分数阶混沌系统有限时间稳定性分析及同步控制

分数阶混沌系统有限时间稳定性分析及同步控制
分数阶混沌系统有限时间稳定性分析及同步控制

实验一--控制系统的稳定性分析

实验一--控制系统的稳定性分析

实验一控制系统的稳定性分 班级:光伏2班 姓名:王永强 学号:1200309067

实验一控制系统的稳定性分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响;

3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB中的tf2zp函数求出系统的零极点,或者利用root函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递 函数为 0.2( 2.5) () (0.5)(0.7)(3) s G s s s s s + = +++,用MATLAB编写 程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。 在MATLAB命令窗口写入程序代码如下:z=-2.5 p=[0,-0.5,-0.7,-3] k=1 Go=zpk(z,p,k)

Gc=feedback(Go,1) Gctf=tf(Gc) dc=Gctf.den dens=ploy2str(dc{1},'s') 运行结果如下: Gctf = s + 2.5 --------------------------------------- s^4 + 4.2 s^3 + 3.95 s^2 + 2.05 s + 2.5 Continuous-time transfer function. dens是系统的特征多项式,接着输入如下MATLAB程序代码: den=[1,4.2,3.95,1.25,0.5] p=roots(den)

混沌与分数阶混沌系统同步控制研究及其电路仿真

混沌与分数阶混沌系统同步控制研究及其电路仿真 文章来源:伟智论文服务中心 [打印] 【摘要】混沌作为一种复杂的非线性运动行为,在物理学、化学、信息技术以及工程学等领域得到了广泛的研究。由于混沌对初值的极端敏感性、内在的随机性、连续宽谱等特点,使其特别适用于保密通信、信号处理、图象加密等领域,因此,混沌同步成为混沌应用的关键技术。在参阅大量文献的基础上,本文利用理论证明,数值模拟以及电路仿真相结合的方法,对混沌系统同步、分数阶超混沌系统同步、以及非自治超混沌系统进行了研究。本文的主要研究内容如下:1.基于Lyapunov稳定性理论,利用自适应控制方法,以不确定单模激光Lorenz系统作为驱动系统,将不确定单涡旋混沌系统作为响应系统,设计了非线性反馈控制器及参数识别器,使响应系统的所有状态变量严格地按函数比例跟踪驱动系统的混沌轨迹,并辨识出包括非线性项在内的驱动系统和响应系统的不确定参数,利用四阶龙格库塔仿真模拟,结果表明了该方法的有效性。2.应用驱动-响应方法、反馈线性化方法以及基于Lyapunov方程的Backstepping 控制方法,研究了分数阶超混沌L(u|¨)系统同步问题。其次,针对上述分数阶混沌系统同步方法中存在的不足,基于分数阶系统的稳定性理论,提出了分数 阶超混沌系...更多统的自适应同步方法,用两个控制器与两个驱动变量实现 了不确定分数阶超混沌L(u|¨)系统的自适应同步,给出了自适应同步控制器和参数自适应率,辨识出系统的不确定参数。最后,结合Active控制技术,实现了异结构分数阶超混沌系统的同步。理论证明、数值模拟以及电路仿真证实了上述同步方法的有效性和可行性。3.采用调节连续信号频率的方法,将外界控制信号引入到超混沌系统中,设计了一个新四维非自治超混沌系统。通过精确地调节模拟输入信号的频率,观察和验证新系统的非线性动力学特性,具体为 周期轨、二维环面、混沌和超混沌现象。通过Lyapunov指数图,分岔图来解释系统的动力学特性,并且给出了设计的实验电路及其观测的结果,进一步从物 理实现上验证仿真结果的准确性。最后利用单变量耦合反馈控制方法,通过电路实验实现了非自治超混沌系统的同步。还原 【Abstract】 Chaotic systems are well known for their complex nonlinear systems, and have been intensively studied in various fields such as physics, chemistry, information technology and engineering. In virtue of its characteristics of chaos such as hyper sensitivity to initial conditions, high randomicity and board spectra for its Fourier transform, chaos can be especially applied to secure communications, signal processing and image encryption and so on. Thus chaos synchronization has become the key process in the application of chaos. The research has studied the relative problems of chaos synchronization, synchronization of fractional-order hyper-chaotic systems and analysis of a new four-dimensional non-autonomous hyper-chaotic system, using

实验四 控制系统的稳定性分析

西京学院实验教学教案实验课程:现代控制理论基础 课序: 4 教室:工程舫0B-14实验日期:2013-6-3、4、6 教师:万少松 一、实验名称:系统的稳定性及极点配置二、实验目的 1.巩固控制系统稳定性等基础知识;2.掌握利用系统特征根判断系统稳定性的方法;3.掌握利用李雅普诺夫第二法判断系统的稳定性的方法;4. 掌握利用状态反馈完成系统的极点配置;5.通过Matlab 编程,上机调试,掌握和验证所学控制系统的基本理论。三、实验所需设备及应用软件序号 型 号备 注1 计算机2Matlab 软件四、实验内容1. 利用特征根判断稳定性;2. 利用李雅普诺夫第二法判断系统的稳定性;3.状态反馈的极点配置;五、实验方法及步骤1.打开计算机,运行MATLAB 软件。2.将实验内容写入程序编辑窗口并运行。3.分析结果,写出实验报告。 语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器

一、利用特征根判断稳定性 用matlab 求取一个系统的特征根,可以有许多方法,如,,,()eig ()pzmap 2ss zp ,等。下面举例说明。 2tf zp roots 【例题1】已知一个系统传递函数为,试不同的方法分析闭环系统的稳定性。()G s 2(3)()(5)(6)(22)s G s s s s s += ++++解:num=[1,3]den=conv([1,2,2],conv([1,6],[1,5]))sys=tf(num,den)(1)() eig p=eig(sys)显示如下:p = -6.0000 -5.0000 -1.0000 + 1.0000i -1.0000 - 1.0000i 所有的根都具有负的实部,所以系统稳定。(2) ()pzmap pzmap(sys) 从绘出的零极点图可看见,系统的零极点都位于左半平面,系统稳定。(3)2()tf zp [z,p,k]=tf2zp(num,den) (4)()roots roots(den)【例题2】已知线性定常连续系统的状态方程为122122x x x x x ==- 试用特征值判据判断系统的稳定性。 解: A=[0,1;2,-1] eig(A)

实验二 控制系统的阶跃响应及稳定性分析

实验二 控制系统的阶跃响应及稳定性分析 一、实验目的及要求: 1.掌握控制系统数学模型的基本描述方法; 2.了解控制系统的稳定性分析方法; 3.掌握控制时域分析基本方法。 二、实验内容: 1.系统数学模型的几种表示方法 (1)传递函数模型 G(s)=tf() (2)零极点模型 G(s)=zpk(z,p,k) 其中,G(s)= 将零点、极点及K值输入即可建立零极点模型。 z=[-z1,-z …,-z m] p=[-p1,-p …,-p] k=k (3)多项式求根的函数:roots ( ) 调用格式: z=roots(a) 其中:z — 各个根所构成的向量 a — 多项式系数向量 (4)两种模型之间的转换函数: [z ,p ,k]=tf2zp(num , den) %传递函数模型向零极点传递函数的转换 [num , den ]=zp2tf(z ,p ,k) %零极点传递函数向传递函数模型的转换 (5)feedback()函数:系统反馈连接

调用格式:sys=feedback(s1,s2,sign) 其中,s1为前向通道传递函数,s2为反馈通道传递函数,sign=-1时,表示系统为单位负反馈;sign=1时,表示系统为单位正反馈。 2.控制系统的稳定性分析方法 (1)求闭环特征方程的根(用roots函数); 判断以为系统前向通道传递函数而构成的单位负反馈系统的稳定性,指出系统的闭环特征根的值: 可编程如下: numg=1; deng=[1 1 2 23]; numf=1; denf=1; [num,den]= feedback(numg,deng,numf,denf,-1); roots(den) (2)化为零极点模型,看极点是否在s右半平面(用pzmap); 3.控制系统根轨迹绘制 rlocus() 函数:功能为求系统根轨迹 rlocfind():计算给定根的根轨迹增益 sgrid()函数:绘制连续时间系统根轨迹和零极点图中的阻尼系数和自然频率栅格线 4.线性系统时间响应分析 step( )函数---求系统阶跃响应 impulse( )函数:求取系统的脉冲响应 lsim( )函数:求系统的任意输入下的仿真 三、实验报告要求:

控制系统的稳定性分析

精品 实验题目控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、系统模拟电路图 系统模拟电路图如图3-1 图3-1 系统模拟电路图R3=0~500K; C=1μf或C=0.1μf两种情况。 四、实验报告 1.根据所示模拟电路图,求出系统的传递函数表达式。 G(S)= K=R3/100K,T=CuF/10 2.绘制EWB图和Simulink仿真图。

精品 3.根据表中数据绘制响应曲线。 4.计算系统的临界放大系数,确定此时R3的值,并记录响应曲线。 系统响应曲线 实验曲线Matlab (或EWB)仿真 R3=100K = C=1UF 临界 稳定 (理论值 R3= 200K) C=1UF

精品 临界 稳定 (实测值 R3= 220K) C=1UF R3 =100K C= 0.1UF

精品 临界 稳定 (理论 值R3= 1100 K) C=0.1UF 临界稳定 (实测值 R3= 1110K ) C= 0.1UF

精品 实验和仿真结果 1.根据表格中所给数据分别进行实验箱、EWB或Simulink实验,并进行实验曲线对比,分析实验箱的实验曲线与仿真曲线差异的原因。 对比: 实验曲线中R3取实验值时更接近等幅振荡,而MATLAB仿真时R3取理论值更接近等幅振荡。 原因: MATLAB仿真没有误差,而实验时存在误差。 2.通过实验箱测定系统临界稳定增益,并与理论值及其仿真结果进行比较(1)当C=1uf,R3=200K(理论值)时,临界稳态增益K=2, 当C=1uf,R3=220K(实验值)时,临界稳态增益K=2.2,与理论值相近(2)当C=0.1uf,R3=1100K(理论值)时,临界稳态增益K=11 当C=0.1uf,R3=1110K(实验值)时,临界稳态增益K=11.1,与理论值相近 四、实验总结与思考 1.实验中出现的问题及解决办法 问题:系统传递函数曲线出现截止失真。 解决方法:调节R3。 2.本次实验的不足与改进 遇到问题时,没有冷静分析。考虑问题不够全面,只想到是实验箱线路的问题,而只是分模块连接电路。 改进:在实验老师的指导下,我们发现是R3的取值出现了问题,并及时解决,后续问题能够做到举一反三。 3.本次实验的体会 遇到问题时应该冷静下来,全面地分析问题。遇到无法独立解决的问题,要及时请教老师,

典型混沌系统和混沌同步的简介

2典型混沌系统和混沌同步的简介 2.1典型混沌系统的介绍 混沌从表述形式上大体包括两大类:以微分方程表述的时间连续函数和以状态方程表述的时间离散函数。时间离散系统多用于扩频通信,而时间连续函数多见于保密通信之中。介于本文主要考虑连续系统在保密通信之中的应用,这里就重点介绍连续时间混沌系统中的典型模型:Lorenz 系统、蔡氏电路、统一混沌系统。 2.1.1 Lorenz 系统 混沌的最早实例是由美国麻省理工学院的气象学家洛伦兹在1963年研究大气运动时描述的。他提出了著名的Lorenz 方程组: () ??? ????----cz xy y xz bx y x y a x =z==。。 。 (2-1) 这是一个三阶常微分方程组。它以无限平板间流体热对流运动的简化模型为基础,由于它的变量不显含时间t ,一般称作自治方程。式中x 表示对流强度,y 表示向上流和向下流在单位元之间的温度差,z 表示垂直方向温度分布的非线性强度,-xz 和xy 为非线性项,b 是瑞利数,它表示引起对流和湍流的驱动因素 (如贝纳对流上下板的温度差△T)和抑制对流因素 (如(Prandtl)数粘性)之比,是系统 (2-1)的主要控制参数。k v a =是普朗特数(v 和k 分别为分子粘性系数和热传导系数),c 代表与对流纵横比有关的外形比,且a 和c 为无量纲常数。在参数范围为)1/()3(--++?>c a c a a b 时,Lorenz 系统均处于混沌态。 在混沌区域内选择系统参数a=10, b=28,c=8/3,取系统的初始状态为[x(0), y(0), z(0)]=[10, 10, 10],此时,系统为一混沌系统,系统的三维吸引子如图2.1所示,二维吸引子如图2.3所示,图2.2所示分别为分量x 、y 随时间t 的变化情况。 图2.1 Lorenz 系统的吸引子

控制系统的稳定性

3.8 控制系统的稳定性 3.8 控制系统的稳定性 稳定性是控制系统最重要的特性之一。它表示了控制系统承受各种扰动,保持其预定工作状态的能力。不稳定的系统是无用的系统,只有稳定的系统才有可能获得实际应用。我们前几节讨论的控制系统动态特性,稳态特性分析计算方法,都是以系统稳定为前提的。 3.8.1 稳定性的定义 图3.26(a)是一个单摆的例子。在静止状态下,小球处于A位置。若用外力使小球偏离A而到达A’,就产生了位置偏差。考察外力去除后小球的运动,我们会发现,小球从初始偏差位置A',经过若干次摆动后,最终回到A点,恢复到静止状态。图3.26(b)是处于山顶的一个足球。足球在静止状态下处于B位置。如果我们用外力使足球偏离B位置,根据常识我们都知道,足球不可能再自动回到B位置。对于单摆,我们说A位置是小球的稳定位置,而对于足球来说,B则是不稳定的位置。 图 3.26 稳定位置和不稳定位置 (a)稳定位置;(b)不稳定位置 处于某平衡工作点的控制系统在扰动作用下会偏离其平衡状态,产生初始偏差。稳定性是指扰动消失后,控制系统由初始偏差回复到原平衡状态的性能。若能恢复到原平衡状态,我们说系统是稳定的。若偏离平衡状态的偏差越来越大,系统就是不稳定的。 在控制理论中,普遍采用了李雅普诺夫(Liapunov)提出的稳定性定义,内容如下: 设描述系统的状态方程为 (3.131)

式中x(t)为n维状态向量,f(x(t),t)是n维向量,它是各状态变量和时间t的函数。如果系统的某一状态,对所有时间t,都满足 (3.132) 则称为系统的平衡状态。是n维向量。当扰动使系统的平衡状态受到破坏时,系统就会偏离平衡状态,在时,产生初始状态=x。在时,如果对于任一实数,都存在另一实数,使得下列不等式成立 (3.133) (3.134) 则称系统的平衡状态为稳定的。 式中称为欧几里德范数,定义为: (3.135) 矢量的范数是n维空间长度概念的一般表示方法。 这个定义说明,在系统状态偏离平衡状态,产生初始状态以后,即以后,系统的状态将会随时间变化。对于给定的无论多么小的的球域S(),总存在另一个的球域,只要初始状态不超出球域,则系统的状态 的运动轨迹在后始终在球域S()内,系统称为稳定系统。 当t无限增长,如果满足: (3.136) 即系统状态最终回到了原来的平衡状态,我们称这样的系统是渐近稳定的。对于任意给定的正数,如果不存在另一个正数,即在球域内的初始状态,在后,的轨迹最终超越了球域S(),我们称这种系统是不稳定的。 图3.27是二阶系统关于李雅普诺夫稳定性定义的几何说明。

No张丽分数阶统一混沌系统

漳州师范学院 毕业论文 分数阶统一混沌系统地同步The Synchroni zati on of Fracti on alorder Un ifiedSystem 姓名:张丽 学号:070401326 系别:数学与信息科学系 专业:数学与应用数学 年级:07级 指导教师:蔡建平教授 2018年05月22日

本文运用耦合同步控制法,研究分数阶统一混沌系统地同步问题?首先,分别在分数阶统一系统地每个方程上加耦合控制变量使得驱动系统和响应系统达到同步;然后,在每个方程同时加耦合控制变量使得驱动系统响应系统达到同步?并运用 Laplace变换理论证明,最后用Matlab软件进行数值仿真进一步验证本文所用地方法地有效性.b5E2RGbCAP 关键词:分数阶;统一混沌系统;同步控制;耦合控制 Abstract This paper applies coupled synchronization control method to research the synchronization of fractional order unified chaotic system. First of all, the coupled control variables are added to each equation of fractional unified system makes the drive system and response system to achieve synchronization. Then, the control variablesare added to each equation at the same time makes the drive system and response system to achieve synchronization.Furthermore, detailed proofsare given by using the Laplace transformation theory. Finally, numericalsimulations based on Matlab verify the effectiveness of the present methods EanqFDPw Key words: fractional order。unified system synchronization control coupling COntro DXDiTa9E3d

自动控制实验报告一控制系统稳定性分析

实验一控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.自动控制系统实验箱一台 2.计算机一台 三、实验内容 系统模拟电路图如图 系统模拟电路图 其开环传递函数为: G(s)=10K/s(0.1s+1)(Ts+1) 式中 K1=R3/R2,R2=100KΩ,R3=0~500K;T=RC,R=100KΩ,C=1μf或C=0.1μf两种情况。 四、实验步骤 1.连接被测量典型环节的模拟电路。电路的输入U1接A/D、D/A卡的DA1输出,电路的 输出U2接A/D、D/A卡的AD1输入,将纯积分电容两端连在模拟开关上。检查无误后接通电源。 2.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。 3.在实验项目的下拉列表中选择实验三[控制系统的稳定性分析] 5.取R3的值为50KΩ,100KΩ,200KΩ,此时相应的K=10,K1=5,10,20。观察不同R3 值时显示区内的输出波形(既U2的波形),找到系统输出产生增幅振荡时相应的R3及K值。再把电阻R3由大至小变化,即R3=200kΩ,100kΩ,50kΩ,观察不同R3值

时显示区内的输出波形, 找出系统输出产生等幅振荡变化的R3及K值,并观察U2的输出波形。 五、实验数据 1模拟电路图 2.画出系统增幅或减幅振荡的波形图。 C=1uf时: R3=50K K=5:

R3=100K K=10 R3=200K K=20:

等幅振荡:R3=220k: 增幅振荡:R3=220k:

R3=260k: C=0.1uf时:

分数阶混沌系统的仿真程序

分数阶混沌仿真程序,以chen系统为例,其他系统只需修改相应的外部函数。 ------------------------------------------------------------------------------------ function fra_chaos_pro(x,t,q)%x为初值,t为运行时间,q为分数阶数 h=0.01;%步长 N=t/h;%运行步数 l=length(x);%变量维数 y=zeros(l,N+1); y1=zeros(l,N+1); M1=zeros(l,1); N1=zeros(l,1); %预估校正法,fra_chaos_fun外部函数 y1(:,1)=x'+h.^q'.*fra_chaos_fun(t,x)'./(gamma([q']).*q'); y(:,1)=x'+h.^q'.*(fra_chaos_fun(t,y1(:,1))+q'.*fra_chaos_fun(t,x)')./gamma(q'+2); for n=1:N; M1=(n.^(q'+1)-(n-q').*(n+1).^q').*fra_chaos_fun(t,x)'; N1=((n+1).^q'-n.^q').*fra_chaos_fun(t,x)'; for j=1:n; M1=M1+ ((n-j+2).^(q'+1)+(n-j).^(q'+1)-2*(n- j+1).^(q'+1)).*fra_chaos_fun(t,y(:,j));N1=N1+((n-j+1).^q'-(n- j).^q').*fra_chaos_fun(t,y(:,j)); end

分数阶统一混沌系统matlab程序

function dy=united-fra-chaos q1=0.9;q2=0.9;q3=0.8; h=0.01;N=2000; a=1; x0=2;y0=1;z0=3; %x0=-3.5;y0=4.2;z0=2.5; M1=0;M2=0;M3=0; x(N+1)=[0];y(N+1)=[0];z(N+1)=[0]; x1(N+1)=[0];y1(N+1)=[0];z1(N+1)=[0]; x1(1)=x0+h^q1*(25*a+10)*(y0-x0)/(gamma(q1)*q1); y1(1)=y0+h^q2*((28-35*a)*x0-x0*z0+(29*a-1)*y0)/(gamma(q2)*q2); z1(1)=z0+h^q3*(x0*y0-(8+a)*z0/3)/(gamma(q3)*q3); x(1)=x0+h^q1*((25*a+10)*(y1(1)-x1(1))+q1*(25*a+10) *(y0-x0))/gamma(q1+2); y(1)=y0+h^q2*((28-35*a)*x1(1)-x1(1)*z1(1)+(29*a-1)*y1(1)+q2*((28-35*a)*x0-x0*z0+(29*a-1 )*y0))/gamma(q2+2); z(1)=z0+h^q3*(x1(1)*y1(1)-(8+a)*z1(1)/3+q3*(x0*y0-(8+a)*z0/3))/gamma(q3+2); for n=1:N M1=(n^(q1+1)-(n-q1)*(n+1)^q1)*(25*a+10)*(y0-x0); M2=(n^(q2+1)-(n-q2)*(n+1)^q2)*((28-35*a)*x0-x0*z0+(29*a-1)*y0); M3=(n^(q3+1)-(n-q3)*(n+1)^q3)*(x0*y0-(8+a)*z0/3); N1=((n+1)^q1-n^q1)*(25*a+10)*(y0-x0); N2=((n+1)^q2-n^q2)*((28-35*a)*x0-x0*z0+(29*a-1)*y0); N3=((n+1)^q3-n^q3)*(x0*y0-(8+a)*z0/3); for j=1:n M1=M1+((n-j+2)^(q1+1)+(n-j)^(q1+1)-2*(n-j+1)^(q1+1))*(25*a+10)*(y(j)-x(j)); M2=M2+((n-j+2)^(q2+1)+(n-j)^(q2+1)-2*(n-j+1)^(q2+1))*((28-35*a)*x(j)-x(j)*z(j)+(29*a-1)*y(j )); M3=M3+((n-j+2)^(q3+1)+(n-j)^(q3+1)-2*(n-j+1)^(q3+1))*(x(j)*y(j)-(8+a)*z(j)/3); N1=N1+((n-j+1)^q1-(n-j)^q1)*(25*a+10)*(y(j)-x(j)); N2=N2+((n-j+1)^q2-(n-j)^q2)*((28-35*a)*x(j)-x(j)*z(j)+(29*a-1)*y(j)); N3=N3+((n-j+1)^q3-(n-j)^q3)*(x(j)*y(j)-(8+a)*z(j)/3); end x1(n+1)=x0+h^q1*N1/(gamma(q1)*q1); y1(n+1)=y0+h^q2*N2/(gamma(q2)*q2); z1(n+1)=z0+h^q3*N3/(gamma(q3)*q3); x(n+1)=x0+h^q1*((25*a+10)*(y1(n+1)-x1(n+1))+M1)/gamma(q1+2); y(n+1)=y0+h^q2*((28-35*a)*x1(n+1)-x1(n+1)*z1(n+1)+(29*a-1)*y1(n+1)+M2)/gamma(q2+2);

(整理)MATLAB实现控制系统稳定性分析.

MATLAB 实现控制系统稳定性分析 稳定是控制系统的重要性能,也是系统能够工作的首要条件,因此,如何分析系统的稳定性并找出保证系统稳定的措施,便成为自动控制理论的一个基本任务.线性系统的稳定性取决于系统本身的结构和参数,而与输入无关.线性系统稳定的条件是其特征根均具有负实部. 在实际工程系统中,为避开对特征方程的直接求解,就只好讨论特征根的分布,即看其是否全部具有负实部,并以此来判别系统的稳定性,由此形成了一系列稳定性判据,其中最重要的一个判据就是Routh 判据.Routh 判据给出线性系统稳定的充要条件是:系统特征方程式不缺项,且所有系数均为正,劳斯阵列中第一列所有元素均为正号,构造Routh 表比用求根判断稳定性的方法简单许多,而且这些方法都已经过了数学上的证明,是完全有理论根据的,是实用性非常好的方法. 但是,随着计算机功能的进一步完善和Matlab 语言的出现,一般在工程实际当中已经不再采用这些方法了.本文就采用Matlab 对控制系统进行稳定性分析作一探讨. 1 系统稳定性分析的Matlab 实现 1.1 直接判定法 根据稳定的充分必要条件判别线性系统的稳定性,最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有,系统则不稳定.然而实际的控制系统大部分都是高阶系统,这样就面临求解高次方程,求根工作量很大,但在Matlab 中只需分别调用函数roots(den)或eig(A)即可,这样就可以由得出的极点位置直接判定系统的稳定性. 已知控制系统的传递函数为 ()24 5035102424723423+++++++=s s s s s s s s G (1) 若判定该系统的稳定性,输入如下程序: G=tf([1,7,24,24],[1,10,35,50,24]); roots(G.den{1}) 运行结果: ans = -4.0000 -3.0000 -2.0000 -1.0000 由此可以判定该系统是稳定系统. 1.2 用根轨迹法判断系统的稳定性 根轨迹法是一种求解闭环特征方程根的简便图解法,它是根据系统的开环传递函数极点、零点的分布和一些简单的规则,研究开环系统某一参数从零到无穷大时闭环系统极点在s 平面的轨迹.控制工具箱中提供了rlocus 函数,来绘制系统的根轨迹,利用rlocfind 函数,在图形窗口显示十字光标,可以求得特殊点对应的K 值. 已知一控制系统,H(s)=1,其开环传递函数为: ()()() 21++=s s s K s G (2) 绘制系统的轨迹图. 程序为: G=tf(1,[1 3 2 0]);rlocus(G); [k,p]=rlocfind(G) 根轨迹图如图1所示,光标选定虚轴临界点,程序 结果为:

基于MATLAB的控制系统稳定性分析报告

四川师范大学本科毕业设计 基于MATLAB的控制系统稳定性分析 学生姓名宋宇 院系名称工学院 专业名称电气工程及其自动化 班级 2010 级 1 班 学号2010180147 指导教师杨楠 完成时间2014年 5月 12日

基于MATLAB的控制系统稳定性分析 电气工程及其自动化 本科生宋宇指导老师杨楠 摘要系统是指具有某些特定功能,相互联系、相互作用的元素的集合。一般来说,稳定性是系统的重要性能,也是系统能够正常运行的首要条件。如果系统是不稳定,它可以使电机不工作,汽车失去控制等等。因此,只有稳定的系统,才有价值分析与研究系统的自动控制的其它问题。为了加深对稳定性方面的研究,本设计运用了MATLAB软件采用时域、频域与根轨迹的方法对系统稳定性的判定和分析。 关键词:系统稳定性 MATLAB MATLAB稳定性分析

ABSTRACT System is to point to have certain function, connect with each other, a collection of interacting elements. Generally speaking, the stability is an important performance of system, also is the first condition of system can run normally. If the system is not stable, it could lead to motor cannot work normally, the car run out of control, and so on. Only the stability of the system, therefore, have a value analysis and the research system of the automatic control of other problems. In order to deepen the study of stability, this design USES the MATLAB software using the time domain, frequency domain and the root locus method determination and analysis of the system stability. Keywords: system stability MATLAB MATLAB stability analysis

控制系统的稳定性分析

自动控制理论实验报告 实验题目控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、系统模拟电路图 系统模拟电路图如图3-1 图3-1 系统模拟电路图R3=0~500K; C=1μf或C=0.1μf两种情况。 四、实验报告 1.根据所示模拟电路图,求出系统的传递函数表达式。 G(S)= K=R3/100K,T=CuF/10

自动控制理论实验报告 2.绘制EWB 图和Simulink 仿真图。 3.根据表中数据绘制响应曲线。 4.计算系统的临界放大系数,确定此时R3的值,并记录响应曲线。

自动控制理论实验报告

自动控制理论实验报告

自动控制理论实验报告 实验和仿真结果 1.根据表格中所给数据分别进行实验箱、EWB或Simulink实验,并进行实验曲线对比,分析实验箱的实验曲线与仿真曲线差异的原因。 对比: 实验曲线中R3取实验值时更接近等幅振荡,而MATLAB仿真时R3取理论值更接近等幅振荡。 原因: MATLAB仿真没有误差,而实验时存在误差。 2.通过实验箱测定系统临界稳定增益,并与理论值及其仿真结果进行比较 (1)当C=1uf,R3=200K(理论值)时,临界稳态增益K=2, 当C=1uf,R3=220K(实验值)时,临界稳态增益K=2.2,与理论值相近(2)当C=0.1uf,R3=1100K(理论值)时,临界稳态增益K=11 当C=0.1uf,R3=1110K(实验值)时,临界稳态增益K=11.1,与理论值相近 四、实验总结与思考 1.实验中出现的问题及解决办法 问题:系统传递函数曲线出现截止失真。 解决方法:调节R3。 2.本次实验的不足与改进 遇到问题时,没有冷静分析。考虑问题不够全面,只想到是实验箱线路的问题,而只是分模块连接电路。 改进:在实验老师的指导下,我们发现是R3的取值出现了问题,并及时解决,后续问题能够做到举一反三。 3.本次实验的体会 遇到问题时应该冷静下来,全面地分析问题。遇到无法独立解决的问题,要及时请教老师,

实验四控制系统的稳定性分析

实验四 控制系统的稳定性分析 班级:电信171 姓名:陈远 学号:1700506163 一、 实验目的 1、 了解系统的开环增益和时间常数对系统稳定性的影响; 2、 研究系统在不同输入下的稳态误差的变化; 二、 实验内容 已知系统开环传递函数为:) 1)(11.0(10)(++=Ts s s K s G 1、 分析开环增益K 和时间常数T 对系统稳定性及稳态误差的影响。 (1) 取T=0.1,令K=1,2,3,4,5,绘制相应的阶跃响应曲线,分析开环增益K 的变化 对系统阶跃响应和稳定性的影响。 (2) 在K=1(系统稳定)和K=2(系统临界稳定)两种情况下,分别绘制T=0.1和T=0.01 时系统的阶跃响应,分析时间常数T 的变化对系统阶跃响应和稳定性的影响。 提示: 由开环传递函数转换为闭环传递函数可以使用反馈连接函数feedback ,举例 如下: Gopen=tf (num ,den ) %建立开环传递函数 Gclose=feedback (Gopen ,1,-1) %建立闭环传递函数 2、 分析系统在不同输入时的稳态误差。 取K=1,T=0.01,改变系统输入r ,使r 分别为单位阶跃函数、单位斜坡函数 和单位加速度函数,观察系统在不同输入下的响应曲线及相应的稳态误差。 提示: lsim 函数可用来绘制系统在任意自定义输入下的响应曲线,用法如下: lsim (sys ,input ,t ) %其中sys 是待求的系统,input 是自定义的输入信号,t 是时间。例如: G1=tf (num ,den ) t=0:0.01:5 u1=t ; lsim (G1, u1,t ) 三、 实验结果:

实验一 控制系统的稳定性分析

实验一控制系统的稳定性分 班级:光伏2班 姓名:王永强 学号:1200309067

实验一控制系统的稳定性分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响; 3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB中的tf2zp函数求出系统的零极点,或者利用root函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递函数为 0.2( 2.5) () (0.5)(0.7)(3) s G s s s s s + = +++, 用MATLAB编写程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。在MATLAB命令窗口写入程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=1 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc)

dc=Gctf.den dens=ploy2str(dc{1},'s') 运行结果如下: Gctf = s + 2.5 --------------------------------------- s^4 + 4.2 s^3 + 3.95 s^2 + 2.05 s + 2.5 Continuous-time transfer function. dens是系统的特征多项式,接着输入如下MATLAB程序代码: den=[1,4.2,3.95,1.25,0.5] p=roots(den) 运行结果如下: p = -3.0058 + 0.0000i -1.0000 + 0.0000i -0.0971 + 0.3961i -0.0971 - 0.3961i p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,因此闭环系统是稳定的。 下面绘制系统的零极点图,MATLAB程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=1 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) [z,p,k]=zpkdata(Gctf,'v') pzmap(Gctf) Grid 运行结果如下: z = -2.5000 p = -3.0297 + 0.0000i

自动控制系统传递函数稳定性分析--奈氏图分享汇总

中北大学 课程设计说明书 学生姓名:学号: 学院:软件学院 专业:软件工程 题目:自动控制系统传递函数稳定性分析 指导教师:史媛媛职称: 讲师 2014年6月27日

中北大学 课程设计任务书 2013~2014 学年第二学期 学院:软件学院 专业:软件工程 学生姓名:张永春学号:1121010633 课程设计题目:自动控制系统传递函数稳定性分析起迄日期:6月16日~6 月27 日 课程设计地点:旧光电楼 指导教师:史源源 负责人:赵俊生 下达任务书日期: 2014年6月16日

课程设计任务书

课程设计任务书

目录 1、关于软件matlab6.5----------------------------------1 2、利用matlab6.5绘制奈氏图----------------------------3 3、实验原始数据、技术参数、条件、设计要求---------------------3 4、程序源码、相关截图及解释------------------------------------------4 5、总结与展望---------------------------------------------------------------7

1、关于软件matlab6.5 1980年前后,美国的Cleve Moler教授利用自己研制的基于特征值计算和线性代数软件包,构思并开发了MATLAB (MATrix LABoratory,即矩阵实验室)。随后,Cleve Moler和John Little等人成立了The Mathworks公司,Cleve Moler一直任该公司的首席科学家。 MATLAB的第一个商业版本(DOS版本1.0)发行于1984年。1990年推出的MATLAB3.5i是第一个可以运行于Microsoft Windows 下的版本,它可以在两个窗口上分别显示命令行计算结果和图形结果。稍后推出的SimuLAB环境首次引入基于框图的仿真功能,该环境就是我们现在所知的Simulink,其模型输入的方式使得一个复杂的控制系统的数字仿真问题变得十分直观而且相当容易。2000年10月,MATLAB6.0问世,较之以前的版本在操作界面有了很大的改观,同时给出了程序窗口、历史信息窗口和变量管理窗口。2002年6月推出的MATLAB Release 13,即MATLAB6.5/Simulink5.0是目前的最新版本。 经过多年来版本的不断更新,MATLAB已集中了日常数学处理中的各种功能,包括高效的数值计算、矩阵运算、信号处理和图形生成等功能。新版本的MATLAB功能已经十分强大,速度变得更快,数值性能更好;用户图形界面设计更趋合理;与C语言接口及转换的兼容性更强;新的虚拟现实工具箱更给仿真结果三维视景下显示带来了新的解决方案。MATLAB由于其强大的功能,已经在数值型软件市场上

自动控制系统的稳定性和稳态误差分析

实验三 自动控制系统的稳定性与稳态误差分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响; 3、观察系统结构与稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递函数为 0.2( 2.5)()(0.5)(0.7)(3) s G s s s s s +=+++,用MATLAB 编写程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。 在MATLAB 命令窗口写入程序代码如下: z=-2、5 p=[0,-0、5,-0、7,-3] k=0、2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) 运行结果如下: Transfer function: 0、2 s + 0、5 --------------------------------------- s^4 + 4、2 s^3 + 3、95 s^2 + 1、25 s + 0、5 s^4 + 4、2 s^3 + 3、95 s^2 + 1、25 s + 0、5就是系统的特征多项式,接着输入如下

MATLAB程序代码: den=[1,4、2,3、95,1、25,0、5] p=roots(den) 运行结果如下: p = -3、0058 -1、0000 -0、0971 + 0、3961i -0、0971 - 0、3961i p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都就是负的实部,因此闭环系统就是稳定的。 下面绘制系统的零极点图,MATLAB程序代码如下: z=-2、5 p=[0,-0、5,-0、7,-3] k=0、2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) [z,p,k]=zpkdata(Gctf,'v') pzmap(Gctf) grid 运行结果如下: z = -2、5000 p = -3、0058 -1、0000 -0、0971 + 0、3961i -0、0971 - 0、3961i k =

相关文档
最新文档