HCl水吸收填料塔设计

HCl水吸收填料塔设计
HCl水吸收填料塔设计

设计任务书

1. 水吸收HCl填料塔的设计

(一)设计题目

试设计一座填料吸收塔,用于回收空气中的HCl气体。混合气体处理量为_3500__m3/h。进口混合气中含HCl___6%__(体积百分数);混合气进料温度为30℃。采用20℃清水进行吸收。要求:

①HCl的回收率达到__99.85%__。

②塔顶排放气体中HCl含量低于__0.15%__

(二)操作条件

(1)操作压力 202.6 kPa

(2)操作温度 20℃

(3)吸收剂用量为最小用量的倍数自己确定

(4)塔型与填料自选,物性查阅相关手册。

(三)设计内容

(1)设计方案的确定和说明

(2)吸收塔的物料衡算;

(3)吸收塔的工艺尺寸计算;

(4)填料层压降的计算;

(5)液体分布器简要设计;

(6)绘制液体分布器施工图;

(7)其他填料塔附件的选择;

(8)塔的总高度计算;

(9)泵和风机的计算和选型;

(10)吸收塔接管尺寸计算;

(11)设计参数一览表;

(12)绘制生产工艺流程图(A3号图纸);

(13)绘制吸收塔设计条件图(A3号图纸);

(14)对设计过程的评述和有关问题的讨论。

目录

前言 (1)

1、填料塔主体设计方案的确定 (2)

1.1装置流程的确定 (2)

1.2 吸收剂的选择 (2)

1.3 填料的选择 (2)

2、基础物性数据及物料衡算 (3)

2.1 基础物性数据 (3)

2.1.2气相物性数据 (3)

2.1.3 气液相平衡数据 (3)

2.1.4 物料横算 (4)

2.2填料塔工艺尺寸的计算 (5)

2.2.1 塔径的计算 (5)

2.2.3填料层压降计算: (9)

2.2.4 液体分布装置 (9)

3、附属设备的选择与计算 (10)

3.1填料支撑装置 (10)

3.2填料压紧装置 (10)

3.3吸收塔主要接管的尺寸计算 (10)

3.4填料塔附属高度的计算 (12)

3.5离心泵和风机的选择 (12)

设计一览表 (14)

1基础物性数据和物料衡算结果汇总: (14)

2填料塔工艺尺寸计算结果表: (15)

3吸收塔设计一览表 (16)

对本设计的评述 (16)

前言

填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以她特别适用于处理量肖,有腐蚀性的物料及要求压降小的场合。液体自塔顶经液体分布器喷洒于填料顶部,并在填料的表面呈膜状流下,气体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。因气液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液传质设备。

1、填料塔主体设计方案的确定

1.1装置流程的确定

本次设计采用逆流操作:气相自塔低进入由塔顶排出,液相自塔顶进入由塔底排出,即逆流操作。

逆流操作的特点是:传质平均推动力大,传质速率快,分离效率高,吸收剂利用率高。工业生产中多采用逆流操作。

1.2 吸收剂的选择

因为用水做吸收剂,故采用纯溶剂。

1.3 填料的选择

塔填料的选择包括确定填料的种类、规格及材料。填料的种类主要从传质效率、通量、填料层的压降来考虑,填料规格的选择常要符合填料的塔径与填料公称直径比值D/d[]1。

综合考虑填料规格,种类和材质后,选用聚丙烯鲍尔环填料

2、基础物性数据及物料衡算

2.1 基础物性数据

2.1.1 液相物性数据

对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。由手册查得 20 ℃水的有关物性数据如下:

1. 3

998.2/l kg m ρ=

2. 黏度:3^10005.1-?s Pa ?

3. 表面张力为:2

72.6/940896/z dyn cm kg h σ==

4. 20℃ HCl :H =0.199)(3kPa m kmol ?

5. 20℃ HCl :L D = 2.8×10^-9 s 2m

6. 20℃ HCl :V D =1.56×10^-5s 2m 2.1.2气相物性数据

1. 混合气体的平均摩尔质量为

)/(45.2929)06.01(5.3606.0kmol kg M =?-+?= 2. 混合气体的平均密度

33

3/449.2293

315.81045.2910202.6m kg RT M P V =????==-ρ

R=8.314 3/m KPa kmol K ??

3. 混合气体黏度可近似取为空气黏度。查手册得20C ?时,空气的黏度

551.7310622810/v pa s kg m h μ--=??=??

注:211/N kg m s =? 2211/1/Pa N m kg s m ==? 1Pa.s=1kg/(m.s) 2.1.3 气液相平衡数据

由手册[]2查得,202.6 kPa ,200C 时,HCl 在水中的亨利系数为 E=275kpa

200C 时,HCl 在水中的溶解度: H=0.199kmol/(m3.kPa) 相平衡常数:375.16

.20200.18199.02.998=??===

P HM P E m S L ρ 溶解度系数: )/(199.03kpa m kmol H ?= 2.1.4 物料衡算 1. 进塔气相摩尔比为

06383.006

.0106

.01=-=

Y

2. 出塔气相摩尔比为

0015.02=Y

对于纯溶剂吸收过程,进塔液相组成为:02=X (清水) 混合气体流量:)/(59.1454

.221

2932733500h kmol =??

惰性气体流量:)/(85.136)06.01(59.145h kmol V =-?=

最小液气比:

3427.10375

.106383.00015.006383.0)(21212

121min =--=--=--=*X m Y Y Y X X Y Y V L 取实际液气比为最小液气比的2.5倍,则可得吸收剂用量为:

)/(37.4595.285.1363427.1h kmol L =??=

01857

.05.23427.10015.006383.0)

(211=?-=-=

L

Y Y V X

V ——单位时间内通过吸收塔的惰性气体量,kmol/s; L ——单位时间内通过吸收塔的溶解剂,kmol/s;

Y 1、Y 2——分别为进塔及出塔气体中溶质组分的摩尔比,koml/koml; X 1、X 2——分别为进塔及出塔液体中溶质组分的摩尔比,koml/koml;

2.2填料塔工艺尺寸的计算

2.2.1 塔径的计算

混合气体的密度 33

3/449.2293

315.81045.29106.202m kg RT M P G =????==-ρ 填料总比表面积:32/115m m a t = 水的黏度s Pa L ?-?=3^10005.1μ

采用贝恩-霍根泛点关联式[]3计算泛点速度:

7241

.0)

2

.998449.2()449.235001837.459(75.10942.0]lg[

8

1

41

8

/14

/12

.032-=????-=???

? ?????

? ??-=???L V V

L L L V t F

w w K A a g u ρρμρρεs m u g a u F L L V t F /1405.2005

.1449.21152

.99889.081.91888.01888.02

.03

2

.03

2

=?????=

=μρερ

μF ——泛点气速,m/s ; g ——重力加速度,9.81m/s 2 a t ——填料总比表面积,32m m ε——填料层空隙率,32m m ρV ,ρL ——气相、液相密度,k/m 3; μL ——液体粘度,mPa ·s;

取泛点率为0.6,即s m u u F /8194

.11405.285.085.0=?== s

m u

V D S

/8250.03600

8194.114.33500

44=???=

圆整后取 m D 0.1= D ——塔径,m ;

V ——操作条件下混合气体的体积流量,m 3/s ;

u ——空塔气速,即按空塔截面积计算的混合气体线速度,m/s.

圆整后取 D=0.8m (常用的标准塔径为400、500、600、700、800、1000、1200、1400、1600、2000、2200)

泛点率校核:

s m u /2385.10

.1785.036003500

2

=?= 58.01405

.22385.1==F u u (对于散装填料,其泛点率的经验值为85.0~5.0/=F u u )填料规格校核:

15~103.2638

1000>==d D 液体喷淋密度校核:取最小润湿速率为 )/(08.0)(3min h m m L W ?=

32/115m m a t =

所以 )/(20.911508.0)(23min min h m m a L U t W ?=?=?=

min

232

2

)/(55.100

.1785.02.9981837.459785.0U h m m D L U h

??=?÷?=?=

经以上校核可知,填料塔直径选用m D 0.1=合理。 2.2.2 填料层高度的计算及分段 查表知, 0C

,101.3 kpa 下,HCl 在空气中的扩散系数s cm D /156.02=

由23

))((o o o T T

P P D D G =,

293k ,202.6kpa 下,l H C 在空气中的扩散系数为

s cm D G /0867.0)273

293)(6.2023.101(156.022

3

=?=

液相扩散系数s m D L /1050.125-?=

液体质量通量为)/(32.105330.1785.01837.4592

2

h m kg U L ?=??=

气体质量通量为)/(11.109190

.1785.0449

.2350022

h m kg U V ?=??= 0

02553

.001857.0375.12211===?==*

*

m X Y m X Y 脱吸因数为4096.037

.45985

.136375.1=?==

L mV S 气相总传质单元数为:

488

.5]4096.00

0015.00

06383.0)40969.01[(4096.011])1[(112

221=+--?-?-=+--?--=**

Ln S Y Y Y

Y S Ln S N OG

气相总传质单元高度采用修正的恩田关联式计算:

})()()()(45.1exp{12.0205.022

1.075.0t L L L

L t L L t L L c t w a U g

a U a U a a σρρμσσ?????--=- 查表[]4知,2/427680/33h kg cm dyn c ==σ

所以,

3582

.0})115

9408962.99832

.10533(

)1027.12.99811532.10533()6.311532.10533()940896427680(45.1exp{12.02

05

.08221.075.0=??????????--=-t w a a

气膜吸收系数由下式计算:

)

/(0803.0)

293

314.810360056.1115()36001056.1449.2065.0()065.011511.10919(237.0)

()()(237.025

3

1

57.031

7.0kpa h m km ol RT

D

a D a U V t V V V v t V G ??=???????????=??=--ρμμκ液膜吸收系数由下式计算:

664

.0)2

.99810

27.16.3()36001080.22.9986.3()6.31153582.032.10533(0095.0)

()()(0095.031

8

219

32

3

1

2132=??????????=??????=---L

L L L L L w L L g D a U ρμρμμκ 查表得:45.1=ψ 则

h

a a kpa h m kmol a a w L L w G G 17350.3145.11153582.0664.0)/(9779.445.11153582.00803.04.04.031.11.1=???=??=??=???=??=ψκκψκκ5.058.0?=F

u u

a u u

a a u u

a L F

L

G F

G

κκκκ?-?+='?-?+='])5.0(6.21[])5.0(5.91[2.24.1 得,

h

a kpa h m kmol a L

G 10536.327350.31])5.058.0(6.21[)/(3798.69779.4])5.058.0(5.91[2.234.1=?-?+='??=?-?+='κκ

则 )/(1746.37350

.31199.01

3798.611

1113kpa h m km ol a H a a L G

G ??=?+

=

?+

'=

κκκ

由 m P a V a K V H G Y OG 2710.00.1785.06.2021746.385

.1362

=???=Ω??=Ω?=

κ

由 m N H Z O G O G 4872.1488.52710.0=?=?= Z Z )5.1~2.1('= 设计取填料层高度取 3m

查表:对于鲍尔环填料,m h D

h

6,10~5max ≤= ,所以填料层不用分段。

2.2.3填料层压降计算:

采用Eckert 通用关联图[]5计算填料层压降 横坐标为:

04778.0)2

.998449.2(449.235001837.459)(5

.05.0=???=L V V L ρρωω 查表得:1114-=Φm P

纵坐标为:06405.0005.12.998449

.281.945.11142385.12.022.02=????=??ΦL L V P g u μρρψ

查图得,

m pa Z

P

/5.490=? 填料层压降为:kpa pa P 981

.025.490=?=? 2.2.4 液体分布装置

液体的分布装置性能对填料塔效率影响很大,特别是大直径、低填料层的填料塔,尤其需要性能良好的液体分布装置。本设计选用槽式液体分布器。 开孔数目的计算:

取 mm H 140=? 55.0=Φ mm 8d 0=

n=

H

d M L V ??????g 2785.0/2

0l

φρ水 512.5014

.081.9255.0008.0785.0)

2.9983600(/1837.4592

≈=???????=

注:因为填料层高度为3m ,少于6m ,所以可以不用设计再分液器。

3、附属设备的选择与计算

3.1填料支撑装置

填料支承结构用于支承塔内填料及其所持有的气体和液体的重量之装置。对填料的基本要求是:有足够的强度以支承填料的重量;提供足够的自由截面以使气液两相流体顺利通过,防止在此产生液泛;有利于液体的再分布;耐腐蚀,易制造,易装卸等。对于散装填料,通常选用孔管型、驼峰型支撑装置。本设计选用孔管型支撑装置。

本设计塔径D=1000mm,采用结构简单、自由截面较大、金属耗用量较小,由竖扁钢制成的栅板作为支承板,将其分成三块,栅板条之间的距离约为26.6mm。且需要将其搁置在焊接于塔壁的支持圈或支持块上,分块式栅板,每块宽度为316mm,以便从人孔进行装卸。

3.2填料压紧装置

填料上方安装压紧装置可防止在气流的作用下填料床层发生松动和跳动。填料压紧装置分为填料压板和床层限制板两大类,每类又有不同的型式,填料压板自由放置于填料层上端,靠自身重量将填料压紧。它适用于陶瓷、石墨等制成的易发生破碎的散装填料。床层限制板用于金属、塑料等制成的不易发生破碎的散装填料及所有规整填料。床层限制板要固定在塔壁上,为不影响液体分布器的安装和使用,不能采用连续的塔圈固定,对于小塔可用螺钉固定于塔壁,而大塔则用支耳固定。本设计中填料塔在填料装填后于其上方安装了填料压紧栅板。3.3吸收塔主要接管的尺寸计算

气体出口装置既要保证气流畅通,又要尽量除去被夹带的液沫。最简单的装置是在气体出口处装一除沫挡板,或填料式、丝网式除雾器,对除沫要求高时可采用旋流板除雾器。由于本设计对排放的净化气体中的液相夹带要求不严,可不设除液沫装置。

常压塔气体进出口管气速可取10~30m/s(高压塔气速低于此值);液体进出口管气速可取0.8~1.5m/s(必要时可加大些)。管径依所选气速决定后,应按标准管规格进行圆整,并规定其厚度。

3.3.1液体进料接管

进料管的结构类型很多,有直管进料管、弯管进料管、T 型进料管。本设计采用直管进料管,管径计算如下 液体流速取s m u /2.1=

h m W q L

L

L /284.82

.99818

37.4593=?=

=

ρ

设计液体进出口管内径: m u

q d L

0494.02

.14

14.33600284

.84

36001=??=??

=

π

管选用mm mm 560?=φ的无缝钢管,内径为50mm

管内实际流速:s m d q u L /17.105.0785.03600284

.842

2=?==π,在符合范围内。 3.3.2气体进料接管 气体流速取 m/s 20=气u

m u q d G 2488.00

.20785.03600

/35004

2=?=

=气

设计取气体进出管内径

π

管选用mm mm 11273?=φ的无缝钢管,内径为251mm 则实际通过气体接管的气速为:m/s q u G 66.19251.0785.03600

/3500d 4

2

2

2

=?=

气,在符合

范围内。

按标准管规格进行圆整后得,气体进口出管直径D 1=273mm ,厚度为11mm 液体进出管直径D 2=60mm ,厚度为5mm 。

设计位于塔底的进气管时,主要考虑两个要求:压力降要小和气体分布要均匀。由于填料层压力降较大,减弱了压力波动的影响,从而建立了较好的气体分布;同时,本装置由于直径较大,可采用简单的进气分布装置。由于对排放的净化气体中的液相夹带要求不严,可不设除液沫装置。

3.4填料塔附属高度的计算

塔的附属高度主要包括塔的上部空间高度,安装液体分布器所需的空间高度,塔的底部空间高度等。

塔的上部空间高度是为使随气流携带的液滴能够从气相中分离出来而留取的高度,可取1.2m 。设塔定液相停留时间为1min ,则塔釜液所占空间高度为

()m 18.01785.02.998360066.8268604

602

2

2

=???=

?D

W O

H L

π

ρ

考虑到气相接管的空间高度,底部空间高度取为1.505米,那么塔的附属空间高度可以取为2.705m 。吸收塔的总高度为m H 705.53705.2=+=

3.5离心泵和风机的选择

吸收塔的压力降321'P P P P ?+?+?=?

气体进口压强为(突然扩大ξ=1):Pa u P 29.47366.19449.22

12122

1

=??=?=?ρ 气体出口压强为(突然缩小ξ=0.5)a 65.23666.19449.22

15.02

15.0222P u P ==???=???ρ

填料层压力降:a 9813P P =?

吸收塔的压力降a 94.169098165.23629.4733

21'P P P P P ==++?+?+?=? 1791.5810410

10052

.99817.105.0Re 6

=???=

=

ρ

du 无缝钢管的绝对粗糙mm /2.0=ε度,相对粗糙度004.0502

.0==d ε

查表得摩擦系数03.0=λ

泵入口管长:0.2m 喷头前管长0.5m

全程有1个标准截止阀(全开):ξ=6.4 三个90度弯头:ξ=0.75 带滤水器的底阀(全开):ξ=2 吸入管伸进水里m l 3.0=' 出口突然扩大0.11=ξ 进口突然缩小5.0=ξ

15.125.00.12375.014.6=+++?+?=∑ξ

管路总压头损失

Kg

J u d l H f 11.181.9217

.115.1205.07.52.03.003.0g 22

2=??

??? ??+++?=??? ??∑+=∑ξλ

扬程:m H g P Z H f 28.411.181

.92.99894

.16903'g =+?+=+?+?=ρ

流量 h

W L L /m 28.82

.99818

37.459Q 3=?=ρ=

经查化工原理教材附表十二得 ,选用离心泵型号IS65-50-125的泵适合

流量m 3

/h 扬程H/m 效率η/% 功率/kw

必需汽蚀余量 (NPSH)r /m 转

(r/min ) 轴功

电功率 12.5 5

64

0.27

055

2.0

1450

选用风机型号为:C4-72 机号 3.6C 转速(r/min )

流量 (m 3/h)

全压/ Pa 功率/kW

2800 2990~5450 931~1568

3

设计一览表

1基础物性数据和物料衡算结果汇总: 项目

符号 数值与计量单位 吸收剂(水)的密度 ρL 998.2(kg/m 3)

溶剂的粘度 μL 310005.1-?(Pa.S)

溶剂表面张力 δL 940896(kg/h 2)

盐酸在水中扩散系数 D L

)(s m /108.229

-?

混合气体的平均摩尔质量 G M

29.45kmol kg 混合气体的平均密度 G ρ

2.4493m kg

盐酸在空气中扩散系数 D v )/(m 1056.125s -? 亨利系数 E

275 KPa; 气液相平衡常数 m 1.375

溶解度系数 H 0.199kmol /(m 3.KPa); 盐酸进塔摩尔比 Y 1 0.06383 盐酸出塔摩尔比 Y 2 0.0015 惰性气体摩尔流量 G 136.85kmol/h ; 吸收剂摩尔流量 L 459.37 kmol/h 液相进口摩尔比 X 2 0 液相出口摩尔比 X 1

0.01857

2填料塔工艺尺寸计算结果表:

项目

符号

数值与计量单位 气相质量流量 v W

8386.66kg/h 液相质量流量 L W

8571.5kg/h 塔径 D 1000mm 空塔气速 u 1.2385s m 泛点率 F u u 58% 解吸因数

S

0.4096 气相总传质单元数 OG N 5.448

液体质量通量 U L 32.10533)/(2h m kg ? 气体质量通量 U v

11.10919)/(2h m kg ?

气膜吸收系数 G k

0.0803kmol/(m 2.h.kpa) 液膜吸收系数

L k

0.664 (m/h)

气相总吸收系数(校正后)

a k G

' 6.3798kmol/(m 3.h.kpa) 液相总吸收系数(校正后) a '

L

K 32.0536(l/h)

气相总传质系数 a K G 4.9779kmol/(m 3.h.kpa) 液相总传质系数 a L K

31.7350kmol/(m 3.h.kpa) 气相传质单元高度 OG H 0.271m 填料层高度 Z ′

1.4872m 填料塔上部空间高度 1h 1.2m 填料塔下部空间高度

2h

1.505m

塔附属高度 3h

2.705m 塔高 A H

5.705m 布液孔数 n 51点 孔径

d 0

0.008m 开孔上方高度 H ?

0.14m

3吸收塔设计一览表 项目 选型

数值与计量单位

吸收塔类型 聚丙烯鲍尔环吸收填料塔 混合气处理量: 3500m 3/h 液体进出口接管 无缝钢管mm mm 560?φ

液体实际流s m u

/17.1=液 气体进出口接管 无缝钢管.11273mm

mm ?φ 气体实际流m/s u

66.19=气

离心泵的选型

IS65-50-125单级单吸离心泵 扬程 H=4.28m

对本设计的评述

历时两个星期的化工原理课程设计结束了,在这个课程设计过程当中,我们综合地运用了我们所学习过的流体力学,吸收等方面的化工基础知识,设计了一款可应用于吸收氯化氢的填料塔。在为期两周的课程设计当中我感触最深的便是实践联系理论的重要性,当遇到实际问题时,只要认真思考,用所学的知识,再一步步探索,是完全可以解决遇到的一般问题的。这次的课程设计内容包括工艺流程的设计,塔板结构的设计,数据的校验。目的主要是使我们对化学工艺原理有一定的感性和理性认识;对水吸收氯化氢等方面的相关知识做进一步的理解;培养和锻炼我们的思维实践能力,使我们的理论知识与实践充分地结合,做到不仅具有专业知识,而且还具有较强的实践能力,能自主分析问题和解决问题。

在大一和大二我们学的都是一些理论知识,而这一次的课程设计更多的是要我们去学会运用理论知识思考。好多东西看起来十分简单,一看结构图都懂,但它在实际设计中就是有许多要注意的地方,有些东西也与你的想象不一样,我们

这次的课程设计就是要我们跨过这道实际和理论之间的鸿沟。

在设计的过程当中,有很多数据设计出来不一定能如人意,有些要反复试算很多遍,很能考验耐性。有些人可能会为了美观或省事而在图上面改数据或者采用跟计算不一致的画法,但是本人认为,应当实事求是,该是怎样的就怎么样。毕竟这是一个训练的过程,如果我们都不抱着实事求是的态度的话,那么这个训练的意义就没有那么大了。整个设计的过程绝大部分数据都是有书可查,有标准可参照的。

两周的课程设计虽然短暂而劳累,但却给我以后的道路指出一条明路,那就是思考着做事,将事半功倍。我做事的心态也得到磨练,做什么事情思路一定要清晰,也改变了很多不良的习惯,这就是此次课程设计最大的的收获吧。

参考文献

[]1贾绍义,柴诚敬主编.《化工原理课程设计(化工传递与单元操作课程设计)》.天津:天津大学出版社,2002.8

]2[陈敏恒,丛德滋,方图南,齐鸣斋编.《化工原理》下册第三版.北京:化学工业出版社,2006.5

]3[贾绍义,柴诚敬主编.《化工原理课程设计(化工传递与单元操作课程设计)》.天津:天津大学出版社,2002.8

]4[常见材质的临界表面张力值

]5[《化工原理课程设计(化工传递与单元操作课程设计)》)

填料塔吸收实验报告

实验6 填料吸收塔实验报告 第四组成员:王锋,郑义,刘平,吴润杰 一、 实验名称 填料吸收塔实验 二、 实验目的 1、 了解填料吸收塔的构造并实际操作。 2、 了解填料塔的流体力学性能。 3、 学习填料吸收塔传质能力和传质效率的测定方法。 三、实验内容 测定填料层压强降与操作气速的关系曲线,并用ΔP/Z —u 曲线转折点与观察现象相结合的办法,确定填料塔在某液体喷淋量下的液泛气速。 四、实验原理 1.气体通过填料层的压强降 压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气液流量有关,不同喷淋量下填料层的压强降ΔP 与空塔气速u 的关系如下图所示: 1 2 3 L 3L 2L 1 L 0 = >>0 图6-1 填料层的ΔP ~u 关系 当无液体喷淋即喷淋量L0=0时,干填料的ΔP ~u 的关系是直线,如图中的直线0。当有一定的喷淋量时,ΔP ~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将ΔP ~u 关系分为三个区段:恒持液量区、载液区与液泛区。

五、实验装置和流程 图6-2 填料吸收塔实验装置流程图 1-风机、2-空气流量调节阀、3-空气转子流量计、4-空气温度、5-液封管、6-吸收液取样口、7-填料吸收塔、8-氨瓶阀门、9-氨转子流量计、10-氨流量调节阀、11-水转子流量计、12-水流量调节阀、13-U型管压差计、14-吸收瓶、15-量气管、16-水准瓶、17-氨气瓶、18-氨气温度、20-吸收液温度、21-空气进入流量计处压力实验流程示意图见图一,空气由鼓风机1送入空气转子流量计3计量,空气通过流量计处的温度由温度计4测量,空气流量由放空阀2调节,氨气由氨瓶送出,?经过氨瓶总阀8进入氨气转子流量计9计量,?氨气通过转子流量计处温度由实验时大气温度代替。其流量由阀10调节5,然后进入空气管道与空气混合后进入吸收塔7的底部,水由自来水管经水转子流量计11,水的流量由阀12调节,然后进入塔顶。分析塔顶尾气浓度时靠降低水准瓶16的位置,将塔顶尾气吸入吸收瓶14和量气管15。?在吸入塔顶尾气之前,予先在吸收瓶14内放入5mL已知浓度的硫酸作为吸收尾气中氨之用。吸收液的取样可用塔底6取样口进行。填料层压降用∪形管压差计13测定。 六、实验操作方法及步骤 1、测量干填料层(△P/Z)─u关系曲线: 先全开调节阀2,后启动鼓风机,用阀2 调节进塔的空气流量,按空气流量从小到大的顺序读取填料层压降△P,转子流量计读数和流量计处空气温度,测量12~15组数据?然后在双对数坐标纸上以空塔气速u为横坐标,以单位高度的压降△P/Z为纵坐标,标绘干填料层(△P/Z)─u关系曲线。 2、测量某喷淋量下填料层(△P/Z)─u关系曲线: 用水喷淋量为30L/h时,用上面相同方法读取填料层压降△P,?转子流量计读数和流量计处空气温度并注意观察塔内的操作现象, ?一旦看到液泛现象时记下对应的空气转子流量计读数。在对数坐标纸上标出液体喷淋量为30L/h下(△P/z)─u?关系曲线,确定液泛气速并与观察的液泛气速相比较。 3、测量某喷淋量下填料层(△P/Z)─u关系曲线: 用水喷淋量为50L/h时,用上面相同方法读取填料层压降△P,?转子流量计读数和流量计处空气温度并注意观察塔内的操作现象, ?一旦看到液泛现象时记下对应的空气转子流量计读数。在对数坐标纸上标出液体喷淋量为

水吸收二氧化硫填料塔课程设计..

《化工原理课程设计》报告 设计任务书 (一)设计题目 试设计一座填料吸收塔,用于脱除混于空气中的SO2,混合 气体的处理为2500m3/h,其中SO2(体积分数)8﹪。要求塔 板排放气体中含SO2低于0.4%,采用清水进行吸收。(二)操作条件 常压,20℃ (三)填料类型 选用塑料鲍尔环、陶瓷拉西环填料规格自选 (四)设计内容 1、吸收塔的物料衡算 2、吸收塔的工艺尺寸计算 3、填料层压降的计算 4、吸收塔接管尺寸的计算 5、绘制吸收塔的结构图

6、对设计过程的评述和有关问题的讨论 7、参考文献 8、附表 目录 一、概述 (4) 二、计算过程 (4) 1. 操作条件的确定 (4) 1.1吸收剂的选择 (4) 1.2装置流程的确定 (4) 1.3填料的类型与选择 (4) 1.4操作温度与压力的确定 (4) 2. 有关的工艺计算 (5) 2.1基础物性数据 (5) 2.2物料衡算 (6) 2.3填料塔的工艺尺寸的计算 (6) 2.4填料层降压计算 (11) 2.5吸收塔接管尺寸的计算 (12) 2.6附属设备……………………………………………… ..12 三、评价 (13) 四、参考文献 (13) 五、附表 (14)

一、概述 填料塔不但结构简单,且流体通过填料层的压降较小,易于用 耐腐蚀材料制造,所以它特别适用于处理量小,有腐蚀性的物 料及要求压降小的场合。液体自塔顶经液体分布器喷洒于填料 顶部,并在填料的表面呈膜状流下,气体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。因气 液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液 传质设备。 二、设计方案的确定 (一) 操作条件的确定 1.1吸收剂的选择 因为用水作吸收剂,同时SO2不作为产品,故采用纯溶剂。 1.2装置流程的确定 用水吸收SO2属于中等溶解度的吸收过程,故为提高传 质效率,选择用逆流吸收流程。 1.3填料的类型与选择 用不吸收SO2的过程,操作温度低,但操作压力高,因 为工业上通常选用塑料散堆填料,在塑料散堆填料中,塑

水吸收氨气填料塔设计概述

化工原理课程设计 课程名称: _ 化工原理 设计题目: __水吸收空气中氨填料塔的工艺设计____ 院系: ___化学与生物工程学院__________ 学生姓名: _____王永奇__________ 学号: ____200907117________ 专业班级: __化学工程与工艺093_ 指导教师: ______张玉洁_________

化工原理课程设计任务书 一、设计题目:水吸收空气中的氨填料塔的工艺设计 二、设计条件 1.生产能力:每小时处理混合气体4500Nm/h; 2.设备型式:填料塔 3.操作压力:101.3KPa 4.操作温度:298K 5.进塔混合气中含氨8%(体积比) 6.氨的回收率为99% 7.每年按330天计,每天24小时连续生产 8.建厂地址:兰州地区 9.要求每米填料的压降都不大于103Pa 三、设计步骤及要求 1. 确定设计方案 (1)流程的选择 (2)初选填料类型 (3)吸收剂的选择 2.查阅物料的物性数据 (1)溶液的密度、粘度、表面张力、氨在水中的扩散系数 (2)气相密度、粘度、表面张力、氨在空气中的扩散系数 (3)氨在水中溶解的相平衡数据 3.物料衡算 (1)确定塔顶、塔底的气液流量和组成 (2)确定泛点气速和塔径 (3)校核D/d>8~10 (4)液体喷淋密度校核:实际的喷淋密度要大于最小的喷淋密度。 4.填料层高度计算 5.填料层压降校核

如果不符合上述要求重新进行以上计算 6.填料塔附件的选择 (1)液体分布装置 (2)液体在分布装置 (3)填料支撑装置 (4)气体的入塔分布 7.计算结果列表(见下表) 四、设计成果 1. 设计说明书(A4) (1)内容包括封面、任务书、目录、正文、参考文献、附录 (2)格式必须严格按照兰州交通大学毕业设计的格式打印。 2.精馏塔工艺条件图(2号图纸)(手绘) 五、时间安排 (1)第十九周---第二十二周 (2)第二十二周的星期五(7月20日)下午两点本人亲自到指定地点交设计成果,最迟不得晚于星期五的十八点钟。 六、设计考核 (1)设计是否独立完成; (2)设计说明书的编写是否规范 (3)工艺计算与图纸正确与否以及是否符合规范 (4)答辩 七、参考资料 1.《化工原理课程设计》贾绍义柴成敬天津科学技术出版社 2.《现代填料塔技术》王树盈中国石化出版社 3.化工原理夏清天津科学技术出版社

化工原理课程设计---水吸收氨气-资料

《化工原理》课程设计水吸收氨气填料塔设计 学院医药化工学院 专业化学工程与工艺 班级 姓名姚 学号 090350== 指导教师蒋赣、严明芳 2011年12月25日

目录 前言 (1) 1. 水吸收氨气填料塔工艺设计方案简介 (4) 1.1任务及操作条件 (4) 1.2设计案的确定 (4) 1.3填料的选择 (4) 2. 工艺计算 (6) 2.1 基础物性数据 (6) 2.1.1液相物性的数据 (6) 2.1.2气相物性的数据 (6) 2.1.3气液相平衡数据 (6) 2.1.4 物料衡算 (7) 2.2 填料塔的工艺尺寸的计算 (7) 2.2.1 塔径的计算 (7) 2.2.2 填料层高度计算 (9) 2.2.3 填料层压降计算 (12) 2.2.4 液体分布器简要设计 (13) 3. 辅助设备的计算及选型 (15) 3.1 填料支承设备 (15) 3.2填料压紧装置 (16) 3.3液体再分布装置 (16) 4. 设计一览表 (17) 5. 后记 (18) 6. 参考文献 (10) 7. 主要符号说明 (10) 8. 附图(工艺流程简图、主体设备设计条件图)

前言 在炼油、石油化工、精细化工、食品、医药及环保等部门,塔设备属于使用量大应用面广的重要单元设备。塔设备广泛用于蒸馏、吸收、萃取、洗涤、传热等单元操作中。所以塔设备的研究一直是国内外学者普遍关注的重要课题。 在化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气。吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。 塔设备按其结构形式基本上可分为两类;板式塔和填料塔。以前在工业生产中,当处理量大时多用板式塔,处理量小时采用填料塔。近年来由于填料塔结构的改进,新型的、高负荷填料的开发,既提高了塔的通过能力和分离效能又保持了压降小、性能稳定等特点。因此,填料塔已经被推广到大型气、液操作中,在某些场合还代替了传统的板式塔。如今,直径几米甚至几十米的大型填料塔在工业上已非罕见。随着对填料塔的研究和开发,性能优良的填料塔必将大量用于工业生产中。 综合考察各分离吸收设备中以填料塔为代表,填料塔技术用于各类工业物系的分离,虽然设计的重点在塔体及塔内件等核心部分,但与之相配套的外部工艺和换热系统应视具体的工程特殊性作相应的改进。例如在DMF回收装置的扩产改造项目中,要求利用原常压塔塔顶蒸汽,工艺上可以在常压塔及新增减压塔之间采用双效蒸馏技术,达到降低能耗、提高产量的双重效果,在硝基氯苯分离项目中;改原多塔精馏、两端结晶工艺为单塔精馏、端结晶流程,并对富间硝基氯苯母液进行精馏分离,获得99%以上的间硝基氯苯,既提高产品质量,又取得了降低能耗的技术效果。 过程的优缺点:分离技术就是指在没有化学反应的情况下分离出混合物中特定组分的操作。这种操作包括蒸馏,吸收,解吸,萃取,结晶,吸附,过滤,蒸发,干燥,离子交换和膜分离等。利用分离技术可为社会提供大量的能源,化工产品和环保设备,对国民经济起着重要的作用。为了使1填料塔的设计获得满足分离要

填料塔吸收实验(环境工程原理)

实验九 填料塔吸收实验 一.实验目的 1.了解填料吸收装置的设备结构及操作。 2.测定填料吸收塔的流体力学特性。 3.测定填料吸收塔的体积吸收总系数K Y α。 4.了解气体空塔流速与压力降的关系。 二.实验原理 1.填料塔流体力学特性 吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于有局部阻力和摩擦阻力而产生压强降。 填料塔的流体力学特性是吸收设备的重要参数,它包括压强降和液泛规律。测定填料塔的流体力学特性是为了计算填料塔所需动力消耗和确定填料塔的适宜操作范围,选择适宜的气液负荷,因此填料塔的流体力学特性是确定最适宜操作气速的依据。 气体通过干填料(L=0)时,其压强降与空塔气速之间的函数关系在双对数坐标上为一直线,如左图中AB 线,其斜率为1.8~2。当有液体喷淋时,在低气速时,压强降和气速间的关联线与气体通过干填料时压强降和气速间的关联线AB 线几乎平行,但压降大于同一气速下干填料的压降,如图中CD 段。随气速的进一步增加出现载点(图中D 点),填料层持液量开始增大,压强降与空塔气速的关联线向上弯曲,斜率变大,如图中DE 段。当气速增大到E 点,填料层 持液量越积越多,气体的压强几乎是垂直上升,气体以泡状通过液体,出现液泛现象,此点E 称为泛点。 2.传质实验 填料塔与板式塔内气液两相的接触情况有着很大的不同。在板式塔中,两相接触在各块塔板上进行,因此接触是不连续的。但在填料塔中,两相接触是连续地在填料表面上进行,需计算的是完成一定吸收任务所需填料的高度。填料层高度计算方法有传质系数法、传质单元法以及等板高度法等。气相体积吸收总系数K Y α是单位填料体积、单位时间吸收的溶质量,它是反映填料吸收塔性能的主要参数,是设计填料高度的重要数据。 本实验是用水吸收空气-氨混合气体中的氨。混合气体中氨的浓度很低。吸收所得的溶液浓度也不高。气液两相的平衡关系可以认为服从亨利定律(即平衡线在x-y 坐标系为直线)。故可用对数平均浓度差法计算填料层传质平均推动力,相应的传质速率方程式为: m p Y A Y V K G ???=α (1) 所以 )/(m p A Y Y V G K ??=α (2) 其中 2 2112211ln ) ()(e e e e m Y Y Y Y Y Y Y Y Y -----= ? (3)

填料塔课程设计--填料吸收塔的设计

课程设计 题目:填料吸收塔的设计 教学院:化学与材料工程学院 专业:应用化工技术2010级(1)班学号: 学生姓名: 指导教师: 2012年6 月3 日

课程设计任务书 2011 ~ 2012 学年第 2 学期 一、课程设计题目 填料吸收塔的设计 二、工艺条件 1.处理能力:1500m3/h混合气(空气、SO2) 2.年工作日:300天 3.混合气中含SO2: 3%(体积分数) 4.SO2排放浓度:0.16% 5.操作压力:常压操作 6.操作温度:20℃ 7.相对湿度:70% 8.填料类型:自选(塑料鲍尔环,陶瓷拉西环等) 9.平衡线方程:(20℃) 三、课程设计内容 1.设计方案的选择及流程说明; 2.工艺计算; 3.主要设备工艺尺寸设计; (1)塔径的确定; (2)填料层高度计算; (3)总塔高、总压降及接管尺寸的确定。 4.辅助设备选型与计算。 四、进度安排 1.课程设计准备阶段:收集查阅资料,并借阅相关工程设计用书; 2.设计分析讨论阶段:确定设计思路,正确选用设计参数,树立工程观点,小组分工协作,较好完成设计任务; 3.计算设计阶段:完成物料衡算、流体力学性能验算及主要设备的工艺设计计算; 4. 课程设计说明书编写阶段:整理文字资料计计算数据,用简洁的文字和适当的图表

表达自己的设计思想及设计成果。 五、基本要求 1.格式规范,文字排版正确; 2. 主要设备的工艺设计计算需包含:物料衡算,能量衡量,工艺参数的选定,设备的结 构设计和工艺尺寸的设计计算; 3.工艺流程图:以2号图纸用单线图的形式绘制,标出主体设备与辅助设备的物料方向,物流量、能流量,主要测量点; 4. 填料塔工艺条件图:以2号图纸绘制,图面应包括设备的主要工艺尺寸,技术特性表 和接管表; 5. 按时完成课程设计任务,上交完整的设计说明书一份。 教研室主任签名: 年月日

化工原理 水吸收氨填料塔设计

广东石油化工学院化工原理课程设计 题目: 水吸收氨填料塔的设计 指导教师: 李燕 成绩评阅教师

目录 第一节前言 (4) 1.1 填料塔的主体结构与特点 (4) 1.2 填料塔的设计任务及步骤 (4) 1.3 填料塔设计条件及操作条件 (4) 第二节填料塔主体设计方案的确定 (5) 2.1 装置流程的确定 (5) 2.2 吸收剂的选择 (5) 2.3填料的类型与选择 (5) 2.3.1 填料种类的选择 (5) 2.3.2 填料规格的选择 (5) 2.3.3 填料材质的选择 (6) 2.4 基础物性数据 (6) 2.4.1 液相物性数据 (6) 2.4.2 气相物性数据 (6) 2.4.3 气液相平衡数据 (7) 2.4.4 物料横算 (7) 第三节填料塔工艺尺寸的计算 (8) 3.1 塔径的计算 (8) 3.2 填料层高度的计算及分段 (9) 3.2.1 传质单元数的计算 (9) 3.2.3 填料层的分段 (11) 3.3 填料层压降的计算 (12) 第四节填料塔内件的类型及设计 (12) 4.1 塔内件类型 (12) 4.2 塔内件的设计 (12) 4.2.1 液体分布器设计的基本要求: (12) 4.2.2 液体分布器布液能力的计算 (13) 注: 1填料塔设计结果一览表 (13) 2 填料塔设计数据一览 (13)

3 参考文献 (15) 4 对本设计的评述或有关问题的分析讨论 (15)

第一节 前言 1.1 填料塔的主体结构与特点 结构: 图1-1 填料塔结构图 填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以她特别适用于处理量肖,有腐蚀性的物料及要求压降小的场合。液体自塔顶经液体分布器喷洒于填料顶部,并在填料的表面呈膜状流下,气体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。因气液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液传质设备。 1.2 填料塔的设计任务及步骤 设计任务:用水吸收空气中混有的氨气。 设计步骤:(1)根据设计任务和工艺要求,确定设计方案; (2)针对物系及分离要求,选择适宜填料; (3)确定塔径、填料层高度等工艺尺寸(考虑喷淋密度); (4)计算塔高、及填料层的压降; (5)塔内件设计。 1.3 填料塔设计条件及操作条件 1. 气体混合物成分:空气和氨 2. 空气中氨的含量: 5.0% (体积含量即为摩尔含量) 液体 捕沫器 填料压板 塔壳填料 填料支承板液体再分布器填料压板填料支承板气体 气体 液体

水吸收氨气填料塔设计样本

东南大学成贤学院 课程设计报告 题目填料吸收塔的设计 课程名称化工原理课程设计 专业制药工程 班级 学生姓名 学号 设计地点东南大学成贤学院 指导教师 设计起止时间:2012 年8月28日至2012 年9 月14 日

目录 课程任务设计书 (3) 第一节吸收塔简介 (4) 1.1 吸收技术概况 (4) 1.2 吸收设备--填料塔概况 (4) 1.3 典型的吸收过程 (5) 第二节填料塔主体设计方案的确定 (6) 2.1 装置流程的确定 (6) 2.2 吸收剂的选择 (6) 2.3 填料的类型与选择 (7) 2.3.1填料种类的选择 (7) 2.3.2 填料规格的选择 (8) 2.3.3 填料材质的选择 (8) 第三节填料塔工艺尺寸的计算 (10) 3.1 基础物性数据 (10) 3.1.1 液相物性数据 (10) 3.1.2 气相物性数据 (10) 3.1.3 气液相平衡数据 (10) 3.2 物料衡算及校核 (11) 3.2.1水吸收氨气平衡关系 (11) 3.2.2绘制X-Y图 (11) 3.2.3物料衡算 (16) 3.3 塔径的计算及校核 (18) 3.3.1塔径的计算 (18) 3.3.2塔径的校核 (20) 3.4 填料层高度的计算及分段 (20) 3.4.1填料层高度的计算 (20) 3.4.2 填料层的分段 (23) 3.5 填料层压降的计算 (23) 第四节其他辅助设备的计算与选择 (24) 4.1 吸收塔的主要接管尺寸计算 (24) 4.2 气体进出口的压降计算 (24)

4.3 离心泵的选择与计算 (24) 附件一: 1.计算结果汇总 (26) 2.主要符号及说明 (27) 3.参考文献 (28) 4. 个人小结 (28) 附件二: 1.填料塔设备图 (30) 2.塔设备流程图 (31) 3.埃克特通用压降关联图 (32) 4.X-Y关系图(见计算过程)

水吸收氨气过程填料吸收塔的设计说明

课程设计任务书 一、设计题目:水吸收氨气过程填料吸收塔的设计; 试设计一座填料吸收塔,采用清水吸收混于空气中的氨气。混合气体的处理量为2600m3/h,其中含氨为7%(体积分数),混合气体的进料温度为25℃。要求:氨气的回收率达到98%。(20℃氨在水中的溶解度系数为H=0.725kmol/(m3.kPa) 二、工艺操作条件: (1)操作平均压力常压 (2)操作温度 : t=20℃ (3)吸收剂用量为最小用量的倍数自己确定 (4)选用填料类型及规格自选。 三、设计容 (1)设计方案的确定和说明 (2)吸收塔的物料衡算; (3)吸收塔的工艺尺寸计算; (4)填料层压降的计算; (5)液体分布器简要设计; (6)绘制液体分布器施工图 (7)吸收塔接管尺寸计算; (8)设计参数一览表; (9)绘制生产工艺流程图(A4号图纸); (10)绘制吸收塔设计条件图(A4号图纸); (11)对设计过程的评述和有关问题的讨论。

目录 1. 设计方案简介 (1) 1.1设计方案的确定 (1) 1.2填料的选择 (1) 2. 工艺计算 (1) 2.1 基础物性数据 (1) 2.1.1液相物性的数据 (1) 2.1.2气相物性的数据 (1) 2.1.3气液相平衡数据 (1) 2.1.4 物料衡算 (1) 2.2 填料塔的工艺尺寸的计算 (2) 2.2.1 塔径的计算 (2) 2.2.2 填料层高度计算 (3) 2.2.3 填料层压降计算 (6) 2.2.4 液体分布器简要设计 (7) 3. 辅助设备的计算及选型 (8) 3.1 填料支承设备 (8) 3.2填料压紧装置 (8) 3.3液体再分布装置 (8) 4. 设计一览表 (9) 5. 后记 (9) 6. 参考文献 (9) 7. 主要符号说明 (10) 8. 附图(工艺流程简图、主体设备设计条件图)

水吸收二氧化硫填料塔的设计方案 (2)

湖南农业大学 实习报告 学生姓名学号 年级专业及班级20 级()班指导教师姓名 实习类型实习时间 实习地点 学院

填写说明 一、学生的教学实习、生产实习、毕业(教育)实习和综合实习均应填写实习 日记,并撰写实习报告; 二、学生的实习报告和实习日记将作为评价实习成绩的重要依据; 三、学生应在实习结束后的一个星期内将实习报告统一交实习指导教师; 四、指导教师应对学生的实习报告和实习日记逐一认真审阅,并作出客观实际 的正确评价; 五、实习报告经学院审核后作为教学档案长期保存。

一设计任务书 (一)设计题目 炉石焙烧送出的气体冷却至25℃后送入填料塔中,用20℃清水洗涤以除去其中的SO 2 。入塔 炉气流量为h m/ 20003其中SO 2的摩尔分数为0.05,要求SO 2 的吸收率为95%。吸收塔为常压 操作,因该过程液气比很大,吸收温度基本不变,可近似取为清水的温度,试设计一符合上述要求的填料吸收塔。 操作条件 (1)操作压力常压 (2)操作温度20℃ 设计内容 (1)吸收塔的物料衡算; (2)吸收塔的工艺尺寸计算; (3)液体分布器简要设计; (4)绘制吸收塔设计条件图;

目录 一、设计方案简介 二、吸收塔的工艺计算 三、液体分布器简要设计 四、附图

一、设计方案简介 1)方案的确定 属中等溶解度的吸收过程,为提高传质效率,选用逆流吸收流程。因用水作为吸用水吸收SO 2 不作为产品,故采用纯溶剂 收剂,且SO 2 2)填料的类型与选择 对于水吸收SO 过程,操作温度及操作压力较低,工业上通常选用塑料散装填料。在塑料散装 2 填料中,塑料阶梯环填料的综合性能较好,故此选用DN38聚丙烯阶梯环填料。 阶梯环是对鲍尔环的改进。与鲍尔环相比,阶梯环高度减少了一半,并在一端增加了一个锥形翻边。由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的空隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。阶梯环的综合性能优于鲍尔环,成为目前所使用的环形填料中最为优良的一种。 空隙率堆积个数堆积重量填料因子m-1规格比表面积 m2/m3 38*19*1.2 132.5 0.91 27200 57.5 175.8 3)设计步骤 (一)吸收塔的物料衡算; (二)填料塔的工艺尺寸计算;主要包括:塔径,填料层高度,填料层压降; (三)设计液体分布器及辅助设备的选型; (四)绘制有关吸收操作图纸。

化工原理课程设计(水吸收氨填料吸收塔设计)(正式版)分解

《化工原理》课程设计水吸收氨气过程填料塔的设计 学院 专业制药工程 班级 姓名 学号 指导教师 2013 年 1 月 15 日

目录 设计任务书 (4) 第一节前言 (3) 1.1 填料塔的有关介绍 (4) 1.2 塔内填料的有关介绍............................. 错误!未定义书签。第二节填料塔主体设计方案的确定 .. (5) 2.1 装置流程的确定 (5) 2.2 吸收剂的选择 (5) 2.3 填料的类型与选择 (7) 2.4 液相物性数据 (6) 2.5 气相物性数据 (8) 2.6 气液相平衡数据 (7) 2.7 物料横算 (7) 第三节填料塔工艺尺寸的计算 (8) 3.1 塔径的计算 (8) 3.2 填料层高度的计算及分段 (9) 3.2.1 传质单元数的计算 (10) 3.2.2 传质单元高度的计算 (10) 3.2.3 填料层的分段 (11) 第四节填料层压降的计算 (12) 第五节填料塔内件的类型及设计 (13) 第六节填料塔液体分布器的简要设计 (13) 参考文献 (15) 对本设计的评述及心得 (15) 附表: 附表1填料塔设计结果一览表 (15) 附表2 填料塔设计数据一览 (15) 附件一:塔设备流程图 (17)

设计任务书 (一)、设计题目:水吸收氨气过程填料吸收塔的设计 试设计一座填料吸收塔,用于脱除混于空气中的氨气。混合气体的处理量为7500 m3/h,其中含氨气为5%(体积分数),要求塔顶排放气体中含氨低于0.02%(体积分数)。采用清水进行吸收,吸收剂的用量为最小用量的1.5倍。 (二)、操作条件 (1)操作压力常压 (2)操作温度 20℃. (三)填料类型 选用聚丙烯阶梯环填料,填料规格自选。 (四)工作日 每年300天,每天24小时连续进行。 (五)厂址 厂址为衡阳地区 (六)设计内容 1.吸收塔的物料衡算; 2.吸收塔的工艺尺寸计算; 3.填料层压降的计算; 4.液体分布器简要设计 5.吸收塔接管尺寸计算; 6.绘制吸收塔设计条件图; 7.对设计过程的评述和有关问题的讨论。 (七)操作条件 20℃氨气在水中的溶解度系数为H=0.725kmol/(m3?kPa)。

化工原理课程设计水吸收氨气填料塔设计

《化工原理》课程设计 ——水吸收氨气填料塔设计学院 专业 班级 姓名 学号 指导教师 2012年12月11 日

设计任务书 水吸收氨气填料塔设计 (一)设计题目 试设计一座填料吸收塔,采用清水吸收混于空气中的氨气。混合气体的处理量为____3200____m3/h,其中含氨为____8%____(体积分数),混合气体的进料温度为25℃。要求: ①塔顶排放气体中含氨低于____0.04%____(体积分数); (二)操作条件 (1)操作压力:常压 (2)操作温度:20℃ (3)吸收剂用量为最小用量的倍数自己确定 (三)填料类型 聚丙烯阶梯环吸收填料塔 (四)设计内容 (1)设计方案的确定和说明 (2)吸收塔的物料衡算; (3)吸收塔的工艺尺寸计算; (4)填料层压降的计算; (5)液体分布器简要设计; (6)绘制液体分布器施工图 (7)吸收塔接管尺寸计算; (8)设计参数一览表; (9)绘制生产工艺流程图(A3号图纸); (10)绘制吸收塔设计条件图(A3号图纸); (11)对设计过程的评述和有关问题的讨论。

目录 前言 ............................................................................................................. 错误!未定义书签。第一节填料塔主体设计方案的确定.................................................. 错误!未定义书签。 1.1装置流程的确定 .................................................................................. 错误!未定义书签。 1.2 吸收剂的选择.................................................................................. 错误!未定义书签。 1.3 课程设计任务 .................................................................................... 错误!未定义书签。 1.4 填料的类型与选择 ............................................................................. 错误!未定义书签。 1.4.1 填料种类的选择 .............................................................................. 错误!未定义书签。 1.4.2 填料规格的选择 .............................................................................. 错误!未定义书签。 1.4.3 填料材质的选择 .............................................................................. 错误!未定义书签。 1.5 基础物性数据....................................................................................... 错误!未定义书签。 1.5.1 液相物性数据................................................................................. 错误!未定义书签。 1.5.2 气相物性数据 .............................................................................. 错误!未定义书签。 1.5.3 气液相平衡数据............................................................................ 错误!未定义书签。 1.5.4 物料横算............................................................................................. 错误!未定义书签。第二节填料塔工艺尺寸的计算 ........................................................... 错误!未定义书签。 2.1 塔径的计算 ........................................................................................... 错误!未定义书签。 2.2 填料层高度的计算及分段............................................................... 错误!未定义书签。 2.3填料层压降计算: .............................................................................. 错误!未定义书签。第三节填料塔内件的类型及设计 .................................................. 错误!未定义书签。

填料塔吸收综合实验报告

竭诚为您提供优质文档/双击可除填料塔吸收综合实验报告 篇一:实验七填料塔吸收实验 实验七填料吸收塔的操作和吸收系数的测定 一、实验目的 1.了解填料吸收塔的结构、填料特性及吸收装置的基本流程。2.熟悉填料塔的流体力学性能。3.掌握总传质系数KYa测定方法。4.了解空塔气速和液体喷淋密度对传质系数的影响。 二、实验内容 1.测定干填料及不同液体喷淋密度下填料的阻力降?p 与空塔气速u的关系曲线,并确定液泛气速。 2.测量固定液体喷淋量下,不同气体流量时,用水吸收空气—氨混和气体中氨的体积吸收系数KYa。 三、基本原理 1.填料塔流体力学特性 填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺

利通过。支撑板上的填料有整堆和乱堆两种方式,填料分为实体填料和网体填料两大类,如拉西环、鲍尔环、?网环都属于实体填料。填料层上方有液体分布装置,可以使液体均匀喷洒在填料上。液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。 吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降?p的产生。填料塔的流体力学特性是吸收设备的主要参数,它包括压强降和液泛规律。了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。填料塔的流体力学特性的测定主要是确定适宜操作气速。 在填料塔中,当气体自下而上通过干填料(L=0)时,与气体通过其它固体颗粒床层一样,气压降?p与空塔气速u的关系可用式?p=u1.8-2.0表示。在双对数坐标系中为一条直线,斜率为1.8-2.0。在有液体喷淋(L?0)时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守?p?u1.8-2.0这一关系。但在同样的空塔速度下,由于填料表面有液膜存在,填料中的空隙减小,填料空隙中的实际 速度增大,因此床层阻力降比无喷淋时的值高。当气速增加

填料吸收塔设计

山东农业大学环境工程原理课程设计 题目清水吸收二氧化硫填料吸收塔的设计 学院资源与环境学院 专业班级环境工程09级 学生姓名XXXX 学生学号20095539 指导教师孙老师 2011年12月28 日

第一章前言............................................................................................................... - 1 - 第一节填料塔的主体结构与特点 ........................................................................ - 1 - 第二节填料塔的设计任务及步骤 ........................................................................ - 1 - 第三节填料塔设计条件及操作条件..................................................................... - 2 - 第二章吸收塔主体设计方案的确定 ............................................................................. - 2 - 第一节吸收剂选择 ............................................................................................. - 2 - 第二节填料的类型与选择................................................................................... - 2 - 第三章吸收塔的工艺计算 ...................................................- 3 -第一节基础物性数据.......................................................................................... - 3 - 一、液相物性数据.......................................................................................... - 3 - 二、气相物性数据.......................................................................................... - 3 - 三、气液相平衡数据 ...................................................................................... - 4 - 第二节物料衡算................................................................................................. - 4 - 第四章填料塔的工艺尺寸的计算................................................................................. - 5 - 第一节填料塔直径的计算 ...............................................- 5 - 一、确定空塔气速........................................................................................ - 5 - 二、塔径计算: ............................................................................................. - 6 - 三、塔径校核................................................................................................. - 6 - 第二节传质单元的计算........................................................................................ - 8 - 一、传质单元数计算 ...................................................................................... - 8 - 二、传质单元高度计算................................................................................... - 8 - 第三节高度的计算..............................................................................................- 11 - 一、填料层高度的计算..................................................................................- 11 - 二、塔附属高度的计算..................................................................................- 12 - 第四节填料层压降的计算 ...................................................................................- 12 - 第五章塔内件设计 ............................................................................................- 14 - 第一节液体分布器计算 .....................................................................................- 14 - 一、液体分布器 ............................................................................................- 14 - 二、布液孔数................................................................................................- 14 - 第二节填料塔内件的选择..................................................................................- 14 - 一、液体分布器 ............................................................................................- 14 - 二、液体再分布器.........................................................................................- 15 - 三、填料支撑板 ..........................................................................................- 15 - 四、填料压板与床层限制板...........................................................................- 16 - 五、气体进出口装置与排液装置....................................................................- 16 - 主要参考文献 ..............................................................- 16 -附录一:工艺设计计算结果汇总 .............................................- 17 -附录二:主要符号说明................................................................................................- 18 - 附录三:二氧化硫填料塔设计图(单位:mm).............................................................- 20 -

相关文档
最新文档