八年级下册数学苏科版 第十一章 反比例函数常见几何模型

八年级下册数学苏科版  第十一章   反比例函数常见几何模型
八年级下册数学苏科版  第十一章   反比例函数常见几何模型

反比例函数常见模型

一、知识点回顾

1..反比例函数的图像是双曲线,故也称双曲线y=k

x

k≠0).其解析式有三种表示方法:

①x

k y =

(0≠k );②1-=kx y (0≠k );③k xy = 2.反比例函数y=k

x

(k≠0)的性质

(1)当k>0时?函数图像的两个分支分别在第一,三象限内?在每一象限内,y 随x 的增大而减小.

(2)当k<0时?函数图像的两个分支分别在第二,四象限内?在每一象限内,y 随x 的增大而增大.

(3)在反比例函数y=k

x

中,其解析式变形为xy=k ,故要求k 的值(也就是求其图像上一点横坐标与纵坐标之积).

(4)若双曲线y=

k

x

图像上一点(a ,b )满足a ,b 是方程Z 2-4Z -2=0的两根,求双曲线的解析式.由根与系数关系得ab=-2,又ab=k ,∴k=-2,故双曲线的解析式是y=2

x

-.

(5)由于反比例函数中自变量x 和函数y 的值都不能为零,所以图像和x 轴,y 轴都没有交点,但画图时要体现出图像和坐标轴无限贴近的趋势.

二、新知讲解与例题训练 模型一:

如图,点A 为反比例函数x

k y =图象上的任意一点,且AB 垂直于x 轴,

则有2||k S OAB =

?

例1:如图ABC Rt ?的锐角顶点是直线y=x+m 与双曲线y=

x

m

在第一象限的交点,且3=?AOB S ,(1)求m 的值 (2)求ABC ?的面积

变式题

1、如图所示,点1A ,2A ,3A 在x 轴上,且O 1A =21A A =32A A ,分别过1A ,2A ,3A 作y 轴平行线,与反比例函数y=

x

8

(x>0)的图像交于点1B ,2B ,3B ,分别过点1B ,2B ,3B 作x 轴的平行线,分别与y 轴交于点1C ,2C ,3C ,连结321,,OB OB OB ,那么图中阴影部分的面积之和为__________

2、 如图,点A 在双曲线1y x =

上,点B 在双曲线3

y x

=上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为 .

模型二:

如图:点A 、B 是双曲线)0(≠=k x

k y 任意不重合的两点,直线AB 交x 轴于M

点,交y 轴于N 点,再过A 、B 两点分别作y AD ⊥轴于D 点,x BF ⊥轴于F 点,再连结DF 两点,则有:AB DF ||且BM =AN

D

F

A

B

D

F M

N

x

y O

例2:如图,一次函数y a x b =+的图象与x 轴,y 轴交于A ,B 两点,与反比例函数k

y x

=

的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:①DEF CEF S S ??=;②AOB ?相似于FOE ?;③△DCE ≌△CDF ;④A C B D =其中正确的结论是 .(把你认为正确结论的序号都填上)

例3:一次函数y ax b =+的图象分别与x 轴、y 轴交于点,M N ,与反比例函数

k

y x

=

的图象相交于点,A B .过点A 分别作AC x ⊥轴,AE y ⊥轴,垂足分别为,C E ;过点B 分别作BF x ⊥轴,BD y ⊥轴,垂足分别为F D ,,AC 与BD 交于点K ,连接CD .

(1)若点A B ,在反比例函数k

y x

=

的图象的同一分支上,如图1,试证明: ①AEDK CFBK S S =四边形四边形;②AN BM =. (2)若点A B ,分别在反比例函数k

y x

=

的图象的不同分支上,如图2,则AN 与BM 还相等吗?试证明你的结论.

y x D

C A B O F E

图1

图2

模型三:

如图,已知反比例函数k

y x

=(k ≠0,x>0)上任意两点P 、C ,过P 做PA ⊥x 轴,

交x 轴于点A ,过C 做CD ⊥x 轴,交x 轴于点D ,则OPC PADC S S ?=梯形.

例4:如图,在直角坐标系中,一次函数y =k 1x+b 的图象与反比例函数2

k y x

=的图象交于A (1,4)、B (4,1)两点,则△AOB 的面积是______.

例5:如图,在直角坐标系中,一次函数1y k x b =+的图象与反比

例函数2

k y x

=

的图象交于A (1,4)、B (3,m )两点,则△AOB 的面积是______.

例6:如图1,已知直线12y x =与双曲线(0)k

y k x

=>交于A 、B 两

点,且点A 的横坐标为4. (1)求k 的值;

(2)如图2,过原点O 的另一条直线l 交双曲线(0)k

y k x

=>于C 、D 两点(点

C 在第一象限且在点A 的左边),当四边形ACB

D 的面积为24时,求点C 的坐标.

模型四:

在矩形

AOBC

中,OB

=

a,OA=b,分别以OB,OA所在直线为x轴和y轴,建

立如图所示的平面直角坐标系.F是BC上的一个动点(不与B、C重合),过F

点的反比例函数(0)

k

y x

x

=>的图象与AC边交于点E,则

CE a

CF b

=.

例7:两个反比例函数k

y

x

=和

1

y

x

=在第一象限内的图象如图所示,点P在

k

y

x

=的图象上,PC⊥x轴于点C,交1

y

x

=的图象于点A,PD⊥y轴于点D,交

1

y

x

=的图象于点B,当点P在k

y

x

=的图象上运动时,以下结论:

①△ODB与△OCA的面积相等;②四边形P AOB的面积不会发生变化;③P A与

PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正

确的是_________(把你认为正确结论的序号都填上).

课堂练习:

一、选择题

1、已知m<0,则函数mx

y=

1

x

m

y-

=

2

的图像如图,大致是()

x

B

F

C

E

A

O

y

A. B. C. D 2、如图,点A 在双曲线x

y 6

=

上,且OA=4,过点 A 作AC ⊥x 轴,垂足为c ,OA 的垂直平分线交OC 于B,则ABC ?的周长为( )

A.72

B.5

C.74

D.22 3、如图,双曲线x

k

y =

(k>0)经过矩形OABC 的边BC 的中点E ,交AB 于点D ,若梯形ODBC 的面积为3,则双曲线的解析式为( ) A.x y 1=

B. x y 2=

C. x y 3=

D. x

y 6=

题 3 题 4 题5

4、如图,A,B 是函数x

y 2

=

的图像上关于原点对称的任意两点,BC//x 轴,AC//y 轴,ABC ?的面积记为S ,则

S ( )

A.S=2

B.S=4

C.2

D.S>4

5、如图所示,等腰直角三角形ABC 位于第一象限,AB=AC=2,直角顶点A 在直线y=x 上,其中A 点的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴,y 轴,若双曲线y=k x

(k≠0)与△ABC 有交点,则k 的取值范围是( )

A .1

B .1≤k≤3

C .1≤k≤4

D .1≤k<4

二、填空题

D

B A

y

x

O C

1、如图,点A 在双曲线1y x =

上,点B 在双曲线3

y x

=上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为 .

2、如图,双曲线)0(2

φx x

y =

经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得到△AB 'C ,B '点落在OA 上,则四

边形OABC 的面积是 .

3、如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOB =60°,点A 在第一象限,过点A 的双曲线为y = k x

,在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ′B ′. (1)当点O ′与点A 重合时,点P 的坐标是 .

(2)设P (t ,0),当O ′B ′与双曲线有交点时,t 的取值范围是 .

4、如图,已知双曲线(0)k

y k x

=

<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为 .

5、双曲线1y 、2y 在第一象限的图像如图,14y x

=

, 过1y 上的任意一点A ,作x 轴的平行线交2y 于B ,

交y轴于C,若1

AOB

S

?

=,则

2

y的解析式是.

课后习练

一、填空题

1、如图,直线y=kx(k>0)与双曲线y=

4

x

交于A(x1,y1),B(x2,y2)两点,则2x1y2-7x2y1的值等于_______.

2、反比例函数y=

k

x

的图像上有一点P(a,b),且a,b是方程t2-4t-2=0的两个根,则k=_______;点P到原点的距离OP=_______.

3、已知双曲线xy=1与直线y=-x+b无交点,则b的取值范围是______.

4、反比例函数y=

k

x

的图像经过点P(a,b),其中a,b是一元二次方程x2+kx+4=0的两个根,那么点P的坐标是_______.

5、如图,已知双曲线)0

k(

x

k

y>

=经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k=___.

第5题图第6题图

像与反比例函数y=

2

x

的图6、如图,已知点A是一次函数y=x的图

像在第一象限内的交点,点B在x轴的负半轴上,且OA=OB,那么△AOB的面积为()

A.2 B.

2

2

C.2D.22

7、已知P为函数y=

2

x

的图像上一点,且P到原点的距离为3,则符合条件的P点数为()

A

B

C

D

E

y

x

O

A.0个B.2个C.4个D.无数个

八年级数学下册反比例函数知识点归纳和典型例题

八年级数学下册反比例函数知识点归纳和典型例题 (一)知识结构 (二)学习目标 1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式 (k为常数,),能判断一个给定函数是否为反比例函数. 2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点. 3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题. 4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型. 5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法. (三)重点难点 1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用. 2.难点是反比例函数及其图象的性质的理解和掌握. 二、基础知识 (一)反比例函数的概念

1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件; 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上. 图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)

八年级上册数学 【几何模型三角形轴对称】试卷测试与练习(word解析版)

八年级上册数学【几何模型三角形轴对称】试卷测试与练习(word解析版) 一、八年级数学全等三角形解答题压轴题(难) 1.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明. (1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程; (2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明). 【答案】(1)过程见解析;(2)MN= NC﹣BM. 【解析】 【分析】 (1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN =60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到 MN=BM+NC. (2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论. 【详解】 解:(1)如图示,延长AC至E,使得CE=BM,并连接DE.

∵△BDC为等腰三角形,△ABC为等边三角形,∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,又BD=DC,且∠BDC=120°, ∴∠DBC=∠DCB=30° ∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,∴∠MBD=∠ECD=90°, 在△MBD与△ECD中, ∵BD CD MBD ECD BM CE , ∴△MBD≌△ECD(SAS), ∴MD=DE,∠BDM=∠CDE ∵∠MDN =60°,∠BDC=120°, ∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°,即:∠MDN =∠NDE=60°, 在△DMN与△DEN中, ∵MD DE MDN EDN DN DN , ∴△DMN≌△DEN(SAS), ∴MN=NE=CE+NC=BM+NC. (2)如图②中,结论:MN=NC﹣BM.

初二数学《反比例函数》知识点

一、目标与要求 1.使学生理解并掌握反比例函数的概念。 2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式。 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。 4.会用描点法画反比例函数的图象。 5.结合图象分析并掌握反比例函数的性质。 6.体会函数的三种表示方法,领会数形结合的思想方法。 7.利用反比例函数的知识分析、解决实际问题。 8.渗透数形结合思想,进一步提高学生用函数观点解决问题的能力,体会和认识反比例函数这一数学模型。 二、知识框架 三、重点、难点 1.重点:利用反比例函数的知识分析、解决实际问题。 重点:理解并掌握反比例函数的图象和性质。 重点:利用反比例函数的图象和性质解决一些综合问题。 重点:理解反比例函数的概念,能根据已知条件写出函数解析式。 2.难点:分析实际问题中的数量关系,正确写出函数解析式,解决实际问题。 难点:正确画出图象,通过观察、分析,归纳出反比例函数的性质。

难点:学会从图象上分析、解决问题。 难点:理解反比例函数的概念。 四、知识点、概念总结 1.反比例函数:形如y=k/x,(k为常数,k≠0)的函数称为反比例函数。其他形式xy=k,y=kx(-1)。 2.自变量的取值范围: (1)k≠0; (2)在一般的情况下,自变量x的取值范围可以是不等于0的任意实数; (3)函数y的取值范围也是任意非零实数。 3.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和y=-x。对称中心是:原点。 4.反比例函数的几何意义 |k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。 即:过反比例函数y=k/x(k不等于0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=(x的绝对值)*(y的绝对值)=(x*y)的绝对值=k的绝对值。 5. 反比例函数的性质: (1)(增减性)当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。 (2)k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。定义域为x≠0;值域为y≠0. (3)因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能

(完整版)初中数学反比例函数知识点及经典例题

反比例函数 、基础知识 k ..…............................................ k 1. 正义:一般地,形如y -(k为常数,k o)的函数称为反比例函数。y - x x 还可以写成y kx 1 2. 反比例函数解析式的特征: ⑴等号左边是函数y,等号右边是一个分式。分子是不为零的常数k (也叫做 比例系数k),分母中含有自变量x ,且指数为1. ⑵比例系数k 0 ⑶自变量x的取值为一切非零实数。 ⑷函数y的取值是一切非零实数。 3. 反比例函数的图像 ⑴图像的画法:描点法 ①列表(应以。为中心,沿O的两边分别取三对或以上互为相反的数) ②描点(有小到大的顺序) ③连线(从左到右光滑的曲线) .._ .. .. ._ .. … k. ⑵反比例函数的图像是双曲线,y - (k为常数,k 0)中自变量x 0, x 函数值y 0,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐 靠近坐标轴,但是永远不与坐标轴相交。 ⑶反比例函数的图像是是轴对称图形(对称轴是y x或y x)。 .. .. ................................. k .... 一… ... . .. ...................... k ⑷反比例函数y - ( k 0)中比例系数k的几何怠义是:过双曲线y - x x (k 0)上任意引x轴y轴的垂线,所得矩形面积为|k。 4. 5. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点 的坐标即可求出k 6. “反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数 一 .一 .. ...... ... k ..

人教版八年级数学上册 【几何模型三角形轴对称】试卷专题练习(解析版)

人教版八年级数学上册【几何模型三角形轴对称】试卷专题练习(解析版) 一、八年级数学轴对称解答题压轴题(难) 1.如图,在ABC △中,已知AD是BC边上的中线,E是AD上一点,且BE AC =,延长BE交AC于点F,求证:AF EF =. 【答案】证明见解析 【解析】 【分析】 延长 AD到点G,使得AD DG =,连接BG,结合D是BC的中点,易证△ADC和 △GDB全等,利用全等三角形性质以及等量代换,得到△AEF中的两个角相等,再根据等角对等边证得AE=EF. 【详解】 如图,延长AD到点G,延长AD到点G,使得AD DG =,连接BG. ∵AD是BC边上的中线, ∴DC DB =. 在ADC和GDB △中, AD DG ADC GDB DC DB = ? ? ∠=∠ ? ?= ? (对顶角相等), ∴ADC≌GDB △(SAS). ∴CAD G ∠=∠,BG AC =. 又BE AC =, ∴BE BG =.

∴BED G ∠=∠. ∵BED AEF ∠=∠ ∴AEF CAD ∠=∠,即AEF FAE ∠=∠ ∴AF EF =. 【点睛】 本题考查的是全等三角形的判定与性质,根据题意构造全等三角形是解答本题的关键. 2.(1)如图①,D 是等边△ABC 的边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边,在BC 上方作等边△DCF ,连接AF ,你能发现AF 与BD 之间的数量关系吗?并证明你发现的结论; (2)如图②,当动点D 运动至等边△ABC 边BA 的延长线时,其他作法与(1)相同,猜想AF 与BD 在(1)中的结论是否仍然成立?若成立,请证明; (3)Ⅰ.如图③,当动点D 在等边△ABC 边BA 上运动时(点D 与B 不重合),连接DC ,以DC 为边在BC 上方和下方分别作等边△DCF 和等边△DCF ′,连接AF ,BF ′,探究AF ,BF ′与AB 有何数量关系?并证明你的探究的结论; Ⅱ.如图④,当动点D 在等边△ABC 的边BA 的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论. 【答案】(1)AF =BD ,理由见解析;(2)AF 与BD 在(1)中的结论成立,理由见解析;(3)Ⅰ. AF +BF ′=AB ,理由见解析,Ⅱ.Ⅰ中的结论不成立,新的结论是AF =AB +BF ′,理由见解析. 【解析】 【分析】 (1)由等边三角形的性质得BC =AC ,∠BCA =60°,DC =CF ,∠DCF =60°,从而得∠BCD =∠ACF ,根据SAS 证明△BCD ≌△ACF ,进而即可得到结论; (2)根据SAS 证明△BCD ≌△ACF ,进而即可得到结论; (3)Ⅰ.易证△BCD ≌△ACF (SAS ),△BCF ′≌△ACD (SAS ),进而即可得到结论;Ⅱ.证明△BCF ′≌△ACD ,结合AF =BD ,即可得到结论. 【详解】 (1)结论:AF =BD ,理由如下: 如图1中,∵△ABC 是等边三角形, ∴BC =AC ,∠BCA =60°, 同理知,DC =CF ,∠DCF =60°, ∴∠BCA -∠DCA =∠DCF -∠DCA ,即:∠BCD =∠ACF ,

初二数学反比例函数专题练习.doc

初二数学反比例函数专题练习 一、填空题: 1、若反比例函数y = (2m-i)^-2的图象在第一、三象限,则函数的解析式为___________ o £_3 2、反比例函数y = ——的图象位于第一、三象限,正比例函数y=(2k?ll)x过第二、四彖限, x 则k的整数值是________ 0 3、已知点P(2a,-3a)在反比例函数图象上,若点A⑶),B(-5,y2),C(ll,y3)til在该图像上, 则儿,%的大小关系为_______________ ?(用“〉”号连接) 4 4、如图,点A在双曲线丿=一上,且OA=6,过点A作AC丄y轴,垂足为C, OA的垂 x 直平分线交0C于点B,则A ABC的周长为________ 。 5、有一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度p (单位:kg/n?)是体积V (单位:m3)的反比例幣数,它的图象如图所示,当V=3n?时,气体的密度是_kg/n?. 6、如图,平行四边形ABCD的顶点A、C在双曲线y |=- —±, B、D在双曲线y?二乞上, X X

7、己知A(xp yj, B(X2, y2)是反比例函数y」图象上的两点,且x r x2=-2, Xi *x2=3, yi-y2=-^? X 3 当?3vxWl时,y的取值范围是_______________ . 13 8、如图,直线)^ = -x-3交坐标轴于A、B两点,交双曲线y =—于点D(D在笫一象限),过D 2x 作两坐标轴的垂线DC、DE,连接0D?将直线AB沿x轴平移,使得四边形OBCD为平行四边形,则平移后直线AB的解析式为________ k 9、如图,反比例函数y = - (x>0 )的图象经过矩形OABC对角线的交点,分别与AB、x BC交于点D. E,若四边形ODBC的而积为9,则《的值为()。 10?函数yi二x (x>0) , y2=-(x>0)的图象如图6所示,则: X

初中数学反比例函数知识点整理

反比例函数知识点整理 一、 反比例函数的概念 1、解析式:() 0≠= k x k y 其他形式:①k xy = ②1 -=kx y 例1.下列等式中,哪些是反比例函数 (1)3x y = (2)x y 2-=(3)xy =21(4)25+=x y (5)x y 23-=(6)31 +=x y 例2.当m 取什么值时,函数2 3)2(m x m y --=是反比例函数? 例3.函数2 2 )12(--=m x m y 是反比例函数,且它的图像在第二、四象限, m 的值是_____ 例4.已知函数y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5 (1) 求y 与x 的函数关系式 (2)当x =-2时,求函数y 的值 2.反比例函数图像上的点的坐标满足:k xy = 例1.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 例2.下列函数中,图像过点M (-2,1)的反比例函数解析式是( ) x y A 2.= 2 .B y x =- x y C 21.= x y D 21.-= 例3.如果点(3,-4)在反比例函数k y x =的图象上,那么下列各点中,在此图象上的 是( )A .(3,4) B . (-2,-6) C .(-2,6) D .(-3,-4) 例4.如果反比例函数x k y =的图象经过点(3,-1),那么函数的图象应在( ) A . 第一、三象限 B .第二、四象限 C .第一、二象限 D .第三、四象限 二、反比例函数的图像与性质 1、基础知识 0>k 时,图像在一、三象限,在每一个象限内,y 随着x 的增大而减小; 00时,y 随x 的增大而增大,求函数关系式 例2.已知反比例函数x k y 1 2+= 的图象在每个象限内函数值y 随自变量x 的增大而减小,且k 的值还满足)12(29--k ≥2k -1,若k 为整数,求反比例函数的解析式 2、面积问题(1)三角形面积:k S AOB 2 1 =? 例1.如图,过反比例函数x y 1 = (x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( ) (A )S 1>S 2 (B )S 1=S 2 (C )S 1<S 2 (D )大小关系不能确定 例2.如图,点P 是反比例函数1 y x = 的图象上任一点,PA 垂直在x 轴,垂足为A ,设OAP ?的面积为S ,则S 的值为 例3.直线OA 与反比例函数 的图象在第一象限交于A 点,AB ⊥x 轴于 点B ,若△OAB 的面积为2,则k = . 例4.如图,若点A 在反比例函数(0)k y k x =≠的图象上, AM x ⊥轴于点M ,AMO △的面积为3,则k = . 例5.如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点 12345A A A A A 、、、、分别作x 轴的垂线与反比例函数的()2 0y x x = ≠的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OP A A P A A P A A P A A P A 2、、、、, 并设其面积分别为12345S S S S S 、、、、,则5S 的值为 . p y A x O 第4题

八年级数学【几何模型三角形轴对称】试卷专题练习(解析版)

八年级数学【几何模型三角形轴对称】试卷专题练习(解析版) 一、八年级数学轴对称解答题压轴题(难) 1.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1). (1)请运用所学数学知识构造图形求出AB的长; (2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标; (3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图). 【答案】(1)AB=52)C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0);(3)不存在这样的点P. 【解析】 【分析】 (1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB; (2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可; (3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案. 【详解】 解:(1)如图,连结AB,作B关于y轴的对称点D, 由已知可得,BD=4,AD=2.∴在Rt△ABD中,AB=5 (2)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C2. ②以B为直角顶点,过B作l2⊥AB交x轴于C3,交y轴于C4. ③以C为直角顶点,以AB为直径作圆交坐标轴于C5、C6、C7.(用三角板画找出也可)由图可知,C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0).

(3)不存在这样的点P. 作AB的垂直平分线l3,则l3上的点满足PA=PB, 作B关于x轴的对称点B′,连结AB′, 由图可以看出两线交于第一象限. ∴不存在这样的点P. 【点睛】 本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题. 2.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线.我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA=PB.

苏教版初二数学反比例函数讲义

立仁教育 初二数学反比例函数讲义 一、本节课知识点梳理 1、反比例函数的概念 2、反比例函数的图像及其性质 3、反比例系数k 的意义及其实际应用 二、重难点点拨 教学重点:反比例函数图像及其性质 教学难点:反比例函数k 的几何意义 三、典型例题与分析 知识点一:反比例函数概念 一般地,如果两个变量x 、y 之间关系可以表示成y=x k ,(k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数。反比例函数形式还可以写成:xy=k ,y=kx -1(k ≠0的常数) 1、在下列函数中,反比例函数是( ) A 11+= x y B xy=0 C x k y = D x y 21 -= 2、如果函数12-=m x y 为反比例函数,则m 的值是 ( ) A 、1- B 、0 C 、2 1 D 、1

知识点二:反比例函数的图象与性质 注意1:双曲线的两个分支是断开的,研究函数的增减性时,要将两个分支分别讨论,不能一概而论。 (1)已知y=x k (k <0)的图象上有两点A (x 1,y 1)、B(x 2,y 2) ①若x 1<x 2<0,则y 1 与y 2大小关系是y 1 y 2 ;若0<x 1<x 2,则y 1 与y 2大小关系是y 1 y 2 ②若x 1<0<x 2,则y 1 与y 2大小关系是y 1 y 2 ③若x 1<x 2,则y 1 与y 2大小关系是 。

(2)已知y=x k (k > 0)的图象上有两点A (x 1,y 1)、B(x 2,y 2) ①若x 1<x 2<0,则y 1 与y 2大小关系是y 1 y 2 ;若0<x 1<x 2,则y 1 与y 2大小关系是y 1 y 2 ②若x 1<0<x 2,则y 1 与y 2大小关系是y 1 y 2 ③若x 1<x 2,则y 1 与y 2大小关系是 。 注意2:反比例函数图象是以原点为对称中心的中心对称图形,是以直线y=x 和y=x -为对称轴的轴对称图形。 【例1】在反比例函数x y 1-=的图像上有三点(1x ,)1y ,(2x ,)2y ,(3x ,)3y 。若 3210x x x >>>则下列各式正确的是( ) A .213y y y >> B .123y y y >> C .321y y y >> D .231y y y >> 练习: 1.下列函数中,y 随x 增大而增大的是_______ A y=-x+1 B y=x 43- C y=x 21 D y=2x-1 2.反比例函数y=x k 图象在第二四象限,则一次函数y=kx-5的图象不经过_____象限。 3.在同直角坐标系中,函数y=kx-k 与y=x k (k ≠0)的图象大致是___________。

最新初中数学反比例函数图文解析

最新初中数学反比例函数图文解析 一、选择题 1.如图,Rt△AOB中,∠AOB=90°,AO=3BO,OB在x轴上,将Rt△AOB绕点O顺时针旋 转至△RtA'OB',其中点B'落在反比例函数y=﹣2 x 的图象上,OA'交反比例函数y= k x 的图象 于点C,且OC=2CA',则k的值为() A.4 B.7 2 C.8 D.7 【答案】C 【解析】 【详解】 解:设将Rt△AOB绕点O顺时针旋转至Rt△A'OB'的旋转角为α,OB=a,则OA=3a,由题意可得,点B′的坐标为(acosα,﹣asinα),点C的坐标为(2asinα,2acosα), ∵点B'在反比例函数y=﹣2 x 的图象上, ∴﹣asinα=﹣ 2 acosα ,得a2sinαcosα=2, 又∵点C在反比例函数y=k x 的图象上, ∴2acosα= k 2asinα ,得k=4a2sinαcosα=8. 故选C. 【点睛】 本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于先设旋转角为α,利用旋转的性质和三角函数设出点B'与点C的坐标,再通过反比例函数的性质求解即可. 2.下列函数中,当x>0时,函数值y随自变量x的增大而减小的是() A.y=x2B.y=x C.y=x+1 D. 1 y x

【答案】D 【解析】 【分析】 需根据函数的性质得出函数的增减性,即可求出当x>0时,y随x的增大而减小的函数.【详解】 解:A、y=x2是二次函数,开口向上,对称轴是y轴,当x>0时,y随x的增大而增大,错误; B、y=x是一次函数k=1>0,y随x的增大而增大,错误; C、y=x+1是一次函数k=1>0,y随x的增大而减小,错误; D、 1 y x =是反比例函数,图象无语一三象限,在每个象限y随x的增大而减小,正确; 故选D. 【点睛】 本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的关键. 3.在同一平面直角坐标系中,反比例函数y b x =(b≠0)与二次函数y=ax2+bx(a≠0)的 图象大致是() A.B. C.D. 【答案】D 【解析】 【分析】 直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案. 【详解】 A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a,b异号,即 b<0.所以反比例函数y b x =的图象位于第二、四象限,故本选项错误; B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a,b同号,即

八年级上册数学 【几何模型三角形轴对称】试卷专题练习(word版

八年级上册数学【几何模型三角形轴对称】试卷专题练习(word版 一、八年级数学全等三角形解答题压轴题(难) 1.如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE. (1)请你探究线段CE与FE之间的数量关系(直接写出结果,不需说明理由); (2)将图1中的△AED绕点A顺时针旋转,使△AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由; (3)将图1中的△AED绕点A顺时针旋转任意的角度(如图3),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由. 【答案】(1)线段CE与FE之间的数量关系是CE2FE;(2)(1)中的结论仍然成立.理由见解析;(3)(1)中的结论仍然成立.理由见解析 【解析】 【分析】 (1)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,2EF; (2)思路同(1)也要通过证明△EFC是等腰直角三角形来求解.连接CF,延长EF交CB 于点G,先证△EFC是等腰三角形,可通过证明CF是斜边上的中线来得出此结论,那么就要证明EF=FG,就需要证明△DEF和△FGB全等.这两个三角形中,已知的条件有一组对顶角,DF=FB,只要再得出一组对应角相等即可,我们发现DE∥BC,因此∠EDB=∠CBD,由此构成了两三角形全等的条件.EF=FG,那么也就能得出△CFE是个等腰三角形了,下面证明△CFE是个直角三角形.由上面的全等三角形可得出ED=BG=AD,又由AC=BC,因此 CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此就能得出(1)中的结论了; (3)思路同(2)通过证明△CFE来得出结论,通过全等三角形来证得CF=FE,取AD的中点M,连接EM,MF,取AB的中点N,连接FN、CN、CF.那么关键就是证明△MEF和△CFN全等,利用三角形的中位线和直角三角形斜边上的中线,我们不难得出 EM=PN=1 2 AD,EC=MF= 1 2 AB,我们只要再证得两对应边的夹角相等即可得出全等的结

八年级数学反比例函数同步练习题人教版

反比例函数练习题 [A 组] 1、下列函数中,哪些是反比例函数?( ) (1)y=-3x ; (2)y=2x+1; (3) y=-x 2 ;(4)y=3(x-1)2+1; 2、下列函数中,哪些是反比例函数(x 为自变量)?说出反比例函数的比例系数: (1) x y 1 -= ;(2)xy=12 ;(3) xy=-13 (4)y=3x 3、列出下列函数关系式,并指出它们是分别什么函数.说出比例系数 ①火车从安庆驶往约200千米的合肥,若火车的平均速度为60千米/时,求火 车距离安庆的距离S(千米)与行驶的时间t(时)之间的函数关系式 ②某中学现有存煤20吨,如果平均每天烧煤x 吨,共烧了y 天,求y 与x 之间的函数关系式. 4、.已知一个长方体的体积是100立方厘米,它的长是ycm ,宽是5cm ,高是xcm . (1) 写出用高表示长的函数式; (2) 写出自变量x 的取值范围; (3) 当x =3cm 时,求y 的值 5、已知y 与x 成反比例,并且x =3时y =7,求: (1)y 和x 之间的函数关系式; (2)当1 3x =时,求y 的值; (3)y =3时,x 的值。 7、写出一个经过点(-3,6)的反比例函数 你还能写出另外一个也经过点(-3,6)的双曲线吗? 8、当m 为何值时,函数 224-=m x y 是反比例函数,并求出其函数解析式. 9、已知y 成反比例,且当4b =时,1y =-。 求当10b =时,y 的值。 10:画出下列函数双曲线,y=-x 2 的图象,已知点A (-3,a )、B (-2,b ),C(4,

c)在双曲线,y=-x 2 的图象令上,请把a,b,c 按从小到大的顺序进行排列. [B 组] 11、已知函数221()m y m m x -=+,当m 取何值时(1)是正比例函数;(2)是反比 例函数。 12、(1)已知y =y1+y2,y1与x 成正比例,y2与x 成反比例, 并且x =2和x =3时,y 的值都等于 19.求y 和x 之间的函数关系式 (2)若y 与2 x -2成反比例,且当x=2时,y=1,则y 与x 之间的关系式为 13、(03广东)如图1,某个反比例函数的图像经过点P .则它的解析式( ) (A ) x y 1=(x >0) (B )x y 1-= (x >0) (C )x y 1=(x <0) (D )x y 1-= (x <0) 第二课时 [A 组]

初中数学反比例函数真题汇编含答案

初中数学反比例函数真题汇编含答案 一、选择题 1.如图,在某温度不变的条件下,通过一次又一次地对气缸顶部的活塞加压,测出每一次加压后气缸内气体的体积(mL)V 与气体对气缸壁产生的压强(kPa)P 的关系可以用如图所示的函数图象进行表示,下列说法正确的是( ) A .气压P 与体积V 的关系式为(0)P kV k => B .当气压70P =时,体积V 的取值范围为70

八年级数学上册【几何模型三角形轴对称】试卷(Word版 含解析)

八年级数学上册【几何模型三角形轴对称】试卷(Word 版 含解析) 一、八年级数学 轴对称解答题压轴题(难) 1.已知:在平面直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点. (1)如图1,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC ?,若2OA =,4OB =,试求C 点的坐标; (2)如图2,若点A 的坐标为() 23,0-,点B 的坐标为()0,m -,点D 的纵坐标为n ,以 B 为顶点,BA 为腰作等腰Rt ABD ?.试问:当B 点沿y 轴负半轴向下运动且其他条件都不 变时,整式2253m n +-的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由; (3)如图3,E 为x 轴负半轴上的一点,且OB OE =,OF EB ⊥于点F ,以OB 为边作等边OBM ?,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明. 【答案】(1) C(-6,-2);(2)不发生变化,值为3-3)EN=1 2 (EM-ON),证明见详解. 【解析】 【分析】 (1)作CQ ⊥OA 于点Q,可以证明AQC BOA ?,由QC=AD,AQ=BO,再由条件就可以求出点C 的坐标; (2)作DP ⊥OB 于点P ,可以证明AOB BPD ?,则有BP=OB-PO=m-(-n)=m+n 为定值,从而可以求出结论2253m n +-3- (3)作BH ⊥EB 于点B ,由条件可以得出 ∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明ENO BGM ?,则GM=ON,就有EM-ON=EM-GM=EG ,最后由平行线分线段成比例定理就可得出EN=1 2 (EM-ON). 【详解】 (1)如图(1)作CQ ⊥OA 于Q,

初中数学求反比例函数解析式的六种方法

求反比例函数解析式的六种方法 名师点金: 求反比例函数的解析式,关键是确定比例系数k的值.求比例系数k的值,可以根据反比例函数的定义及性质列方程、不等式求解,可以根据图象中点的坐标求解,可以直接根据数量关系列解析式,也可以利用待定系数法求解,还可以利用比例系数k的几何意义求解.其中待定系数法是常用方法. 利用反比例函数的定义求解析式 1.若y=(m+3)xm2-10是反比例函数,试求其函数解析式. 利用反比例函数的性质求解析式 2.已知函数y=(n+3)xn2+2n-9是反比例函数,且其图象所在的每一个象限内,y随x的增大而减小,求此函数的解析式. 利用反比例函数的图象求解析式 3.【2017·广安】如图,一次函数y=kx+b的图象与反比例函数y=m x的图象在第一 象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6. (1)求函数y=m x和y=kx+b的解析式.

(2)已知直线AB 与x 轴相交于点C ,在第一象限内,求反比例函数y =m x 的图象上一点P ,使得S △POC =9. (第3题) 利用待定系数法求解析式 4.已知y 1与x 成正比例,y 2与x 成反比例,若函数y =y 1+y 2的图象经过点(1,2),??? ?2,12,求y 与x 的函数解析式. 利用图形的面积求解析式 5.如图,点A 在双曲线y =1x 上,点B 在双曲线y =k x 上,且AB ∥x 轴,C ,D 两点在x 轴上,若矩形ABCD 的面积为6,求点B 所在双曲线对应的函数解析式.

(第5题) 6.某运输队要运300 t物资到江边防洪. (1)求运输时间t(单位:h)与运输速度v(单位:t/h)之间的函数关系式. (2)运了一半时,接到防洪指挥部命令,剩下的物资要在2 h之内运到江边,则运输速 度至少为多少?

人教版八年级上册数学 【几何模型三角形轴对称】试卷测试卷(解析版)

人教版八年级上册数学【几何模型三角形轴对称】试卷测试卷(解析版) 一、八年级数学轴对称解答题压轴题(难) 1.如图1,△ABC 中,AB=AC,∠BAC=90o,D、E 分别在 BC、AC 边上,连接 AD、BE 相 交于点 F,且∠CAD=1 2 ∠ABE. (1)求证:BF=AC; (2)如图2,连接 CF,若 EF=EC,求∠CFD 的度数; (3)如图3,在⑵的条件下,若 AE=3,求 BF 的长. 【答案】(1)答案见详解;(2)45°,(3)4. 【解析】 【分析】 (1)设∠CAD=x,则∠ABE=2x,∠BAF=90°-x,∠AFB=180°-2x-(90°-x)= 90°-x,进而得到∠BAF =∠AFB,即可得到结论; (2)由∠AEB=90°-2x,进而得到∠EFC=(90°-2x)÷2=45°-x,由BF=AB,可得: ∠EFD=∠BFA=90°-x,根据∠CFD=∠EFD-∠EFC,即可求解; (3)设EF=EC=x,则AC=AE+EC=3+x,可得BE=BF+EF=3+x+x=3+2x,根据勾股定理列出方程,即可求解. 【详解】 (1)设∠CAD=x, ∵∠CAD=1 2 ∠ABE,∠BAC=90o, ∴∠ABE=2x,∠BAF=90°-x, ∵∠ABE+∠BAF+∠AFB=180°, ∴∠AFB=180°-2x-(90°-x)= 90°-x, ∴∠BAF =∠AFB, ∴BF=AB; ∵AB=AC, ∴BF=AC; (2)由(1)可知:∠CAD=x,∠ABE=2x,∠BAC=90o,∴∠AEB=90°-2x, ∵EF=EC, ∴∠EFC=∠ECF, ∵∠EFC+∠ECF=∠AEB=90°-2x,

初中八年级数学反比例函数

八年级下数学周末测试(3)---反比例函数3.25 出卷:陈国萍,审卷:史珏 姓名 成绩 一、选择(每题3分) (1)下列函数中y 是x 的反比例函数的有( )个 (1)x a y = (2)xy= -1 (3)11 +=x y (4)13y x = A 1 B 2 C 3 D 4 (2)函数5 2 )2(--=a x a y 是反比例函数,则a 的值是( ) A .-1 B .-2 C .2 D .2或-2 (3)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数(4)若反比例函数 2 2)12(--=m x m y 的图象在第二、四象限,则m 的值是( ) A 、 -1或1; B 、小于1 2 的任意实数; C 、-1; D、不能确定 (5)已知0k >,函数y kx k =+和函数k y x =在同一坐标系内的图象大致( ) (6)下列函数中,当0x < 时,y 随x 的增大而增大的是( ) A .34y x =-+ B .123 y x =-- C .4 y x =- D .12y x =. (7)若点(1x ,1y )、(2x ,2y )和(3x ,3y )分别在反比例函数2 y x =- 的图 象上,且1230x x x <<<,则下列判断中正确的是( ) A .123y y y << B .312y y y << C .231y y y << D .321y y y << (8)矩形的面积为6cm 2 ,那么它的长y (cm )与宽x (cm )之间的函数关系用图象 表示为( ) x x x x

人教版初中数学反比例函数知识点

人教版初中数学反比例函数知识点 一、选择题 1.如图,一次函数1y ax b =+和反比例函数2k y x = 的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( ) A .20x -<<或04x << B .2x <-或04x << C .2x <-或4x > D .20x -<<或4x > 【答案】B 【解析】 【分析】 根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可. 【详解】 观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方, ∴使12y y >成立的x 取值范围是2x <-或04x <<, 故选B . 【点睛】 本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键. 2.如图,直线l 与x 轴、y 轴分别交于A 、B 两点,与反比例函数y =k x 的图象在第一象限相交于点C .若AB =BC ,△AOB 的面积为3,则k 的值为( ) A .6 B .9 C .12 D .18 【答案】C 【解析】 【分析】 设OB =a ,根据相似三角形性质即可表示出点C ,把点C 代入反比例函数即可求得k .

【详解】 作CD⊥x轴于D, 设OB=a,(a>0) ∵△AOB的面积为3, ∴1 2 OA?OB=3, ∴OA=6 a , ∵CD∥OB, ∴OD=OA=6 a ,CD=2OB=2a, ∴C(6 a ,2a), ∵反比例函数y=k x 经过点C, ∴k=6 a ×2a=12, 故选C. 【点睛】 本题考查直线和反比例函数的交点问题,待定系数法求函数解析式,会运用相似求线段长度是解题的关键. 3.已知点A(﹣2,y1),B(a,y2),C(3,y3)都在反比例函数 4 y x 的图象上,且﹣ 2<a<0,则() A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3 【答案】D 【解析】 【分析】 根据k>0,在图象的每一支上,y随x的增大而减小,双曲线在第一三象限,逐一分析即可. 【详解】 ∵反比例函数y=4 x 中的k=4>0,

初二数学反比例函数测试题

反比例函数测试题 一、选择题 1.反比例函数y =-4 x 的图象在 ( ) A .第一、三象限 B .第二、四象限 C .第一、二象限 D .第三、四象限 2.已知关于x 的函数y =k (x +1)和y =-k x (k ≠0)它们在同一坐标系中的大致图象是 (? ) 3.已知反比例函数y = x k 的图象经过点(m ,3m ),则此反比例函数的图象在 ( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限 4.函数x k y = 的图象经过点(-4,6),则下列各点中在x k y = 图象上的是( ) A 、(3,8) B 、(3,-8) C 、(-8,-3) D 、(-4,-6) 5.正比例函数kx y =和反比例函数 x k y =在同一坐标系内的图象为( ) A B C D 6.在同一直角坐标平面内,如果直线x k y 1=与双曲线x k y 2=没有交点,那么1k 和2k 的 关系一定是( ) A 、1k <0,2k >0 B 、1k >0,2k <0 C 、1k 、2k 同号 D 、1k 、2k 异号 7.已知 一次函数y=kx+b 的图像经过第一二四象限 则反比例函数x kb y = 的图像在 ( ) A 第一二象限 B 第三 四象限 C 第一三象限 D 第二三象限 y x o y x o y x o y x o

二、填空题:(3分×10=30分) 1、y 与x 成反比例,且当y =6时,3 1= x ,这个函数解析式为 ; 2、当路程s 一定时,速度v 与时间t 之间的函数关系是 ;(填函数类型) 3、函数2 x y - =和函数x y 2= 的图象有 个交点; 4、反比例函数x k y =的图象经过(-2 3,5)点、(a ,-3)及(10,b )点, 则k = ,a = ,b = ; 5、若函数()()414-+-=m x m y 是正比例函数,那么=m ,图象经过 象 限; 6、已知y 与x -2成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ; 7、右图3是反比例函数x k y 2-=的图象,则k 的取值范围是 . 8、函数x y 2- =的图象,在每一个象限内,y 随x 的增大 而 ; 9、反比例函数x y 2= 在第一象限内的图象如图,点M 是图象上 一点,MP 垂直x 轴于点P ,则△MOP 的面积为 ; 10、()5 2 2--=m x m y 是y 关于x 的反比例函数,则m 值为 ; (三)解答题 1、已知一次函数b kx y +=与反比例函数x m y =的图像交于A (—2 ,1) B (1 ,n ) 俩点。求 ⑴ 反比例函数和一次函数的表达式? ⑵ 求△AOB 的面积? y x O P M

相关文档
最新文档