拉氏变换基本性质.

拉氏变换基本性质.
拉氏变换基本性质.

拉氏变换及其计算机公式

时域的函数可以通过线性变换的方法在变换域中表示,变换域的表示有时更为简捷、方便。例如控制理论中常用的拉普拉斯变换,简称拉氏变换,就是其中的一种。 一、拉氏变换的定义 已知时域函数,如果满足相应的收敛条件,可以定义其拉氏变换为 (2-45) 式中,称为原函数,称为象函数,变量为复变量,表示为 (2-46) 因为是复自变量的函数,所以是复变函数。 有时,拉氏变换还经常写为 (2-47) 拉氏变换有其逆运算,称为拉氏反变换,表示为 (2-48)

上式为复变函数积分,积分围线为由到的闭曲线。 二、常用信号的拉氏变换 系统分析中常用的时域信号有脉冲信号、阶跃信号、正弦信号等。现复习一些基本时域信号拉氏变换的求取。 (1)单位脉冲信号 理想单位脉冲信号的数学表达式为 (2-49) 且 (2-50) 所以 (2-51) 说明: 单位脉冲函数可以通过极限方法得到。设单个方波脉冲如图2-13所示,脉冲的宽度为,脉冲的高度为,面积为1。当保持面积不变,方波脉冲的宽度趋

于无穷小时,高度趋于无穷大,单个方波脉冲演变成理想的单位脉冲函数。在坐标图上经常将单位脉冲函数 表示成单位高度的带有箭头的线段。 由单位脉冲函数的定义可知,其面积积分的上下限是从到的。因此在求它的拉氏变换时,拉氏变换的积分下限也必须是。由此,特别指明拉氏变换定义式中的积分下限是,是有实际意义的。所以,关于拉氏变换的积分下限根据应用的实际情况有,,三种情况。为不丢掉信号中位于处可能存在的脉冲函数,积分下限应该为。 (2)单位阶跃信号 单位阶跃信号的数学表示为 (2-52) 又经常写为 (2-53)

由拉氏变换的定义式,求得拉氏变换为 (2-54) 因为 阶跃信号的导数在处有脉冲函数存在,所以单位阶跃信号的拉氏变换,其积分下限规定为。 (3)单位斜坡信号 单位斜坡信号的数学表示为 (2-55) 图2-15单位斜坡信号

拉氏变换和z变换表

附录A 拉普拉斯变换及反变换 1.拉氏变换的基本性质 附表A-1 拉氏变换的基本性质 1()([n n k f t dt s s -+= +∑?个

2.常用函数的拉氏变换和z变换表 附表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,, ,,m m b b b b -都是实常数;n m ,是正整数。按代数定理 可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= )() ( (F-3)

式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=1 i n s t i i c e =∑ (F-4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…,n s 为F(s)的n r -个单根;其中,1+r c ,…,n c 仍按式(F-2)或式(F-3)计算,r c ,1-r c ,…,1c 则按下式计算: )()(lim 11 s F s s c r s s r -=→ 11lim [()()]i r r s s d c s s F s ds -→=- )()(lim !11)() (1s F s s ds d j c r j j s s j r -=→- (F-5) )()(lim )!1(11)1() 1(11s F s s ds d r c r r r s s --=--→ 原函数)(t f 为 [])()(1 s F L t f -= ??????-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 11 111 1111)()() ( t s n r i i t s r r r r i e c e c t c t r c t r c ∑+=---+?? ????+++-+-=112211 1 )!2()!1( (F-6)

常用函数的拉氏变换[1]

附录A 拉普拉斯变换及反变换 419

420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

拉氏变换定义及性质

拉氏变换与反变换 机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。 2.5.1 拉普拉斯变换的定义 如果有一个以时间t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,,那么()t f 的的拉普拉斯变换定义为 ()()()0 e d st F s L f t f t t ∞ -=?????? s 是复变数, ωσj +=s (σ、ω均为实数), ?∞ -0 e st 称为拉普拉斯积分; )(s F 是 函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。 式()表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。 1.单位阶跃函数 )(1t 的拉氏变换 单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能的标准输入,这一函数定义为 ?? ?≥s ,则 0 e lim →-∞ →st t 。

拉氏变换与反变换

机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。 拉普拉斯变换的定义 如果有一个以时间为自变量的实变函数,它的定义域是,那么的拉普拉斯变换定义为 式中,是复变数,(σ、ω均为实数),称为拉普拉斯积分;是函数的拉普拉斯变换,它是一个复变函数,通常也称为的象函数,而称为的原函数;L是表示进行拉普拉斯变换的符号。 式()表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数。 几种典型函数的拉氏变换 1.单位阶跃函数的拉氏变换 单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能的标准输入,这一函数定义为 单位阶跃函数如图所示,它表示在时刻突然作用于系统一个幅值为1的不变量。单位阶跃函数的拉氏变换式为 当,则。 所以 () 图单位阶跃函数 2.指数函数的拉氏变换 指数函数也是控制理论中经常用到的函数,其中是常数。 令

则与求单位阶跃函数同理,就可求得 () 3.正弦函数与余弦函数的拉氏变换 设,,则 由欧拉公式,有 所以 )同理 )4.单位脉冲函数δ(t)的拉氏变换 单位脉冲函数是在持续时间期间幅值为的矩形波。其幅值和作用时间的乘积等于1,即。如图所示。 图单位脉冲函数 单位脉冲函数的数学表达式为 其拉氏变换式为 此处因为时,,故积分限变为。 5.单位速度函数的拉氏变换 单位速度函数,又称单位斜坡函数,其数学表达式为 见图所示。 图单位速度函数 单位速度函数的拉氏变换式为 利用分部积分法 令 则

对称变换

6对称变换 知识目标: 目标1:学会运用对称的思想解决将军饮马等最值问题 目标2:掌握倍角问题的常见处理方式 模块一“将军饮马”问题 例1 (1)如图,在上找一点P,使P A+PB最小. (2)如图,在上找一点P,使P A + PB最小. (3)如图,在上找一点P,使|P A—PB|最大. (4)如图,在上找一点P,使|P A—PB|最大. (5)如图,点P在锐角∠AOB的内部,在OB边上求作一点D,在OA边上求作一点C,使?PCD的周长最小.

(6)如图,点P是锐角∠AOB的内部一定点,在OB边上求作一点D,在OA边上求作一点C,使PD+CD 最小. (7)如图,点C、D在锐角∠AOB的内部,在OB边上求作一点F,在OA边上求作一点E,使四边形CEFD 的周长最小. (8)如图,直线外有两点A、B,有一定长线段,在直线上找到点M、N,使得MN间的距离等于定长a,使得四边形AMNB的周长最小. (9)如图,l1∥l2,点M、N分别是1、2上两动点,且满足MN⊥2,点A为1上方一定点,点B为2下方一定点,请确定M、N的位置,使AM+MN+BN最小.

例 2 (1)如图,等腰△底边的长为4,面积是122,腰的垂直平分线交于点,若为边上的中点,为线段上一动点,则△的周长最小值为 . F D E A B C M (2)(2013年武昌区八上期中) 如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上一动点,则EC +ED 的最小值. 例3 (1)如图,∠AOB =30°,点M 、N 分别是射线OA 、OB 上的动点,点P 位于∠AOB 内,且OP =3,求△PMN 的周长最小值. (2)(2015年武汉二中八上期中) 如图,为∠内一定点,、分别是射线、上一点,当△周长最小时,∠=110°,则∠= . (3)(2015年青山区八上期中)

对称变换.

对称变换 【将军饮马】据说古代希腊有一位将军向当时的大学者海伦请教一个问题:从A地出发到河边饮马,再到B地(如图4.32所示),走什么样的路最近?如何确定饮马的地点? 海伦的方法是这样的:如图4.33,设L为河,作AO⊥L交L于O点,延长AO至A',使A'O=AO。连结A'B,交L于C,则C点就是所要求的饮马地点。再连结AC,则路程(AC+CB)为最短的路程。 为什么呢?因为A'是A点关于L的对称点,AC与A'C是相等的。而A'B 是一条线段,所以A'B是连结A'、B这两点间的所有线中,最短的一条,所以AC+CB=A'C+CB=A'B也是最短的一条路了。这就是海伦运用对称变换,找到的一种最巧妙的解题方法。运用这种办法,可以巧妙地解决许多几何问题。 【划线均分】通过中心对称图形的对称中心,任意画一条直线,都可以把原图形均分成两个大小、形状完全相同的图形。利用这一性质,可以使某些较复杂的问题迅速地解答出来。例如 (1)把图形(图4.34)的面积,用一条直线分成相等的两个部分。

解题时,只要把这个图形看成是由两个矩形(长方形)组成的组合图形,而矩形既是轴对称图形,也是中心对称图形,所以只要找出两个对称中心(对角线交点),利用中心对称图形的上述性质,通过两个对称中心作一条直线,就能把它的面积分成相等的两个部分了。如前页的三种分法都行(如图4.35所示)。 (2)如图4.36,长方形ABCD内有一个以O点为圆心的圆,请画一条直线,同时将长方形和圆分为面积相等的两个部分。 大家知道,长方形和圆都既是轴对称图形,又是中心对称图形。长方形的对称中心是对角线的交点,圆的对称中心是它的圆心。 根据中心对称图形的上述性质,先找出这两个对称中心O点和P点(如图4.37),再过O、P作直线L,此直线L即是所画的那根直线。

小学数学奥数解题技巧(55)对称变换

55、对称变换 【将军饮马】据说古代希腊有一位将军向当时的大学者海伦请教一个问题:从A地出发到河边饮马,再到B地(如图4.32所示),走什么样的路最近?如何确定饮马的地点? 海伦的方法是这样的:如图4.33,设L为河,作AO⊥L交L于O 点,延长AO至A',使A'O=AO。连结A'B,交L于C,则C点就是所要求的饮马地点。再连结AC,则路程(AC+CB)为最短的路程。 为什么呢?因为A'是A点关于L的对称点,AC与A'C是相等的。而A'B是一条线段,所以A'B是连结A'、B这两点间的所有线中,最短的一条,所以AC+CB=A'C+CB=A'B也是最短的一条路了。这就是海伦运用对称变换,找到的一种最巧妙的解题方法。运用这种办法,可以巧妙地解决许多几何问题。 【划线均分】通过中心对称图形的对称中心,任意画一条直线,都可以把原图形均分成两个大小、形状完全相同的图形。利用这一性质,可以使某些较复杂的问题迅速地解答出来。例如

(1)把图形(图4.34)的面积,用一条直线分成相等的两个部分。 解题时,只要把这个图形看成是由两个矩形(长方形)组成的组合图形,而矩形既是轴对称图形,也是中心对称图形,所以只要找出两个对称中心(对角线交点),利用中心对称图形的上述性质,通过两个对称中心作一条直线,就能把它的面积分成相等的两个部分了。如前页的三种分法都行(如图4.35所示)。 (2)如图4.36,长方形ABCD内有一个以O点为圆心的圆,请画一条直线,同时将长方形和圆分为面积相等的两个部分。

大家知道,长方形和圆都既是轴对称图形,又是中心对称图形。长方形的对称中心是对角线的交点,圆的对称中心是它的圆心。 根据中心对称图形的上述性质,先找出这两个对称中心O点和P 点(如图4.37),再过O、P作直线L,此直线L即是所画的那根直线。

拉氏变换定义及性质

2.5 拉氏变换与反变换 机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。 2.5.1 拉普拉斯变换的定义 如果有一个以时间t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,,那么()t f 的的拉普拉斯变换定义为 ()()()0 e d st F s L f t f t t ∞ -=?????? (2.10) s 是复变数, ωσj +=s (σ、ω均为实数), ?∞ -0e st 称为拉普拉斯积分; )(s F 是函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。 式(2.10)表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。 1.单位阶跃函数 )(1t 的拉氏变换 单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能 的标准输入,这一函数定义为 ?? ?≥s ,则 0 e lim →-∞ →st t 。 所以:

拉氏变换常用公式

附录A 拉普拉斯变换及反变换表A-1 拉氏变换的基本性质

表A-2 常用函数的拉氏变换和z变换表

用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设 )(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 1 1 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + =n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

拉氏变换定义、计算、公式及常用拉氏变换反变换

****拉普拉斯变换及反变换**** 定义:如果定义: ? 是一个关于的函数,使得当时候, ; ? 是一个复变量; ? 是一个运算符号,它代表对其对象进行拉普拉斯积分;是 的拉普拉斯变换结果。 则的拉普拉斯变换由下列式子给出:

2.表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1)

式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []? ?????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根; 其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算: )()(lim 11 s F s s c r s s r -=→ )]()([lim 111 s F s s ds d c r s s r -=→- )()(lim !11)() (1s F s s ds d j c r j j s s j r -=→- (F-5) )()(lim )!1(11)1() 1(11s F s s ds d r c r r r s s --=--→

对称变换和对称矩阵.doc

7.5 对称变换和对称矩阵 授课题目:7.5 对称变换和对称矩阵 教学目的: 1.掌握对称变换的概念,能够运用对称变换和对称矩阵之间的关系解题. 2.掌握对称变换的特征根、特征向量的性质. 3.对一个实对称矩阵A,能熟练地找到正交矩阵T,使 T AT '为对角形 授课时数:3学时 教学重点: 对称变换的特征根、特征向量的性质; 对实对称矩阵A,能熟练地找到正交矩阵T,使 T AT '为对角形 教学难点:定理7.5.4的证明 教学过程: 一、 对称变换 1、一个问题 问题:欧氏空间V 中的线性变换σ应该满足什么条件,才能使它在某个正交基下的矩阵是对角形?V 满足:V ∈>>=<<βαβσαβασ,,)(,),( 2、对称变换的定义 设σ是欧氏空间V 中的线性变换,如果V ∈?βα,都有、 >>=<<)(,βσαβασ),( 则称σ是V 的一个对称变换 例1 以下3 R 的线性变换中,指出哪些是对称变换? 1123122331(,,)(,,)x x x x x x x x x σ=+++ 21231323123(,,)(,2,2);x x x x x x x x x x σ=+--+ 3123213(,,)(,,)x x x x x x σ=-- 3、对称变换与对称矩阵的关系 Th1:n 维欧氏空间V 中的线性变换σ是对称变换的充分必要条件是: 关于任意一个正交基的矩阵是实对称矩阵 证:必要性:设σ是对称变换,σ关于V 的标准正交基},{21n ααα 的矩阵是 A=)(),(R n ij u A a ∈即 =))()(),((21n ασασασ },{21n ααα A 则k n k ki i a αασ∑== 1 )( n i ≤≤1

拉氏变换和傅里叶变换的关系

拉氏变换和傅里叶变换的关系 一、拉氏变换 1、拉氏变换的定义: 如果有一个以时间t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,,那么()t f 的的拉普拉斯变换定义为 ()()()0e d st F s L f t f t t ∞ -=?????? s 是复变数, ωσj +=s (σ、ω均为实数), ?∞ -0e st 称为拉普拉斯积分; )(s F 是函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。 s 式()表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。 2、拉氏变换的意义 工程数学中常用的一种积分变换。它是为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。 在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s 域)上来表示;在线性系统,控制自动化上都有广泛的应用 二、傅里叶变换 1、傅里叶变换的定义:

f(t)是t的函数,如果t满足狄里赫莱条件:具有有限个间断点;具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做 F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ① 傅里叶变换 ② 傅里叶逆变换 2、傅里叶变换的意义 傅里叶变换简单通俗理解就是把看似杂乱无章的信号考虑成由一定振幅、相位、频率的基本正弦(余弦)信号组合而成,傅里叶变换的目的就是找出这些基本正弦(余弦)信号中振幅较大(能量较高)信号对应的频率,从而找出杂乱无章的信号中的主要振动频率特点。如减速机故障时,通过傅里叶变换做频谱分析,根据各级齿轮转速、齿数与杂音频谱中振幅大的对比,可以快速判断哪级齿轮损伤。 二、拉氏变换和傅里叶变换的关系 傅里叶变换:的物理意义非常清晰:将通常在时域表示的信号,分解为多个正弦信号的叠加。每个正弦信号用幅度、频率、相位就可以完全表征。傅里叶变换之后的信号通常称为频谱,频谱包括幅度谱和相位谱,分别表示幅度随频率的分布及相位随频率的分布。对一个信号来说,就包含的信息量来讲,时域信号及其相应的傅里叶变换之后的信号是完全一样的。那傅里叶变换有什么作用呢因为有的信号主要在时域表现其特性,如电容充放电的过程;而有的信号则主要在频域表现其特性,如机械的振动,人类的语音等。若信号的特征主要在频域表

拉氏变换

拉普拉斯变换 拉氏变换的物理意义 拉氏变换是将时间函数f(t)变换为复变函数F(s),或作相反变换。 时域(t)变量t 是实数,复频域F(s)变量s 是复数。变量s 又称“复频率”。 拉氏变换建立了时域与复频域(s 域)之间的联系。 s=jw ,当中的j 是复数单位,所以使用的是复频域。通俗的解释方法是,因为系统中有电感X=jwL 、电容X=1/jwC ,物理意义是,系统H(s)对不同的频率分量有不同的衰减,即这种衰减是发生在频域的,所以为了与时域区别,引入复数的运算。但是在复频域计算的形式仍然满足欧姆定理、KCL 、KVL 、叠加法 Laplace 变换是工程数学里的重要变换,主要是实现微分积分电路的代数运算,建议参看《积分变换》这书.在一阶和高阶电路中,有一些问题在频域中分析比在时域中分析要方便的多,而拉氏变换就是一个很好的分析工具。它将时域中的信号输入,变换成S 域中的信频输入,再由S 域的输出,转换成时频的输出,很简洁明了,又可以分析出信号的多种变化.工程数学或者积分变换都可以解决你所提的问题. 拉普拉斯变换简称拉氏变换。它是一种函数的变换,经变换后,可将时域的微分方程变换成复数域的代数方程。并且在变换的同时,即将初始条件引入,避免了经典解法中求积分常数的麻烦,可使解题过程大为简化。因此,对于那些以时间t 为自变量的定常线性微分方程来说,拉氏变换求解法是非常有用的。 在经典自动控制理论中,自动控制的数学模型是建立在传递函数基础之上的,而传递函数的概念又是建立在拉氏变换的基础上,因此,拉氏变换是经典控制理论的重要数学基础,是分析研究线性动态系统的有力数学工具。本章着重介绍拉氏变换的定义,一些常用时间函数的拉氏变换,拉氏变换的性质以及拉氏反变换的方法。最后,介绍用拉氏变换解微分方程的方法。在学习中应注重该数学方法的应用,为后续章节的学习奠定基础。 2.1拉氏变换 2.1.1拉氏变换的定义 若()f t 为实变量时间t 的函数,且0t <时,函数()0f t =,则函数()f t 的拉氏变换记作 [()]f t L 或)(s F ,并定义为: [()]()()e d L st f t F s f t t +∞-==? (2.1) 式中s j σω=+为复变量,()F s 称为()f t 的象函数,称()f t 为()F s 的原函数。原函数是实变量t 的函数,象函数是复变量s 的函数。所以拉氏变换是将原来的实变量函数() f t

轴对称变换

课题:轴对称变换(一) 教学目标: (一)知识与技能 1.通过实际操作,了解什么叫轴对称变换。 2.如何作出一个图形关于一条直线的轴对称图形 (二)过程与方法 经历实际操作,认真体验的过程,发展学生的空间思维,并从实践中体会轴对称变换在实际生活中的应用。 (三)情感态度与价值观 1.鼓励学生积极参与数学活动,培养学生的数学兴趣。 2.初步认识数学和人类生活的密切联系,体验活动充满着探索与创造,感受数学的应用意识。 3.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心。 教学重点: 1.轴对称变换的定义 2.能够按要求作出简单平面图形经过轴对称后的图形。 教学难点: 1.作出简单图形关于直线的轴对称图形 2.利用轴对称进行一些图案设计 教学方法: 实验、观察、归纳、讨论、练习等 教具准备: 多媒体课件 教学过程: (一)创设情境,提出问题。 1.欣赏剪纸图案 剪纸是中国最流行的民间艺术之一,据考古其历史可追溯到6世纪,发展到今天,剪纸更多的是用于装饰,也可作礼品点缀之用或作为礼物赠送他人。下面请欣赏剪纸图片,多媒体展示。 设计意图:欣赏图片,陶冶情操,引发兴趣,问题引入。

2.引入新课:教师提出问题,如此漂亮的剪纸是如何剪出的呢?下面让我们尝试一种剪纸的基本过程。 (二)探究讨论,发现新知。 1.建立轴对称变换的概念 ⑴动手操作,让学生把纸按多媒体演示方法折叠,沿虚线裁剪。 ⑵猜测图案,让学生想象图形展开后的形状。 ⑶验证结论,将图形打开,看是否与自己想象的一致,多媒体课件演示,几种折叠的方法。 设计意图:让学生动手、动脑经历实际操作,认真体验,猜想验证的过程,培养学生想象力,发展空间思维。 ⑷提出问题: ①折痕两侧的图形有什么关系?(让学生回答出关于折痕轴对称,折痕是对称轴) ②两个图形成轴对称有什么特征? 设计意图:本问题的提出,使学生和上节轴对称图形联系起来,形成知识,自然过渡,符合建构主义的从学生原有知识和经验出发,建构新知识的理论。 ⑸师生共同总结:由一个平面图形得到它的轴对称图形,叫做轴对称变换。 2.轴对称变换的性质 ⑴研究图形,探究图形的轴对称变换的作法。 图形中的点A与点A’什么关系?若已知点A和对称轴l,你能作出点A 的对称点A’吗? 作法:作AA⊥l,并延长AH至A’,使AH=A’H,则点A’就是所求的点。 如图中△ABC和折痕l,你能作出△ABC关于直线l的轴对称图形吗? 作法:①作点关于直线l的对称点A’ ②同理作点B、C关于直线l的对称点B’、C’ ③连结A’B’、B’C’、C’A’,则△A’B’C’就是所求作的图形。 设计意图:在自己剪出的图形中找一个点,通过作图找到对称点,由点扩大到面,进而启发诱导学生作出三角形关于直线的对称图形,进而可以用同样方法把整个图形的轴对称图形做出来,在此过程中,不仅培养了作图能力,也

拉氏变换定义及性质

2.5拉氏变换与反变换 机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。 2.5.1拉普拉斯变换的定义 如果有一个以时间t为自变量的实变函数 f t,它的定义域是t 0 ,,那么ft 的的拉普拉斯变换定义为 F s L f t f :t e st dt (2.10) S是复变数,s j(C、3均为实数), st o 0称为拉普拉斯积分;F(s)是 函数f(t)的拉普拉斯变换,它是一个复变函数,通常也称F(s)为f(t)的象函数,而称f(t)为F(s)的原函数;L是表示进行拉普拉斯变换的符号。 式(2.10 )表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实 变函数变换为一个在复数域内与之等价的复变函数F(s)。 1.单位阶跃函数1(t) 的拉氏变换 单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能的标准输入,这一函数定义为 (t 0) (t 0) 单位阶跃函数如图2.7所示,它表示在t 0时刻突然作用于系统一个幅值为1的不变量。 单位阶跃函数的拉氏变换式为 F(s) L[1(t)] 01(t)e st dt 所以: 当Re(s) 0,则lim e st

(2.13 ) 4. 单位脉冲函数 S (t)的拉氏变换 单位脉冲函数是在持续时间7 期间幅值为」的矩形波。其幅值和作用时间 1 , 的乘积等于1,即丁 二如图2.8所示。 单位脉冲函数的数学表达式为 L1(t) !e st s (2.11 ) 2.指数函数-1 :_, 的拉氏变换 指数函数 也是控制理论中经常用到的函数,其中 -<■是常 数。 F(s) = i[e^] = £严严曲=「严⑷也 令._ 则与求单位阶跃函数同理,就可求得 1 1 F(s) = 'i 1 ' (2.12 ) 3.正弦函数与余弦函数的拉氏变换 设齐(。=酝驱,人⑴二ex 加,则 乌(E ) = z[sin GS ]= J sin 就严 曲 由欧拉公式,有 sin 血= --------- 所以 F i (s) 1 j t st j t st 1 一 e j e dt e j e dt 一 e 2j 0 0 2j 0 (S j )t dt e (sj )t e st dt 1 1 e (s j )t 2j s j 1 e (s j s j )t 同理込(匚)=匸CO£ tut (2.14

拉氏变换表(包含计算公式)

拉氏变换及反变换公式 1

2

3 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =----ΛΛ (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110-Λ都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)(ΛΛ 式中,n s s s ,,,21Λ是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计 算: )()(lim s F s s c i s s i i -=→ 或 i s s i s A s B c ='= )() ( 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= +Λ = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++--ΛΛΛ11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

拉氏变换

2.1 拉氏变换的概念 拉氏变换的定义式为: 条件是式中等号右边的积分存在(收敛)。 由于是一个定积分,将在新函数中消失。因此,只取决于,它是复变数的函数。拉氏变换将原来的实变量函数转化为复变量函数。 拉氏变换是一种单值变换。和之间具有一一对应的关系。通常称为原函 数,为象函数。 【例2-1】求单位阶跃函数(Unit Step Function)1(t)的象函数。 在自动控制原理中,单位阶跃函数是一个突加作用信号,相当一个开关的闭合(或断开)。在求它的象函数前,首先应给出单位阶跃函数的定义式。 则单位阶跃函数1(t)定义为: 所以

在自动控制系统中,单位阶跃函数相当一个突加作用信号。它的拉氏式由定义式有: 【例2-2】求单位脉冲函数( Unit Pulse Fuction )δ(t)的象函数 函数的特点是:

单位脉冲函数定义为: 在时及在时为0,在时,由0→+∞;又由+∞→0。但对时间的积分为1。即 单位脉冲传递函数的拉氏式,由定义式有: 【例2-3】求与1(t)间的关系。 由以上两例可见,在区间(0,ε)里,,而,所以

由上式有: 由上式有: 由式(2-4)和式(2-5)可知:单位阶跃函数对时间的导数即为单位脉冲函数。反之,单位脉冲函数对时间的积分即为单位阶跃函数。 【例2-4】求正弦函数 (Sinusoidal Function) f(t)=sinωt的象函数。 实用上,常把原函数与象函数之间的对应关系列成对照表的形式。通过查表,就能够知道原函数的象函数,或象函数的原函数,十分方便。常用函数的拉氏变换对照表见表2-1。 表2-1 常用函数拉氏变换对照表 序 原函数象函数 号 1 1 2 3 4 5 6 7

函数图象的平移与对称变换专题

专题五:函数图象的平移与对称变换 一.知识结构 1.利用描点法作函数的图象的基本步骤: ①确定函数的定义域 ②简化函数的解析式 ③讨论函数的性质(奇偶性、单调性、最值等) ④画出函数的图象 2.图象的平移变换 ①)(a x f y -=( 0>a )的图象可由)(x f y =的图象沿x 轴向右平移a 个单位得到;)(a x f y +=( 0>a )的图象可由)(x f y =的图象沿x 轴向左平移a 个单位得到 ②h x f y ±=)()0(>h 的图象可由)(x f y =的图象沿y 轴向上或向下平移h 个单位得到 注意: (1)可以将平移变换化简成口诀:左加右减,上加下减 (2)谁向谁变换是)()(a x f y x f y -=→=还是)()(x f y a x f y =→-= 3.图象的对称变换 ①)(x f y =与)(x f y -=的图象关于y 轴对称 ②)(x f y =与)(x f y -=的图象关于x 轴对称 ③)(x f y =与)(x f y --=的图象关于原点对称 ④)(x f y =的图象是保留)(x f y =的图象中位于上半平面内的部分,及与x 轴的交 点,将的)(x f y =图象中位于下半平面内的部分以x 轴为对称翻折到上半面中去而得到。 ⑤)(x f y =图象是保留中位于右半面内的部分及与y 轴的交点,去掉左半平面内的部分,而利用偶函数的性质,将右半平面内的部分以y 轴为对称轴翻转到左半平面中去而得到。 ⑥奇函数的图象关于原点成中心对称图形,偶函数的图象关于y 轴成轴对称图形 二.题型选编

题组一:利用描点法作函数的图象 1.作出函数|5||2|)(--+=x x x f 的图象; 2.作出函数2 213)(-+=x x x f 的图象; 3.作出函数34)(2+-=x x x f 的图象; 题组二:利用图象的变换解决相应的问题 1.设函数)(x f y =图象进行平移变换得到曲线C ,这时)(x f y =图象上一点)1,2(-A 变为曲线C 上点)3,3('-A ,则曲线C 的函数解析式为( ) A. 2)1(+-=x f y B. 2)1(++=x f y C. 2)1(--=x f y D. 2)1(-+=x f y 2.对于定义在R 上的函数)(x f 有下列命题,其中正确的序号为 ①若函数)(x f 是奇函数,则)1(-x f 的图象关于点)0,1(A 对称; ②若对R x ∈,有)1()1(-=+x f x f ,)(x f y =的图象关于直线1=x 对称; ③若函数)1(-x f 的图象关于直线1=x 对称,则函数)(x f 是偶函数; ④函数)1(+=x f y 与函数)1(x f y -=的图象关于直线1=x 对称; 3.若函数y = f (x ) (x ∈R )满足f (x + 2) = f (x ),且x ∈(–1, 1]时,f (x ) = |x |,则函数y = f (x )的图象与函数y = log 3| x |的图象的交点的个数是 . 题组三:有关图象问题的综合应用 1.若函数)10(1≠>-+=a a b a y x 且的图象经过第二、三、四象限,则一定有 . 2.函数b x a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是( ) A .0,1<>b a B .0,1>>b a C .0,10><