雨水管的设计计算

雨水管的设计计算
雨水管的设计计算

雨水管的设计计算

【篇一:雨水管渠的设计计算】

第九章雨水管渠的设计计算

(一)教学要求:

1、熟练掌握雨水设计流量的确定方法;

2、了解截流制合流式排水管渠的设计;

3、掌握管道平面图和纵剖面图的绘制。

(二)教学内容:

1、雨量分析及暴雨强度公式;

2、雨水管网设计流量计算;

3、雨水管网设计与计算;

4、雨水径流调节;

5、排洪沟设计与计算;

6、合流制管网设计与计算。

(三)重点:

雨水管网设计计算、合流制管网设计计算。

第一节雨量分析及暴雨强度公式

一、雨量分析

1. 降雨量

降雨量指单位地面面积上在一定时间内降雨的雨水体积,其计量单位为(体积/时间)/面积。由于体积除以面积等于长度,所以降雨量的单位又可以采用长度/时间。这时降雨量又称为单位时间内的降雨深度。常用的降雨量统计数据计量单位有:

年平均降雨量:指多年观测的各年降雨量的平均值,计量单位用mm/a;

月平均降雨量:指多年观测的各月降雨量的平均值,计量单位用mm/月;

最大日降雨量:指多年观测的各年中降雨量最大的一日的降雨量,计量单位用mm/d。

2. 雨量的数据整理

自记雨量计所记录的数据一般是每场雨的累积降雨量(mm)和降雨时间(min)之间的对应关系,以降雨时间为横坐标和以累计降雨量为纵坐标绘制的曲线称为降雨量累积曲线。降雨量累积曲线上某一点的斜率即为该时间的降雨瞬时强度。将降雨量在该时间段内的

增量除以该时间段长度,可以得到描述单位时间内的累积降雨量,

即该段降雨历时的平均降雨强度。

3.降雨历时和暴雨强度

在降雨量累积曲线上取某一时间段t,称为降雨历时。如果该降雨历时覆盖了降雨的雨峰时间,则上面计算的数值即为对应于该降雨历

时的暴

雨强度,降雨历时区间取得越宽,计算得出的暴雨强度就越小。

暴雨强度用符号i表示,常用单位为mm/min,也可为mm/h。设

单位时间t内的平均降雨深度为h,则其关系为:

i?h (9-1) t

在工程上,暴雨强度亦常用单位时间内单位面积上的降雨量q表示,单位用(l/s)/hm2。采用以上计量单位时,由于1mm/min=l

(l/m2)/min=10000(l/min)/hm2,可得i和q之间的换算关系为:

q?10000i?167i (9-2) 60

式中 q—降雨强度,(l/s)/hm2;

i —降雨强度,mm/min。

就雨水管渠设计而言,有意义的是找出降雨量最大的那个时段内的

降雨量。因此,暴雨强度的数值与所取的连续时间段t的跨度和位置

有关。在城市暴雨强度公式推求中,经常采用的降雨历时为5min、10min、15min、20min、30min、45min、60min、90min、

120min等9个历时数值,特大城市可以用到180min。

4.暴雨强度频率

对应于特定降雨历时的暴雨强度的出现次数服从一定的统计规律,

可以通过长期

的观测数据计算某个特定的降雨历时的暴雨强度出现的经验频率,

简称暴雨强度频率。

5.暴雨强度重现期

工程上常用比较容易理解的“重现期”来等效地替代较为抽象的频率

概念。重现期的定义是指在多次的观测中,事件数据值大于等于某

个设定值重复出现的平均间隔年数,单位为年 (a)。

重现期与经验频率之间的关系可直接按定义由下式表示:

p?1 (9-6) pn

二、暴雨强度曲线与暴雨强度公式

1.暴雨强度曲线

2.暴雨强度公式

《室外排水设计规范》中规定,我国采用的暴雨强度公式的形式为: q?167a1(1?clgp)(9-9) n(t?b)

式中q—设计暴雨强度,(l/s)/hm2;

p—设计重现期,a;

t—降雨历时,min。

,根据统计方法进行计算确定。 a1,c,b,n—地方参数(待定参数)

当b?0时,

q?

当n?1时,

q?

三、降雨面积和汇水面积 167a1(1?clgp) (9-10)

tn167a1(1?clgp) (9-11) t?b

降雨面积是指每一场降雨所笼罩的地面面积。汇水面积是指雨水管

渠所汇集和排除雨水的地面面积,用f表示,常以公顷hm2或平方

公里km2为单位。

第二节雨水管渠设计流量的确定

一、雨水设计流量计算公式

雨水管渠的设计流量按下式计算:

q??qf (9-12)式中 q—雨水设计流量,l/s;

?—径流系数,径流量和降雨量的比值,其值小于1;

f—汇水面积,hm2;

假定:(1)暴雨强度在汇水面积上的分布是均匀的;(2)单位时

间径流面积的增长为常数;(3)汇水面积内地面坡度均匀;(4):

地面不透水,??1。

二、雨水管段设计流量的计算

从图9-6可知,四个街区的地形均为北高南低,道路是西高东低,

雨水管道沿道路中心线敷设,道路断面呈拱形为中间高,两侧低。

降雨时,降落在地面上的雨水顺着地形坡度流到道路两侧的边沟中,道路边沟的坡度和地形坡度相一致。雨水沿着道路的边沟流到雨水

口经检查井流入雨水管道。i街区的雨水 (包括路面上雨水),在1号

检查井集中,流人管段1~

2。Ⅱ街区的雨水在2号检查井集中,并同i街区经管段1~2流来

的雨水汇合后流入管段2~

3。Ⅲ街区的雨水在3号检查井集中,同i街区和Ⅱ街区流来的雨水

汇合后流入管段3~4。其他依次类推。

已知管段1~2的汇水面积为fⅠ,检查井1为管段1~2的集水点。由于汇水面积上各点离集水点1的距离不同,所以在同一时间内降

落到fi面积上各点的雨水,就不可能同时到达集水点1,同时到达集水点1的雨水则是不同时间降落到地面上的雨水。

集水点同时能汇集多大面积上的雨水量,和降雨历时的长短有关。

如雨水从降雨面积最远点流到集水点1所需的集水时间为20(min),而这场降雨只下10(min)就停了,待汇水面积上的雨水流到集水点时,降落在离集水点1附近面积上的雨水早已流过去了。也就是

说,同时到达集水点1的雨水只能来自f1中的一部分面积,随着

降雨历时的延长,就有愈来愈大面积上的雨水到达集水点1,当恰好

降雨历时t=20(min)时,则第1(min)降落在最远点的雨水与

第20(min)降落在集水点1附近的雨水同时到达,这时,集水点

1处的径流量达到最大。

通过上述分析可知,汇水面积是随着降雨历时t的增长而增加,当

降雨历时等于集水时间时,汇水面积上的雨水全部流到集水点,则

集水点产生最大雨水量。

1. 管段1~2的雨水设计流量的计算

管段1~2是收集汇水面积fi(hm2)上的雨水,设最远点的雨水流

到1断面的时间为?(min),只有当降雨历时t =?时,fi全部面积

的雨水均已流到1断面,此时管段1~2内流量达到最大值。因此,

管段1~2的设计流量为:

q1~2?fq1 (l/s)Ⅰ

2. 管段2~3的雨水设计流量计算

当t =?时,全部fⅡ和部分fⅠ面积上的雨水流到2断面,此时管段2~3的雨水流量不是最大。只有当t=?+t1-2时,fi和fⅡ全部面积

上的雨水均流到2断面,此时管段2~3雨水流量达到最大值。设计

管段2~3的雨水设计流量为:

q2~3?(fⅠ?fⅡ)q2 (l/s)

式中 q2—管段2~3的设计暴雨强度,是用(fi+ fⅡ)面积上最远

点雨水流行时间

t1-2—管段1~2的管内雨水流行时间,min。

同理可求得管段3~4及4~5的雨水设计流量分别为:

q3~4?(f)q3~4 Ⅰ?fⅡ?fⅢ

q4~5?(fⅠ?fⅡ?fⅢ?fⅣ)q4~5

式中 q3、q4-分别为管段3~4、4~5的设计暴雨强度,即相应

于是用 t=?+t1-2 + t2-3和

t2-3、t3-4-分别为管道2~3、3~4的管内雨水流行时间,min。

由上可知,各设计管段的雨水设计流量等于该管段所承担的全部汇

水面积和设计暴雨强度的乘积。各设计管段的设计暴雨强度是相应

于该管段设计断面的集水时间的暴雨强度,因为各设计管段的集水

时间不同,所以各管段的设计暴雨强度亦不同。在使用计算公式

q??qf时,应注意到随着排水管道计算断面位置不同,管道的计算

汇水面积也不同,从汇水面积最远点到不同计算断面处的集水时间(其中也包括管道内雨水流行时间)也是不同的。因此,在计算平

均暴雨强度时,应采用不同的降雨历时ti。

根据上述分析,雨水管道的管段设计流量,是该管道上游节点断面

的最大流量。在雨水管道设计中,应根据各集水断面节点上的集水

时间ti正确计算各管段的设计流量。

第三节雨水管道设计数据的确定

一、径流系数的确定

雨水径流量与总降雨量的比值称为径流系数,用符号?表示,即: ??

根据定义,其值小于1。

影响径流系数?的因素很多,如汇水面积上地面覆盖情况、建筑物的密度与分布地形、地貌、地面坡度、降雨强度、降雨历时等。其中

影响的主要因素是汇水面积上的地面覆盖情况和降雨强度的大小。

目前,在设计计算中通常根据地面覆盖情况按经验来定。《室外排

水设计规范》gb50101-2005中有关径流系数的取值见表9-3。

径流量(9-13)降雨量

实际设计计算中,在同一块汇水面积上,兼有多种地面覆盖的情况,需要计算整个汇水面积上的平均径流系数?av值。

?av?∑?fi??i? (9-14) f

式中 ?av-汇水面积上的平均径流系数;

fi-汇水面积上各类地面的面积,hm2;

?i-相应于各类地面的径流系数;

f-全部汇水面积,hm2。

[例9.1] 某小区各类地面fi及?i值见表9-4,试求该小区平均径流

系数?av值。

[解] 由表9-4求得f?∑fi?5.0(hm2),则:

【篇二:雨水管设计】

具体计算公式为:

天沟计算:

q=1/k*a*100r*sqrti/(n+sqrtr)

r=a/(2h+w)

w=a*(s1+s2/r)/3600

其中:sqrt表示开平方根

q--天沟排水量(立方米/秒)

k--安全系数(一般取1.5)

a--排水有效面积(平方米)

i--排水坡度

n--粗糙系数(一般取0.2)

h--天沟积水深度

w--降水量(立方米)

a--采用的降雨强度(立方米/小时)

s1--屋面投影面积(平方米)

s2--流过雨水的外墙面积(平方米)

r--风速系数(一般取2)

落水管的计算:

q=c*a*sqrt(2gh)

s=q/(a*3600)

n=s/s

其中:q--落水管排水量(立方米/秒)

c--流量系数(一般取0.6)

a--落水管有截面积(平方米)

g--重力加速度(9.8米/平方秒)

h--天沟积水深度(米)

s--每根落水管的屋面汇水面积(平方米)

i

a--降雨强度(立方米/小时)

n--落水管数量

s--屋面受水面积(平方米)

当然也可根据落水管径和降水强度直接查表知落水管的布置,详参给排水规范

目录

摘要 (Ⅰ)

abstract ................................................ Ⅱ ii

1 建筑设计 (1)

1.1 建筑平面设计 (1)

1.2 建筑立面设计 (4)

1.3 建筑平面设计 (6)

2 结构方案设计说明 (7)

2.1 构件截面尺寸及材料选择 (7)

2.2 结构体系抗震防火要求 (7)

3.荷载统计 (9)

3.1恒荷载统计 (9)

3.2活荷载统计 (9)

3.3整个厂房部分作用的荷载 (12)

4.各种荷载作用下的内力分析 (16)

4.1手算内力标准值 (16)

4.2电算内力标准值 (21)

5.门式刚架计算和选型 (24)

5.1 截面选型 ............................................ 24 iii

5.2 刚架梁验算 (27)

5.3 刚架柱验算 (28)

5.4 位移验算 (32)

6.檩条设计和计算 (35)

6.1设计说明 (35)

6.2荷载计算 (35)

6.3内力计算 (36)

6.4截面选型及计算 (37)

7.墙梁设计和计算 (41)

7.1 荷载计算 (41)

7.2内力分析 (42)

7.3 截面选型和验算 (42)

7.4 拉条计算 (49)

8 支撑设计 (50)

8.1屋面横向水平支撑设计 (50)

8.2 柱间支撑设计 ........................................ 53 iv

9 屋面板设计和计算 (58)

9.1内力及截面验算 (58)

9.2 强度验算 (61)

9.3 刚度验算 (61)

10 吊车梁的设计 (63)

10.1 吊车梁的设计 (63)

11 节点设计 (71)

11.1 柱脚设计 (71)

11.2 梁柱节点设计 (73)

11.3 牛腿 (79)

11.4 抗风柱的计算 (81)

12 基础设计计算 (84)

12.1 基础设计资料 (84)

12.2 基础底面尺寸设计 (84)

13全文总结 (91)

14参考文献 ........................................... 57 v

【篇三:雨水管渠的设计与计算例题】给水排水管网工程

p216 习题4

各管段设计流量计算:

已知t1?10min,m?2,则t?10?2故单位面积径流量 ?t

2

q0??q?0.6?167i?

(1)1-2管段的设计流量

0.6?167?20.154

10?2?t

2

?18.7680.784

?

2019.43

28.768?2?t2

0.784

?l/?s.ha??

?t2?0,则q0?

2019.43

?145.03?l/?s.ha??

28.7680.784

管段设计流量q1?2?q0f1?145.03?2.3?333.57?l/s? (2)2-3管段的设计流量

?t2?

l1?22019.43120

?130.95?l/?s.ha?? 则q0???2?min?,

32.7680.78460?1?260?1.0

管段设计流量q2?3?q0?f1?f2??130.95??2.3?2.1??576.18?l/s? (3)4-3管段的设计流量

?t2?0,则q0?

2019.43

?145.03?l/?s.ha?? 0.784

28.768

管段设计流量q4?3?q0f3?145.03?2.42?350.97?l/s? (4)3-5管段的设计流量

l2?3l4?3l1?2

t??,)?max(2?1.81,3.92)?3.92?min? ?2

60?1?260?2?360?4?3

则q0?

2019.43

?120.06?l/?s.ha?? 0.784

44.228

管段设计流量q3?5?q0?f1?f2?f3?f4??120.06?9.02?1082.94?l/s?

雨水管道设计说明书

雨水管渠系统设计 一、设计资料与要求 试进行某研究所西南区雨水管道(包括生产废水在内)的设计和计算。并绘制该区的雨水管道平面图。已知条件: (1) 如图2-1所示该区总平面图; (2) 当地暴雨强度公式为)10/() lg 81.01(7002 45 .0m s L t P q ??+= (3) 采用设计重现期P=1a,地面集水时间min 101=t (4) 厂区道路主干道宽6m,支干道宽3.5m,均为沥青路面; (5) 各试验室生产废水量见表2-1,排水管出口位置见图2-1; (6) 生产废水允许直接排入雨水道,各车间生产废水管出口埋深均为1.50m(指室内地 面至管内底的高度); (7) 厂区各车间及试验室均无室内雨水道; (8) 厂区地质条件良好,冰冻深度较小,可不予考虑;

(9)出去的雨水口接入城市雨水道,接管点位置在厂南面,坐标为x=722.50,y=520.00, 城市雨水道为砖砌拱形方沟,沟宽1.2m,沟高(至拱内顶)1.8m,改点处的沟内底标高为37.70,地面标高为41.10m. 表2-1 各车间生产废水量表 (1)设计说明书一份; (2)管道平面布置图一张(A3); (3)管道水力计算图一张(A3); (4)管段水力计算表一份。

二、划分排水流域及管道定线 根据厂区的总平面布置图,可知该厂地形平坦,雨水和生产废水就近排入各雨水口。厂区内建筑较多,相应的交通量会比较大,故雨水管道采取暗管。雨水出口接入城市雨水道,城市雨水道为砖砌拱形方。 根据总平面图给出的标高绘制等高线,可知厂区西北高,东南低,局部有高地。再根据等高线合理布置雨水口,适当划分排水区域。根据地形、雨水口分布定管线,使绝大部分雨水以最短的距离排入街道低侧的雨水管道。拟将该厂区划分为16个流域。如图2-2所示。 图2-2 三、划分设计管段 根据管道的具体位置,在管道转弯处、管径或坡度改变出,有支管接入出或两条以上管道交汇处以及超过一定距离的直线管端上都应该设置检查井。把两个检查井之间流量没有变化且预计管径和坡度也没有变化的管段定位设计管段。并从管段从下游往下游按循序进行检查井的编号。 四、划分并计算各设计管段的汇水面积 各设计管段汇水面积的划分应结合地形坡度、汇水面积的大小以及雨水管道布置等情况而划定。地形较平坦时,可按就近排入附近雨水管道的原则划分汇水面积;地形坡度较大时,应按地面雨水径流的水流方向划分汇水面积。并将每块面积进行编号,计算其面积的数值。经简化,厂区的流水区域如图2-3所示,图中每一区域已包含街道及绿地在内,不仅仅是建筑面积。表2-1为地面标高表。表2-2为管道长度表。表2-3为汇水面积计算表。

城市排水管网设计-

城市排水管网设计I 城市排水管网设计目录第一章工程概述3 1.1已知资料3 1.2 设计方案4 第二章污水设计及计算说明 5 2.1 设计污水定额5 2.2 污水设计流量计算5 2.3 管段设计 流量计算6 2.3.1 污水管道布置6 232 街区编号并计算其面 积6 2.3.3 管道设计流量计算 6 2.4 管网水力计算7 2.4.1 污水管道设计参数及水力计算7 2.4.2 水力计算注意事项7 第 三章雨水管网设计及计算说明8 3.1 设计说明8 3.2 雨水管 道定线及排水流域划分8 3.2.1 雨水管带定线8 3.2.2 排水流 域划分8 3.3.1 管道流量设计参数资料9 3.3.2 雨水管道水力 计算9 3.4 绘制雨水管道平面图及纵剖面图9 参考文献9 附录10 第一章工程概述1.1 已知资料⑴城市规 划资料①华北地区一新型工业城市M市的城市规划平面图1张(1:5000)②人口分布,房屋建筑,卫生设备状况(见表1)表1人口分布、房屋建筑、卫生设备状况表街坊人口密度(人/公顷)房屋建筑层数卫生情况490 6 室内有给水排水卫生设备和沐浴设备⑵气象资料①土壤冰冻深度1.2米; ②暴雨强度公式采用内蒙-海拉尔市的暴雨强度公式,即

③常年主导风向西北风,地下水初见水位为6m ⑶水文及水文地质资料①河流最高洪水位标高:80.0m; ②地质:在整个排水区域内为轻质亚粘土,地耐力为12~14t/m2,地震烈度为6度。 各工业企业生活污水、淋浴污水和生产废水情况见附表 1. 1.2 设计方案根据设计要求,采用污水、雨水分开排放的分流制管道系统。污水管道干管采用截留式布置形式,支管采用围坊市布置形式。此种布置形式可充分利用地面坡度,减少管道埋深,降低造价。雨水沿垂直河流走向以最短距离汇入河流。 第二章污水设计及计算说明2.1设计污水定额我国《室外排水设计规范》规定,居民生活污水定额和综合生活污水定额应根据当地采用的用水定额,结合建筑内部给水排水设施水平和排水系统普及程度等因素确定,可按当地用水定额的80%~90计算,即排放系数为0.8~0.9 ;工业企业内生活污水量、淋雨污水量的确定,应与国家现行规范的有关规定协调;工业企业的工业废水量及其总变化系数应根据工艺特点确定,并与国 家现行的工业用水量有关规定协调。在计算居民生活污水量或综合生活污水量时,采用平均日污水量定额和相应的总变化系数。 在本设计地区,有街坊总面积为346.hm2;

雨水管道的设计与计算

0.758 3027.3(10.655lg ) (19) p q t += + (2-5) 雨水流量主要参数及其确定依据 a) 径流系数Ψ 降落在地面上的雨水,一部分被植物和地面的洼地截流,一部分渗入土壤,余下的一部分沿地面流入雨水灌渠,这部分进入雨水灌渠的雨水量称作径流量。径流量与降雨量的比值称径流系数Ψ,其值常小于1。 径流系数的值与汇水面积的地面覆盖情况、地面坡度、地貌、建筑密度的分布、路面铺砌等情况相关。由于影响因素很多,精确求它的值是相当困难的,因此我们采用经验数值确定。 该区域大部分地区为沥青路面,有部分地区为公园及绿地,综合径流系数为0.6。 b) 重现期P 暴雨强度随着重现期的不同而不同。在雨水管渠设计中,若选用较高的设计重现期,计算所得设计暴雨强度大,相应的雨水设计流量大,管渠的断面相应大。这对防止地面积水是有利的,安全性高,但经济上则因管渠设计断面的增大而增加了工程造价;若选用较低的设计重现期,管渠断面的相应减小,这样虽然可以降低工程造价,但可能会经常发生排水不畅、地面积水而影响交通,甚至给城市人民的生活及工业生产造成危害。 雨水管渠设计重现期的选用,应根据回水面积的地区建设性质(广场、干道、厂区、居住区)、地形特点、汇水面积和气象特点等因素确定,一般选用0.5~3a ,对于重要干道,立交道路的重要部分,重要地区或短期积水即能引起较严重的地区,宜采用较高的设计重现期,一般选用2~5a ,并应和道路设计协调[9]。对于特别重要的地区可酌情增加,而且在同一排水系统中也可采用同一设计重现期或不同的设计重现期。 雨水管渠设计重现期规定的选用范围,是根据我国各地目前实际采用的数据,经归纳综合后确定的。在选用雨水管渠的设计重现期是,必须根据当地的气候、地形等条件确定。我国南部地区主要城市的重现期间下表:

排水管网系统改建及扩建优化设计

排水管网系统改建及扩建优化设计分析探讨摘要:随着我国城市化进程的加快,城市规模不断扩大,城市(特别是老城区)现有排水管网日益不能满足城市发展的需求,因此城市现有管网改建成为许多城市建设者、设计者关注的重点。本文以某城市为例研究和分析排水管网对城市发展的重要性,并且阐述了管网系统改扩建的各项问题。 中图分类号:TU992文献标识码:A文章编号:1674--3024(2017)08-0241-02 引言 城市排水管网系统是城市最为基础公共设施之一,这项系统主要承担着排除城市内工商业或民用的废水、及时排除道路上的积水和引流市内的雨水等排水任务。城市排水工程科学性和合理性,将直接影响到城市的经济发展和居民的生活环境,对城市来说是至关重要的建筑设施。因此,采用科学合理的方法来设计城市排水管网是非常有必要的,工程施工过程中的各项投资和科学的管理能够起到关键性的作用。排水管网的建设是城市建设不可或缺的一部分,城市的排水管网系统负责雨水、生活污水和各类生产废水的排除,城市排水管网的建设对城市防洪排涝安全,美化城市卫生环境,提升城市形象,都具有重要的意义。 1.排水管道系统的特点、排水管网改扩建的重要性以及改扩建思想 1.1排水管道系统的特点

对于人们的日常生活来说,水是非常重要的资源,在社会发展中占着举足轻重的地位。人类在日常活动过程中所使用的水往往都会变成废水,这些废水需要被收集起来,然后进行统一的处理和排放。除此之外,城市内的降水量较大时,也应该及时的收集起来,经过处理排放掉。将城市内的各类型污水收集起来并进行相应的处理然后在排放掉,就可以被称作城市排水系统。城市排水系统主要有两种系统组成,即:管道系统和污水处理系统。管道系统的主要工作就是将收集和输送,首先对各个方向的污水进行收集,然后在通过管道将这些污水送人污水处理系统当中,污水处理系统就是处理和利用污水的单位,包含了污水处理厂内的各项处理设备和设施。对于城市内不同类型的污水采取不同的排除方式所形成的系统就叫做城市排水系统,在通常情况下一般可以将城市排水系统分为合流制和分流制两种。 城市的排水系统包括两个部分即管道收集系统和污水处理系统。管道收集系统负责将来自城市各个方向的污、废水进行收集并输送至污水处理系统;污水处理系统妥善处理收集来的污废水至达标排放或再生利用。收集、输送污水和雨水的方式为排水体制,管道收集系统一般可分为合流制和分流制两类。污水按照来源的不同,可分为生活污水、工业废水和降水三类。其中由于工厂的生产类别、工艺过程、使用的原材料以及用水的不同,工业废水的水质差异很大,按照其污染程度的不同,可分为生产废水和生产污水两类。 1.2排水管网改扩建的重要性 根据相关调查,目前我国城市排水管网系统的设备设施具有很大

市政排水管网规划和优化设计分析

市政排水管网规划和优化设计分析 摘要:主文主要通过分析我国市区排水管的发展和分布,结果实例来分析,以研究出通过优化管径和埋深,对坡度的设计做相应的改进,使之可以适应不同的地形。这样,达到在整个管网造价费用最低的情况下,达到最价的污水排放效果。 关键词:优化设计;污水管网;规划 近些年,由于经济的不断发展,加上人口密度的不断以及工业的飞速发展,城市中的污水废水越来越多。为了保持环境卫生和人民的健康安全,必须将这些通过排水管网进行收集,输送到城市污水处理厂,处理之后才能够流入自然水体中。因此,如何建立起经济高效的排水管网便成了一个巨大的挑战。 1我国排水管网现状 1.1城市排水设施的发展过程 城市排水设施的发展基本如表1-1所示。

1.2排水管网中存在的问题 第一,现有的城市排水管网的负担越来越重,已经不能满足越来越大的城市排污的需求。 第二,排管网建设的投资资金不足,而且投资资金的分配和管理不够科学和合理,浪费现象时有发生,有些项目的效果不能尽如人意。 第三,城市建设的管理不够规范,不是严格按照“先地下、后地上”的程序来进行建设的。 第四,在排水管网的规划和设计过程中,没有过充分利用计算机的技术,所以工程设计效率较低。 1.3排水管网规划和优化的意义 排水工程承担着城市水污染的防治,排涝和防洪的功能,不但保护了人民生命财产,也保护着人民的健康安全,还能美化城市的景观,保持良好的卫生环境,提高了城市的形象。2不同排水体制的对比 在进行排水管网的规划时,所要考试的首要问题就是选择怎样合理的排水体制。选择适当的排水体制,不但影响到整个排水系统的设计,施工,维护和管理,而且对于城市的规划和环境保护的影响也是深远的,并且这也会影响到排水工程的投资以及运行维护管理。 所以在选择排水体制时,要综合考虑城市原有的排水设施、气候条件下、水环境容量、环境保护的要求,还要就是一定要根据城市的总体规划来考虑。要坚 持保护环境、减少工程投资的原则上,要将社会效益、经济效益和环境效益统一起来。

雨水管径计算软件

雨水管径计算软件 【篇一:雨水流量计算公式】 雨水流量计算公式: 式中:q——雨水设计流量(l/s); 根据不同地貌选择径流系数 f——汇水面积(ha); 式中:p——设计重现期(a); t——降雨历时(min)。 【篇二:雨水管道挖土方的计算规则】 雨水管道挖土方的计算规则 径变0.7 米,怎么就不计算了。因为在挖井室圆形土方时你一定要放点坡的。我在上面的例式中没有增加放坡量也没有扣减收口处的土方,我折算过增加的土方和扣除的土方大体差不多,所以相互抵消了。 【篇三:雨水管渠的设计计算】 第九章雨水管渠的设计计算 (一)教学要求: 1、熟练掌握雨水设计流量的确定方法; 2、了解截流制合流式排水管渠的设计; 3、掌握管道平面图和纵剖面图的绘制。 (二)教学内容: 1、雨量分析及暴雨强度公式; 2、雨水管网设计流量计算; 3、雨水管网设计与计算; 4、雨水径流调节; 5、排洪沟设计与计算; 6、合流制管网设计与计算。 (三)重点: 雨水管网设计计算、合流制管网设计计算。 第一节雨量分析及暴雨强度公式 一、雨量分析 1. 降雨量

降雨量指单位地面面积上在一定时间内降雨的雨水体积,其计量单 位为(体积/时间)/面积。由于体积除以面积等于长度,所以降雨量 的单位又可以采用长度/时间。这时降雨量又称为单位时间内的降雨 深度。常用的降雨量统计数据计量单位有: 年平均降雨量:指多年观测的各年降雨量的平均值,计量单位用 mm/a; 月平均降雨量:指多年观测的各月降雨量的平均值,计量单位用 mm/月; 最大日降雨量:指多年观测的各年中降雨量最大的一日的降雨量, 计量单位用mm/d。 2. 雨量的数据整理 自记雨量计所记录的数据一般是每场雨的累积降雨量(mm)和降 雨时间(min)之间的对应关系,以降雨时间为横坐标和以累计降雨 量为纵坐标绘制的曲线称为降雨量累积曲线。降雨量累积曲线上某 一点的斜率即为该时间的降雨瞬时强度。将降雨量在该时间段内的 增量除以该时间段长度,可以得到描述单位时间内的累积降雨量, 即该段降雨历时的平均降雨强度。 3.降雨历时和暴雨强度 在降雨量累积曲线上取某一时间段t,称为降雨历时。如果该降雨历时覆盖了降雨的雨峰时间,则上面计算的数值即为对应于该降雨历 时的暴 雨强度,降雨历时区间取得越宽,计算得出的暴雨强度就越小。 暴雨强度用符号i表示,常用单位为mm/min,也可为mm/h。设 单位时间t内的平均降雨深度为h,则其关系为: i?h (9-1) t 在工程上,暴雨强度亦常用单位时间内单位面积上的降雨量q表示,单位用(l/s)/hm2。采用以上计量单位时,由于1mm/min=l (l/m2)/min=10000(l/min)/hm2,可得i和q之间的换算关系为: q?10000i?167i (9-2) 60 式中 q—降雨强度,(l/s)/hm2; i —降雨强度,mm/min。 就雨水管渠设计而言,有意义的是找出降雨量最大的那个时段内的 降雨量。因此,暴雨强度的数值与所取的连续时间段t的跨度和位置 有关。在城市暴雨强度公式推求中,经常采用的降雨历时为5min、

排水雨水管网设计计算说明书

仲恺农业工程学院实践教学 给水排水管网工程综合设计 ——排水管网计算书 (2013—2014 学年第二学期) 班级给排1x1 姓名xxx 学号 设计时间~ 指导老师xxxxxxxxxxxxxxx 成绩 城市建设学院

目录

1 设计原始资料 城镇概况 A 城市位于我国华南地区,该城市是广东省辖县级市,自然资源丰富,交通便利。市区地势平坦,主要建在平原上,城市中间以铁路为界,分为两个生活区:Ⅰ区和Ⅱ区。均有给水排水设备,自来水普及率100%。 气候情况 ① 市内多年来的极端高温℃,每年6~8月份的气温最高。而到了冬季(12~2月)温度较低,多年来的极端低温为0℃。 ② 年平均相对湿度为65%,春季湿度大,约为65~90%; ③ 雨季集中在4~9月份,这段时间的降雨量占全年降雨量的80%以上,4~9月份为受热带气旋影响的主要时段,降雨量大,多出现暴雨,年平均降雨量为1930mm ,多集中在6-9月,占全年降雨量的70%。 排水情况 城市用水按19万人口设计,居民最高日用水量按210 (d cap L )。生活污水排水量按给水的90%计算。街坊污水排入区域排水管网,区域排水管网再将接入城市的排水管道系统,最后到污水处理厂进行处理。 2 排水管段设计流量计算 污水管道的布置 地形坡度 地势由西南方向东北方逐渐降低,但总体变化趋势不大。 河流流向 该城市沿市区南部有一条由北至南流向的河流,综合地势原因,污水厂设在地势较低处。

污水管道布置图 居民生活污水计算 查居民生活用水定额表,取居民平均日生活用水定额为210d L?,则居民生活污水量 cap 定额为d % 210 ?189 90 = cap L? 街坊面积总面积计算 根据城市人口为14万,根据草图对街坊区进行编号,得到各街坊面积和总面积,计算见下页表 街区编号 1 2 3 4 5 6 7 8 9 CAD面积 街区面积(ha) 街区编号15 16 17 18 19 20 21 22 23 CAD面积 街区面积(ha) 街区编号29 30 31 32 33 34 35 36 37 CAD面积 街区面积(ha) 街区编号43 44 45 46 47 48 49 50 51 CAD面积 街区面积(ha) 街区编号57 58 59 60 61 62 63 64 65 CAD面积 街区面积(ha) 街区编号71 72 73 74 75 76 77 78 79 CAD面积 街区面积(ha) 街区编号85 86 87 88 89 90 91 92 93 CAD面积 街区面积(ha) 街区编号99 100 101 102 103 104 105 106 107 CAD面积 街区面积(ha) 街区编号112 113 114 115 116 117 118 174 119 CAD面积 街区面积(ha) 街区编号125 126 127 128 129 130 131 132 133 CAD面积 街区面积(ha) 街区编号139 140 141 142 143 144 145 146 147

市政排水管网布置及其优化

市政排水管网布置及其优化 摘要:市政工程在我国的城市建设中起着非常重要的作用,在进行市政工程的 设计过程中,做好市政排水管网的布置和优化对城市的发展非常有利,本文就针 对市政排水管网布置和相关的优化活动进行探究。 关键词:市政排水;管网布置;优化设计 引言 随着中国城市基础设施建设经验的不断积累,人们对城市排水管网布局越来 越关注。城市排水管网的建设可以在一定程度上缓解城市的环境污染,为城市的 可持续发展做出重要的贡献。通过对城市排水管网的优化设计,能够使城市的排 水系统更加顺畅,工程投资及运营费用更经济,使人民的日常生活变得更加的便利。因此,有必要加强城市排水管网设计的优化。 一、市政排水管网优化的重要性 城市排水管网的优化对城市的发展有着直接的经济效益和社会效益。首先, 优化相应的排水系统可以产生直接的经济效益。就目前城市发展而言,排水管网 在城市的建设过程中起着有非常重要的作用,在整个工程中,管网的建设费用就 占城市建设成本的比例较大。对于城市排水管网的优化,可以在一定程度上减少 管道的埋设深度,减少在施工过程中的人力和物力的成本,节省大部分的资金。 第二,进行城市管网的优化,对于城市的发展有直接的社会效益。排水管网在城 市发展和人民生产生活中发挥着非常重要的作用。对于城市的排水管网进行优化,能够减少城市污水的排放,避免出现下雨天路面积水的情况,是社会效益变得凸显。 二、市政排水管网布置中存在的主要问题 2.1排水体制选择不合理 随着城市化进程的加快,目前很多城市在设计排水管网时,都采用分流制系统,而不是根据城市的实际情况进行设计,导致无法达到预期的效果。这种设计 是盲目的,对降雨量较少或是部分老城区,采用合流制更为有效、合理。在设计 一个城市的排水管网时,应充分考虑设计项目的特点,并选择合适的排水系统。 2.2 未考虑雨水的综合利用 在进行城市的排水管道的设计时,考虑问题比较单一,一直考虑怎么将水收集、排放,但是忽略了对于雨水的再次利用。如果充分的考虑雨水的渗透、调蓄、利用,在一定程度上能保护资源,还可降低排水系统的压力,减小排水管管径, 节省投资。 2.3 排水设施布置不完全 以往的设计中,仅考虑污水的排放,认为雨水相对较干净,一般直接排至水体、沟渠,而未考虑初期雨水的截流或低影响开发等设施的设置。对某地初期雨 水径流、合流制污水及分流制污水分别取样,主要水质分析数据如下表: 造成此结果的主要原因是,雨水收集过程中,携带了一部分空气中的酸性气体、灰尘及道路或屋顶上的污泥、垃圾等,如果这部分雨水直接排入水体,将会 对环境造成严重污染。

雨水管渠的设计计算

第九章雨水管渠的设计计算 (一)教学要求: 1、熟练掌握雨水设计流量的确定方法; 2、了解截流制合流式排水管渠的设计; 3、掌握管道平面图和纵剖面图的绘制。 (二)教学内容: 1、雨量分析及暴雨强度公式; 2、雨水管网设计流量计算; 3、雨水管网设计与计算; 4、雨水径流调节; 5、排洪沟设计与计算; 6、合流制管网设计与计算。 (三)重点: 雨水管网设计计算、合流制管网设计计算。 第一节雨量分析及暴雨强度公式 一、雨量分析 1. 降雨量 降雨量指单位地面面积上在一定时间内降雨的雨水体积,其计量单位为(体积/时间)/面积。由于体积除以面积等于长度,所以降雨量的单位又可以采用长度/时间。这时降雨量又称为单位时间内的降雨深度。常用的降雨量统计数据计量单位有: 年平均降雨量:指多年观测的各年降雨量的平均值,计量单位用mm/a; 月平均降雨量:指多年观测的各月降雨量的平均值,计量单位用mm/月; 最大日降雨量:指多年观测的各年中降雨量最大的一日的降雨量,计量单位用mm/d。 2. 雨量的数据整理 自记雨量计所记录的数据一般是每场雨的累积降雨量(mm)和降雨时间(min)之间的对应关系,以降雨时间为横坐标和以累计降雨量为纵坐标绘制的曲线称为降雨量累积曲线。降雨量累积曲线上某一点的斜率即为该时间的降雨瞬时强度。将降雨量在该时间段内的增量除以该时间段长度,可以得到描述单位时间内的累积降雨量,即该段降雨历时的平均降雨强度。 3.降雨历时和暴雨强度 在降雨量累积曲线上取某一时间段t,称为降雨历时。如果该降雨历时覆盖了降雨的雨峰时间,则上面计算的数值即为对应于该降雨历时的暴 雨强度,降雨历时区间取得越宽,计算得出的暴雨强度就越小。 暴雨强度用符号i表示,常用单位为mm/min,也可为mm/h。设单位时间t内的平均降雨深度为H,则其关系为: H (9-1) i t 在工程上,暴雨强度亦常用单位时间内单位面积上的降雨量q表示,单位用(L/s)/hm2。 采用以上计量单位时,由于1mm/min=l(L/m2)/min=10000(L/min)/hm2,可得i和q之间的换算关系为:

市政排水管网优化设计思路解析

市政排水管网优化设计思路解析 摘要:市政排水管网系统设计即是城市建设的重要内容也是市政道路建设与设 计过程中的重要环节。针对目前城市排水管网设计中存在的一些问题,从路基排 水设计、路面排水设计、绿化带排水设计三个方面探讨了城市排水管网优化设计 的对策和思路,希望能在城市建设中起到一定的作用。 关键词:市政道路;排水系统;设计 0引言 城市排水管网的设计关系到居民的正常生活和城市的建设,对城市的发展具 有重要意义。在城市排水管网设计中,应采取切实可行的措施,尽量减少排水对 城市建筑的破坏。排水管网的设计对道路的使用有很大的影响。设计优质的排水 管网可以延长道路使用寿命,有利于城市建设,应引起重视。 一、城市排水管网存在的问题 1.1路基排水问题 公路的质量体现在路面上,路面的质量路基是道路的根本,是保证车辆行驶 舒适性的基本要求,只有路基处于良好的状态,保持干燥,才能使道路状态足以 支撑车辆的重量并防止道路变形,导致道路的破坏。保护好路基,才能保证道路 的质量。在影响路基强度和造成路基破坏的因素主要是路基地下水和地基涉及地 表水的存在。大多数情况下,路基变形、路基病害等主要原因是地下水。所以, 在修建高速公路时,路基排水应考虑在一个重要的位置。随着我国国民经济的快 速以及高质量的发展,给公路运输带来了巨大的促进作用。因此,研究高质量路 基的设计规律和施工工艺具有十分重要的意义。 1.2路面排水问题 如果道路上的水长时间不处理,就会渗进接缝处,或流入松洞,对道路内部 结构造成破坏,所以我们应该采取一些措施及时释放道路上的水。在这个过程中,路面的排水可以通过向两侧排放来进行,避免长时间卡在结构层中,导致路面材 料强度下降。特别是在层与层之间的连接中,如果自由水间隙长期存在,车辆高 速行驶不间断,自由水会产生动水压力造成对道路内部结构的侵蚀,同时,沥青 会脱皮、混凝土面板脱落、土壤、沥青路面裂缝、松动和坑洞等病害。 1.3绿化带排水问题 我国的市政排水管网设计一般只考虑路面排水,但有一点是,往往没有考虑 到非常重要的绿化带的排水设计。绿带位于路面与道路之间,对排水管网的功能 有着不可忽视的影响。此外,为了响应国家绿化政策,越来越多的城市绿化带, 对于绿化带排水系统的设计再也不能被忽视。绿化带能为城市增添风景还能让城 市环境的空气净化。绿化带的排水系统设计的时候,要区别绿化带排水系统和其 他排水工程管网系统。绿化带土壤多为粘性土,植物生长容易,透水性强。但是,绿化带会定期喷水,经常会有残留水。剩余的水如不能及时排出,就会渗到两侧 路面,影响路面平整度和路面质量。 二、市政排水管网优化设计策略思路 2.1路基排水的设计思路及经验 路基排水是道路的基础,对路基积水进行综合处理很重要,主要思路如下: 第一,熟悉相同路基排水设施,设置正确的排水设施。其次,当地的水地质环境 不利于路基排水系统的建设。提前清楚地研究和收集大量的数据是很重要的。第三,对排水管网系统的真正含义有清晰的认识,对排水工程有充分的了解。然后,

小区室外管网及管线综合设计指引

小区室外管网及管线综合设计指引 1、小区内主要考虑给水(包括消防)、污水、雨水、强电、弱电及燃气等管线的布置。 2、各种管线必须与城市管线合理衔接;走线尽量避开首期园建区,特别是燃气、强弱电等后期进场施工的管线。 3、强弱电室外管道埋深均应保证不小于0.7米。当管道穿越车行道时,应加深到1.0米以上或者加装套管。室外强电专变管根据电缆大小分别采用PVC75或者PVC110管,室外强电公变管均采用PVC160管。室外弱电管采用PVC110管。管孔数量应根据实际需要确定,并应根据发展预留备用管孔。备用管孔不宜小于实际需要管孔数的20%。强电管线与弱电管线宜远离,尽量分道路两边布置,并按照强电管线少穿越道路的原则布置;电缆直埋时,应在电缆上下均匀铺设100mm厚的细砂或软土,然后覆盖混凝土保护板,覆盖的电缆保护层应超过电缆两侧各50mm。 4、强弱电室外管线变更敷设方式或转角分支时应设置人(手)孔;当室外管线直线长度超过100米时,应在中间部位增加人(手)孔;人孔井内线缆应绕人孔井内壁1.5圈,手孔井内线缆应绕手孔井内壁0.5圈。 5、小区市政给水管应该成环,两路引入(尽量从不同市政自来水管段接驳),环管用阀门适当分段,室外消火栓间距约100米,沿市政道路或小区消防通道边走,(必要时可以走道路中间)应避免走地下室;引入管上要装水表和倒流防止器,从环管上接出的给水管除地下水池进水管外,均应装水表;DN≥100时采用球墨铸铁管,橡胶圈承插连接,冷底子油一道、热沥青一道防腐。DN≤80时采用衬塑钢管,丝扣连接,做两布三油防腐层(总厚度不小于3毫米),锌层破坏处先刷红丹二道。 6、小区加压给水管应该成环,环管用阀门适当分段,走线优先走地下室,必要时可以走小区道路中间。管材采用衬塑钢管,DN≥150时采用法兰连接,衬塑层破坏处需要补塑,埋地法兰用热塑套保护;DN≤100时采用丝扣连接,埋地管道做两布三油防腐层(总厚度不小于3毫米),锌层破坏处先刷红丹二道。

(完整版)小区室外管网及管线综合设计指引

小区室外管网及管线综合布置 1、小区内主要考虑给水(包括消防)、污水、雨水、强电、弱电及燃气等管线的布置。 2、各种管线必须与城市管线合理衔接;走线尽量避开首期园建区,特别是燃气、强弱电等后期进场施工的管线。 3、强弱电室外管道埋深均应保证不小于0.7米。当管道穿越车行道时,应加深到1.0米以上或者加装套管。室外强电专变管根据电缆大小分别采用PVC75或者PVC110管,室外强电公变管均采用PVC160管。室外弱电管采用PVC110管。管孔数量应根据实际需要确定,并应根据发展预留备用管孔。备用管孔不宜小于实际需要管孔数的20%。强电管线与弱电管线宜远离,尽量分道路两边布置,并按照强电管线少穿越道路的原则布置;电缆直埋时,应在电缆上下均匀铺设100mm 厚的细砂或软土,然后覆盖混凝土保护板,覆盖的电缆保护层应超过电缆两侧各50mm。 4、强弱电室外管线变更敷设方式或转角分支时应设置人(手)孔;当室外管线直线长度超过100米时,应在中间部位增加人(手)孔;人孔井内线缆应绕人孔井内壁1.5圈,手孔井内线缆应绕手孔井内壁0.5圈。 5、小区市政给水管应该成环,两路引入(尽量从不同市政自来水管段接驳),环管用阀门适当分段,室外消火栓间距约100米,沿市政

道路或小区消防通道边走,(必要时可以走道路中间)应避免走地下室;引入管上要装水表和倒流防止器,从环管上接出的给水管除地下水池进水管外,均应装水表;DN≥100时采用球墨铸铁管,橡胶圈承插连接,冷底子油一道、热沥青一道防腐。DN≤80时采用衬塑钢管,丝扣连接,做两布三油防腐层(总厚度不小于3毫米),锌层破坏处先刷红丹二道。 6、小区加压给水管应该成环,环管用阀门适当分段,走线优先走地下室,必要时可以走小区道路中间。管材采用衬塑钢管,DN≥150时采用法兰连接,衬塑层破坏处需要补塑,埋地法兰用热塑套保护;DN ≤100时采用丝扣连接,埋地管道做两布三油防腐层(总厚度不小于3毫米),锌层破坏处先刷红丹二道。 7、小区消火栓给水管和喷淋给水管必须成环,消防泵必须有两条出水管与环管连接,环管用阀门适当分段,走线优先走地下室,必要时可以走小区道路中间。管材采用热镀锌钢管,DN≥150时采用法兰连接,埋地法兰用热塑套保护;DN≤100时采用丝扣连接,埋地管道做两布三油防腐层(总厚度不小于3毫米),锌层破坏处先刷红丹二道。 8、小区雨污水管网沿道路边布置,应充分利用周边市政条件分散排出,避免过分集中导致排水干管管径大,埋深大,接出困难;雨水管网的布置应综合考虑路面雨水、楼栋屋面雨水、广场雨水、园林绿化雨水和人工湖、游泳池溢排水的顺畅排出。楼栋屋面雨水允许接入人工湖。污水管网主要考虑各楼栋生活污水的顺畅排出,化粪池前的检

给排水管网系统设计任务书(A4)

给水排水管网系统课程设计说明书

目录 第一章给水排水管网系统课程设计任务书第二章管网布置与方案选择 第三章最高日最高时用水量计算 第四章比流量、沿线流量、节点流量计算第五章管网水力计算 第六章管材、管件安装 第七章排水设计 第八章总结

第一章给水排水管网课程设计任务书 一、设计题目 吉林省长春市A城给水排水管网工程设计 二、设计目的 通过给定城市给水排水管网设计,使学生了解给水排水管网的设计步骤和方法,掌握方案的选择,设计参数的确定,图纸的绘制,说明书的编写,为今后毕业设计和实际工程的设计打下基础。三、设计依据 根据吉长发建制1号文件同意吉林省长春市A城建设给水管网工程。 四、设计任务 1. A城给水管网平面布置图一张 2. A城给水管网结构图一张 3. 设计说明书一份(3千-6千字) 五、设计资料 1.某城规划图一张(比例 1:10000 ,等高线间距1.0m) 2.城市分区人口,房屋层数及建筑物标准

3.居民用水每小时百分数 4.使用城市管网的主要工厂资料 甲厂:3600人,分3班生产,1/3工人在热车间工作,一般车间工人下班后,50%的工人洗澡,生产用水每天240m3,生产、生活用水均匀使用。 乙厂:1200人,1/2的工人在一般车间工作,分2班生产,生产用水每天3600m3,生产、生活用水均匀使用。 丙厂:1200人,都在热车间工作,分三班生产,每班人数相等,生产用水每天800m3 ,生产、生活用水均匀使用。 丁厂:1600人,分2班生产,一半的人在热车间工作,生活用水大小间隔使用,生产用水每天960m3,一般车间工人下班后均洗澡,生产、生活用水均匀使用。 5.浇洒道路和绿地用水 长江以北每区每次100m3,一天两次,9:00-10:00,15:00-16:00;长江以南每区每次100m3,一天三次,9:00-10:00,15:00-16:00,18:00-19:00。 6.工人上班时间: 8:00-16:00,16:00-24:00,0:00-8:00 7.车站用水情况: 每天用水量1200m3,5:00-6:00,6:00-7:00为全天用水量6%,

雨水管网设计说明书

本科课程设计题目:某县城雨水管网课程设计

目录 目录 1总论 (1) 1.1设计任务及要求 (1) 1.1.1设计任务 (1) 1.1.2设计要求 (1) 1.1.3设计依据 (1) 1.2设计原始资料 (2) 1.2.1县城概况 (2) 1.2.2工程概况 (3) 2工程规模 (3) 2.1暴雨设计流量计算 (3) 2.2工程规模 (4) 3管网设计 (4) 3.1管线布置原则 (4) 3.2设计公式及参数原则 (4) 3.3设计步骤 (5) 3.4管材及排水设施 (7) 4效益分析 (8) 4.1社会效益 (8) 4.2经济效益 (8) 4.3环境效益 (8) 5设计心得 (8)

1总论 1.1设计任务及要求 1.1.1设计任务 1.县城雨量计算; 2.县城雨水管网定线; 3.县城雨水管网设计:管长、管径、坡度、埋深、衔接、充满度; 4.县城雨水资源利用分析; 5.绘出成果图。 1.1.2设计要求 1. 在设计过程中要应用所学有关知识,掌握城镇雨水管网设计的方法和步骤; 2. 在设计过程中要独立地分析与解决问题,增加独立工作的能力; 3. 阅读熟悉有关手册、规范和资料; 4. 逐步增加实际工程概念。 1.1.3设计依据 (1)标准规范 1. 上海市政工程设计研究院主编.《给水排水设计手册》第10册,中国建筑工业出版社,2000.08; 2. 北京市市政工程设计研究总院主编.《给水排水设计手册》第5册,中国建筑工业出版社,2004.04; 3. 孙慧修主编.《排水工程》(上册)(第四版),中国建筑工业出版社,1999.12; 4. 严煦世,刘遂庆编著.《给水排水管网系统》(第一版),中国建筑工业出版社,2002.7; 5. 张奎,张志刚主编.《给水排水管道系统》(第一版),机械工业出版社,2007.1; 6. 上海市建设和交通委员会主编.《室外排水设计规范》(GB50014-2006),中国计划出版社,2006.06; 7. 中国建筑标准设计研究院.《给水排水标准图集》,国家标准设计研究院, 2005.10。 (2)甲方提供资料 1.《某县城总体规划》 2.原始资料 该县城位于保定地区,县城现有居住人口为12 万。 3.自然资料: 该县城非采暖季节主要风向:西南风;

雨水管渠的设计与计算例题

给水排水管网工程 P216 习题4 各管段设计流量计算: 已知min 101=t ,2=m ,则∑+=2 210t t 故单位面积径流量 () () ()[]ha s L t t i q q ./2768.2843 .2019768.18210154 .201676.01676.0784 .02 784 .02 0∑∑+= ++??= ?==? (1)1-2管段的设计流量 02=∑t ,则()[]ha s L q ./03.145768.2843 .2019784 .00== 管段设计流量()s L F q Q /57.3333.203.1451021=?==- (2)2-3管段的设计流量 ()min 20 .160120 6021212=?== --∑νL t , 则()[]ha s L q ./95.130768.3243.2019784.00== 管段设计流量()()()s L F F q Q /18.5761.23.295.13021032=+?=+=- (3)4-3管段的设计流量 02=∑t ,则()[]ha s L q ./03.145768 .2843 .2019784 .00== 管段设计流量()s L F q Q /97.35042.203.1453034=?==- (4)3-5管段的设计流量 ()min 92.3)92.3,81.12max()60,6060max(3 4343232212 12 =+=+=------∑νννL L L t 则()[]ha s L q ./06.120228 .4443 .2019784 .00== 管段设计流量()()s L F F F F q Q /94.108202.906.1204321053=?=+++=-

雨水管网设计说明

5 雨水管网设计说明 5.1 雨水量计算 (1)暴雨强度公式 我国常用的暴雨强度公式为:() ()n b t P c A q ++=lg 11671……………………(式5—1) 式中 q —— 设计暴雨强度(L/s ·ha ) P —— 设计重现期(a ) t —— 降雨历时(min ) A1、c 、b 、n —— 地方参数,根据统计方法计算确定。 根据所处地区分别选用不同的暴雨强度公式,经过查表的本设计地区福建福安的暴雨强度公式为:() ()688.0409.8lg 536.01072.2060++=t P q ………………………………(式5—2) 重现期:一般地区重现期为0.5~3年,重要地区3~5年,本设计地区取值为3年 降雨历时:21mt t t +=………………………………………………………(式5—3) .(min)602i i v L t ∑=…………………………………………………(式5—4) 式中 t —— 设计降雨历时(min ) t1 —— 地面集水时间(min ),取5~15min ,本设计地区取值为10 min t2 —— 管渠内雨水流行时间(min ) m —— 折减系数,暗管取2,明渠取1.2,本设计都为暗管,即取值为2 L —— 设计断面上游各管道的长度(m ) V —— 上游各管道中的设计流速(m/s ) (2)径流系数ψ计算 通常根据排水流域内各类地面的面积数或所占比例,采用加权平均法计算出该排水流域的平均径流系数。也可根据规划的地区类别,采用区域综合径流系数,本设计地区采用区域综合径流系数,并取值为0.5。

(3)实际地面径流量即雨水管渠设计流量Q 计算 按推理公式:qF Q ψ=………………………………………………(式5—5) 式中 Q ——计算汇水面积的设计最大径流量,亦即要排除的雨水设计流量(L/S ) q ——雨峰时段内的平均设计暴雨强度[(L/S) /2hm ] ψ——径流系数 F ——计算汇水面积(2hm ) 把(式5-2)、(式5-3)和ψ=0.5代入(式5-5)得 ∑∈+++=i k k i i F t Q 5.0)409.8210()3lg 536.01(072.2060688.02…………………………………(式5—6) 式中Q i ——管段的设计流量(L/s ) t2i ——管段i 的计算流经时间(min ) Fk ——管段i 上游各集水面积(2hm ) 5.2 雨水管网定线(分散排放和集中排放相结合) (1)充分利用地形,就近排入水体。 雨水管渠应尽量利用自然地形坡度布置,要以最短的距离靠重力流将雨水排入附近的池塘、河流、湖泊等水体中。在每一排水流域内,结合建筑物及雨水口分布,充分利用各排水流域内的自然地形,布置管道,使雨水以最短距离靠重力流就近排入水体。 (2)出水口布置: 当管道将雨水排入池塘或小河时,水位变化小,出水口构造简单,宜采用分散出水口。当河流等水体的水位变化很大,管道的出水口离常水位较远时,出水口的构造就复杂,因而造价较高,此时宜采用集中出水口式布置形式。一般按主干管、干管、支管的顺序进行布置各流域的主干管、干管和支管的具体位置见《雨水计算图》。 5.3 划分设计管段(管材采用钢筋混凝土) 设计管段:把两个检查井之间流量不变且预计管径和坡度也不变的管段定为设计管段。划分设计管段方法:只是估计可以采用同样管径和坡度的连续管段,就可以划作一个设计管段。根据管道的平面布置图,凡有集中流量流入,有旁侧管接入的检查井均可作为设计管段的起止点。 设计管段检查井从上游往下游依次编号,具体位置见《雨水计算图》。

给排水雨水管道设计计算

3雨水管道设计计算 3.1雨水排水区域划分及管网布置 3.1.1排水区域划分 该区域最北端有京杭大运河,中部有明显分水线。因此以明远路为分界线,明远路以北雨水排入大运河,以南地区雨水排入中部水体。这样划分有利于减小雨水管线长度和管道,并且可以缩小管径,提高经济效益。 3.1.2管线布置 根据该地区水体及地势特点,雨水管道为正交式布置,沿水体不设主干管,雨水通过干管直接排入水体。一些距水体较近的街区的雨水直接以地表径流的方式直接流入水体。明远路以北区域雨水干管的走向为自南向北;以南地区部分干管走向为自南向北,部分为自北向南,个别自南北汇入中间,具体流向根据水体所在位置确定。具体如图3所示。3.2雨水流量计算 图3 雨水管道平面布置(初步设计) 3.2.1 雨量分析要素 a) 降雨量指一定时段降落在某一点或某一面积上的水层深度,其计量单位以mm计。也可用单位面积上的具体及(L/ha)表示[9]。 b) 降雨历时指一次连续降雨所经历的时间,可以指全部降雨时间,也可以指其中某个个别的连续时段,其计量以min或h计,可从自记雨量记录纸上读取。 c) 暴雨强度指某一连续降雨时段内的平均降雨量,用i表示 H =(3-1) i t 式中,i——暴雨强度(mm/min); H——某一段时间内的降雨总量(mm); t——降雨时间(min)。 在工程上常用单位时间内单位面积上的降雨体积q表示。 d) 降雨面积指降雨所笼罩的面积。单位为公顷(ha) 雨水管渠的收集并不是整个降雨面积上的雨水,雨水管渠汇集雨水的地面面积称为汇水面积。每根管段的汇水面积如下表所示:

表7 汇水面积计算表: 管道编 号 管道长 度(m) 本段汇水面积 编号 本段汇水面 积(ha) 传输汇水面积 (ha) 总汇水面积 (ha) 5~4230.7656 6.670 6.67 4~3153.84578 6.6714.67 3~2230.7658、5918.6814.6733.35 2~1153.8466、691233.3545.35 6~7192.36511.86011.86 9~8230.76538.1508.15 8~7153.84549.788.1517.93 16~10230.7660(3)、61(3)8.1508.15 10~11115.3861(4) 5.938.1514.08 11~12153.8460(4)、6222.9714.0837.05 12~13192.350(2)、52(2)10.6237.0547.67 13~14230.7650(1)、50(2)10.6247.6758.29 14~15230.7646(2)21.3458.2979.63 17~18115.3861(1)、(2)11.86011.86 18~19269.2260(1)、(2) 4.4411.8616.3 19~20230.7647 5.1916.321.49 20~21230.7648、4914.2321.4935.72 21~22230.7645(2)10.2335.7245.95 23~24192.331(2)、329.4909.49

相关文档
最新文档