所以由达朗伯原理可知,梁在集中质量m 处任一运动瞬时的位移为

相关文档
最新文档