2015届高考数学总复习 基础知识名师讲义 第八章 第三节空间简单几何体的表面积和体积 理

2015届高考数学总复习 基础知识名师讲义 第八章 第三节空间简单几何体的表面积和体积 理
2015届高考数学总复习 基础知识名师讲义 第八章 第三节空间简单几何体的表面积和体积 理

第三节 空间简单几何体的表面积和体积

知识梳理

二、空间简单几何体的侧面积和表面积

1.直棱柱:S 侧=____________(C 为底面周长,h 是高),S 表=________.

2.正棱锥:S 侧=________________(C 为底面周长,h ′是斜高),S 表=________. 3.正棱台: S 侧=__________(C ′,C 为上、下底面周长,h ′是斜高),S 表=________________.

4.圆柱:S 侧=________(C 为底面周长,r 是底面圆的半径,l 是母线长),S 表=________. 5.圆锥:S 侧=________(C 为底面周长,r 是底面圆的半径,l 是母线长),S 表=________. 6.圆台:S 侧=______(C ′,C 分别是上、下底面周长,r ′,r 分别是上、下底面圆的半径,l 是母线长),S 表=______.

7.球:S 表=________(R 是球的半径).

答案:1.Ch S 侧+2S 底

2. 12

Ch ’ S 侧+S 底

3. 1

2

(C+C ’)h ’ S 侧+S 上底+S 下底 4.Cl =2πrl S 侧+2S 底 5. 1

2Cl =πrl S 侧+S 底 6. 1

2

(C+C ’)l =π(r+r ’)l S 侧+S 上底+S 下底 7.4πR 2

三、空间简单几何体的体积公式

1.柱体体积公式:V 柱=______,其中h 为柱体的高. 2.锥体体积公式:V 锥=______,其中h 为锥体的高.

了解球、棱柱、棱锥、台的表面积和体积的计算公式不要求记忆公式.

3.球的体积公式:V 球=______,其中R 表示球的半径.

答案:1.S 底h 2. 13S 底h 3. 43

πR

3

四、长方体、正方体的对角线长、表面积和体积公式

1.长方体表面积公式:S =2(ab +bc +ac ),长方体体积公式:V =________. 2.正方体表面积公式:S =________,正方体体积公式:V =________.

3.长方体对角线长等于a 2+b 2+c 2

,正方体对角线长等于________.

答案:1.abc 2.6a2 3. 3a

基础自测

1.(2013·深圳一模)如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积、体积分别是( )

A .32π、1283π

B .16π、32

C . 12π、163π

D .8π、16

3

π

解析:三视图复原的几何体是半径为2的半球,所以半球的表面积为半个球的表面积与

底面积的和:2πr 2+πr 2=3πr 2

=12π.

半球的体积为:23πr 3=16

3

π.故选C.

答案:C

2.设长方体的长、宽、高分别为2a ,a ,a ,其顶点都在一个球面上,则该球的表面积为( )

A .3πa 2

B .6πa 2

C .12πa 2

D .24πa

2

解析:由于长方体的长、宽、高分别为2a ,a ,a ,则长方体的对角线长为a 2+a 2+a

2

=6a .又长方体外接球的直径2R 等于长方体的体对角线,∴2R =6a .∴S 球=4πR 2=6πa 2

.故选B.

答案:B

3.(2013·陕西卷)某几何体的三视图如图所示,则其体积为________.

解析:立体图为半个圆锥体,底面是半径为1的半圆,高为 2.所以体积V =13×

1

2

×π×12

×2=π3.

答案:π

3

4.半径为a 的球放在墙角,同时与两墙面及地面相切,两墙面互相垂直,则球面上的点到墙角顶点的最短距离是________.

解析:联想到正方体模型,则该球是正方体的内切球,其直径就是正方体的棱长,则球面上的点到墙角顶点的最短距离等于球心到正方体一个顶点的距离与球半径的差,也就是正方体的对角线长与球直径的差的一半.

答案:(3-1)a

1.(2013·广东卷)某四棱台的三视图如图所示,则该四棱台的体积是( )

空间几何体 - 简单 - 讲义

空间几何体 知识讲解 一、构成空间几何体的基本元素 1.几何体的概念 概念:只考虑形状与大小,不考虑其它因素的空间部分叫做一个几何体,比如长方体,球体等. 2.构成几何体的基本元素:点、线、面 (1)几何中的点不考虑大小,一般用大写英文字母A B C ,,来命名; (2)几何中的线不考虑粗细,分直线(段)与曲线(段);其中直线是无限延伸的,一般 用一个小写字母a b l ,,或用直线上两个点AB PQ ,表示; 一条直线把平面分成两个部分. (3)几何中的面不考虑厚薄,分平面(部分)和曲面(部分); 其中平面是一个无限延展的,平滑,且无厚度的面,通常用一个平行四边形表示,并把它想象成无限延展的; 平面一般用希腊字母αβγ ,,来命名,或者用表示它的平面四边形的顶点或对角顶点的字 母来命名,如右图中,称平面α,平面ABCD 或平面AC ; 一个平面将空间分成两个部分. 3.用运动的观点理解空间基本图形间的关系 理解:在几何中,可以把线看成点运动的轨迹,点动成线;把面看成线运动的轨迹,线动成面;把几何体看成面运动的轨迹(经过的空间部分),面动成体. 二、多面体的结构特征 1.多面体 D C B A α

1)多面体的定义 由若干个平面多边形所围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点,连结不在同一个面上的两个顶点 的线段叫做多面体的对角线. 2)多面体的分类 按凹凸性分类:把一个多面体的任意一个面延展成平面,如果其余的各面都在这个平面的同一侧,则这样的多面体就叫做凸多面体.否则就叫做凹多面体. 按面数分类:一个多面体至少有四个面.多面体按照它的面数分别叫做四面体、五面体、六面体等等. 3)简单多面体 定义:表面经过连续变形可以变成球体的多面体叫做简单多面体; 欧拉公式:简单多面体的顶点数V 、面数F 和棱数E 有关系2V F E +-=. 4)正多面体 定义:每个面都有相同边数的正多边形,每个顶点都有相同棱数的凸多面体,叫做正多面体; 正多面体只有正四面体、正六面体、正八面体、正十二面体、正二十面体这5种;经过正多面体上各面的中心且垂直于所在面的垂线相交于一点,这点叫做正多面体的中心,且这点到各顶点的距离相等,到各面的距离也相等. 2.棱柱 1)棱柱的定义 由一个平面多边形沿某一确定方向平移形成的空间几何体叫做棱柱.平移起止位置的两个面叫做棱柱的底面,多边形的边平移所形成的面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;过不相邻的两条侧棱所形成的面叫做棱柱的对角面;与底面垂直的直线与两个底面的交点部分的线段或距离称为棱柱的高. 下图中的棱柱,两个底面分别是面ABCD ,A B C D '''',侧面有ABBA '',DCC D ''等四个,侧棱为AA BB CC DD '''',,,,对角面为面ACC A BDD B '''',,A H '为棱柱的高.

空间几何体知识点

空间几何体知识点 第一章空间几何体复习 基础知识 (一)空间几何体的结构 一、棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平 行,由这些面所围成的几何体。分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示:用各顶点字母,如五棱柱ABCDE -A B C D E 或用对角线的端点字母。 几何特征:①两底面是对应边平行的全等多边形;②侧面、对角面都是平行四边形; ③侧棱平行且相等;④平行于底面的截面是与底面全等的多边形。 (2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥P -A B C D E 几何特征:①侧面、对角面都是三角形; ②平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。 (3)棱台分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台P -A B C D E 几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点 (4)圆柱 几何特征:①底面是全等的圆;②母线与轴平行; ③轴与底面圆的半径垂直;④侧面展开图是一个矩形

(5)圆锥' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 定义:用一个平行于棱锥底面的平面去 截棱锥,截面和底面之间的部分。定义:以矩形的一边所在的直线为轴旋转, 其余三边旋转所成的曲面所围成的几何体。 定义:以直角三角形的一条直角边为旋转轴, 旋转一周所成的曲面所围成的几何体。 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点; ③侧面展开图是一个弓形。 (7)球体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 知识拓展 1. 特殊的棱柱:侧棱不垂直于底面的棱柱称为斜棱柱; 侧棱垂直于底面的棱柱叫做直棱柱; 底面是正多边形的直棱柱是正棱柱; 底面是平行四边形的四棱柱叫做平行六面体; 侧棱垂直于底面的平行六面体叫做直平行六面体;底面是矩形的直平行六面体叫做长方体; 棱长都相等的长方体叫做正方体,其中长方体对角线的平方等于同一顶点 上三条棱的平方和. 2. 特殊的棱锥:如果棱锥的底面为正多边形,且各侧面是全等的等腰三角形,那么这样的棱 锥称为正棱锥,正棱锥各侧面底边上的高均相等,叫做正棱锥的斜高; 侧棱长等于底面边长的正三棱锥又称为正四面体. 3. 特殊的棱台:由正棱锥截得的棱台叫做正棱台,正棱台的侧面是全等的等腰梯形,正棱台 各侧面等腰梯形的高称为正棱台的斜高 4. 球心与球的截面圆心的连线垂直于截面 5. 规定:在多面体中,不在同一面上的两个顶点的连线叫做多面体的对角线,不在同一面 上的两条侧棱称为多面体的不相邻侧棱,侧棱和底面多边形的边统称为棱. 定义:用一个平行于

空间几何体的结构及视图金题讲义及参考答案

空间几何体的结构及视图金题讲义及 参考答案 考点梳理 一、第一章《空间几何体》的知识结构 本讲知识内容:柱、锥、台、球的结构特征;空间几何体三视图和直观图,能 识别三视图所表示的空间几何体。 二、知识梳理 1.空间几何体的结构特征 (1)棱柱的结构特征 (2)棱锥的结构特征

定义:有一个面是多边形,其余各面都是有一个公共顶点 ....的三角形,由这些面所围成的几何体叫做棱锥。 (3)圆柱的结构特征 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转形成的面所围成的旋转体叫圆柱. (4)圆锥的结构特征 定义:以直角三角形的一条直角边所在的直线为轴旋转,其余两边旋转形成的面所围成的旋转 体叫圆锥. (5)棱台的结构特征 概念:棱锥被平行于棱锥底面的平面所截后,截面和底面之间的部分 (6)圆台的结构特征 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

(7)球的结构特征 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体,叫球体,简称球. 2.空间几何体的投影和三视图 ? ? ? ? ? 正视图:光线从几何体的前面向后面正投影. 三视图左视图: 光线从几何体的左面向右面正投影. 俯视图:光线从几何体的上面向下面正投影, 规律: (1)正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; (2)俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; (3)左视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度. 金题精讲 题一 题面:下列几何体各自的三视图中,有且仅有两个视图相同的是() A.①② B.①③ C.①④ D.②④ 题二

高中数学空间立体几何讲义

第1讲 空间几何体 高考《考试大纲》的要求: ① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. ② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图. ③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. ④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). ⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). (一)例题选讲: 例1.四面体ABCD 的外接球球心在CD 上,且CD =2,AB =3,在外接球面上两点A 、B 间的球面距离是( ) A . 6π B .3 π C .32π D .65π 例2.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为( ) A .π2 B .π2 3 C .π332 D .π2 1 例3.在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角 是 . 例4.如图所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积. (1)求V (x )的表达式; (2)当x 为何值时,V (x )取得最大值? (3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值。 (二)基础训练: 1.下列几何体各自的三视图中,有且仅有两个视图相同的是( ) A .①② B .①③ C .①④ D .②④ 2.设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度0 75东经0120,则甲、乙两地球面距离为( ) (A )3R (B) 6 R π (C) 56 R π (D) 23R π ①正方形 ②圆锥 ③三棱台 ④正四棱锥

第一章空间几何体知识点归纳及基础练习

第一章 空间几何体 一、知识点归纳 (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其 中,这条定直线称为旋转体的轴。 (2)柱,锥,台,球的结构特征 1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。 1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何 体叫圆柱. 2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。 3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台. 4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球. (二)空间几何体的三视图与直观图 1.投影:区分中心投影与平行投影。平行投影分为正投影和斜投影。 2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则: 长对齐、高对齐、宽相等 3.直观图:直观图通常是在平行投影下画出的空间图形。 4.斜二测法:在坐标系'''x o y 中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。 (三)空间几何体的表面积与体积 1、空间几何体的表面积 ①棱柱、棱锥的表面积: 各个面面积之和 ②圆柱的表面积 ③圆锥的表面积2S rl r ππ=+ ④圆台的表面积22S rl r Rl R ππππ=+++ ⑤球的表面积24S R π= ⑥扇形的面积公式213602n R S lr π==扇形 (其中l 表示弧长,r 表示半径) 2、空间几何体的体积 ①柱体的体积 V S h =?底 ②锥体的体积 13 V S h =?底 ③台体的体积 1)3V S S h =+ +?下上( ④球体的体积343 V R π= 二、巩固练习: 222r rl S ππ+=

《空间解析几何2》教学大纲.

《空间解析几何2》教学大纲 课程编号:12307229 学时:22 学分:1.5 课程类别:限制性选修课 面向对象:小学教育专业本科学生 课程英语译名:In terspace An alytic Geometry (2) 一、课程的任务和目的 任务:本课程要求学生熟练掌握解析几何的基本知识和基本理论,正确地理解和使用向 量代数知识,并解决一些实际问题。深刻理解坐标观念和曲线(面)与方程相对应的观念,熟练掌握讨论空间直线、平面、曲线、曲面的基本方法,训练学生的空间想象能力和运算能力。 目的:通过本课程的学习,使学生掌握《空间解析几何》的基本知识、基本思想及基本方法,培养学生的抽象思维能力及空间想象力,培养学生用代数方法处理几何问题的能力,提高学生从几何直观分析问题和和解决问题的能力。为学习《高等代数》及《数学分析》及后继课程打下坚实基础,为日后胜任小学教学工作而作好准备。 二、课程教学内容与要求 (一)平面与空间直线(14学时) 1.教学内容与要求:本章要求学生熟练掌握平面与空间直线的各种形式的方程,能判别空间有关点、直线与平面的位置关系,能熟练计算它们之间的距离与交角。 2?教学重点:根据条件求解平面和空间直线的方程,及点、直线、平面之间的位置关系 3?教学难点:求解平面和空间直线的方程。 4.教学内容: (1)平面的方程(2课时):掌握空间平面的几种求法(点位式、三点式、点法式、一般式)。 (2)平面与点及两个平面的相关位置(2课时):掌握平面与点的位置关系及判定方法;掌握空间两个平面的位置关系及判定方法。 (3)空间直线的方程(2课时):掌握空间直线的几种求法(点向式、两点式、参数式、一般式、射影式)。 (5)直线与平面的相关位置(2课时):掌握空间直线与平面的位置关系及判定方法。 (6)空间两直线的相关位置(2课时):掌握空间两直线的位置关系及判定方法。 (7)空间直线与点的相关位置(2课时):掌握直线与点的位置关系及判定方法。 (8)平面束(2课时):掌握平面束的定义(有轴平面束和平行平面束),并能根据题意求平面束的方程。 (二)特殊曲面(8学时)

空间几何体(讲义及答案)(1)

空间几何体(讲义) >知识点睛 一、空间儿何体的结构特征 棱 特殊的多面体: 柱:斜棱柱、直棱柱、正棱柱、正方体 锥:正棱锥、正四面体 J正四棱柱:底面是正方形的直棱柱 1正方体(正六面体):侧棱长与底边长相等的正四棱柱 j正三棱锥:底面是正三角形,顶点在底面的射影是底面中心 I正四面体:侧棱长与底边长相等的正三棱锥

正棱柱 A B 正方体 S B S 直棱柱 正四面体 正三棱锥 2.简单组合体

3.球 (1)球的截面性质: ①经过球心的截面截得的圆叫做球的大圆,不过球心的截面 截得的圆叫做球的小圆; ②球心和截得的小圆圆心的连线垂直于截面. (2)位置关系: ①外接球:多面体的各个顶点都在球面上; ②内切球:多面体的各个面都与球相 切.二、空间儿何体的表面积与体积 J 空间儿何体的表面积(也称全面积)(底面周长为C) S|畀柱= -------------- ;S閱锥= S惆台=7t(r'-+r+/-7 + rZ). 2空间儿何体的体积 DL 川/厂 T---- I ]少 1、■ I r --- A B C

心= -------------- ;%= ----------------- ; (底面积为S,高为/I) 八棱长为小 V =V =1(S'+ 辰+S)/7(上下底面积分别为S』,高为")?梭台恻台3 3球的表面积与体积 S 球= ____________' V球= ______________ ?

有一个底面为多边形,其余各面都是 有一个公共顶点的三 角形,由这些 面所W 成的儿何体是棱锥 用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台 棱柱的侧 面都是平行四边形,而底面不是平行四边形 棱柱的侧棱都相等,侧面都是全等的平行四边形 3.下列命题: ① 底面是等边三角形,侧面都是等腰三角形的三棱锥是正三 棱锥; ② 所有棱长都相等的直棱柱是正棱柱; ③ 若一个四棱柱有两个侧面垂直于底面,则该四棱柱为直四 棱柱; ④ 所有棱长都相等的正三棱锥是正四面体; ⑤ 一个棱锥可以有两个侧面和底面垂 直.其中正确的有() A. 1个 B. 2个 C. 3个 D. 4个 >精讲精练 1.下列说法中,正确的是( A B C. D 2.如图所示的儿何体中是棱柱的有( C. 3个 D. ③ A ?1个 B ?2个 ? ④

空间几何体知识点归纳

第一章空间几何体 1.1柱、锥、台、球的结构特征 (1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱' ' ' ' 'E D C B A ABCDE-或用对角线的端点字母,如五棱柱' AD 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥' ' ' ' 'E D C B A P- 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。 (3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台' ' ' ' 'E D C B A P- 几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。 (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 1.2空间几何体的三视图和直观图 1 三视图: 正视图:从前往后侧视图:从左往右俯视图:从上往下2 画三视图的原则: 长对齐、高对齐、宽相等

空间立体几何高考知识点总结与经典题目

空间立体几何 知识点归纳: 1. 空间几何体的类型 (1)多面体:由若干个平面多边形围成的几何体,如棱柱、棱锥、棱台。 (2)旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。 如圆柱、圆锥、圆台。 2. 一些特殊的空间几何体 直棱柱:侧棱垂直底面的棱柱。正棱柱:底面多边形是正多边形的直棱柱。 正棱锥:底面是正多边形且所有侧棱相等的棱锥。 正四面体:所有棱都相等的四棱锥。 3. 空间几何体的表面积公式 棱柱、棱锥的表面积:各个面面积之和 _ 2 圆柱的表面积:S =2 rl 2 r2圆锥的表面积:S =理「I ?二r 2 2 圆台的表面积:S =理rl 7 r?二RI ?二R 球的表面积:s= 4 R2 4 ?空间几何体的体积公式 1 柱体的体积:V = S底 h 锥体的体积:v = - S底h 3底 1 ---------- 、, 4 3 台体的体积:V = —( S上?S上S T S下)h 球体的体积:V R 3 '3 5.空间几何体的三视图 正视图:光线从几何体的前面向后面正投影,得到的投影图。 侧视图:光线从几何体的左边向右边正投影,得到的投影图。 俯视图:光线从几何体的上面向右边正投影,得到的投影图。 画三视图的原则: 长对正、宽相等、高平齐。即正视图和俯视图一样长,侧视图和俯视图一样宽,侧视图和正视图一样高。 6 .空间中点、直线、平面之间的位置关系 (1) 直线与直线的位置关系:相交;平行;异面。

(2)直线与平面的位置关系:直线与平面平行;直线与平面相交;直线在平面内。 (3)平面与平面的位置关系:平行;相交。 7. 空间中点、直线、平面的位置关系的判断 (1)线线平行的判断: ①平行公理:平行于同一直线的两直线平行。 ②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相 交,那么这条直线和交线平行。 ③面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 ④线面垂直的性质定理:垂直于同一平面的两直线平行。 (2)线线垂直的判断: ①线面垂直的定义:若一直线垂直于一平面,这条直线垂直于平面内所有直线。 ②线线垂直的定义:若两直线所成角为,则两直线垂直 ③一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。 (3)线面平行的判断: ①线面平行的判定定理:如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平 面平行。 ②面面平行的性质定理:两个平面平行,其中一个平面内的直线必平行于另一个平面。 (4)线面垂直的判断: ①线面垂直的判定定理:如果一直线和平面内的两相交直线垂直,这条直线就垂直于这 个平面。 ②如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。 ③一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ④如果两个平面垂直,那么在一个平面内垂直于交线的直线必垂直于另一个 (5)面面平行的判断:

高等数学-向量代数与空间解析几何复习

第五章 向量代数与空间解析几何 5.1向量 既有大小又有方向的量 表示:→ -AB 或a (几何表示)向量的大小称为向量的模,记作||AB 、|a |、||a 1. 方向余弦:? ?? ? ??=||,||,||)cos ,cos ,(cos r r r z y x γβα r =(x ,y ,z ),| r |=2 22z y x ++ 2. 单位向量 )cos ,cos ,(cos γβα=→ ο a 模为1的向量。 3. 模 → →→ ?=++=a a z y x a 2 22|| 4. 向量加法(减法) ),,(212121z z y y x x b a ±±±=±→ → 5. a ·b =| a |·| b |cos θ212121z z y y x x ++= a ⊥ b ?a ·b =0(a ·b =b ·a ) 6. 叉积、外积 |a ?b | =| a || b |sin θ= z y x z y x b b b a a a k j i a // b ?a ?b =0.( a ?b= - b ?a ) ? 2 1 2121z z y y x x == 7. 数乘:),,(kz ky kx ka a k ==→ → 例1 1||,2||==→ → b a ,→a 与→ b 夹角为3 π ,求||→ →+b a 。 解 22 ||cos ||||2||2)()(||→ →→→ →→→→→→→→→→→ →++=?+?+?=+?+=+b b a a b b b a a a b a b a b a θ 713 cos 12222=+???+= π 例2 设2)(=??c b a ,求)()]()[(a c c b b a +?+?+。 解 根据向量的运算法则 )()]()[(a c c b b a +?+?+

必修2第1讲空间几何体培训讲义无答案.doc

第一章空间几何体 空间几何体 一、空间几何体的结构 (-)多面体与旋转体:多面体:棱柱、棱锥、棱台; 旋转体:圆柱、圆锥、圆台、球; 另一种分类方式:①柱体:棱柱、圆柱; %1椎体:棱锥、圆锥; %1台体:棱台、圆台; %1球 简单组合体:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成。 (二)柱、锥、台、球的结构特征 1.棱柱:①直棱柱斜棱柱正棱柱②三棱柱、四棱柱、五棱柱、六棱柱等等。 棱柱的性质:①两底面是对应边平行的全等多边形; %1侧面、对角面都是平行四边形; %1侧棱平行且相等; %1平行于底面的截面是与底面全等的多边形。 2.棱锥:三棱锥、四棱锥、五棱锥、六棱锥等等 (1)棱锥的性质:①侧面、对角面都是三角形; %1平行于底面的截面与底面相似,其相似比等于顶点到截面E巨 离与的比的方* (2)正棱锥的性质:①正棱锥各侧棱都相等,各侧面都是全等的等腰三角形。 %1正棱锥的高,斜高和斜高在底面上的射影组成一个直角三 角形,正棱锥的高,侧棱,侧棱在底面内的射影也组成一 个直角三角形。 %1正棱锥的侧棱与底面所成的角都相等。 %1正棱锥的侧面与底面所成的二面角都相等。 3.圆柱与圆锥:圆柱的轴圆柱的底面圆柱的侧面圆柱侧面的母线 4.棱台与圆台:统称为台体 (1)棱台的性质:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点. (2)圆台的性质:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延氏线交于一点;母线长都相等.

5.球:球体球的半径球的直径.球心

O—A 二、空间几何体的三视图和直观图 1.中心投影平行投影正投影 2.三视图的画法:长对正、高平齐、宽相等。 3.直观图:斜二测画法,直观图中斜坐标系尤力项,两轴夹角为45。; %1原来与x轴平行的线段仍然与x平行且长度不变; %1原来与y轴平行的线段仍然与y平行,长度为原来的一半。 三、空间几何体的表面积和体积 1.柱体、锥体、台体表面积求法:利用展开图 2.柱体、锥体、台体表面积体积公式,球体的表面积体积公式: 几何体表面积相关公式体积公式 棱柱S全=2S底+ S侧,其中S侧=/侧枝长&直截面周长V = S\h 棱锥S全=,底+ S侧V = —SDh3 棱台s全=s上底+ S下底+ S侧 v =L(s‘+ Js’s +s)/z 圆柱 S全=2、r1 + 2/r rl (r:底面半径,1:母线长=方:高) V = sh =兀广h 圆锥 S 全=7T r 2 + 7T r 1 (r:底面半径,7:母线长) V = —sh = —7rr2h 3 3 圆台 S全=勿(,"+尸2+,,/+〃) (r:下底半径,广上底半径,7:母线长) V = -($ '+ Js 'S + S)h 3球体S球面=4勿A?4正视图(从前向后)反映了物体上下高度、左右长度的关系; 侧视图(从左向右)反映了物体左右长度、前后宽度的关 系; 俯视图(从上向下)反映了物体上下高度、前后宽度的关系。 i MX 大 I

立体几何基础知识

立体几何基础知识 1. 平面的概念: 平面是没有厚薄的,可以无限延伸,这是平面最基本的属性 2. 平面的画法及其表示方法: ①常用平行四边形表示平面通常把平行四边形的锐角画成45 ,横边画成邻边的两倍画两个平面相交时, 当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画 ②一般用一个希腊字母α、β、γ……来表示,还可用平行四边形的对角顶点的字母来表示如平面AC . 3. 空间图形是由点、线、面组成的 为α?a . 4. 平面的基本性质 (1)公理1:如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内

符号表示:ααα??∈∈a B A ,. 如图示: 应用:是判定直线是否在平面内的依据,也可用于验证一个面是否是平面. 公理1说明了平面与曲面的本质区别.通过直线的“直”来刻划平面的“平”,通过直线的“无限延 伸”来描述平面的“无限延展性”,它既是判断直线在平面内,又是检验平面的方法. (2)公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这 个公共点的直线 符号表示:A l A ααββ∈? ?=?∈? 且A l ∈且l 唯一如图示: 应用:①确定两相交平面的交线位置;②判定点在直线上 公理2揭示了两个平面相交的主要特征,是判定两平面相交的依据,提供了确定两个平面交线的方法. (3)公理3: 经过不在同一条直线上的三点,有且只有一个平面推理模式:,, A B C 不共线?存在唯一的平面α,使得,,A B C α∈ 应用:①确定平面;②证明两个平面重合 注意:“有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图 形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证. (4)推论1 :经过一条直线和直线外的一点有且只有一个平面 推理模式:A a ??存在唯一的平面α,使得A α∈,α?l (5)推论2: 经过两条相交直线有且只有一个平面 推理模式:P b a = ?存在唯一的平面α,使得αα??b a , (6)推论3 :经过两条平行直线有且只有一个平面 推理模式://a b ?存在唯一的平面α,使得αα??b a , 5. 平面图形与空间图形的概念:如果一个图形的所有点都在同一个平面内,则称这个图形为平面图形,否则称为空间图形特别注意空间四边形是平面图形而不是平面图形. 6. 空间两直线的位置关系 (1)相交——有且只有一个公共点; (2)平行——在同一平面内,没有公共点; (3)异面——不在任何.. 一个平面内,没有公共点; 7. 公理4 :平行于同一条直线的两条直线互相平行推理模式://,////a b b c a c ?.

高中数学立体几何讲义

平面与空间直线 (Ⅰ)、平面的基本性质及其推论 图形 符号语言 文字语言(读法) A a A a ∈ 点A 在直线a 上。 A a A a ? 点A 不在直线a 上。 A α A α∈ 点A 在平面α内。 A α A α? 点A 不在平面α内。 b a A a b A =I 直线a 、b 交于A 点。 a α a α? 直线a 在平面α内。 a α a α=?I 直线a 与平面α无公共点。 a A α a A α=I 直线a 与平面α交于点A 。 l αβ=I 平面α、β相交于直线l 。 2、平面的基本性质 公理1: 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内 推理模式:A AB B ααα∈? ??∈? ?。 如图示: 应用:是判定直线是否在平面内的依据,也是检验平面的方法。 B A α

公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。 推理模式: A l A ααββ∈? ?=?∈? I 且A l ∈且l 唯一如图示: 应用:①确定两相交平面的交线位置;②判定点在直线上。 例1.如图,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面 α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线. 解:∵AB ∥CD , ∴AB ,CD 确定一个平面β. 又∵AB I α=E ,AB ?β,∴E ∈α,E ∈β, 即E 为平面α与β的一个公共点. 同理可证F ,G ,H 均为平面α与β的公共点. ∵两个平面有公共点,它们有且只有一条通过公共点的公共直线, ∴E ,F ,G ,H 四点必定共线. 说明:在立体几何的问题中,证明若干点共线时,常运用公理2,即先证明这些点都是某二平面的公共点,而后得出这些点都在二平面的交线上的结论. 例2.如图,已知平面α,β,且αI β=l .设梯形ABCD 中,AD ∥BC ,且AB ?α,CD ?β,求证:AB ,CD ,l 共点(相交于一点). 证明 ∵梯形ABCD 中,AD ∥BC , ∴AB ,CD 是梯形ABCD 的两条腰. ∴ AB ,CD 必定相交于一点, 设AB I CD =M . 又∵AB ?α,CD ?β,∴M ∈α,且M ∈β.∴M ∈αI β. 又∵αI β=l ,∴M ∈l , 即AB ,CD ,l 共点. 说明:证明多条直线共点时,一般要应用公理2,这与证明多点共线是一样的. 公理3: 经过不在同一条直线上的三点,有且只有一个平面。 推理模式:,, A B C 不共线?存在唯一的平面α,使得,,A B C α∈。 应用:①确定平面;②证明两个平面重合 。 例3.已知:a ,b ,c ,d 是不共点且两两相交的四条直线,求证:a ,b ,c ,d 共面. 证明 1o 若当四条直线中有三条相交于一点,不妨设a ,b ,c 相交于一点A , α D C B A E F H G α D C B A l 例2 β M

高中数学空间几何体知识点总结

空间几何体知识点总结 一、空间几何体的结构特征 1.柱、锥、台、球的结构特征 由若干个平面多边形围成的几何体称之为多面体。围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。 把一个平面图形绕它所在平面的一条定直线旋转形成的封闭几何体称之为旋转体,其中定直线称为旋转体的轴。 (1)柱 棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。 底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱…… 注:相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: 棱柱的性质: ①侧棱都相等,侧面是平行四边形; ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形; ④直棱柱的侧棱长与高相等,侧面与对角面是矩形。 圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。 圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形。

棱柱与圆柱统称为柱体; (2)锥 棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。 底面是三角锥、四边锥、五边锥……的棱柱分别叫做三棱锥、四棱锥、五棱锥…… 正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 注:棱锥的性质: ①平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比; ②正棱锥各侧棱相等,各侧面是全等的等腰三角形; ③正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面的射影、斜高在底面的射影、底面边长一半,构成四个直角三角形。 圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥;旋转轴为圆锥的轴;垂直于轴的边旋转形成的面叫做圆锥的底面;斜边旋转形成的曲面叫做圆锥的侧面。 圆锥的性质: ①平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比; ②轴截面是等腰三角形; 棱锥与圆锥统称为锥体。 (3)台 棱台:用一个平行于底面的平面去截棱锥,底面和截面之间的部分叫做棱台;原棱锥的底面和截面分别叫做棱台的下底面和上底面;棱台也有侧面、侧棱、顶点。

20届高考数学一轮复习讲义(提高版) 专题9.3 空间几何体外接球和内切球(原卷版)

9.3 空间几何外接球和内切球 一.公式 1.球的表面积:S =4πR 2 2.球的体积:V =43πR 3 二.概念 1. 2. 考向一 长(正)方体外接球 【例1】若一个长、宽、高分别为4,3,2的长方体的每个顶点都在球O 的表面上,则此球的表面积为__________. 【举一反三】 1.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________. 2.如图是一个空间几何体的三视图,则该几何体的外接球的表面积是________.

考向二棱柱的外接球 【例2】直三棱柱ABC?A′B′C′的所有棱长均为2√3,则此三棱柱的外接球的表面积为()A.12πB.16πC.28πD.36π 【举一反三】

1.设直三棱柱ABC-A1B1C1的所有顶点都在一个球面上,且球的表面积是40π,AB=AC=AA1,∠BAC=120°,则此直三棱柱的高是________. 2.直三棱柱ABC?A1B1C1中,已知AB⊥BC,AB=3,BC=4,AA1=5,若三棱柱的所有顶点都在同一球面上,则该球的表面积为__________. 考向三棱锥的外接球 类型一:正棱锥型 【例3-1】已知正四棱锥P ABCD -的各顶点都在同一球面上, 体积为2,则此球的体积为() A. 124 3 π B. 625 81 π C. 500 81 π D. 256 9 π 【举一反三】 1.已知正四棱锥P ABCD -的各条棱长均为2,则其外接球的表面积为( )

A. 4π B. 6π C. 8π D. 16π 2.如图,正三棱锥D ABC -的四个顶点均在球O 的球面上,底面正三角形的边长为3,侧棱长为则球O 的表面积是( ) A .4π B . 323 π C .16π D .36π 类型二:侧棱垂直底面型 【例3-2】在三棱锥P ABC -中, 2AP =, AB = PA ⊥面ABC ,且在三角形ABC 中,有()cos 2cos c B a b C =-(其中,,a b c 为ABC ?的内角,,A B C 所对的边),则该三棱锥外接球的表面积为( ) A. 40π B. 20π C. 12π D. 203 π 【举一反三】

高中数学选修21空间向量与立体几何知识点讲义

第三章 空间向量与立体几何 一、坐标运算 ()()111222,,,,,a x y z b x y z == ()()()()121212121212 11112121 2,,,,,,,,a b x x y y z z a b x x y y z z a x y z a b x x y y z z λλλλ+=+++-=---=?=???则 二、共线向量定理 (),0,=.a b b a b a b λλ≠←??→?充要对于使 三、共面向量定理 ,,.a b p a b x y p x a y b ←??→?=+充要若与不共线,则与共面使 ,,, 1.O OP xOA yOB P A B x y =+←???→+=充要条件四、对空间任意一点,若则三点共线 ,1.P A B C O OP xOA yOB zOC P A B C x y z =++←??→++=充要五、对空间异于、、、四点的任意一点,若若、、、四点 ()()()11, 1. P A B C AP xAB y AC OP OA x OB OA y OC OA OP xOB yOC x y OA x y z x y z ∴=+∴-=-+-∴=++----=∴++=证明:①必要性 、、、四点共面, ,,, 令()()() 1, 1,x y z OP y z OA yOB zOC OP OA y OB OA z OC OA AP y AB z AC A B C P ++=∴=--++∴-=-+-∴=+∴②充分性,,、、、四点共面. 六、空间向量基本定理 {} ,,a b c p x y z p xa yb zc a b c a b c ?若,,不共面,对于任意,使=++,称,,做空间的一个基底,, ,都叫做基向量.

空间几何体的表面积和体积经典例题(教师讲义打印一份)

空间几何体的表面积和体积 一.课标要求: 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 二.命题走向 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。 由于本讲公式多反映在考题上,预测2016年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 三.要点精讲 1.多面体的面积和体积公式 侧棱长。 2.旋转体的面积和体积公式 12 上、下底面半径,R 表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:?? ?=++=++24 )(420)(2z y x zx yz xy )2()1(

由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16 所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN , ∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N , 从而OM=ON 。 ∴点O 在∠BAD 的平分线上。 (2)∵AM=AA 1cos 3 π =3×21=23 ∴AO=4 cos πAM =223 。 又在Rt △AOA 1中,A 1O 2=AA 12 – AO 2=9- 29=2 9, ∴A 1O= 223,平行六面体的体积为2 2 345? ?=V 230=。 题型2:柱体的表面积、体积综合问题 例3.一个长方体共一顶点的三个面的面积分别是6,3,2,这个长方体对角线的长是( ) A .2 3 B .3 2 C .6 D . 6 解析:设长方体共一顶点的三边长分别为a =1,b = 2,c =3,则对角线l 的长为

相关文档
最新文档