岩心核磁实验解释分析软件

岩心核磁实验解释分析软件
岩心核磁实验解释分析软件

岩心核磁实验解释分析软件

摘要:在大量岩心实验分析结果基础上研制开发了实验室岩石核磁共振实验解释分析软件CoreMR,实现了对岩石、流体核磁共振实验测量信号所代表的物理参数的自动刻度及解释分析,填补了目前实验室岩石核磁共振实验只有信号采集软件,而没有岩石物理参数刻度处理软件的空白。CoreMR软件在实际应用中取得了良好的效果。

关键词:岩心实验、核磁共振、岩石物理参数、数据处理解释分析

岩心核磁共振实验分析具有快速、无损、无污染等优点,不但可以直接获得岩石的储集物性参数信息,而且对核磁共振测井应用具有重要意义。目前国内已有多家油田、研究所开展了岩心核磁共振实验研究,所使用的多为英国共振仪器公司的MARAN系列谱仪,MARAN谱仪作为一种通用低场核磁共振实验分析仪,提供了样品核磁弛豫信号T1、T2测量采集手段,但没有提供对所测量岩心核磁弛豫信号所代表的岩石物理参数进行刻度处理的解释分析软件,如何对所测信号进行刻度得到岩石样品的孔、渗、饱等储集物性参数,只能由用户自己完成,还没有一套比较灵活、实用的岩心核磁共振实验数据处理解释分析软件,从而大大降低了获得岩心核磁实验分析结果的时效及精度。对此,我们以大量的岩心核磁实验分析数据为基础,研制开发了用于岩心核磁共振实验数据处理解释分析的软件CoreMR,利用该软件可以实现对测量采集到的岩心、流体样品的核磁信号进行自动刻度处理、解释分析,直接获得岩石孔、渗、饱等储集物性参数、岩石孔隙半径分布、毛管压力等孔隙结构信息以及流体含氢指数、粘度、扩散系数、原油含水率等信息,从而极大地缩短了岩石核磁共振实验数据处理分析的时间,及时为用户提交高精度岩石核磁实验分析结果。

CoreMR软件采用图形菜单界面,操作便捷、灵活,提供岩样与流体驰豫时间T2谱反演计算以及多种岩样核磁孔隙度、T2截止值、渗透率、饱和度等储层信息的刻度标定与计算;提供核磁法确定岩石孔隙半径分布、毛管压力等孔隙结构信息的刻度转换与计算;提供流体含氢指数、粘度、扩散系数、原油含水率等的计算;还提供了岩样差谱分析、含油饱和度估算等功能。使用CoreMR软件大大方便、简化了岩石核磁共振实验数据的处理分析过程,处理解释结果可以以文本文件、Excel文件、图片文件等形式输出,直接用于实验分析报告。

1CoreMR软件的主要功能

所研制编写的岩心核磁实验解释分析软件CoreMR主要能够完成以下功能:

1)驰豫时间T2谱反演计算。

2)岩样基本储层参数的标定:包括岩样孔隙度的标定、T2截止值的计算、渗透率的标定、可动流体、束缚流体饱和度的标定计算以及利用核磁法确定岩样孔径分布、毛管压力的转换系数的标定计算等。

3)岩样基本孔、渗、饱及孔径分布等储层参数及T2截止值的计算:输入岩样体积由测量采集的岩样回波串利用所选择的储层参数计算模型快速计算岩样的储层参数,包括岩样核磁孔隙度(总孔隙度、有效孔隙度、粘土泥质束缚水孔隙度、毛管束缚水孔隙度、可动流体孔隙度)、渗透率、可动流体、束缚流体饱和度、平均孔隙半径、可动流体T2截止值以及岩样孔径分布等。

4)岩样差谱分析:对岩样在不同恢复等待时间下的回波串进行差谱分析,用于计算岩样含油孔隙体积等。

5)流体含氢指数、粘度、扩散系数及原油含水率等的计算。

图1—1为CoreMR软件的运行主界面。

2驰豫时间T2谱反演计算

软件对采集的回波串数据采用模平滑非负最小二乘法技术计算其T2谱分布,并计算T2谱的几何均值、算术均值、调和均值、谱峰陡度等谱特征表征参数。T2谱布点范围从0.1ms到10s,可由用户自由确定,可采用多达128点的对数均匀布点,从而实现对岩石从束缚流到自由流直至裂缝、孔洞等多种孔隙的精细解释分析。为了与核磁测井T2谱对比,还可以采用2的幂指数形式布点。

图2—1为计算的岩样T2谱及其特征参数的显示。

3岩样基本储层参数的标定

3.1 岩样孔隙度的标定

对不同孔隙度模块或纯水进行核磁测量,将测量到的核磁信号刻度标定为核磁孔隙度。

具有不同孔隙度的标准样(φ分别为3、6、9、12、15、18、21、24、27、30等)的核磁孔隙度刻度关系式为

Φnmr=0.3496* T2sum /ns-0.5739

用蒸馏水加一定浓度弛豫试剂制成的100%孔隙度标准样的核磁孔隙度刻度转换公式如下:Φnmr =T2sum*(NS/ns)*(V/M)*(RG/rg)*100%

式中,T2sum为T2幅度和;M、V分别为标准样的T2谱幅度和及体积;NS、RG和ns、rg分别为标准样及岩样测量时的扫描次数和接受增益。

图3—1为核磁孔隙度标样刻度显示。

3.2岩样T2谱截止值的计算

软件提供了三种确定岩样可动流体T2截止值的方法:其一可以选择采用岩心在毛管压力下高速离心(或驱替)法得到的岩心束缚水饱和度来计算T2截止值。其二可以利用完全饱和水岩样的T2几何均值T2gm自动计算其T2截止值。对于具有经验的地区,用户也可以直接输入岩样的T2截止值。

3.3 渗透率标定

CoreMR软件提供了T2几何均值、Coates、Echo幅度和等三种渗透率模型的标定方法及由辽河油田岩心得到的标定系数。图3—2为三种岩心核磁渗透率模型标定过程及结果显示。

3.4 可动、束缚流体饱和度的计算

软件提供了两种岩心可动、束缚流体饱和度计算模型,即T2截止值模型及T2几何均值模型。其中T2截止值模型根据T2截止值的选择方式又可分为选择固定T2截止值计算岩样束缚水饱和度和根据每块岩样的不同的T2截止值计算其束缚水饱和度。而T2几何均值束缚水饱和度计算模型就是根据如下的S wir—T2gm 关系用岩样的T2gm来直接计算其束缚水饱和度S wir。

1/Swi = m*T2g + b

3.5 核磁法岩样孔隙半径分布、毛管压力转换系数的确定

已经证实,岩样的T2分布谱可以反映岩样的孔径(r)分布及毛管压力(P c)变化等岩石孔隙结构信息。

r=C r*T2P c=C p*1/T2

CoreMR软件将岩样的T2分布谱与岩样的压汞数据进行综合分析来确定利用岩样T2谱计算其孔径分布、毛管压力的转换系数C r和C p。图3—3显示了利用压汞数据对核磁法确定岩石毛管压力、孔径分布的转换系数进行刻度的情况。

4CoreMR软件应用实例

我们应用所研制开发的CoreMR软件完成了辽河油田近二百块岩心、十几个油水样的核磁共振实验分析,取得了良好的应用效果,及时地为辽河油田核磁测井资料的采集及解释分析提供了指导及解释模型刻度标定,从而使核磁测井的应用效果得到较大提高。

表4—1给出了部分岩样的核磁实验的CoreMR处理分析结果。图4—1直观显示了岩样核磁孔隙度与常规称重孔隙度的对比情况。图4—2将两种模型计算的岩样核磁法束缚水饱和度与常规称重法束缚水饱和度进行了对比。图4—3给出了CoreMR计算的不同矿化度NaCl水溶液的含氢指数的变化情况,实验表明地层水矿化度较大时其含氢指数会降低,测井得到的地层孔隙度(如核磁孔隙度)应进行含氢指数校正。图4—4对比了核磁法计算的原油含水率与脱水法确定的原油含水率,表明利用核磁测量技术可以安全、快速、准确、无污染地确定原油的含水率。

The development and application of CoreMR for Core NMR experiments

Wang Zhongdong Wei Gang Ke Qiyu

The software CoreMR is developed for core NMR experiment analysis which is based on the result of a large number of core experiments. It can automatically scale and analysis laboratory NMR data of rocks or fluids which represent the petrophysical parameters we need. CoreMR fills the blank of that our laboratory only has NMR measuring software but hasn’t processing software which used to scale and analysis. The application of the CorMR in Liaohe oilfield illustrates the availability of CoreMR for core NMR experiment analysis.

Key words: core experiment NMR petrophysical parameters data process and analysis

图1—1 CoreMR岩心核磁共振实验解释分析软件

图2—1 CoreMR软件计算的岩样T2谱及其特征参数显示图3—1 CoreMR软件核磁孔隙度标样刻度显示

5

10

15

2025

30

35

40

φ (%)

05

10

1520253035

40

φn m r (%)

图4-1 岩心核磁孔隙度与常规称重孔隙度对比

2030405060708090100

称重法岩心Swi (%)

20

30

40

50607080

90

100

核磁法岩心S w i (%)

图4-2 岩心束缚水饱和度与核磁束缚水饱和度对比

50

100

150200250矿化度 (g/L)

0.9

0.920.940.960.981.02

含氢指数 H I

图4-3 盐水含氢指数随矿化度的变化 020*********

原油含水率(%)

20

40

60

80

100

核磁法原油含水率(%)

图4-4 利用核磁法测量原油含水率

核磁共振实验报告

核磁共振实验报告 一、实验目的: 1.掌握核磁共振的原理与基本结构; 2.学会核磁共振仪器的操作方法与谱图分析; 3.了解核磁共振在实验中的具体应用; 二、实验原理 核磁共振的研究对象为具有磁矩的原子核。原子核是带正电荷的粒子,其自旋运动将产生磁矩,但并非所有同位素的原子核都有自旋运动,只有存在自选运动的原子核才具有磁矩。原子核的自选运动与自旋量子数I有关。I=0的原子核没有自旋运动。I≠0的原子核有自旋运动。 原子核可按I的数值分为以下三类: 1)中子数、质子数均为偶数,则I=0,如12C、16O、32S等。 2)中子数、质子数其一为偶数,另一为基数,则I为半整数,如: I=1/2;1H、13C、15N、19F、31P等; I=3/2;7Li、9Be、23Na、33S等; I=5/2;17O、25Mg、27Al等; I=7/2,9/2等。 3)中子数、质子数均为奇数,则I为整数,如2H、6Li、14N等。 以自旋量子数I=1/2的原子核(氢核)为例,原子核可当作电荷均匀分布的球体,绕自旋轴转动时,产生磁场,类似一个小磁铁。当置于外加磁场H0中时,相对于外磁场,可以有(2I+1)种取向: 氢核(I=1/2),两种取向(两个能级): a.与外磁场平行,能量低,磁量子数m=+1/2; b.与外磁场相反,能量高,磁量子数m=-1/2;

正向排列的核能量较低,逆向排列的核能量较高。两种进动取向不同的氢核之间的能级差:△E= μH0(μ磁矩,H0外磁场强度)。一个核要从低能态跃迁到高能态,必须吸收△E的能量。让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核吸收电磁辐射能跃迁到高能态。这种现象称为核磁共振,简称NMR。三、实验仪器 400MHz超导傅里叶变换核磁共振波谱仪 (仪器型号:AVANCE III 400) 四、仪器构造、组成 1)操作控制台:计算机主机、显示器、键盘和BSMS键盘。 计算机主机运行Topspin程序,负责所有的数据分析和存储。BSMS键盘可以让用户控制锁场和匀场系统及一些基本操作。 2)机柜:AQS(采样控制系统)、BSMS(灵巧磁体系统),VTU(控温单元)、 各种功放。 AQS各个单元分别负责发射激发样品的射频脉冲,并接收,放大,数字化样品放射出的NMR信号。AQS完全控制谱仪的操作,这样可以保证操作不间断从而保证采样的真实完整。BSMS:这个系统可以通过BSMS键盘或者软件进行控制,负责操作锁场和匀场系统以及样品的升降、旋转。3)磁体系统:自动进样器、匀场系统、前置放大器(HPPR)、探头。 本仪器所配置的自动进样器可放置60个样品。磁体产生NMR跃迁所需的

最新核磁共振实验报告

一、实验目的与实验仪器 1.实验目的 (1)了解核磁共振的基本原理; (2)学习利用核磁共振校准磁场和测量因子g 的方法: (3)掌握利用扫场法创造核磁共振条件的方法,学会利用示波器观察共振吸收信号; (4)测量19F 的g N 因子。 2.实验仪器 NM-Ⅱ型核磁共振实验装置,水 样品和聚四氟乙烯样品。 探测装置的工作原理:图一中绕 在样品上的线圈是边限震荡器电路 的一部分,在非磁共振状态下它处在 边限震荡状态(即似振非振的状态), 并把电磁能加在样品上,方向与外磁 场垂直。当磁共振发生时,样品中的 粒子吸收了震荡电路提供的能量使振荡电路的Q 值发生变化,振荡电路产生显著的振荡,在示波器上产生共振信号。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 原子核自旋角动量不能连续变化,只能取分立值即: P = 其中I 称为自旋量子数,I=0,1/2,1,3/2,2,5/2,…本实验涉及的质子和氟核 F 19 的自旋量子数I 都等于1/2。类似地原子核的自旋角动量在空间某一方向,例如z 方向的分量不能连续变化,只能取分立的数值 自旋角动量不为零的原子核具有与之相联系的核自旋磁矩, 其大小为: P 2M e g =μ 核磁共振 实验报告

其中e 为质子的电荷,M 为质子的质量,g 是一个由原子核结构决定的因子,对不同种类的原子核g 的数值不同,g 成为原子核的g 因子。由于核自旋角动量在任意给定的z 方向的投影只可能取(2I+1)个分立的数值,因此核磁矩在z 方向上的投影也只能取(2I+1)个分立的数值: 2M e g p 2M e g m z z ==μ 原子核的磁矩的单位为: 2M e N =μ 当不存在外磁场时,原子核的能量不会因处于不同的自旋状态而不同。通常把B 的方向规定为z 方向,由于外磁场B 与磁矩的相互作用能为: B B P B B E z z m γγμμ-=-=-=?-= 核磁矩在加入外场B 后,具有了一个正比于外场的频率。量子数m 取值不同,则核磁矩的能量也就不同。原来简并的同一能级分裂为(2I+1)个子能级。不同子能级的能量虽然不同,但相邻能级之间的能量间隔 却是一样的,即: B E γ=? 而且,对于质子而言,I=1/2,因此,m 只能取m=1/2和m= -1/2两个数值。简并能级在磁场中分开。其中的低能级状态,对应E 1=-mB ,与场方向一致的自旋,而高的状态对应于E 2=mB ,与场方向相反的自旋。当核自旋能级在外磁场B 作用下产生分裂以后,原子核在不同能级上的分布服从玻尔兹曼分布。 若在与B 垂直的方向上再施加一个高频电磁场(射频场),且射频场的频率满足一定条件时,会引起原子核在上下能级之间跃迁。这种现象称为共振跃迁(简称共振)。 发生共振时射频场需要满足的条件称为共振条件: B π γν2= 如果用圆频率ω=2πν 表示,共振条件可写成:B γω=

核磁共振实验报告

1、前言和实验目的 核磁共振是指受电磁波作用的原子核系统在外磁场中磁能级之间发生共振跃迁的现象。本实验的样品在外磁场中,外磁场使样品核能级因核自旋不同的取向而分裂,在数千高斯外磁场下核能级的裂距一般在射频波段,样品在射频电磁波作用下,粒子吸收电磁波的能量,从而产生核能级的跃迁。1932年发现中子后,才认识到核自旋是质子自旋和中子自旋之和,质子和中子都是自旋角动量为2 的费米子,只有质子数和中子数两者或其一为奇数时,核才有非零的核磁矩,正是这种磁性核才能产生核磁共振。 核磁共振信号可提供物质结构的丰富信息,如谱线的宽度、形状、面积、谱线在频率或磁场刻度上的准确位置、谱线的精细结构、超精细结构、弛豫时间等,加之是对样品的无损测量,广泛的应用于分子结构的确定、液相和固相的动力学研究、医用诊断、固体物理学、分析化学、分子生物学等领域,是确定物质结构、组成和性质的重要实验方法。核磁共振还是磁场测量和校准磁强计的标准方法之一,其不确定度可达001.0±%。 实验目的: (1)掌握核磁共振的实验原理和方法 (2)用核磁共振方法校准外磁场B ,测量氟核的F g 因子以及横向驰豫时间2T 2、实验原理 如原子处在磁场中会发生能级分裂一样,许多原子核处在磁场中也会发生能级的分裂,因为 原子核也存在自旋现象。质子和中子都是自旋角动量等于2 的费米子,当质子数和中子数都为偶数时原子核的磁矩为0,当其一为奇数时原子核磁矩为半整数,当两个都为奇数时核磁矩为整数。只有具有核磁矩的原子核才有核磁共振现象。 我们知道在微观世界里物理量都只能取分立的值,即都是量子化的。原子核的角动量也只能取分立的值 )1(+= I I p ,I 为自旋量子数,取分立的值。对于本实验用到的H 1和F 19,自旋量 子数I 都为1/2。沿z 方向的角动量为 m p z =,在这里m 只能取1/2或-1/2。而自旋角动量不为0的核具有核磁矩p m e g p 2F =,考虑沿z 轴方向则有N z p Z mgF p m e G F ==2,其中以 γ== p z m e F 2为原子核磁矩的基本单位,p m e 2=γ。 在没有磁场作用时,原子核的能量时一样的,但处于磁场中则会发生能级分裂, B m γ-B -F B F E Z =?=?-=,本实验中1=?m ,故有B E γ=?。外加一射频场,当满足一定 的条件时就会发生共振吸收,条件为πγγυ2hB B E h = =?= ,从而有共振频率B π γ υ2= 。通过

核磁共振实验报告

应物0903班 核磁共 振实验报告 王文广U8 苏海瑞 U8

核磁共振实验报告 一、实验目的 1.了解核样共振的基本原理 2.学习利用核磁共振测量磁场强度和原子核的g 因子的方法 二、实验内容 1.在加不同大小扫场情况下仔细观察水样品的核磁共振现象,记录每种情况下的共振峰形和对应的频率 2.仔细观察和判断扫场变化对共振峰形的影响,从中确定真正能应永久磁铁磁场0B 的共振频率,并以此频率和质子的公认旋磁比值 ()267.52MHz /T γ=计算样品所在位置的磁场0B 3.根据记录的数据计算扫场的幅度 4.研究射频磁场的强弱对共振信号强度的影响 5.观察聚四氟乙烯样品的核磁共振现象,并计算氟核的g 因子 三、实验原理 1.核磁共振现象与共振条件 原子的总磁矩j μ和总角动量j P 存在如下关系 22B j j j j e e B e g P g P P m h e e m πμμγμγ=-==为朗德因子,、是电子电荷和质量,称为玻尔磁子,为原子的旋磁比

对于自旋不为零的原子核,核磁矩j μ和自旋角动量j P 也存在如下关系 22N I N I N I I p e g P g P P m h πμμγ=-== 按照量子理论,存在核自旋和核磁矩的量子力学体系,在外磁场 0B 中能级将发生赛曼分裂,相邻能级间具有能量差E ?,当有外界条 件提供与E ?相同的磁能时,将引起相邻赛曼能级之间的磁偶极跃迁,比如赛曼能级的能量差为02B h E γπ ?= 的氢核发射能量为h ν的光子,当0= 2B h h γνπ 时,氢核将吸收这个光子由低塞曼能级跃迁到高塞曼能级,这种共振吸收跃迁现象称为“核磁共振” 由上可知,核磁共振发生和条件是电磁波的圆频率为 00B ωγ= 2.用扫场法产生核磁共振 在实验中要使0= 2B h h γνπ 得到满足不是容易的,因为磁场不是容易控制,因此我们在一个永磁铁0B 上叠加一个低频交谈磁场 sin m B B t ω=,使氢质子能级能量差 ()0sin 2m h B B t γωπ +有一个变化的区域,调节射频场的频率ν,使射频场的能量h ν能进入这个区域,这样在某一瞬间等式 ()0sin 2m h B B t γωπ +总能成立。如图,

磁共振实验报告

近代物理实验题目磁共振技术 学院数理与信息工程学院 班级物理082班 学号08220204 姓名 同组实验者 指导教师

光磁共振实验报告 【摘要】本次实验在了解如光抽运原理,弛豫过程、塞曼分裂等基本知识点的基础上,合理进行操作,从而观察到光抽运信号,并顺利测量g因子。 【关键词】光磁共振光抽运效应塞曼能级分裂超精细结构 【引言】光磁共振实际上是使原子、分子的光学频率的共振与射频或微波频率的磁共振同时发生的一种双共振现象。这种方法是卡斯特勒在巴黎提出并实现的。由于这种方法最早实现了粒子数反转,成了发明激光器的先导,所以卡斯特勒被人们誉为“激光之父”。光磁共振方法现已发展成为研究原子物理的一种重要的实验方法。它大大地丰富了我们对原子能级精细结构和超精细结构、能级寿命、塞曼分裂和斯塔克分裂、原子磁矩和g因子、原子与原子间以及原子与其它物质间相互作用的了解。利用光磁共振原理可以制成测量微弱磁场的磁强计,也可以制成高稳定度的原子频标。 【正文】 一、基本知识 1、铷原子基态和最低激发态能级结构及塞曼分裂 本实验的研究对象为铷原子,天然铷有两种同位素;85Rb(占72.15%)和87Rb(占27.85%).选用天然铷作样品,既可避免使用昂贵的单一同位素,又可在一个样品上观察到两种原子的超精细结构塞曼子能级跃迁的磁共振信号.铷原子基态和最低激发态的能级结构如图1所示.在磁场中,铷原子的超精细结构能级产生塞曼分裂.标定这些分裂能级的磁量子数m F=F,F-1,…,-F,因而一个超精细能级分裂为2F+1个塞曼子能级. 设原子的总角动量所对应的原子总磁矩为μF,μF与外磁场B0相互作用的能量为 E=-μF·B0=g F m FμF B0(1) 这正是超精细塞曼子能级的能量.式中玻尔磁子μB=9.2741×10-24J·T-1 ,朗德因子g F= g J [F(F+1)+J(J+1)-I(I+1)] ? 2F(F+1)(2) 图1 其中g J= 1+[J(J+1)-L(L+1)+S(S+1)] ? 2J(J+1)(3) 上面两个式子是由量子理论导出的,把相应的量子数代入很容易求得具体数值.由式(1)可知,相邻塞曼子能级之间的能量差 ΔE=g FμB B0(4) 式中ΔE与B0成正比关系,在弱磁场B0=0,则塞曼子能级简并为超精细结构能级.

核磁共振成像实验报告

中国石油大学 近代物理实验 实验报告 成 绩: 班级: 姓名 同组者: 教师: 核磁共振实验 【实验目的】 1、理解核磁共振的基本原理; 2、理解磁体的中心频率和拉莫尔频率的关系,并掌握拉莫尔频率的测量方法; 3、掌握梯度回波序列成像原理及其成像过程; 4、掌握弛豫时间的计算方法,并反演 T1和T2谱。 【实验原理】 一.核磁共振现象 原子核具有磁矩,氢原子核在绕着自身轴旋转的同时,又沿主磁场方向B 0作圆周运动,将质子磁矩的这种运动称之为进动,如图1所示。 图1 质子磁矩的进动 在主磁场中,宏观磁矩像单个质子磁矩那样作旋进运动,磁矩进动的频率符合拉莫尔(Larmor )方程:. 0/2f B γπ= 二、施加射频脉冲后(氢)质子状态 当生物组织被置于一个大的静磁场中后,其生物组织内的氢质子顺主磁场方向的处于低能态而逆主磁场方向者为高能态。在低能态与高能态之间根据静磁场场强大小与当时的温度,势必要达到动态平衡,称为“热平衡”状态。这种热平衡状态中的氢质子,被施以频率与质子群的旋进频率一致的射频脉冲时,将破坏原来的热平衡状态。施加的射频脉冲越强,

持续时间越长,在射频脉冲停止时,M离开其平衡状态B0越远。 如用以B0为Z轴方向的直角座标系表示M,则宏观磁化矢量M平行于XY平面,而纵向磁化矢量Mz=0,横向磁化矢量Mxy最大,如图2所示。这时质子群几乎以同样的相位旋进。施加180°脉冲后,M与B0平行,但方向相反,横向磁化矢量Mxy为零,如图3所示。 图2 90°脉冲后横向磁化矢量达到最大 图3 180°脉冲后的横向磁化分量为0 三、射频脉冲停止后(氢)质子状态 脉冲停止后,宏观磁化矢量又自发地回复到平衡状态,这个过程称之为“核磁弛豫”。当90°脉冲停止后,M仍围绕B0轴旋转,M末端螺旋上升逐渐靠向B0,如图4所示。 图4 90度脉冲停止后宏观磁化矢量的变化 1. 纵向弛豫时间(T1) 90°脉冲停止后,纵向磁化矢量要逐渐恢复到平衡状态,测量时间距射频脉冲终止的时

核磁共振实验报告及数据

核磁共振实验报告及数据核磁共振实验报告及数据 2011年04月20日核磁共振1了解核磁共振的基本原理教学目的2学习利用核磁共振校准磁场和测量g因子的方法3理解驰豫过程并计算出驰豫时间。重难点1核磁共振的基本原理2磁场强度和驰豫时间的计算。教学方法讲授、讨论、实验演示相结合。学时3个学时一、前言核磁共振是重要的物理现象。核磁共振技术在物理、化学、生物、医学和临床诊断、计量科学、石油分析与勘探等许多领域得到重要应用。自旋角动量P不为零的原子核具有相应的磁距μ而且其中称为原子核的旋磁比是表征原子核的重要物理量之一。当存在外磁场B时核磁矩和外磁场的相互作用使磁能级发生塞曼分裂相邻能级的能量差为其中hh/2πh为普朗克常数。如果在与B垂直的平面内加一个频率为ν的射频场当时就发生共振现象。通常称y/2π为原子核的回旋频率一些核素的回旋频率数值见附录。核磁共振实验是理科高等学校近代物理实验课程中的必做实验之一如今许多理科 院校的非物理类专业和许多工科、医学院校的基础物理实验课程也安排了核磁共振实验或演示实验。利用本装置和用户自备的通用示波器可以用扫场的方式观察核磁共振现象 并测量共振频率适合于高等学校近代物理实验基础实验教 学使用。二、实验仪器永久磁铁含扫场线圈、可调变阻器、探头两个样品分别为、和、数字频率计、示波器。三、实

验原理一核磁共振的稳态吸收核磁共振是重要的物理现象核磁共振实验技术在物理、化学、生物、临床诊断、计量科学和石油分析勘探等许多领域得到重要应用。1945年发现核磁共振现象的美国科学家Purcell和Bloch1952年获诺贝尔物理学奖。在改进核磁共振技术方面作出重要贡献的瑞士科学家Ernst1991年获得诺贝尔化学奖。大家知道氢原子中电子的能量不能连续变化只能取分立的数值在微观世界中物理量只能取分立数值的现象很普通本实验涉及到的原子核自旋角动量也不能连续变化只能取分立值其中I称为自旋量子数只能取0123?6?7等整数值或1/23/25/2?6?7等半整数值公式中的h/2π而h为普朗克常数对不同的核素I分别有不同的确定数值本实验涉及质子和氟核F19的自旋量子数I 都等于1/2类似地原子核的自旋角动量在空间某一方向例如z方向的分量也不能连续变化只能取分立的数值Pzm 。其中量子数m只能取II-1?6?7-II-I等2I1个数值。自旋角动量不为零的原子核具有与之相联系的核自旋磁矩其大小为 1 其中e为质子的电荷M为质子的质量g是一个由原子核结构决定的因子对不同种类的原子核g的数值不同g称为原子核的g因子值得注意的是g可能是正数也可能是负数因此核磁矩的方向可能与核自旋动量方向相同也可能相反。由于核自旋角动量在任意给定z方向只能取2I1个分立的数值因此核磁矩在z方向也只能取2I1个分立的数值。2 原子核的磁

核磁共振成像实验报告

核磁共振成像实验 【目的要求】 1.学习和了解核磁共振原理和核磁共振成像原理; 2.掌握MRIjx 核磁共振成像仪的结构、原理、调试和操作过程; 【仪器用具】 MRIjx 核磁共振成像仪、计算机、样品(油) 【原 理】 磁共振成像(MRI )是利用射频电磁波(脉冲序列)对置于静磁场B 0中的含有自旋不为零的原子核(1H )的物质进行激发,发生核磁共振,用感应线圈检测技术获得物质的组织驰豫信息和氢质子密度信息(采集共振信号),用梯度磁场进行空间定位、通过图像重建,形成磁共振图像的方法和技术。 具体的讲,核磁共振是利用核磁共振现象获取分子结构、样品内部结构信息的技术。当具有自旋的原子核的磁矩处于静止外磁场中时会产生进动和能级分裂。在交变磁场作用下,自旋的原子核会吸收特定频率的无线电射频电磁波,从较低的能级跃迁到较高能级。在停止射频脉冲后,原子核按特定频率发出射电信号,并将吸收的能量释放出来,被物体外的接受器收录,经电子计算机处理获得图像,这就是做核磁共振成像过程。 MRI 的特点: ● 具有较高的物质组织对比度和组织分辨力,对软组织分辨率极佳,能清晰地显示软组织、软骨结构,解剖结构和医学上的病变形态,显示清楚、逼真。 ● 多方位成像,能对被检查部位进行横断面、冠状面、矢状面以及任何斜面成像。 ● 多参数成像,获取T 1加权成像(T 1W1):T 2加权成像(T 2W2)、质子密度加权成像(PDW1),在影像上取得物质的组织之间、组织与变化之间T 1、T 2和PD 的信号对比,在医学上对显示解剖结构和病变敏感。 ● 能进行形态学、功能、组织化学和生物化学方面的研究。 ● 以射频脉冲作为成像的能量源,不使用电离辐射,对人体安全、无创。 一、核磁共振原理 产生核磁共振信号必须满足三个基本条件:(1)能够产生共振跃迁的原子核;(2)恒定的静磁场(外磁场、主磁场)B 0;(3)产生一定频率电磁波的交变磁场,射频磁场(RF );即:“核”:共振跃迁的原子核;“磁”:主磁场B 0和射频磁场RF ;“共振”:当射频磁场的频率与原子核进动的频率一致时原子核吸收能量,发生能级间的共振跃迁。 1. 原子核的自旋和磁矩 原子核由质子和中子组成,原子核有自旋运动,可以粗略的理解为原子核绕自身的轴向高速旋转的运动,对应有确定的自旋角动量,反映了原子核的内禀特性。自旋的大小与原子核中的核子数及其分布有关,质子数和中子数均为偶数的原子核,自旋量子数I=0,质量数为奇数的原子核,自旋量子数为半整数,质量数为偶数,质子数为奇数的原子核,自旋量子数为整数。原子核自旋角动量的具体数值由原子核的自旋量子数I 决定, )(1+=I I l I 。 原子核具有电荷分布,自旋时形成循环电流,产生磁场,形成磁矩,磁矩的方向与自旋角动量方向一致,大小I P γγμ==,P 是角动量,γ是磁旋比,等于

电子顺磁共振 实验报告

电子顺磁共振实验报告 一、实验目的 1. 学习电子顺磁共振的基本原理和实验方法;; 2. 了解、掌握电子顺磁共振谱仪的调节与使用; 3.测定DMPO-OH的EPR 信号。 二、实验原理 1.电子顺磁共振(电子自旋共振) 电子自旋共振(Electron Spin Resonance, ESR)或电子顺磁共振(Electron Paramagnanetic Resonance,EPR),是指在稳恒磁场作用下,含有未成对电子的原子、离子或分子的顺磁性物质,对微波发生的共振吸收。1944年,苏联物理学家扎沃伊斯基(Zavoisky)首次从CuCl2、MnCl2等顺磁性盐类发现。电子自旋共振(顺磁共振)研究主要对象是化学自由基、过渡金属离子和稀土离子及其化合物、固体中的杂质缺陷等,通过对这类顺磁物质电子自旋共振波谱的观测(测量因子、线宽、弛豫时间、超精细结构参数等),可了解这些物质中未成对电子状态及所处环境的信息,因而它是探索物质微观结构和运动状态的重要工具。由于这种方法不改变或破坏被研究对象本身的性质,因而对寿命短、化学活性高又很不稳定的自由基或三重态分子显得特别有用。近年来,一种新的高时间分辨ESR技术,被用来研究激光光解所产生的瞬态顺磁物质(光解自由基)的电子自旋极化机制,以获得分子激发态和自由基反应动力学信息,成为光物理与光化学研究中了解光与分子相互作的一种重要手段。电子自旋共振技术的这种独特作用,已经在物理学、化学、生物学、医学、考古等领域得到了广泛的应用。 2.EPR基本原理 EPR 是把电子的自旋磁矩作为探针,从电子自旋磁矩与物质中其它部分的相互作用导致EPR 谱的变化来研究物质结构的,所以只有具有电子自旋未完全配对,电子壳层只被部分填充(即分子轨道中有单个排列的电子或几个平行排列的电子)的物质,才适合作EPR 的研究。不成对电子有自旋运动,自旋运动产生自旋磁矩, 外加磁场后,自旋磁矩将平行或反平行磁场方向排列。经典电磁学可知,将磁矩为μ的小磁体放在外磁场H 中,它们的相互作用能为: E=-μ· H = -μH cosθ 这里θ为μ与H之间的夹角,当θ= 0 时,E = -μH, 能量最低,体系最稳定。θ=π时,E=μH,能量最高。如果体系从低能量状态改变到高能量状态,需要外界提供能量;反之,如果体系由高能量状态改变为低能量状态,体系则向外释放能量。

核磁共振实验报告电子版

核磁共振实验报告 04级11系姓名:徐文松学号:PB04210414 日期:2006.05.12 CONTENTS OF THIS REPORT (Click while press CTRL to locate it) return 核磁共振 return 1.观察核磁共振稳态吸收现象; 2.掌握和磁共振基本试验原理和方法; 值和g因子。 3.测量1H和19F的 return 1.核自旋

原子核具有自旋,其自旋角动量为 h I I p )1(1+= 其中I 是核自旋量子数,其值为半整数或整数。当质子数和质量数均为偶数时,I=0,当质量数为偶数而质子数为奇数时,I=0,1,2…,当质量数为奇数时,I=2n (n=1,3,5…). 2. 核磁矩 原子核带有电荷,因而具有子旋磁矩,其大小为 )1(211+==I I g p m e g N N μμ N N m eh 2=μ 式中g 为核的朗德因子,对质子,g =5.586,N m 为原子核质量,N μ为核磁子,N μ= 227100509.5m A ??-,令 g m e N 2= γ 显然有 I I p γμ= γ称为核的旋磁比。 3. 核磁矩在外磁场中的能量 核自旋磁矩在外磁场中会进动。进动的角频率 00B γω= 0B 为外恒定磁场。 4.核磁共振 实现核磁共振,必须有一个稳恒的外磁场 O B 及一个与O B 和总磁矩m 所组成的平面相垂直的旋转磁场1B ,当1B 的角频率等于0ω时,旋转磁场的能量为E h ?=0ω,则核吸收此旋转磁场能量,实现能级间的跃迁,即发生核磁共振。 此时应满足

00B h g h E N μω==? 00B γω= h 为普朗克常数。 改变O B 或ω都会使信号位置发生相对移动,当共振信号间距相等重复频率为f π4时,表示共振发生在调制磁场的相位为02=ft π,π,π2,… 此时,若已知样品的γ,测出对于能够的射频场频率ν,即可算出O B 。反之测出O B ,可算出γ和g 因子。 本次实验的装置包括电磁铁、边限振荡器、探头及样品、频率计、示波器及移相器等。 return 1. 观察1()H 的核磁共振信号(图像见原始数据): (1) 固定电压调节射频场的频率 如图组一所示,当ω改变时,共振磁场 γω=B 也就发生改变,因此相邻峰的间距改变, 而相隔的两个峰间距不变。 f

核磁共振实验报告

核磁共振实验报告 一、实验目的与实验仪器 1.实验目的 (1)了解核磁共振的基本原理; (2)学习利用核磁共振校准磁场和测量因子g的方法: (3)掌握利用扫场法创造核磁共振条件的方法,学会利用示波器观察共振吸收信号; (4)测量19F的g N因子。 2.实验仪器 NM-Ⅱ型核磁共振实验 装置,水样品和聚四氟乙烯 样品。 探测装置的工作原理: 图一中绕在样品上的线圈是边限震荡器电路的一部分,在非磁共振状态下它处在边限震荡状态(即似振非振的状态),并把电磁能加在样品上,方向与外磁场垂直。当磁共振发生时,样品中的粒子吸收了震荡电路提供的能量使振荡电路的Q值发生变化,振荡电路产生显著的振荡,在示波器上产生共振信号。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式)

原子核自旋角动量不能连续变化,只能取分立值即: P = 其中I 称为自旋量子数,I=0,1/2,1,3/2,2,5/2,…本实验涉及的质子和氟核 F 19 的自旋量子数I 都等于1/2。类似地原子核的自旋角动量在空间某一方向,例如z 方向的分量不能连续变化,只能取分立的数值 自旋角动量不为零的原子核具有与之相联系的核自旋磁矩, 其大小为: P 2M e g =μ 其中e 为质子的电荷,M 为质子的质量,g 是一个由原子核结构决定的因子,对不同种类的原子核g 的数值不同,g 成为原子核的g 因子。由于核自旋角动量在任意给定的z 方向的投影只可能取(2I+1)个分立的数值,因此核磁矩在z 方向上的投影也只能取(2I+1)个分立的数值: 2M e g p 2M e g m z z ==μ 原子核的磁矩的单位为: 2M e N = μ 当不存在外磁场时,原子核的能量不会因处于不同的自旋状态而不同。通常把B 的方向规定为z 方向,由于外磁场B 与磁矩的相互作用能为: B B P B B E z z m γγμμ-=-=-=?-= 核磁矩在加入外场B 后,具有了一个正比于外场的频率。量子数

核磁共振nmr实验报告

核磁共振实验报告 1.实验目的 了解核磁共振的基本原理;学习使用核磁共振波谱仪,分析样品的结构和组分。 2.实验原理 原子核除具有电荷和质量外,约有半数以上的元素的原子核还能自旋。由于原子核是带正电荷的粒子,它自旋就会产生一个小磁场。具有自旋的原子核处于一个均匀的固定磁场中,它们就会发生相互作用,结果会使原子核的自旋轴沿磁场中的环形轨道运动,这种运动称为进动。 自旋核的进动频率ω0与外加磁场强度H0成正比,即ω0=γH0,式中γ为旋磁比,是一个以不同原子核为特征的常数,即不同的原子核各有其固有的旋磁比γ,这就是利用核磁共振波谱仪进行定性分析的依据。从上式可以看出,如果自旋核处于一个磁场强度H0的固定磁场中,设法测出其进动频率ω0,就可以求出旋磁比γ,从而达到定性分析的目的。同时,还可以保持ω0不变,测量H0,求出γ,实现定性分析。 图1 核磁共振波谱仪原理图 核磁共振波谱仪就是在这一基础上,利用核磁共振的原理进行测量的核磁共振广泛用于化合物的结构测定,定量分析和动物学研究等方面。它与紫外、红外、质谱和元素分析等技术配合,是研究测定有机和无机化合物的重要工具。

如果有一束频率为ω的电磁辐射照射自旋核,当ω=ω0时,则自旋核将吸收其辐射能而产生共振,即所谓核磁共振。吸收能量的大小取决于核的多少。这一事实,除为测量γ提供途径外,也为定量分析提供了根据。具体的实现方法是:在固定磁场H0上附加一个可变的磁场。两者叠加的结果使有效磁场在一定范围内变化,即H0在一定范围内可变。另置一能量和频率稳定的射频源,它的电磁辐射照射在处于磁场中的样品上,并用射频接收器测量经样品吸收后的射频辐射能。在样品无吸收时,则接收的能量为一定值;如果有吸收,就会给出一个能量吸收信号。但吸收的条件必须是射频的频率ω=ω0。射频的频率是固定的,要使具有不同γ值的不同原子核都能吸收辐射能,就只有改变H0,使不同的自旋核在相应的某一特定的H0时具有相同的并与射频频率相等的进动频率,即ω=ω0。这样,不同的自旋核都可以在某一特征的磁场强度下吸收射频辐射能而产生核磁共振。因此,用改变磁场强度的方法进行扫描,接收器就可以给出一系列的以磁场强度(实际上是以旋磁比)为特征的吸收信号。以磁场强度为横坐标,以吸收能量为纵坐标绘出的曲线就是核磁共振波谱图。其中横坐标就是定性分析所依据的参数,纵坐标对应于不同H0的出峰面积就是定量分析参数。 3.实验仪器 本次实验使用的是Bruker公司A V ANCE系列400MHz超导傅里叶变化核磁共振波谱仪。 4.仪器构造、组成 下图是A V ANCE 400MHz核磁共振波谱仪结构及组成。整个系统由机体、主机柜和控制台组成。控制台发出的电磁信号经主机柜转化为模拟信号,从而控制机体完成实验的过程;机体检测器采集的模拟信号经主机柜转为电信号,范围到控制台,保存为核磁波谱图。 机体由超导磁体、进样器、检测器等组成,超导磁体是核磁波谱仪的核心部件,用来产生仪器工作所需的磁场,为保持稳定,超导磁体的周围有36组线圈,用以补偿不均匀的的磁场。超导磁体的周围有液氮和液氦的冷却池,用来保持超导磁体所需的低温环境(液氮约每星期补充一次,液氦约半年补充一次)。该仪器配有60位自动进样器,可以安排序列实验。检测器由发射线圈和接收线圈组成,用以检测样品的核磁信号。

核磁共振实验报告

关于核磁共振现象的实验研究与讨论 崔泽轮0942024018 物理学院核工程与核技术专业 摘要:利用连续波法观察了核磁共振现象,测定了H核的核磁共振频率,计算了H核的核磁共振参数,研究了H核在扫场频率和振荡幅度分别作用下的饱和现象。 关键词:核磁共振;共振频率;共振信号;饱和现象;匀强磁场 引言 核磁共振是指具有磁矩的原子核在恒定磁场中,由电磁波引起的共振跃迁现象。1945年12月,珀塞尔等人首先在石蜡样品中观察到核磁共振吸收信号,之后核磁共振领域得到广泛关注,许多物理学家进入这个领域,并取得了丰硕成果。目前,核磁共振技术已经广泛应用于物理、化学、生物、医学等各个领域并发挥着日益重要的作用。它在测定原子核磁矩以及研究原子核结构方面是直接而且准确的方法,也是精确测量磁场的重要方法之一。 虽然产生核磁共振的原理是相同的,但对核磁共振现象的观察与研究的试验方法却有很多,其中连续波的方法易于操作和观察[1],结果直观易得,故本实验采用这种方法。关于实验原理,本实验并不深究。本实验重点在于观察核磁共振现象,并验证核磁共振原理的若干相关推论,而后对实验中的一些现象作一些分析和讨论,探明这些现象的原因。 1 实验部分 1.1 使用试剂 本实验主要探究H原子核,即质子,在不同化学环境中的共振现象,以及F核在原子状态下的核磁共振现象。关于H核,实验试剂选择了五种:1%的Mn Cl2溶液、1%的CuSO4溶液、1%的FeCl3溶液三种试剂属于弱酸性,且酸性依次增强;纯水呈中性;丙三醇属于有机物。关于F核,实验选择以原子状态存在的F为研究对象。 2.2 实验方法 本实验采用连续波的方法。首先有用此帖产生一个恒定匀强磁场B01,再由扫场线圈在B01上叠加一个旋进磁场B02= Asinω0t叠加后的匀强磁场为B0=B01+Asinω0t,即其在一定范围内做正弦运动。有信号检测器在探头内产生一个与B0垂直的正弦运动的磁场B1=2Asinω0t 其中B1的角频率ω可调。设Bω=ω/γ,则每当B1在运动过程中扫过Bω时,产生一次共振。故共振现象随扫场频率周期性发生。由示波器可观察共振信号。 1.3 设备与规格 ZKY-HG-Ⅱ型专业级边限振荡器核磁共振实验仪:包括边限振荡器、频率计、扫场电源部分、信号检测器以及匀强磁场等部分构成。其中边限振荡器用以产生横向磁场B1;频率计用以调节和显示信号检测器振荡线圈中的信号频率大小和信号幅度;扫场电源部分用以在匀强磁场B01上叠加一个旋进磁场B02,用以控制共振周期性发生,从而减小饱和对信号强度的影响;信号检测器是对振荡线圈频率控制和对试剂共振信号的检测和处理的装置;匀强磁场由两块永磁铁产生。 数字双踪示波器,用以观测共振信号。 1.4实验过程 1.4.1 观察硫酸铜中H核的共振图像

核磁共振的稳态吸收实验

电子信息与机电工程 学院 现代物理实验 实验报告 年级 班 号 实验日期: 姓名: 老师评定: 核磁共振的稳态吸收 一、实验目的 1、了解核磁共振原理 2、利用核磁共振方法确定样品的旋磁比γ、朗德因子g N 和原子核的磁矩μI 3、用核磁共振测磁场强度 二、实验原理 1. 单个核的磁共振 通常将原子核的总磁矩在其角动量P 方向上的投影μ 称为核磁矩,它们之间的关系通常写成 P m e g P P N ??=?=2μγμ或 式中P N m e g 2? =γ称为旋磁比;e 为电子电荷;m 为质子质量;N g 为朗德因子。对氢核来说,5851.5=N g 按照量子力学,原子核角动量的大小由下式决定 ()h I I P 1+= 式中π2h h =,h 为普朗克常数。I 为核的自旋量子数,可以取 ,2 3 ,1,21,0=I 对氢核来说2 1= I 把氢核放入外磁场B 中,可以取坐标轴z方向为B 的方向。核的角动量在B 方向上的投影值由下式决定

电子信息与机电工程 学院 现代物理实验 实验报告 年级 班 号 实验日期: 姓名: 老师评定: h m P B = (2—3) 式中m 称为磁量子数,可以取I I I I m ----=),1(,1, 。核磁矩在B 方向上的投影为 m m eh g P m e g P N B P N B )2(2==μ 将它写为 m g N N B μμ= (2—4) 式中2715.0578710N JT μ--=?称为核磁子,是核磁矩的单位。 磁矩为μ 的原子核在恒定磁场B 中具有的势能为 mB g B B E N N B μμμ-=-=?-= 任何两个能级之间的能量差为 )(2121m m B g E E E N N m m --=-=?μ (2—5) 考虑最简单情况,对氢核而言,自旋量子数2 1 = I ,所以磁量子数m 只能取两个值,即2 1 21-== 和m 。磁矩在外磁场方向上的投影也只能取两个值,如图2—1中的(a )所示,与此相对应的能级如图2—1中(b )所示。

核磁共振实验报告

核 磁 共 振 实验仪器 FD-CNMR-I 型核磁共振实验仪,包括永久磁铁、射频边限振荡器、探头、样品、频率计、示波器 实验原理 FD-CNMR-I 型核磁共振实验仪采用永磁铁,0B 是定值,所以对不同的样品,通过扫频法调节射频场的频率使之达到共振频率0ν,满足共振条件,核即从低能态跃迁至高能态,同时吸收射频场的能量,使得线圈的Q 值降低产生共振信号。 由于示波器只能观察交变信号,所以必须使核磁共振信号交替出现,FD-CNMR-I 型核磁共振实验仪采用扫场法满足这一要求。在稳恒磁场0B 上叠加一个低频调制磁场 )sin(t B m ?'ω,这个调制磁场实际是由一对亥姆霍兹线圈产生,此时样品所在区域的实际 磁场为)sin(0t B B m ?'+ω。 图1 扫场法检测共振吸收信号 (a) 由于调制场的幅值m B 很小,总磁场的方向保持不变,只是磁场的幅值按调制频率发生周期性变化,拉摩尔进动频率ω也相应地发生周期性变化,即 ))sin((0t B B m ?'+?=ωγω (1) 这时只要射频场的角频率调在ω变化范围之内,同时调制磁场扫过共振区域,即 m m B B B B B +≤≤-000,则共振条件在调制场的一个周期内被满足两次,所以在示波器 上观察到如图(b )所示的共振吸收信号。此时若调节射频场的频率,则吸收曲线上的吸收

峰将左右移动。当这些吸收峰间距相等时,如图(a )所示,则说明在这个频率下的共振磁场为0B 。 如果扫场速度很快,也就是通过共振点的时间比弛豫时间小得多,这时共振吸收信号的形状会发生很大的变化。在通过共振点后,会出现衰减振荡,这个衰减的振荡称为“尾波”,尾波越大,说明磁场越均匀。 实验步骤 (一) 熟悉各仪器的性能并用相关线连接 实验中,FD-CNMR-I 型核磁共振仪主要应用五部分:磁铁、磁场扫描电源、边限振荡器(其上装有探头,探头内装样品)、频率计和示波器。仪器连线 (1) 首先将探头旋进边限振荡器后面板指定位置,并将测量样品插入探头内; (2) 将磁场扫描电源上“扫描输出”的两个输出端接磁铁面板中的一组接线柱(磁铁面板上共有四组,是等同的,实验中可以任选一组),并将磁场扫描电源机箱后面板上的接头与边限振荡器后面板上的接头用相关线连接; (3) 将边限振荡器的“共振信号输出”用Q9线接示波器“CH1通道”或者“CH2通道”,“频率输出”用Q9线接频率计的A 通道(频率计的通道选择:A 通道,即MHz Hz 1001--;FUNCTION 选择:FA ;GATE TIME 选择:1S ); (4) 移动边限振荡器将探头连同样品放入磁场中,并调节边限振荡器机箱底部四个调节螺丝,使探头放置的位置保证使内部线圈产生的射频磁场方向与稳恒磁场方向垂直; (5) 打开磁场扫描电源、边线振荡器、频率计和示波器的电源,准备后面的仪器调试。 (二) 核磁共振信号的调节 FD-CNMR-I 型核磁共振仪配备了六种样品:1——硫酸铜、2——三氯化铁、3——氟碳、4——丙三醇、5——纯水、6——硫酸锰。 (1)将磁场扫描电源的“扫描输出”旋钮顺时针调节至接近最大(旋至最大后,再往回旋半圈,因为最大时电位器电阻为零,输出短路,因而对仪器有一定的损伤),这样可以加大捕捉信号的范围;

核磁共振实验报告

浙 江 师 范 大 学 实 验 报 告 实验名称核磁共振 班 级 物理071 姓名 骆宇哲 学号 07180132 同 组 人 沈宇能 实验日期 09/12/3 室温 气温 核磁共振 摘 要:本实验中 ,学生将会了解核磁共振的基本原理;学习到利用核磁共振校准磁场和 测量g 因子的方法 关键词:塞曼能级分裂 扫场系统 扫频系统 引 言:核磁共振,是指具有磁矩的原子核在恒定磁场中由电磁波引起的共振跃迁现象。1945年12月,美国哈佛大学帕塞尔等人,报道了他们在石蜡样品中观察到质子的核磁共振吸收信号;1946年1月,美国斯坦福大学布洛赫等人,也报道了他们在水样品中观察到质子的核感应信号。两个研究小组用了稍微不同的方法,几乎同时在凝聚物质中发现了核磁共振。因此,1945年发现核磁共振现象的美国科学家珀塞耳(Purcell )和布珞赫(Bloch )1952年获得诺贝尔化学奖。以后,许多物理学家进入了这个领域,取得了丰硕的成果。目前,核磁共振已经广泛地应用到许多学科领域,是物理、化学、生物、临床诊断、计量科学和石油分析与勘探等研究中的一项重要实验技术。它是测定原子的核磁矩和研究核结构的直接而又准确的方法,也是精确测量磁场和稳定磁场的重要方法之一。 正文: 一、 实验原理 大家知道,氢原子中电子的能量不能连续变化,只能取离散的数值。在微观世界中物理量只能取离散数值的现象很普遍。本实验涉及到的原子核自旋角动量也不能连续变化,只能取离散值 ,其中I 称为自旋量子数,只能取0,1,2,3,…整数值或1/2,3/2,5/2,…半整数值。公式中的 ,而h 为普朗克常数。对不同的核素,I 分别有不同的确定数值。本实验涉及的质子和氟核19F 的自旋量子数I 都等于1/2。类似地,原子核的自旋动量在空间某一方向,例如z 方向的分量也不能连续变化,只能取离散的数值 ,其中量子数m 只能取I ,I -1,…,-I +1,-I 共(2I+1)个数值。 自旋角动量不为零的原子核具有与之相联系的核自旋磁矩,其大小为 p M 2e g =μ (1) 其中e 为质子的电荷,M 为质子的质量,g 是一个由原子核结构决定的因子,对不同种类的原子核g 的数值不同,g 称为原子核的g 因子,值得注意的是g 可能是正数,也可能是负数,因此,核磁矩的方向可能与核自旋角动量方向相同,也可能相反。 当不存在磁场时,每一个原子核的能量相同,所有原子处在同一能级,但是,当施加一个外磁场B 后,情况发生变化,为了方便起见,通常把B 的方向规定为z 方向,由于外磁场B 与磁矩的相互作用能为 E=-μ·B=-μz B=-γp z B=-γm ηB (2) 因此量子m 取值不同的核磁矩的能量也就不同,从而原来简并的同一能级分裂为(2I+1)个子能级,由于在外磁场中各个子能级的能量与量子数间隔△E=γηB 全是一样的。 当施加外磁场B 以后,原子核在不同能级上的分布服从玻尔兹曼分布,显然处在下能级的粒子数要比上能级的多, 其数量由△E 大小、系统的温度和系统总粒子数决定。若再在与B 垂直的方向上再施加上一个高频电磁场(通常为射频场),当射频场的频率满足h ν=△E 时会引起原子核在上下能级之间跃迁, 但由于一开始处在下能级的核比在上能级的核要多,因此净效果是上跃迁的比下跃迁的多,从而使系统的总能量增加,这相当于系统从射频场中吸收了能量。 我们把hv=△E 时引起的上述跃迁称为共振跃迁,简称为共振。显然共振要求hv=△E,

核磁共振实验报告

应物0903班 核磁共振实 验报告 王文广U200910198 苏海瑞U200910218

核磁共振实验报告 一、实验目的 1.了解核样共振的基本原理 2.学习利用核磁共振测量磁场强度和原子核的g 因子的方法 二、实验内容 1.在加不同大小扫场情况下仔细观察水样品的核磁共振现象,记录每种情况下的共振峰形和对应的频率 2.仔细观察和判断扫场变化对共振峰形的影响,从中确定真正能应永久磁铁磁场0B 的共振频率,并以此频率和质子的公认旋磁比值 ()267.52MHz /T γ=计算样品所在位置的磁场0B 3.根据记录的数据计算扫场的幅度 4.研究射频磁场的强弱对共振信号强度的影响 5.观察聚四氟乙烯样品的核磁共振现象,并计算氟核的g 因子 三、实验原理 1.核磁共振现象与共振条件 原子的总磁矩j μr 和总角动量j P r 存在如下关系 22B j j j j e e B e g P g P P m h e e m πμμγμγ=-==r r r r 为朗德因子,、是电子电荷和质量,称为玻尔磁子,为原子的旋磁比 对于自旋不为零的原子核,核磁矩j μr 和自旋角动量j P r 也存在如下 关系

22N I N I N I I p e g P g P P m h πμμγ=-==r r r r 按照量子理论,存在核自旋和核磁矩的量子力学体系,在外磁场 0B 中能级将发生赛曼分裂,相邻能级间具有能量差E ?,当有外界条 件提供与E ?相同的磁能时,将引起相邻赛曼能级之间的磁偶极跃迁,比如赛曼能级的能量差为02B h E γπ ?= 的氢核发射能量为h ν的光子,当0= 2B h h γνπ 时,氢核将吸收这个光子由低塞曼能级跃迁到高塞曼能级,这种共振吸收跃迁现象称为“核磁共振” 由上可知,核磁共振发生和条件是电磁波的圆频率为 00B ωγ= 2.用扫场法产生核磁共振 在实验中要使0= 2B h h γνπ 得到满足不是容易的,因为磁场不是容易控制,因此我们在一个永磁铁0B 上叠加一个低频交谈磁场 sin m B B t ω=,使氢质子能级能量差 ()0sin 2m h B B t γωπ +有一个变化的区域,调节射频场的频率ν,使射频场的能量h ν能进入这个区域,这样在某一瞬间等式 ()0sin 2m h B B t γωπ +总能成立。如图, 由图可知,当共振信号非等间距时共振点处 ()0sin 2m h B B t γωπ +,