流体力学流体静力学课件

流体平衡微分方程—欧拉平衡微分方程
1、方程推导: 方程推导:微元分析法 设点M的坐标为 x、y、z,压强为p。 x 轴方向受力分析: 轴方向受力分析:
y
A C
? p dx p? ?x 2
z
D
dz ? p dx p + H P(x,y,z) ?x 2 M dy B dx
G
fx
F E
x
o
利用泰勒级数, 利用泰勒级数,ABCD和EFGH中心点处的压强分别 为:
dx ?p dx ?p p? 和 p+ 2 ?x 2 ?x
§2一2 流体平衡微分方程——欧拉平衡微分方程

1 ?p 1 ?p 表面力为: 表面力为:( p ? dx)dydz ? ( p + dx)dydz 2 ?x 2 ?x
质量力为: 质量力为: f x ρdxdydz
C
? p dx p? ?x 2
z
D
dz ? p dx p + H P(x,y,z) ?x 2 M dy B dx
G
fx
因为微小六面体处于平衡 状态, 状态,所以作用力在x轴方 向的分量之和应等于零
y o
F E
A
x
1 ?p 1 ?p (p ? dx)dydz ? ( p + dx)dyd + f x ρdxdydz = 0 2 ?x 2 ?x
§2一2 流体平衡微分方程——欧拉平衡微分方程

化简移项后得
1 ?p fx ? =0 ρ ?x 1 ?p fy ? =0 同理 : ρ ?y 1 ?p =0 和 fz ? ρ ?y
C
? p dx p? ?x 2
z
D
dz ? p dx p + H P(x,y,z) ?x 2 M dy B dx
G
fx
F E
A
x
o y
上面三个式的矢量形式为 :
? 1 f ? ?p = 0
ρ
§2一2 流体平衡微分方程——欧拉平衡微分方程

2、欧拉平衡微分方程的物理意义
? 1 f ? ?p = 0
ρ
处于平衡状态的流体中压强的变化率 处于平衡状态的流体中 压强的变化率( 压强的变化率 ( 压强梯度 pressure gradient)与单位质量力之间的关系; 与单位质量力之间的关系;对 于单位质量的流体来讲: 于单位质量的流体来讲: 质量力分量
§2一2 流体平衡微分方程——欧拉平衡微分方程
=
表面力分量

2-2-2 流体平衡微分方程的积分
将各式依次乘以dx、dy、dz,并相加, 并相加,得
?p ?p ?p dx + dy + dz = ρ ( f x dx + f y dy + f z dz ) ?x ?y ?z
左边为压强p的全微分dp :
dp = ρ ( f x dx + f y dy + f z dz )
右边也必须是某一个坐标函数W(x,y,z)的 全微分, 全微分,
f x dx + f y dy + f z dz = dW
§2一2 流体平衡微分方程——欧拉平衡微分方程

右边也必须是某一个坐标函数W(x,y,z)的 全微分, 全微分, 其中: 其中:
f x dx + f y dy + f z dz = dW
?W ?W ?W fx = , fy = , fz = ?x ?y ?z
W是力函数或 力函数或势函数(potential function),它对各 坐标的偏导数分别等于力场的力在对应坐标轴上 的分量。 的分量。质量力则是有势力 质量力则是有势力(potential force)。 可压缩流体的平衡微分方程 形式: 形式: dp = ρdW
§2一2 流体平衡微分方程——欧拉平衡微分方程

不可压缩均质流体: 不可压缩均质流体:密度ρ 密度ρ为常数, 为常数,积分上式得
p = ρW + C
边界条件: 边界条件:势函数为W0和压强为p0,则得 C = p0 -ρW0。
P = p0 +ρ(W-W0)
不可压缩均质流体平衡微分方程积分后的普遍关 系式。 系式 。 表明: 表明 : 不可压缩均质流体要维持平衡, 不可压缩均质流体要维持平衡 , 只 有在有势的质量力作用下才有可能; 有在有势的质量力作用下才有可能 ; 任一点上的 压强等于外压强 p0 与有势的质量力所产生的压强 之和。 之和。
§2一2 流体平衡微分方程——欧拉平衡微分方程

2-2-3 等压面·帕斯卡定律
1、等压面( 等压面(Equipressure Surface) : 流体中压强相等的点所组成的面。 流体中压强相等的点所组成的面。 2、等压面的方程 : 因为 p=常数 则 即 dp=0
f x dx + f y dy + f z dz = 0
§2一2 流体平衡微分方程——欧拉平衡微分方程

3、等压面特点: 等压面特点: 1. 等压面就是等势面 等压面就是等势面( 等势面(Equipotential linee)。 因为 dp=0 又 dp=ρdW=0 2. 等压面和质量力正交 。 因为 则 W=常数
? ? f x dx + f y dy + f z dz = f ? ds = 0
则等压面上移动距离ds与质量力 f 正交。 正交。
§2一2 流体平衡微分方程——欧拉平衡微分方程

4、重力作用下的等压面的特点: 重力作用下的等压面的特点:
1)、静止; 静止; 2)、连通; 连通; A+
C B ρ1
p0
C B'
3)、连通的介质为同一均质流体; 连通的介质为同一均质流体; 4)、质量力仅有重力; 质量力仅有重力; 5)、同一水平面。 同一水平面。
ρ2
§2一2 流体平衡微分方程——欧拉平衡微分方程

5、帕斯卡定律(Pascal’s Law):
在平衡的不可压缩均质流体中, 在平衡的不可压缩均质流体中 , 由于部分边界面 上的外力作用而产生的压强将均匀地传递到该流 体的各点上。 体的各点上。由 若p0有所增减
p = p0 + ρ (W ? W0 ) ′ = p 0 + ?p p0
流体中各点的压强p也随之有同样大小的数值变化
′ + ρ (W ? W0 ) = p 0 + ?p + ρ (W ? W0 ) = p + ?p p ′ = p0
§2一2 流体平衡微分方程——欧拉平衡微分方程

§2-4 液体的相对平衡
相对平衡( 相对平衡(relative equilibrium):指各液体质点 彼此之间及液体与器皿之间无相对运动的运动状 态。相对平衡液体中, 相对平衡液体中,质量力 除重力外 重力外,还受到惯性力的作用。 还受到惯性力的作用。 1. 圆桶以等加速度a=g自由降落 重力 : f Ix = 0, f Iy = 0, f Iz = ? g 惯性力 :f Gx = 0, f Gy = 0, f Gz = g
§2-4液体的相对平衡

合力: 合力: f x = 0, f y = 0, f z = ? g + g = 0 代入 :dp = ρ ( f x dx + f y dy + f z dz )
dp = 0
积分得 :
p = pa
说明圆筒内各点压强相同。 说明圆筒内各点压强相同 。 桶底总压力为: 桶底总压力为:
Fp =
§2-4液体的相对平衡
π
4
D pa
2

二、圆筒容器, 圆筒容器,绕其铅垂中心轴以等角转速旋转 1、液体中压强分布的规律: 液体中压强分布的规律:原点取在旋转轴与自由 表面的交点上, 表面的交点上,z轴铅垂向上。 轴铅垂向上。 离心惯性力 :
mv 2 m 2 2 F = (ωr ) = mω r Ⅰ= r r
2
单位质量力分量 :
f Ix = ω r cos α = ω x
2
f Iy = ω 2 r sin α = ω 2 y
f Iz = 0
§2-4液体的相对平衡

重力 :
f Gx = 0,
f Gy = 0,
f Gz = g
合力: 合力: f x = ω 2 r cos α = ω 2 x
f y = ω 2 r sin α = ω 2 y
fz = g
代入 :
dp = ρ ( f x dx + f y dy + f z dz )
dp = ρ (ω 2 xdx + ω 2 ydy ? gdz )
§2-4液体的相对平衡

1 2 2 1 2 2 积分得 : p = ρ ( ω x + ω y ? gz ) + C 2 2
1 2 2 = ρ ( ω r ? gz ) + C 2 在原点处, 在原点处,x=y=z=0,压强为p0,所以C=p0。
p = p 0 + ρg (
ω2
2g
r 2 ? z)
当 p 0 = p a 以相对压强计, 以相对压强计,则为
p = ρg (
§2-4液体的相对平衡
ω
2
2g
r 2 ? z)

2、等压面方程及其形状
取p为某一常数, 为某一常数,可得等压面方程 可得等压面方程
ω 2r2
0 2g
z
p z= ? ρg 2g
等压面是一族以 z为轴的旋转抛物 面 , 不同的压强 不同的 压强 p 值有一相应的 等压旋转抛物面 抛物面(paraboloid) 。 等压旋转 对于自由表面, 对于自由表面 , p=0 , 自由 表面(free surface)方程为 方程为
§2-4液体的相对平衡
ω r
2
2
p0
o B y
g
h z
z0
A
x
o x
x
y r A
ωx
2
z=
ω r
2
2
y
ωy
2
ωr
2
2g

表示半径r处的液面高出坐标平面 Oxy的铅垂距离。 的铅垂距离。所以: 所以:
ω 2r2
0 2g
z
z=
ω r
2
2
2g
(
ω r
2
2
2g
? z) = h
p0
o B y
g
h z
z0
A
x
是任一点在旋转后自由表面以下的 是任一点 在旋转后自由表面以下的 深度。 深度。所以
p = p 0 + ρg (
ω
2
o x
x
2g
r 2 ? z ) = p 0 + ρgh
y r A
ωx
2
旋转后液体中在铅垂线上的压强分布和静 压强一样, 压强一样,按直线规律分布。 按直线规律分布。
§2-4液体的相对平衡
y
ωy
2
ωr
2

等角转速旋转运动液体的一个显著特点, 等角转速旋转运动液体的一个显著特点,就是在 同一水平面上轴心处的压强最低, 同一水平面上轴心处的压强最低,边缘处的压强 最高。 最高。 注意: 注意:在旋转液体中各点的测压管水头不等于常 数。
§2-4液体的相对平衡

实 际 应 用
用容器作等角转速旋转时的液体平衡原理来说明 离心分离器的分离原理。 离心分离器的分离原理。 例 : 设开敞容器中的液体混有杂 质, ml为某一杂质的质量, 为某一杂质的质量,m为与 该杂质同体积的流体质量, 该杂质同体积的流体质量,容器绕 铅垂轴旋转的等角转速为ω,该杂 质离旋转轴的距离为r。
§2-4液体的相对平衡

流体力学讲义 第一章 绪论

第一章绪论 本章主要阐述了流体力学的概念与发展简史;流体力学的概述与应用;流体力学课程的性质、目的、基本要求;流体力学的研究方法及流体的主要物理性质。流体的连续介质模型是流体力学的基础,在此假设的基础上引出了理想流体与实际流体、可压缩流体与不可压缩流体、牛顿流体与非牛顿流体概念。 第一节流体力学的概念与发展简史 一、流体力学概念 流体力学是力学的一个独立分支,是一门研究流体的平衡和流体机械运动规律及其实际应用的技术科学。 流体力学所研究的基本规律,有两大组成部分。一是关于流体平衡的规律,它研究流体处于静止(或相对平衡)状态时,作用于流体上的各种力之间的关系,这一部分称为流体静力学;二是关于流体运动的规律,它研究流体在运动状态时,作用于流体上的力与运动要素之间的关系,以及流体的运动特征与能量转换等,这一部分称为流体动力学。 流体力学在研究流体平衡和机械运动规律时,要应用物理学及理论力学中有关物理平衡及运动规律的原理,如力系平衡定理、动量定理、动能定理,等等。因为流体在平衡或运动状态下,也同样遵循这些普遍的原理。所以物理学和理论力学的知识是学习流体力学课程必要的基础。 目前,根据流体力学在各个工程领域的应用,流体力学可分为以下几类: 能源动力类: 水利类流体力学:面向水工、水动、海洋等; 机械类流体力学:面向机械、冶金、化工、水机等; 土木类流体力学:面向市政、工民建、道桥、城市防洪等。 二、流体力学的发展历史 流体力学的萌芽,是自距今约2200年以前,西西里岛的希腊学者阿基米德写的“论浮体”一文开始的。他对静止时的液体力学性质作了第一次科学总结。 流体力学的主要发展是从牛顿时代开始的,1687年牛顿在名著《自然哲学的数学原理》中讨论了流体的阻力、波浪运动,等内容,使流体力学开始成为力学中的一个独立分支。此后,流体力学的发展主要经历了三个阶段: 1.伯努利所提出的液体运动的能量估计及欧拉所提出的液体运动的解析方法,为研究液体运动的规 律奠定了理论基础,从而在此基础上形成了一门属于数学的古典“水动力学”(或古典“流体力学”)。 2.在古典“水动力学”的基础上纳维和斯托克思提出了著名的实际粘性流体的基本运动方程 ——N-S方程。从而为流体力学的长远发展奠定了理论基础。但由于其所用数学的复杂性和理想流体模型的局限性,不能满意地解决工程问题,故形成了以实验方法来制定经验公式的“实验流体力学”。但由于有些经验公式缺乏理论基础,使其应用范围狭窄,且无法继续发展。

大学实验流体静力学

中国石油大学(华东)工程流体力学实验报告实验日期:成绩: 班级:石工10-12班学号:姓名:宋胜教师:王连英同组者:邓向飞 实验一流体静力学实验 一、实验目的 1.掌握用液式测压计测量流体静压强的技能。 2.验证不可压缩流体静力学基本方程,加深对位置水头、压力水头和测压管水头的理解。 3.观察真空度(负压)的产生过程,进一步加深对真空度的理解。 4.测定油的相对密度。 5.通过对诸多流体静力学现象的实验分析,进一步提高解决静力学实际问题的能力。 二、实验装置 本实验的装置如图1-1所示。 图1-1 流体静力学实验装置图 1.测压管; 2.带标尺的测压管; 3.连通管; 4. 通气阀; 5.加压打气球; 6.真空测压管;

7.截止阀; 型测压管; 9.油柱; 10.水柱; 11.减压放水阀; 说明: (1)所有测压管液面标高均以标尺(测压管2)零读数为基准。 (2)仪器铭牌所注B ?,C ?,D ?系测点B ,C ,D 的标高。若同时取标尺零点作为静力学基本方程的基准,则B ?,C ?,D ?亦成为C z ,C z ,D z 。 (3) 本仪器中所有阀门旋柄均以顺管轴线为开。 三、实验原理 1.在重力作用下不可压缩流体静力学基本方程。 形式一: p z γ +=const (1-1-1a ) 形式二: P=P 。+γ (1-1-1b ) 式中 z---测点在基准面以上的位置高度; P —测点的静水压强(用相对压强表示,一下同); P 。--水箱中液面的表面压强; γ--液体的重度; h —测点的液体深度; 2.油密度测量原理。 当u 形管中水面与油水界面齐平(见图1-1-2),取油水界面为等压面时,有: P 01=w γ=0γH (1-1-2) 另当U 形管中水面与油面平齐(见图1-1-3),取油水界面为等压面时,有: P 02+W γH=0γH 即 P 02=-w γh 2=0γH-W γH (1-1-3) 图1-2 图1-3

流体静力学基本方程

三、流体静力学基本方程式 1、方程的推导 设:敞口容器内盛有密度为ρ的静止流体,取任意一个垂直流体液柱,上下底面积 均为Am 2。 作用在上、下端面上并指向此两端面的压力 分别为 P 1和 P 2 。 该液柱在垂直方向上受到的作用力有: (1)作用在液柱上端面上的总压力P 1 P 1= p 1 A (N) ↓ (2)作用在液柱下端面上的总压力 P 2 P 2= p 2 A (N) ↑ (3)作用于整个液柱的重力G G =ρgA(Z 1-Z 2) (N) ↓ 由于液柱处于静止状态,在垂直方向上的三个作用力的合力为零,即 : p 1 A+ ρgA(Z 1 -Z 2) -–p 2 A = 0 令: h= (Z 1 -Z 2) 整理得: p 2 = p 1 + ρgh 若将液柱上端取在液面,并设液面上方的压强为 p 0 ; 则: p 0 = p 1 + ρgh 上式均称为流体静力学基本方程式,它表明了静止流体内部压力变化的规律。 即:静止流体内部某一点的压强等于作用在其上方的压强加上液柱的重力压强。 2、静力学基本方程的讨论: (1)在静止的液体中,液体任一点的压力与液体密度和其深度有关。 (2)在静止的、连续的同一液体内,处于同一水平面上各点的压力均相等。 (3)当液体上方的压力有变化时,液体内部各点的压力也发生同样大小的变化。

(4) g h p p ρ+=12 或g p p h ρ12-= 压强差的也大小可利用一定高度的液体柱来表示。 (5)整理得:g g z p g z 2 21 1ρρ+=+ 也为静力学基本方程 (6)方程是以不可压缩流体推导出来的,对于可压缩性的气体,只适用于压强变化不大的情况。 3、静力学基本方程的应用 (1) 测量流体的压差或压力 ① U 管压差计 U 管压差计的结构如图。 对指示液的要求:指示液要与被测流体不互溶,不起 化学作用,且其密度指ρ应大于被测流体的密度ρ。 通常采用的指示液有:水、油、四氯化碳或汞等。 测压差:设流体作用在两支管口的压力为1p 和2p ,且1p >2p , A-B 截面为等压面 即:B A p p = 根据流体静力学基本方程式分别对U 管左侧和U 管右侧进行计算, 整理得: ()Rg p p ρρ-=-指21 讨论:(a )压差(21p p -)只与指示液的读数R 及指示液同被测流体的密度差有关。(b )若压差△p 一定时,(21p p -)越小,读数R 越大,误差较小。 (c )若被测流体为气体, 气体的密度比液体的密度小得多,即()指指ρρρ≈-, 上式可简化为: Rg p p 指ρ=-21

流体静力学实验报告终结版

中国石油大学(华东)流体静力学实验报告 实验日期:成绩: 班级:石工09-8 学号:09021374 姓名:李陆伟教师:王连英同组者:李凯蒋光磊 实验一、流体静力学实验 一、实验目的 1.掌握用液式测压及测量流体静压强的技能。 2.验证不可压缩流体静力学基本方程,加深对位置水头,压力水头和测压管水头的理解。 3.观察真空度(负压)的生产过程,进一步加深对真空度的理解。 4.测量油的相对密度。 5.通过对诸多流体静力学现象的实验分析,进一步提高解决静力学实际问题的能力。 二、实验装置 本实验的装置如图1-1所示。 1. 测压管; 2. 代表吃的测压管; 3. 连通管; 4. 通气阀; 5. 加压打气球; 6. 真空测压管; 7. 截止阀;8. U型测压管;9. 油柱; 10. 水柱;11. 减压放水阀 图1-1 流体静力学实验装置图

三、实验原理 1.在重力作用下不可压缩流体静力学基本方程。 形式一: z+p/r=const (1-1-1a) 形式二: P=po+rh (1-1-1b) 式中z-测点在基准面上的位置高度; P-测点的静水压强(用相对压强表示,以下同); Po-水箱中液面的表面压强; r-液体的重度; h-测点的液体深度; 2.有密度测量原理。 当U型管中水面与油水界面齐平(见图1-1-2),取油水界面为等压面时,有:Po1=rwh1=roH 另当U型管中水面与油面齐平(见图1-1-3),取油水界面为等压面时,有:Po2+rwH=roH (1-1-2) 即 Po2=-rwh2=roH-rwH (1-1-3) 由式(1-1-2),式(1-1-3)两式联立可解得: H=h1+h2 代入式(1-1-2)可得油的相对密度do为: do=ro/rw=h1/(h1+h2) (1-1-4) 根据式(1-1-4),可以用仪器直接测得do。 图1-2 图1-3

流体静力学实验实验报告

《流体力学与水泵实验》实验报告 开课实验室:重庆大学第二实验楼A栋流体力学实验室年月日 教师签名: 年月曰 、实验目的 1、验证静力学的基本方程 2、学会使用测压管与 U形测压计的量测技能 3、理解绝对压强与相对压强及毛细管现象 4、灵活应用静力学的基本知识进行实际工程测量 二、实验原理 流体静压强具有两个基本特性: 静压强的方向垂直并指向受压面;静止流体中任一点的静压强大小与其作用面的方位无关,只与 该点位置有关。 ⑴静力学的基本方程静止流体中任意点的测压管水头相等,即: Z+p/ P g=c 在重力作用下,静止流体中任一点的静压强P也可以表示为: P=P o+ p gh 上式表示,静止液体中,任意点的静压强p随淹没深度h按线性规律变化。 (2)等压面连续的同种介质中,静压强值相等的个点组成的面称为等压面。 (3)绝对压强与相对压强 绝对压强与相对压强的关系为: P=Pabs-Pa

三、使用仪器、材料 使用仪器:盛会密闭容器、连通管、测压管、U形测压管、真空测压管、通气阀、截止阀、加压打气球、减压阀等 使用材料:油、水 四、实验步骤 (1)熟悉一起的结构和使用方法,包括以下内容。 阀门的开启与关闭,加压,减压,检查仪器密闭状况 (2)记录仪器编号及各点标高,确定测试准面。 仪器编号: 测点标高: A B、C点相对于带Z标尺测压管2的零点高程(为仪器铭牌标注) ▽ A= 2.1 cm ▽ B= -2.9 cm , ▽ C= -5.9 cm 测点位能: 以容器C点所在的水平面为基准面,单位重量流体具有的位置势能为: Z A= 8 cm, Z B= 3 cm, Z C= 0 cm -3 水的容重:丫 = 9.807 X 10 N /cm3 ⑶ 测量各点静压强 ①关闭阀11,开启通气阀6,此时p o=O。记录水箱液面标高▽0和测管2液面标高^ 2, ②关闭通气阀6和截止阀8,捏压加压打气球 7,加压使p o>O,测记▽ 0 及 2 (加压三次) ③关闭通气阀6和截止阀8,开启减压放水阀11,使p o0,并使U型测压管中的油水界面略高于水面,然后微调加压打气球首部的微调螺母,使U型测压管中的油水界面齐平于水面,测记▽0及^ 2,取平均值,计算▽ 2- ▽ 0=h1。设油的容重为丫 s, h s为油的高度。由等压面原理有:p o1=Y h1= Y s h s ②开启通气阀6,使p o=0,即测压管1,2液面与水箱液面齐平后在关闭通气阀6和截止阀8,然后开启放水阀11减压,使U型管中的水面与油面齐平,测记▽ 0及▽ 2,取平均值,计算▽ 2- ▽ 0=h2。由等压面原理有:p o2=- Y h2= (丫 s- Y ) h s 整理得:h1/h2= Y s/( Y - Y s), Y s= Y h1/(h1+h2)

流体静力学实验报告

一、实验目的 1.掌握用液式测压计测量流体静压强的技能。 2.验证不可压缩流体静力学基本方程,加深对位置水头、压力水头和测压管水头的理解。 3.观察真空度(负压)的产生过程,进一步加深对真空度的理解。 4.测定油的相对密度。 5.通过对诸多流体静力学现象的实验分析,进一步提高解决静力学实际问题的能力。 二、实验装置 本实验的装置如图1-1所示。 图1-1 流体静力学实验装置图 1. 测压管 ; 2. 带标尺的测压管 ; 3. 连通管 ; 4. 通气阀 ; 5. 加压打气球 ; 6. 真空测压管 ; 7. 截止阀 ; 8. U 型测压管 ; 9. 油柱 ; 10. 水柱 ;11. 减压放水阀 说明: (1)所有测压管液面标高均以标尺(测压管2)零读数为基准。 (2)仪器铭牌所注B ?,C ?,D ?系测点B ,C ,D 的标高。若同时取标尺零点作为静力学基本方程的基准,则B ?,C ?,D ?亦成为C z ,C z ,D z 。 (3) 本仪器中所有阀门旋柄均以顺管轴线为开。

三、实验原理 1.在重力作用下不可压缩流体静力学基本方程。 形式一: p z γ +=const (1-1-1a ) 形式二: P=P 。+γ (1-1-1b ) 式中 z---测点在基准面以上的位置高度; P —测点的静水压强(用相对压强表示,一下同); P 。--水箱中液面的表面压强; γ--液体的重度; h —测点的液体深度; 2.油密度测量原理。 当u 形管中水面与油水界面齐平(见图1-1-2),取油水界面为等压面时,有: P01=w γ=0γH (1-1-2) 另当U 形管中水面与油面平齐(见图1-1-3),取油水界面为等压面时,有: P02+W γH=0γH 即 P02=-w γh2=0γH-W γH (1-1-3) 图1-2 图1-3 四、实验要求 1.记录有关常数 实验装置编号No. 12 各测点的标尺读数为: B ?= 2.1 -210m ?; C ?= -2.9 -210m ?; D ?= -5.9 -210m ?; 基准面选在 测压管的0刻度线处 ; C z = -2.3 -210m ?; D z = -5.9 -210m ?; 2.分别求出各次测量时,A 、B 、C 、D 点的压强,并选择一基准验证同一

流体静力学基本方程式

第一节流体静力学基本方程式 流体静力学是研究流体在外力作用下达到平衡的规律。在工程实际中,流体的平衡规律 应用很广,如流体在设备或管道内压强的变化与测量、液体在贮罐内液位的测量、设备的液封等均以这一规律为依据。 1-1-1流体的密度 一、密度 单位体积流体所具有的质量,称为流体的密度,其表达式为: m(1-1) V 式中p -------------------流体的密度,kg/m3; m ---- 流体的质量,kg; V——流体的体积,m3。 不同的流体密度不同。对于一定的流体,密度是压力P和温度T的函数。液体的密度 随压力和温度变化很小,在研究流体的流动时,若压力和温度变化不大,可以认为液体的密度为常数。密度为常数的流体称为不可压缩流体。 流体的密度一般可在物理化学手册或有关资料中查得,本教材附录中也列出某些常见气 体和液体的密度值,可供查用。 二、气体的密度 气体是可压缩的流体,其密度随压强和温度而变化。因此气体的密度必须标明其状态, 从手册中查得的气体密度往往是某一指定条件下的数值,这就涉及到如何将查得的密度换算 为操作条件下的密度。但是在压强和温度变化很小的情况下,也可以将气体当作不可压缩流体来处理。 对于一定质量的理想气体,其体积、压强和温度之间的变化关系为 pV p'V' T T' 将密度的定义式代入并整理得 '112 (1-2) 式中p——气体的密度压强,Pa; V ----- 气体的体积,m3; T——气体的绝对温度,K; 上标“’”表示手册中指定的条件。 一般当压强不太高,温度不太低时,可近似按下式来计算密度。 pM (1-3a) RT 或M T o p T°p 22.4 Tp00Tp o

重大流体力学实验1(流体静力学实验)

《流体力学》实验报告 开课实验室:年月日 学院年级、专业、班姓名成绩 课程名称流体力学实验 实验项目 名称 流体静力学实验 指导教 师 教师 评语教师签名: 年月日 一、实验目的 1、验证静力学的基本方程; 2、学会使用测压管与U形测压计的量测技能; 3、理解绝对压强与相对压强及毛细管现象; 4、灵活应用静力学的基本知识进行实际工程测量。 二、实验原理 流体的最大特点是具有易动性,在任何微小的剪切力作用下都会发生变形,变形必将引起质点的相对运动,破坏流体的平衡。因此,流体处于静止或处于相对静止时,流体内部质点之间只体现出压应力作用,切应力为零。此应力称静压强。静压强的方向垂直并指向受压面,静压强大小与其作用面的方位无关,只与该点位置有关。 1、静力学的基本方程静止流体中任意点的测压管水头相等,即:z + p /ρg=c 在重力作用下, 静止流体中任一点的静压强p也可以写成:p=p + ρg h 2、等压面连续的同种介质中,静压强值相等的各点组成的面称为等压面。质量力只为重力时, 静止液体中,位于同一淹没密度的各点的静压强相等,因此再重力作用下的静止液体中等压面是水平面。若质量有惯性时,流体做等加速直线运动,等压面为一斜面;若流体做等角速度旋转运动,等压面为旋转抛物面。 3、绝对压强与相对压强流体压强的测量和标定有俩种不同的基准,一种以完全真空时绝对压强 为基准来计量的压强,一种以当地大气压强为基准来计量的压强。

三、使用仪器、材料 使用仪器:盛水密闭容器、连通管、U 形测压管、真空测压管、通气管、通气阀、截止阀、加 压打气球、减压阀 材 料:水、油 四、实验步骤 1、熟悉一起的构成及其使用方法; 2、记录仪器编号及各点标高,确立测试基准面; 测点标高a ?=1.60CM b ?=-3.40CM c ? =-6.40CM 测点位能a Z =8.00CM b Z = 3.00CM c Z =0.00CM 水的容重为a=0.0098N/cm 3 3、测量各点静压强:关闭阀11,开启通气阀6,0p =0,记录水箱液面标高0?和测管2液面标高2?(此时0?=2?);关闭通气阀6和截止阀8,开启减压放水阀11,使0p > 0,测记0?及2?(加压3次);关闭通气阀6和截止阀8,开启减压放水阀11,使0p < 0(减压3次,要求其中一次,2?< 3?),测记0?及2?。 4、测定油容量 (1)开启通气阀6,使0p =0,即测压管1、2液面与水箱液面齐平后再关闭通气阀6和截止阀8,加压打气球7,使0p > 0,并使U 形测压管中的油水界面略高于水面,然后微调加压打气球首部的微调螺母,使U 形测压管中的油水界面齐平水面,测记0?及2?,取平均值,计算 0?-2?=H 1。设油的容重为r ,为油的高度h 。由等压面原理得:01p =a H=r h (1.4) a 为水的容重 (2)开启通气阀6,使0p =0,即测压管1、2液面与水箱液面齐平后再关闭通气阀6和截止阀8,开启放水阀11减压,使U 形管中的水面与油面齐平,测记0?及2?,取平均值,计算0?-2?=H 2。得:02p =-a H 2=(r-a)h (1.5) a 为水的容重 式(1.4)除以式(1.5),整理得:H 1/ H 2=r/(a-r) r= H 1a/( H 1+ H 2)

流体静力学实验报告石油大学

流体静力学实验报告石油 大学 Final approval draft on November 22, 2020

中国石油大学(华东)工程流体力学实验报告 实验日期: 成绩: 班级: 学号: 姓名: 教师: 同组者: 实验一、流体静力学实验 一、实验目的: 填空 1.掌握用液式测压计测量 流体静压强 的技能; 2.验证不可压缩流体 静力学基本方程 ,加深对位置水头、压力水头和测压管水头的理 解; 3. 观察真空度(负压)的产生过程,进一步加深对 真空度 的理解; 4.测定 油 的相对密度; 5.通过对诸多 流体静力学现象 的实验分析,进一步提高解决 静力学实际问题 的能力。 二、实验装置 1、在图1-1-1下方的横线上正确填写实验装置各部分的名称 本实验的装置如图所示。 1. 测压管 ; 2. 带标尺的测压管; 3. 连通管 ; 4. 通气阀 ; 5. 加压打起球 ; 6. 真空测压管 ; 7. 截止阀 ; 8. U 形测压管 ; 9. 油柱 ; 10. 水柱 ;11. 减压放水阀 图1-1-1 流体静力学实验装置图 2、说明 1.所有测管液面标高均以 标尺(测压管2) 零读数为基准; 2.仪器铭牌所注B ?、C ?、D ?系测点B 、C 、D 标高;若同时取标尺零点作为 静力学基本方程 的基准,则B ?、C ?、D ?亦为B z 、C z 、D z ; 3.本仪器中所有阀门旋柄 以顺 管轴线为开。 三、实验原理 在横线上正确写出以下公式 1.在重力作用下不可压缩流体静力学基本方程 形式之一: z+p/γ=const (1-1-1a ) 形式之二: h p p γ+=0 (1-1b ) 式中 z ——被测点在基准面以上的位置高度;

流体静力学基本方程

图卜2流体静力学皐木方程式的推导 (3) 作用于整个液柱的重力 G G = JgA(Z i -Z 2)(N) 0 由于液柱处于静止状态,在垂直方向上的三个作用力的合力为零,即 : p i A+ :?gA(Z i -Z 2) - — p 2 A = 0 令:h= (Z i -Z 2) 整理得: p 2 = p i +「gh 若将液柱上端取在液面,并设液面上方的压强为 p o ; 则:p 0 = p i + :'gh 上式均称为流体静力学基本方程式,它表明了静止流体内部压力变化的规律。 即:静止流体内部某一点的压强等于作用在其上方的压强加上液柱的重力压强。 2、 静力学基本方程的讨论: (1) 在静止的液体中,液体任一点的压力与液体密度和其深度有关。 (2) 在静止的、连续的同一液体内,处于同一水平面上各点的压力均相等。 (3) 当液体上方的压力有变化时,液体内部各点的压力也发生同样大小的变化。 三、流体静力学基本方程式 1、 方程的推导 设:敞口容器内盛有密度为 二的静止流体,取任意一个垂直流体液柱,上下底面积 2 均为Am 。 作用在上、下端面上并指向此两端面的压力 分别为P 1和P 2。 该液柱在垂直方向上受到的作用力有 : (1) 作用在液柱上端面上的总压力 P i P i = p i A (N) 也 (2) 作用在液柱下端面上的总压力 P 2 P = p A (N)

压强差的也大小可利用一定高度的液体柱来表示。 p P (5) 整理得:z 1g 1二z 2g 也为静力学基本方程 P g (6) 方程是以不可压缩流体推导出来的,对于可压缩性的气体,只适用于压强变 化不大的情况。 3、静力学基本方程的应用 (1)测量流体的压差或压力 ①U 管压差计 U 管压差计的结构如图。 对指示液的要求:指示液要与被测流体不互溶,不起 A 化学作用,且其密度:7指应大于被测流体的密度:、。 通常采用的指示液有:水、油、四氯化碳或汞等。 I 测压差:设流体作用在两支管口的压力为 p 1和 P 2,且P i > P 2 , A-B 截面为等压面 即:P A 二P B 根据流体静力学基本方程式分别对 U 管左侧和U 管右侧进行计算 整理得: P i - P 2 =:〔'指一'Rg 讨论: (a )压差(p i -P 2)只与指示液的读数 R 及指示液冋被测流体的密度差有 关。(b )若压差△ P 一定时,(P i - P 2 )越小,读数 R 越大,误差较小。 (C )若被测流体为气体, 气体的密度比液体的密度小得多,即 「指■ ! 打旨, 上式可简化为: P r _p 2二指 Rg (d )若订〈'时采用倒U 形管压差计。 口 - p 2 : 尸指Rg (4) P 2 = P i h-g P 2 — Pl

流体静力学实验报告

汕头大学实验报告 学院:工学院系:机电系年级:15 姓名:董东启学号:2015124014 成绩: 实验一流体静力学实验 一、实验目的 (1)、掌握测压管的计量方法,计算液体(水)内部的A、B、C 三点的静压强,进一步明确流体静力能量方程的几何意义。 (2)、掌握U 型测压计及多管式测压计的计量方法,计算有限容器内的气体压强,进而测定重度未知的液体(酒精)和气体(空气)的重度。 (3)、通过对压强的计量,进一步明确流体力学中的压强单位。 二、实验原理 (1)、实验装置图如下: (2)、原理及计算公式: a、大水箱内空气绝对压强P’>Pa 的获得: 一定质量的气体,在等温变化的情况下,有:P’1V1=P’2V2=Const。当大水箱上的小孔开时,即大水箱与大气相通,此时大小水面相平,且P’1=Pa。封闭小孔,则大水箱内气体质量为一定。小水箱上升时,使小水箱的水流到大水箱去,使大水箱的容积减少,即有 V2 P’1=Pa,以而大水箱中的气体获得大气压强。 b、大水箱内空气V对压强P’

d、有限容器内气体压强 用U 型测压计时:用相对压强表示:P=(z11-z12) γ1=hbγ1 用多管式测压计时: 用相对压强表示:P=【(z1-z2)+(z3-z4)】γ1-(z2-z3)γ2 】γ1 当忽略空气重度影响时:P=【(z1-z2)+(z3-z4) e、气体重度计算: γ=0.4625(P’/T)N/m3 P’=Pa+(z7-z8)γ4 mmHg T=273+t K f、重度未知的液体的重度的测定: 根据有限容器内气体压强处处相等的原理,在U 型测压计中:P=h3γ3=h6γ1γ3=【(z11-z12)/(z5-z6)】γ1 N/m3 三、实验注意事项 1、在使小水箱上升或下降时,一定要抓住手摇曲柄不能放松,并且要时刻观察U 型计中的液体变化(在P’>Pa 时)或测压管中水位降低(在PPa 的获得: (1)实验开始,首先打开上端小孔,并使小水箱放置有格记“下”的位置上,水位 平稳后,读各管原始数据,并填入表中的第 1 格内。 (2)关闭大水箱上的小孔,使气体质量一定,并使小水箱上升到有格记“上”的位 置上,水位平稳后,再读各管的数据,并记录。 2. P’

流体静力学实验报告

中国石油大学(华东)工程流体力学实验报告 实验日期: 成绩: 班级: 学号: 姓名: 教师: 同组者: 实验一、流体静力学实验 一、实验目的: 填空 1.掌握用液式测压计测量流体静压强的技能; 2.验证不可压缩流体静力学基本方程,加深对位置水头、压力水头与测压管水头的理解; 3、观察真空度(负压)的产生过程,进一步加深对真空度的理解; 4.测定油的相对密度; 5.通过对诸多流体静力学现象的实验分析,进一步提高解决静力学实际问题的能力。 二、实验装置 1、在图1-1-1下方的横线上正确填写实验装置各部分的名称 本实验的装置如图所示。 1、测压管; 2、带标尺的测压管; 3、连通管; 4、通气阀; 5、加压打起球; 6、真空测压管;

7、 截止阀 ;8、 U 形测压管 ;9、 油柱 ; 10、 水柱 ;11、 减压放水阀 图1-1-1 流体静力学实验装置图 2、说明 1.所有测管液面标高均以 标尺(测压管2) 零读数为基准; 2.仪器铭牌所注B ?、C ?、D ?系测点B 、C 、D 标高;若同时取标尺零点作为 静力学基 本方程 的基准,则B ?、C ?、D ?亦为B z 、C z 、D z ; 3.本仪器中所有阀门旋柄 以顺 管轴线为开。 三、实验原理 在横线上正确写出以下公式 1.在重力作用下不可压缩流体静力学基本方程 形式之一: z+p/γ=const (1-1-1a) 形式之二: h p p γ+=0 (1-1b) 式中 z ——被测点在基准面以上的位置高度; p ——被测点的静水压强,用相对压强表示,以下同; 0p ——水箱中液面的表面压强; γ——液体重度; h ——被测点的液体深度。 2、 油密度测量原理 当U 型管中水面与油水界面齐平(图1-1-2),取其顶面为等压面,有 01w 1o p h H γγ== (1-1-2) 另当U 型管中水面与油面齐平(图1-1-3),取其油水界面为等压面,则有 02w o p H H γγ+= 即 02w 2o w p h H H γγγ=-=- (1-1-3)

流体静力学实验报告完整版

流体静力学实验报告 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

中国石油大学(华东)现代远程教育 工程流体力学实验报告学生姓名: 学号: 年级专业层次:16春网络春高起专 学习中心:山东济南明仁学习中心 提交时间:2016年5月30日

1.在重力作用下不可压缩流体静力学基本方程 形式之一:(1-1a) 形式之二:P=P0+γh(1-1b) 式中 Z——被测点在基准面以上的位置高度; P——被测点的静水压强,用相对压强表示,以下同; P0——水箱中液面的表面压强; ?γ ——液体重度; ?h——被测点的液体深度。 2.油密度测量原理 当U型管中水面与油水界面齐平(图1-2),取其顶面为等压面,有P01=γw h1=γ0HP01(1-2)另当U型管中水面和油面齐平(图1-3),取其油水界面为等压面,则有P02+γw H=γ0H 即P02=-γw h2=γ0H-γw H(1-3) 由(1-2)、(1-3)两式联解可得: ?代入式(1-2)得油的相对密度 ?(1-4) 据此可用仪器(不用另外尺)直接测得。 ?流型判别方法(奥齐思泽斯基方法):

本实验的装置如图1-1所示。 图1-1 流体静力学实验装置图 1.测压管; 2.带标尺的测压管; 3.连通管; 4.真空测压管;型测压管; 6.通气阀; 7.加压打气球; 8.截止阀; 9.油柱; 10.水柱; 11.减压放水阀 说明 1.所有测管液面标高均以标尺(测压管2)零读数为基准; 2.仪器铭牌所注、、系测点B、C、D标高;若同时取标尺零点作为静力学基本方程的基准, 则、、亦为、、; 3.本仪器中所有阀门旋柄顺管轴线为开。 四、实验步骤 1.搞清仪器组成及其用法。包括: (1)各阀门的开关; (2)加压方法:关闭所有阀门(包括截止阀),然后用打气球充气; (3)减压方法:开启筒底阀11放水; (4)检查仪器是否密封 加压后检查测管l、2、5液面高程是否恒定。若下降,表明漏气,应查明原因并加以处理。 2.记录仪器编号、各常数。 3.实验操作,记录并处理实验数据,见表1-1和表1-2。 4.量测点静压强。 (1)打开通气阀6(此时),记录水箱液面标高和测管2液面标高(此时);(

实验心得体会范文通用五篇

实验心得体会范文通用五篇 实验心得体会范文通用【一】 经历了四周共八个学时的焊接学基础实验,我觉得自己学到了很多东西,虽然大二的时候自己也在金工实习的时候学过电焊,但是那时候自己对焊接原理是完全不了解,到现在基本学习完了焊接学基础的理论教学再来做实验的我感觉轻松了,因为我懂得了很多焊接学的原理。也知道了焊接不只是电焊,另外还有气焊等等。 这四周的焊接学实验我们总的来说学习了气焊和电焊,气焊中也分了对低碳钢、中碳钢和高碳钢的焊接,我们在焊接过程中可以明显的感觉到对于高中低碳钢的难易明显不同! 有一次课程我们学习的是铸铁的焊接,对于铸铁的流动性也明显可以感受到比较差!每次体验实验之前老师总是给我们介绍实验需要注意的事项以及实验内容!通过老师的介绍和之后亲身的体验可以说我们对于每次实验的内容都有很好的理解和体会。

对于这次的电焊实验我的记忆尤其深刻,因为在试验过程中我出现了很多问题,老师总会给我详细解释出现问题的原因和这些问题应该怎样解决,比如有一次的试验内容是薄板钢的对接。两块薄薄的钢板,我很认真的摆放在试验板上焊接,我本以为这是最简单的焊接了,但是结果却不如意,当我用平焊的方式把这两块钢板焊接完以后才发现焊接后的钢板出现了严重的变形,原本平的钢板变得翘起来了!而且由于焊接技术不好使得焊缝很不平整有些地方甚至出现了焊穿的现象,面对这样的焊接产品我真是无地自容!但是老师给我详细解释了出现这些问题的原因,比如钢板翘起来了是因为焊接过程中的散热不均匀,这些现象可以用经验解决。对于焊穿的那个窟窿老师握着我的手一点一点的把它填上了,老师告诉我这是由于汉弧太短以及焊接速度太慢造成的!他还鼓励我别灰心,我特感动! 我十分懊恼自己有一身的理论知识却还是焊接处这么差的效果,所以我觉得这次的实验是很必要的,对于我们这些学了很多理论知识的学生来说是很有帮助的,它使得我们看到了自己的差距和经验的不足,以后需要勤奋的学习的同时多注重实际的运用,这样才应该是全面实际的应用型人才! 实验心得体会范文通用【二】

流体静力学基本方程式

流体静力学基本方程式 流体静力学基本方程式 现讨论流体在重力和庄力作用下的平衡规律,这时流体处 于相对静止状态。由于重力就是地心吸力,可以看作是不变的,起变化的是压力。所以实质上是讨论静止流体内部压力(压强)变化的规律。描述这一规律的数学表达式,称为流体静力学基本方程式。此方程式可通过下面的方法推导而得。 在具有密度为ρ的静止流体中,取一微元立方体,其边长分别为dx、dy、dz,它们并分别与x、y、z轴平行,如图1-2所示。图1-2 微元流体的静力平衡 由于流体处于静止状态,因此所有作用于该立方体上的力在坐标轴上的投影之代数和应等于零。 对于z轴,作用于该立方体上的力有: (1)作用于下底面的压力为pdxdy。 (2)作用于上底面的压力为

(3)作用于整个立方体的重力为-ρgdxdydz。 z轴方向力的平衡式可写成: 即 上式各项除以dxdydz,则z轴方向力的平衡式可简化为:(1-7a) 对于x、y轴,作用于该立方体的力仅有压力,也可写 出其相应的力的平衡式,简化后得:x轴(1-7b)y轴(1-7c) 式1-7a、1-7b、1-7c称为流体平衡微分方程式,积分该微分方程组,可得到流体静力学基本方程式。 将式1-7a、1-7b、1-7c分别乘以z、dx、dy,并相加后

得:(1-7d) 上式等号的左侧即为压强的全微分dp,于是:(1-7e) 对于不可压缩流体,ρ=常数,积分上式,得:(1-7f) 液体可视为不可压缩的流体,在静止液体中取任意两点,如图1-3所示,则有:(1-8) 或(1-8a) 为讨论方便,对式1-8a进行适当的变换,即使点1处于容器的液面上,设液面上方的压强为p0,距液面h处的点2压强为p,式1-8a可改写为:(1-8b) 式1-8、1-8a、及1-8b称为流体静力学基本方程式,说明在重力场作用下,静止液体内部压强的变化规律。由式

流体静力学实验

流体静力学实验 一、实验目的 1.掌握用测压管测量流体静压强的技能。 2.验证不可压缩流体静压强的技能。 3.加强解决静压强实际问题的能力。 二、实验装置 图1 流体静力学实验装置图 1. 测压管 2. 带标尺测压管 3. 连通管 4. 真空测压管 5. U型测压管 6. 通气阀 7. 加压打气球 8. 截止阀 9. 油柱10. 水柱11. 减压放水阀 实验装置如图1所示,所有测管液面标高均以标尺(测压管2)零读数为基准。仪器铭牌所注?B、?C、?D系测点B、C、D标高,若同时取标尺零点作为静力学基本方程的基准,则?B、?C、?D亦为ZB、ZC、ZD。本仪器中所有阀门旋柄均以顺管轴线为开。 三、实验原理

在重力作用下不可压缩流体静力学基本方程 Z p const + =γ (1) 或 p p h =+0γ (2) 式中: Z —— 被测点在基准面的相对位置高度; p —— 被测点的静水压强(用相对压强表示, 以下同); p 0 —— 水箱中液面的表面压强; γ —— 液体容重; h —— 被测点的液体深度。 另对装有水、油(如图2及图3)U 型测管。 应用等压面可得油的比重S 0有下列关系 S h h h w 00112 = = +γγ (3) 据此可用仪器(不另用尺子)直接测得S 0。 四、实验步骤 1.检查仪器是否密封 加压后检查测压管1、2、5液面高程是否恒定。若下降,表明漏气,应查明原因并加以处理。 2.打开通气阀6(此时P 0=0),记录水箱液面标高?0和测管?2液面标高? H

(此时?0= ?H)。 3.关闭通气阀6及截止阀8,加压使之形成p0> 0,测记?0及?H,重复进行三次。 4.打开放水阀11,使之形成P0< 0(要求其中一次p B/y < 0,即?H < ?B),测记?0及?H。 5.测出4#测压管插入小水杯中的深度。 6.用两种方法测定油比重S0。 (1)开启通气阀6,测记?0。 (2)关闭通气阀6,打气加压(p0>0),微调放气螺母使U形管中水面交界面齐平(见图2),测记?0及?H,重复进行3次。 (3)打开通气阀,待液面稳定后,关闭所有阀门;然后开启放水阀11降压(p0<0),使U形管中的水面与油面齐平(见图3),测记?0及?H,重复进行3次。 五、实验报告内容 1.记录实验数据(见表1、表2)。 2.测定油的密度,对两种实验结果作比较。 3.相对压强与绝对压强、相对压强与真空度之间有什么关系?测压管能测量何种压强? 表1 流体静压强测量记录及计算表 实验台号:各测点高程为:?B= cm ?C= cm ?D= cm 基准面选在ZC= cm、ZD= cm

流体静力学基本方程式

第一节 流体静力学基本方程式 流体静力学是研究流体在外力作用下达到平衡的规律。在工程实际中,流体的平衡规律应用很广,如流体在设备或管道内压强的变化与测量、液体在贮罐内液位的测量、设备的液封等均以这一规律为依据。 1-1-1流体的密度 一、密度 单位体积流体所具有的质量,称为流体的密度,其表达式为: V m =ρ (1-1) 式中 ρ——流体的密度,kg/m 3; m ——流体的质量,kg ; V ——流体的体积,m 3。 不同的流体密度不同。对于一定的流体,密度是压力P 和温度T 的函数。液体的密度随压力和温度变化很小,在研究流体的流动时,若压力和温度变化不大,可以认为液体的密度为常数。密度为常数的流体称为不可压缩流体。 流体的密度一般可在物理化学手册或有关资料中查得,本教材附录中也列出某些常见气体和液体的密度值,可供查用。 二、气体的密度 气体是可压缩的流体,其密度随压强和温度而变化。因此气体的密度必须标明其状态,从手册中查得的气体密度往往是某一指定条件下的数值,这就涉及到如何将查得的密度换算为操作条件下的密度。但是在压强和温度变化很小的情况下,也可以将气体当作不可压缩流体来处理。 对于一定质量的理想气体,其体积、压强和温度之间的变化关系为 ' ''T V p T pV = 将密度的定义式代入并整理得 ' ''Tp p T ρρ= (1-2) 式中 p ——气体的密度压强,Pa ; V ——气体的体积,m 3; T ——气体的绝对温度,K ; 上标“'”表示手册中指定的条件。 一般当压强不太高,温度不太低时,可近似按下式来计算密度。 RT pM =ρ (1-3a ) 或 0 00004.22Tp p T Tp p T M ρρ== (1-3b )

流体静力学实验(包括实验数据结果及思考题)

实验报告:流体静力学实验 一、实验目的 1、掌握用测压管测定流体静压强的技能。 2、验证不可压缩流体静力学基本方程。 3、通过对流体静力学现象的实验分析,进一步加深基本概念的理解,提高解决静力学实验问题的能力。 二、实验原理 重力作用下不可压缩流体静力学基本方程为: c z g p =+ρ 式中:z 为单位重量液体的位能,也称位置水头;p/ρg 为单位重量液体的压能,也称压强水头。 如果自由表面压强p 0与当地大气压p a 压强相等时,液体内任一点相对压强可表示为: gh p ρ= 式中:h 为液体自由表面下任一点液体深度。 三、实验装置 1-水箱 4-上水阀 7-调节水箱 1 2 3 4 5 1 2 3 4 5 6 7 8 9 减压 常压 升压 箱体 图1 图2

2-气阀5-水泵8-A、B孔 3-进水阀6-上水管路9-测压管(1-5)图1为实际实验仪器图,图2为实验仪器内部构造示意图。图2中左侧水箱及调节水箱部分在图1中封闭在左侧的箱体内。水箱内液面压强的大小通过箱体面板上减压、常压、升压三个按钮来改变。 四、实验步骤 1、记录A、B点位置标高。 2、打开电源开关,按下减压按钮,同时观察测压管,使水箱形成一定的负压,然后松开按钮,待测压管水位稳定后,读取1~5号测压管读数。 3、按下常压按钮,同时观察测压管,使水箱为常压状态,然后松开按钮。 4、按下升压按钮,同时观察测压管,使水箱形成一定的正压,然后松开按钮,待测压管水位稳定后,读取1~5号测压管读数。 5、按下常压按钮,使水箱液面恢复常压状态,关闭电源。 五、实验原始记录 1、记录有关常数 A点位置标高=0 ㎝, B点位置标高= 3 ㎝ 2、记录测量值 管号次数 各测压管液面标高读数(㎝) 1 2 3 4 5 1 p0>p a175.0 325.7 258.1 180. 2 237.5 2 p0

p a和p0

p a时: 绝对压强: p'A=p a+ρgh4=(1.013+0.1766)×105=1.1896×105Pa p'B=p'A-ρgh AB=(1.1896-0.00294)×105=1.1867×105Pa p'0=p'A-ρgh5=(1.1896-0.2328)×105=0.9568×105Pa 相对压强: p A=p'A-p a=(1.1896-1.013)×105=0.1766×105Pa

流体静力学实验报告(中国石油大学)

中国石油大学(华东)工程流体力学实验报告 实验日期:成绩: 班级:学号:姓名:教师: 同组者: 实验一、流体静力学实验 一、实验目的:填空 1.掌握用液式测压计测量流体静压强的技能; 2.验证不可压缩流体静力学基本方程,加深对位置水头、压力水头和测压管水头的理解; 3. 观察真空度(负压)的产生过程,进一步加深对真空度的理解; 4.测定油的相对密度; 5.通过对诸多流体静力学现象的实验分析,进一步提高解决静力学实际问题的能力。 二、实验装置 1、在图1-1-1下方的横线上正确填写实验装置各部分的名称 本实验的装置如图所示。 1. 测压管; 2. 带标尺的测压管; 3. 连通管;

4. 通气阀 ; 5. 加压打起球 ; 6. 真空测压管 ; 7. 截止阀 ; 8. U 形测压管 ; 9. 油柱 ; 10. 水柱 ;11. 减压放水阀 图1-1-1 流体静力学实验装置图 2、说明 1.所有测管液面标高均以 标尺(测压管2) 零读数为基准; 2.仪器铭牌所注B ?、C ?、D ?系测点B 、C 、D 标高;若同时取标尺零点作为 静力 学基本方程 的基准,则B ? 、C ?、D ?亦为B z 、C z 、D z ; 3.本仪器中所有阀门旋柄 以顺 管轴线为开。 三、实验原理 在横线上正确写出以下公式 1.在重力作用下不可压缩流体静力学基本方程 形式之一: z+p/γ=const (1-1-1a ) 形式之二: h p p γ+=0 (1-1b ) 式中 z ——被测点在基准面以上的位置高度; p ——被测点的静水压强,用相对压强表示,以下同; 0p ——水箱中液面的表面压强; γ——液体重度; h ——被测点的液体深度。 2. 油密度测量原理 当U 型管中水面与油水界面齐平(图1-1-2),取其顶面为等压面,有 01w 1o p h H γγ== (1-1-2) 另当U 型管中水面和油面齐平(图1-1-3),取其油水界面为等压面,则有 02w o p H H γ γ+= 即

相关文档
最新文档