空间域处理

空间域处理
空间域处理

空间域图像处理主要分为灰度变换和空间滤波两类。灰度变换在像素上操作,主要以改变对比度和阈值处理为目的。空间滤波涉及改善性能的操作,如对每一个像素的领域处理来平滑或锐化图像。

本章的基本处理模型个g(x,y)=T[f(x,y)],f是输入图像,g是处理后的图像,T是点(x,y)的邻域上定义的关于f的一种算子。

灰度变换

1、图像反转

2、对数变换

3、幂律(伽马)变换

4、分段线性变换函数

Imadjust灰度图像进行亮度变换的基本IPT工具,语法g=imadjust(f,[low_in high_in],[low_out high_out],gamma)

参数说明:

输入图像应为uint8,uint16,double类图像,输出图像与输入图像有相同的类。除图像f外,函数的所有输入输出均指定在0和1之间,而不论图像f的类。

[low_in high_in]或[low_out high_out]使用空矩阵([])会得到默认值[01].

具体应用见IP48的例子

Intrans是负片,对数,伽马,对比度拉伸的集成函数。

5、直方图均衡(重点)库函数程序IP59.m

空间滤波

(一)平滑空间滤波器

平滑滤波器用于模糊处理和降低噪声,因此常用于预处理的任务中,常称为均值滤波器。

1、平滑线性滤波器

2、统计排序(非线性)滤波器

库函数ordfilt2(f,order,domain)

(i)最小值

(ii)最大值

(iii)中值

3、图像处理工具箱的介绍

Fspecial用来生成滤波掩模的W的函数见程序test_fspecial.m

clear all;

close all;

clc;

w_average=fspecial('average',[33]);%矩形平均滤波器w_disk=fspecial('disk',4);%圆形平均滤波器w_gaussian=fspecial('gaussian',[33],0.5);%高斯滤波器

%8-23行代码是库函数fspecial中生成高斯滤波掩模的具体代码

p2=[33];

p3=0.5;

siz=(p2-1)/2;

std=p3;%标准差

[x,y]=meshgrid(-siz(2):siz(2),-siz(1):siz(1));

arg=-(x.*x+y.*y)/(2*std*std);

h=exp(arg);%在此之前都是严格按照p93页的公式计算的

%下面的代码将上述生成的作h/sum(h(:))

h(h

sumh=sum(h(:));

if sumh~=0,

h=h/sumh;

end;

w_laplacian=fspecial('laplacian',0.5);%大小为3*3的拉普拉斯滤波器

w_log=fspecial('log',[55],0.5);%大小为5*5,标准差为0.5的高斯——拉普拉斯滤波器

%%27-43行代码是库函数fspecial中生成高斯——拉普拉斯滤波掩模的具体代码.参照P460的公式

%first calculate Gaussian

p2=[55];

p3=0.5;

siz=(p2-1)/2;

std2=p3^2;

[x,y]=meshgrid(-siz(2):siz(2),-siz(1):siz(1));

arg=-(x.*x+y.*y)/(2*std2);

h=exp(arg);

h(h

sumh=sum(h(:));

if sumh~=0,

h=h/sumh;

end;

%now calculate Laplacian

h1=h.*(x.*x+y.*y-2*std2)/(std2^2);

h=h1-sum(h1(:))/prod(p2);%make the filter sum to zero,sum(h)->0;

(二)锐化空间滤波器

1、关于一阶二阶微分的分析(P98)

2、二阶微分图像锐化——拉普拉斯算子

close all;

clear all;

clc;

f=imread('Fig0338(a)(blurry_moon).tif');

figure,imshow(f);

原图

w=fspecial('laplacian',0);

g1=imfilter(f,w,'replicate');

figure,imshow(g1,[]);

结果分析:上图的所有像素值都为正,。由于滤波器的中心为负数,所以我们希望得到带负值的拉普拉斯图像。上面的代码中,输入计算的图像为uint8类,使用imfilter滤波后的输出图像将会转化为与输入

图像相同的类,所有负值被剪掉为0.所以可以再滤波前将输入图像转化为double类。代码如下

f=im2double(f);

w=fspecial('laplacian',0);

g2=imfilter(f,w,'replicate');

figure,imshow(g2,[]);

g=f-g2;%相减恢复失去的色调

figure,imshow(g);

空间域滤波器(实验报告)

数字图像处理作业 ——空间域滤波器 摘要 在图像处理的过程中,消除图像的噪声干扰是一个非常重要的问题。本文利用matlab软件,采用空域滤波的方式,对图像进行平滑和锐化处理。平滑空间滤波器用于模糊处理和减小噪声,经常在图像的预处理中使用;锐化空间滤波器主要用于突出图像中的细节或者增强被模糊了的细节。本文使用的平滑滤波器有中值滤波器和高斯低通滤波器,其中,中值滤波器对去除椒盐噪声特别有效,高斯低通滤波器对去除高斯噪声效果比较好。使用的锐化滤波器有反锐化掩膜滤波、Sobel边缘检测、Laplacian边缘检测以及Canny算子边缘检测滤波器。不同的滤波方式,在特定的图像处理应用中有着不同的效果和各自的优势。

1、分别用高斯滤波器和中值滤波器去平滑测试图像test1和2,模板大小分别 是3x3 , 5x5 ,7x7;利用固定方差 sigma=1.5产生高斯滤波器. 附件有产生高斯滤波器的方法。 实验原理分析: 空域滤波是直接对图像的数据做空间变换达到滤波的目的。它是一种邻域运算,其机理就是在待处理的图像中逐点地移动模板,滤波器在该点地响应通过事先定义的滤波器系数与滤波模板扫过区域的相应像素值的关系来计算。如果输出像素是输入像素邻域像素的线性组合则称为线性滤波(例如最常见的均值滤波和高斯滤波),否则为非线性滤波(中值滤波、边缘保持滤波等)。 空域滤波器从处理效果上可以平滑空间滤波器和锐化空间滤波器:平滑空间滤波器用于模糊处理和减小噪声,经常在图像的预处理中使用;锐化空间滤波器主要用于突出图像中的细节或者增强被模糊了的细节。 模板在源图像中移动的过程中,当模板的一条边与图像轮廓重合后,模板中心继续向图像边缘靠近,那么模板的某一行或列就会处于图像平面之外,此时最简单的方法就是将模板中心点的移动范围限制在距离图像边缘不小于(n-1)/2个像素处,单处理后的图像比原始图像稍小。如果要处理整幅图像,可以在图像轮廓边缘时用全部包含于图像中的模板部分来滤波所有图像,或者在图像边缘以外再补上一行和一列灰度为零的像素点(或者将边缘复制补在图像之外)。 ①中值滤波器的设计: 中值滤波器是一种非线性统计滤波器,它的响应基于图像滤波器包围的图像区域中像素的排序,然后由统计排序的中间值代替中心像素的值。它比小尺寸的线性平滑滤波器的模糊程度明显要低,对处理脉冲噪声(椒盐噪声)非常有效。中值滤波器的主要功能是使拥有不同灰度的点看起来更接近于它的邻近值,去除那些相对于其邻域像素更亮或更暗,并且其区域小于滤波器区域一半的孤立像素集。 在一维的情况下,中值滤波器是一个含有奇数个像素的窗口。在处理之后,位于窗口正中的像素的灰度值,用窗口内各像素灰度值的中值代替。例如若窗口长度为5,窗口中像素的灰度值为80、90、200、110、120,则中值为110,因为按小到大(或大到小)排序后,第三位的值是110。于是原理的窗口正中的灰度值200就由110取代。如果200是一个噪声的尖峰,则将被滤除。然而,如果它是一个信号,则滤波后就被消除,降低了分辨率。因此中值滤波在某些情况下抑制噪声,而在另一些情况下却会抑制信号。 将中值滤波推广到二维的情况。二维窗口的形式可以是正方形、近似圆形的或十字形等。本次作业使用正方形模板进行滤波,它的中心一般位于被处理点上。窗口的大小对滤波效果影响较大。 根据上述算法利用MATLAB软件编程,对源图像test1和test2进行滤波处理,结果如下图:

空间域和频率域结合的图像增强技术及实现(1)

南京理工大学紫金学院毕业设计(论文)开题报告 学生姓名:杨程学号:090402159 专业:光电信息工程 设计(论文)题目:空间域和频率域结合的图像增强技术 及实现 指导教师:曹芳 2012年12月20日

开题报告填写要求 1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效; 2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇(不包括辞典、手册); 4.有关年月日等日期的填写,应当按照国标GB/T 7408—2005《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2007年3月15日”或“2007-03-15”。

毕业设计(论文)开题报告 1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述: 文献综述 空域法与时域法相结合的图像增强 一、研究的目的和意义 图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像,有效地去除图像中的噪声、增强图像中的边缘或其他感兴趣的区域,从而更加容易对图像中感兴趣的目标进行检测和测量。它一般要借助人眼的视觉特性,以取得看起来较好地视觉效果,其手段主要可分为空域法和时域法[1]。 二、图像增强的发展现状 图像增强的早期应用是对宇宙飞船发回的图像所进行的各种处理。到了70 年代,图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业,对经济、军事、文化及人们的日常生活产生重大的影响[2]。 三、空间域和频率域图像增强处理基本原理及优缺点比较: 图像增强可分成两大类:频率域法和空间域法。前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使得模糊的图片变得清晰[3]。后者是直接对原图象的灰度级别进行数据运算,它分为两类,一类是与象素点邻域有关的局部运算,如平滑,中值滤波,锐化等;另一类是对图象做逐点运算,称为点运算如灰度对比度扩展,削波,灰度窗口变换,直方图均衡化等[4]。 下面将讨论两种作用域增强算法的技术要点,并对其图像增强方法进行性能评价。 3.1 空间域图像增强的方法 空间域处理是直接对原图像的灰度级别进行数据运算,具体可分为以下几类: 1.灰度变换[5] 当图像成像时曝光不足或过度,图像记录设备的范围太窄等因素,都会产生对比不

数字图像处理之频率滤波

实验四、频域滤波 一、实验目的 1.了解频域滤波的方法; 2.掌握频域滤波的基本步骤。 二、实验内容 1.使用二维快速傅立叶变换函数fft2( )及其反变换函数ifft2( )对图象进行变换; 2.自己编写函数生成各种频域滤波器; 3.比较各种滤波器的特点。 三、实验步骤 1.图象的傅立叶变换 a.对图象1.bmp 做傅立叶变换。 >> x=imread(‘1.bmp’); f=fft2(x); imshow(real(f)) %显示变换后的实部图像 figure f1=fftshift(f); imshow(real(f1))

变换后的实部图像 中心平移后图像 b.对图象cameraman.tif 进行傅立叶变换,分别显示变换后的实部和虚 部图象。 思考:

对图象cameraman.tif 进行傅立叶变换,并显示其幅度谱|F(U,V)|。结果类似下图。 显示结果命令imshow(uint8(y/256)) 程序如下: x=imread('cameraman.tif'); f=fft2(x); f1=fftshift(f); y0=abs(f); y1=abs(f1); subplot(1,3,1),imshow(x) title('sourceimage') subplot(1,3,2),imshow(uint8(y0/256)) title('F|(u,v)|') subplot(1,3,3),imshow(uint8(y1/256)) title('中心平移')

2.频域滤波的步骤 a.求图象的傅立叶变换得F=fft2(x) b.用函数F=fftshit(F) 进行移位 c.生成一个和F 一样大小的滤波矩阵H . d.用F和H相乘得到G , G=F.*H e.求G的反傅立叶变换得到g 就是我们经过处理的图象。 这其中的关键就是如何得到H 。 3.理想低通滤波器 a.函数dftuv( )在文件夹中,它用生成二维变量空间 如:[U V]=dftuv(11,11) b.生成理想低通滤波器 >>[U V]=dftuv(51,51); D=sqrt(U.^2+V.^2); H=double(D<=15); Mesh(U,V,H) c.应用以上方法,对图象cameraman.tif进行低通滤波;

频率域变换

数字图像处理

本章包含的主要内容
傅立叶变换 卷积和卷积定理 频率域低通滤波 频率域高通滤波
2

问题1:傅立叶变换

?
空间域/灰度
?
频率域/幅值与频率
4

? 傅立叶变换的预备知识
? 点源和狄拉克函数
一幅图像可以看成由无穷多像素组成,每个像素可以看成 一个点源, 点源可以用狄拉克函数δ表示:
?∞ δ ( x, y ) = ? ?0

x = 0, y = 0 其他
ε
满足
?∞
∫ ∫ δ ( x, y ) dxdy = ∫ ∫ ε δ ( x, y ) dxdy = 1
?
ε为任意小的正数
5

? 狄拉克函数δ具性有的性质
9 δ函数为偶函数
δ ( ? x, ? y ) = δ ( x, y )
∞ ∞
9
位移性 或
f ( x, y ) =
?∞ ?∞
∫∫
f (α , β )δ ( x ? α , y ? β ) d α d β
f ( x, y ) = f ( x, y ) ? δ ( x, y )
9 9
可分性 筛选性
δ ( x, y ) = δ ( x)δ ( y )
f (α , β ) =
∞ ∞ ?∞ ?∞ ∞ ∞
∫∫
f ( x, y )δ ( x ? α , y ? β )dxdy
当α=β=0时
f (0, 0) =
?∞ ?∞
∫∫
f ( x, y )δ ( x, y )dxdy
6

实验三 图像的空间域滤波

1 A=imread('E:\pic\1.jpg'); I=rgb2gray(A); subplot(1,3,1); imshow(I);title('原图'); J=imnoise(I,'salt & pepper',0.05); subplot(1,3,2); imshow(J); title('加入椒盐噪声图象'); K=imnoise(I,'gaussian',0.01,0.02); subplot(1,3,3); imshow(K);title('加入高斯噪声图象'); 2 A=imread('E:\pic\1.jpg'); I=rgb2gray(A); Subplot(2,2,1); Imshow(I);title('原图'); H=fspecial('motion',20,45); MotionBlur=imfilter(I,H,'replicate'); Subplot(2,2,2); Imshow(MotionBlur);title('MotionBlur image'); H=fspecial('disk',10); blurred=imfilter(I,H,'replicate'); Subplot(2,2,3); Imshow(blurred);title('Blurred image'); H=fspecial('unsharp',0.5); Sharpened=imfilter(I,H,'replicate'); Subplot(2,2,4); Imshow(Sharpened);title('sharpened image');

3 A=imread('E:\pic\1.jpg'); I=rgb2gray(A); J=imnoise(I,'salt & pepper',0.05); Subplot(2,2,1);imshow(J);title('加入椒盐噪声图象'); H=fspecial('motion',20,45); MotionBlur=imfilter(J,H,'replicate'); Subplot(2,2,2); Imshow(MotionBlur);title('replicate'); MotionBlur=imfilter(J,H,'symmetric'); Subplot(2,2,3); Imshow(MotionBlur);title('symmetric'); MotionBlur=imfilter(J,H,'circular'); Subplot(2,2,4); Imshow(MotionBlur);title('circular');

数字图像的空间域滤波和频域滤波

数字图像的空间域滤波和频域滤波

三、实验过程 1. 平滑空间滤波: 1) 读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中。 椒盐噪声: def salt_pepperNoise(src): dst = src.copy() num = 1000 # 1000个噪声点 ndim = np.ndim(src) row, col = np.shape(src)[0:2] for i in range(num): x = np.random.randint(0, row) # 随机生成噪声点位置 y = np.random.randint(0, col) indicator = np.random.randint(0, 2) # 灰度图像 if ndim == 2: if indicator == 0: dst[x, y] = 0 else: dst[x, y] = 255 # 彩色图像 elif ndim == 3: if indicator == 0: dst[x, y, :] = 0 else: dst[x, y, :] = 255 return dst 高斯噪声: def addGaussianNoise(image,sigma): mean = 0.0 row, col ,ch= image.shape gauss = np.random.normal(mean, sigma, (row, col,ch)) gauss = gauss.reshape(row, col,ch) noisy = image + gauss return noisy.astype(np.uint8)

空间域图像滤波

function Template=gausTemplate(n,sigma) end ---------------------------------------------------------------------------------------------------------------------- clc clear im=imread('C:\Users\Administrator\Desktop\lena.jpg'); s=11;sigma=10; k=(s-1)/2; Template=gausTemplate(s,sigma);%生成高斯模板 [m,n]=size(im); %图像扩边 %%%%%%%%%%%%%%%%%% for i=k+1:m+k for j=k+1:n+k neighbor=;%%%%点i,j的邻阈 temp=;%%邻域内点乘 imF(i,j)=;%计算滤波器响应 end end imFil=imF(k+1:m+k,k+1:n+k);%滤波后的图像 imFil=uint8(imFil); imshow(imFil) clc clear im=imread('C:\Users\Administrator\Desktop\lena.jpg'); s=3;sigma=0.8; k=(s-1)/2; Template=gausTemplate(s,sigma);%éú3é???1?£°? [m,n]=size(im); %í???à?±? new=zeros(m+2*k,n+2*k);

new(k+1:m+k,k+1:n+k)=im; %%%%%%%%%%%%%%%%%% for i=k+1:m+k for j=k+1:n+k neighbor=new(i-k:i+k,j-k:j+k) ;%%%%μ?i,jμ?áú?Dtemp=neighbor.*Template ;%%áúóò?úμ?3? imF(i,j)=sum(temp(:)) ;%??????2¨?÷?ìó| end end imFil=imF(k+1:m+k,k+1:n+k);%??2¨oóμ?í??? imFil=uint8(imFil); imshow(imFil);

数字图像处理高通滤波器精编版

数字图像处理高通滤波器 姓名:*** 学号:********** 高通滤波是常见的频域增强的方法之一。高通滤波与低通滤波相反,它是高频分量顺利通过,使低频分量受到削弱。这里考虑三种高通滤波器:理想高通滤波器、巴特沃斯高通滤波器和高斯高通滤波器。这三种滤波器涵盖了从非常尖锐(理想)到非常平坦(高斯)范围的滤渡器函数,其转移函数分别为: 1、理想高通滤波器(IHPF ) ),(),(10),(D v u D D v u D v u H >≤???= 2、巴特沃斯高通滤波器(BHPF ) n v u D D v u H 20),()12(11),(?? ????-+= 3、高斯高通滤波器(GHPF ) 2022/v ,u D 1),(D e v u H )(--= 一、数字图像高通滤波器的实验过程: 1、理想高通滤波器程序 clear all ;clc; image = imread('test.jpg'); gimage_15 = func_ihpf(image,15); gimage_30 = func_ihpf(image,30); gimage_80 = func_ihpf(image,80); figure subplot(221),imshow(image); title('Original'); subplot(222),imshow(gimage_15); title('d0=15'); subplot(223),imshow(gimage_30); title('d0=30'); subplot(224),imshow(gimage_80); title('d0=80'); %被调函数子函数G(u,v)=F(u,v)H(u,v) function gimage = func_ihpf(image,d0) image = double(image); f = fftshift(fft2(image)); [M,N]=size(f); a0 = fix(M/2);

数字图像处理 降噪滤波 大作业

昆明理工大学信息工程与自动化学院学生实验报告 (2015—2016学年第一学期) 课程名称:图形图像基础程序设计开课实验室: 2015年 12月 1 日 一、实验目的及内容 目的:掌握和熟悉Matlab编程环境及语言;掌握图像降噪算法和用途。 内容: 在课程教学和查阅相关文献资料的基础上,选择下面一个数字图像处理技术专题,实现相应算法进行仿真实验,并完成大作业报告。专题如下: (1)图像增强处理技术; (2)图像降噪处理技术。 2、题目分析 利用matlab的GUI程序设计一个简单实用的图像处理程序。该程序应具备图像处理的常用功能,以满足用户的使用。现设计程序有以下基本功能: 1)图像的读取和保存。 2)通过自己输入数值,实现图像的旋转。 3)图像直方图统计和直方图均衡,要求显示直方图统计,比较直方图均衡后的效果。 4)能对图像加入各种噪声, 5)并通过几种滤波算法实现去噪并显示结果。 6)将图像转化成灰度图像。

3.总体设计 软件的总体设计界面布局如上图所示 分为显示区域与操作区域。 上边为显示区域:显示载入原图,以及通过处理后的图像。操作区域:通过功能键实现对图像的各种处理。 设计完成后运行的软件界面如下:

4、具体设计 现介绍各个功能模块的功能与实现。 4.1图像的读取和保存: (1)利用matlab中“ uigetfile”、“imread”“imshow”实现图像文件的读取与显示: 实现代码: function pushbutton2_Callback(hObject, eventdata, handles) % hObject handle to pushbutton2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)

基于matlab数字图像处理之高通滤波器

实践二:理想高通滤波器、Butterworth高通滤波器、高斯高通滤波器 2.1.1理想高通滤波器实践代码: I=imread(''); subplot(221),imshow(I); title('原图像'); s=fftshift(fft2(I)); subplot(223), imshow(abs(s),[]); title('图像傅里叶变换所得频谱'); subplot(224), imshow(log(abs(s)),[]); title('图像傅里叶变换取对数所得频谱'); [a,b]=size(s); a0=round(a/2); b0=round(b/2); d=10; p=;q=; fori=1:a forj=1:b distance=sqrt((i-a0)^2+(j-b0)^2); ifdistance<=dh=0; elseh=1; end; s(i,j)=(p+q*h)*s(i,j); end; end; s=uint8(real(ifft2(ifftshift(s)))); subplot(222), imshow(s);title('高通滤波所得图像'); I=imread(''); [f1,f2]=freqspace(size(I),'meshgrid'); Hd=ones(size(I)); r=sqrt(f1.^2+f2.^2); Hd(r<=0; figure surf(Hd,'Facecolor','interp','Edgecolor','none','Facelighting','phong');%画三维曲面(色)图 2.1.2理想高通滤波器实践结果截图: 2.2.1Butterworth高通滤波器实践代码: I1=imread(''); subplot(121),imshow(I1);

数字图像处理灰度变换与空间域matlab

学号: 0000000000 姓名:0000000 实验一灰度变换与空间域滤波 一.实验目的及要求 1.了解MATLAB的操作环境和图像处理工具箱Image Processing Toolbox的功能;2.加深理解图像灰度变换与空间域滤波概念和算法原理; 3.掌握MATLAB中图像灰度变换与空间域滤的实现方法。 二、实验内容 (一)研究以下程序,分析程序功能;输入执行各命令行,认真观察命令执行的结果。利用MATLAB帮助文档熟悉程序中所使用函数的调用方法,改变有关参数,观察试验结果。(可将每段程序保存为一个.m文件) 1.图像及视频文件的基本操作 (1)RGB彩色图像数据的读写操作 clear all; %清除工作空间的所有变量,函数,和MEX文件 close all; %关闭所有的Figure窗口 %查看一幅RGB彩色图像文件的信息 fileinfo = imfinfo('Fig0701_fruits.jpg') %暂停,阅读命令窗口中的结果,按空格键继续 pause; %读取该图像 I=imread('Fig0701_fruits.jpg'); %显示图像 imshow(I); title('Original RGB true color image'); %查看图像像素信息,在图像上移动鼠标,注意左下角的信息 impixelinfo; %暂停,按空格键继续 pause; % 读取图像的颜色分量,并保存到二维矩阵变量中 IR = I(:,:,1); IG = I(:,:,2); IB = I(:,:,3); %以灰度图像的方式显示各颜色分量

figure, imshow(IR); title('R分量'); figure, imshow(IG); title('G分量'); figure, imshow(IB); title('B分量'); %在图像左上角画一条5像素宽、100像素长的水平稍暗红线 I(31:35,61:160,1)=200; I(31:35,61:160,2)=0; I(31:35,61:160,3)=0;% %显示处理结果 figure, imshow(I); title('在图像背景中画红线'); %将结果保存为tif格式图像文件 imwrite(I,'fruits_bar.tif'); %-------------------------------------------------------------------------------- (2)索引图像与 RGB彩色图像之间的转换

数字图像处理高通滤波器

数字图像处理高通滤波器 姓名:*** 学号:********** 高通滤波就是常见的频域增强的方法之一。高通滤波与低通滤波相反,它就是高频分量顺利通过,使低频分量受到削弱。这里考虑三种高通滤波器:理想高通滤波器、巴特沃斯高通滤波器与高斯高通滤波器。这三种滤波器涵盖了从非常尖锐(理想)到非常平坦(高斯)范围的滤渡器函数,其转移函数分别为: 1、理想高通滤波器(IHPF) ),(),(10),(D v u D D v u D v u H >≤???= 2、巴特沃斯高通滤波器(BHPF) n v u D D v u H 20),()12(11),(?? ????-+= 3、高斯高通滤波器(GHPF) 2022/v ,u D 1),(D e v u H )(--= 一、数字图像高通滤波器的实验过程: 1、理想高通滤波器程序 clear all ;clc; image = imread('test 、jpg'); gimage_15 = func_ihpf(image,15); gimage_30 = func_ihpf(image,30); gimage_80 = func_ihpf(image,80); figure subplot(221),imshow(image); title('Original'); subplot(222),imshow(gimage_15); title('d0=15'); subplot(223),imshow(gimage_30); title('d0=30'); subplot(224),imshow(gimage_80); title('d0=80'); %被调函数子函数G(u,v)=F(u,v)H(u,v) function gimage = func_ihpf(image,d0) image = double(image); f = fftshift(fft2(image)); [M,N]=size(f); a0 = fix(M/2); b0 = fix(N/2); for i=1:M for j=1:N

数字图像处理实验三中值滤波和均值滤波实验报告

数字图像处理实验三 均值滤波、中值滤波的计算机实现12281166 雪莹计科1202班 一、实验目的: 1)熟悉均值滤波、中值滤波处理的理论基础; 2)掌握均值滤波、中值滤波的计算机实现方法; 3)学习VC++ 6。0 的编程方法; 4)验证均值滤波、中值滤波处理理论; 5)观察均值滤波、中值滤波处理的结果。 二、实验的软、硬件平台: 硬件:微型图像处理系统,包括:主机, PC机;摄像机; 软件:操作系统:WINDOWS2000或WINDOWSXP应用软件:VC++ 6.0 三、实验容: 1)握高级语言编程技术; 2)编制均值滤波、中值滤波处理程序的方法; 3)编译并生成可执行文件; 4)考察处理结果。 四、实验要求: 1)学习VC++确6。0 编程的步骤及流程; 2)编写均值滤波、中值滤波的程序;

3)编译并改错; 4)把该程序嵌入试验二给出的界面中(作适当修改); 5)提交程序及文档; 6)写出本次实验的体会。 五、实验结果截图 实验均值滤波采用的是3X3的方块,取周围的像素点取得其均值代替原像素点。边缘像素的处理方法是复制边缘的像素点,增加一个边框,计算里面的像素值得均值滤波。

六、实验体会 本次实验在前一次的实验基础上增加均值滤波和中值滤波,对于椒盐噪声的处理,发现中值滤波的效果更为好一点,而均值滤波是的整个图像变得模糊了一点,效果差异较大。本次实验更加增加了对数字图像处理的了解与学习。 七、实验程序代码注释及分析 // HistDemoADlg.h : 头文件 // #include "ImageWnd.h" #pragma once // CHistDemoADlg 对话框 class CHistDemoADlg : public CDialogEx { // 构造

实验三数字图像的空间域滤波讲解

实验三、四数字图像的空间域滤波和频域滤波 1.实验目的 1.掌握图像滤波的基本定义及目的。 2.理解空间域滤波的基本原理及方法。 3.掌握进行图像的空域滤波的方法。 4.掌握傅立叶变换及逆变换的基本原理方法。 5.理解频域滤波的基本原理及方法。 6.掌握进行图像的频域滤波的方法。 2.实验基本原理 1.空间域增强 空间域滤波是在图像空间中借助模板对图像进行领域操作,处理图像每一个像素的取值都是根据模板对输入像素相应领域内的像素值进行计算得到的。空域滤波基本上是让图像在频域空间内某个范围的分量受到抑制,同时保证其他分量不变,从而改变输出图像的频率分布,达到增强图像的目的。 空域滤波一般分为线性滤波和非线性滤波两类。线性滤波器的设计常基于对傅立叶变换的分析,非线性空域滤波器则一般直接对领域进行操作。各种空域滤波器根据功能主要分为平滑滤波器和锐化滤波器。平滑可用低通来实现,平滑的目的可分为两类:一类是模糊,目的是在提取较大的目标前去除太小的细节或将目标内的小肩端连接起来;另一类是消除噪声。锐化可用高通滤波来实现,锐化的目的是为了增强被模糊的细节。结合这两种分类方法,可将空间滤波增强分为四类: 线性平滑滤波器(低通) 非线性平滑滤波器(低通) 线性锐化滤波器(高通) 非线性锐化滤波器(高通) 空间滤波器都是基于模板卷积,其主要工作步骤是: 1)将模板在图中移动,并将模板中心与图中某个像素位置重合; 2)将模板上的系数与模板下对应的像素相乘; 3)将所有乘积相加; 4)将和(模板的输出响应)赋给图中对应模板中心位置的像素。 2.平滑滤波器 1)线性平滑滤波器 线性低通平滑滤波器也称为均值滤波器,这种滤波器的所有系数都是正数,对3×3 的模板来说,最简单的是取所有系数为1,为了保持输出图像任然在原来图像的灰度值范围内,模板与象素邻域的乘积都要除以9。 MATLAB 提供了fspecial 函数生成滤波时所用的模板,并提供filter2 函数用指定的滤

数字图像处理-图像去噪方法

图像去噪方法 一、引言 图像信号在产生、传输和记录的过程中,经常会受到各种噪声的干扰,噪声可以理解为妨碍人的视觉器官或系统传感器对所接收图像源信 息进行理解或分析的各种元素。噪声对图像的输入、采集、处理的各个环节以及最终输出结果都会产生一定影响。图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等。我们平常使用的滤波方法一般有均值滤波、中值滤波和小波滤波,他们分别对某种噪声的滤除有较好的效果。对图像进行去噪已成为图像处理中极其重要的内容。 二、常见的噪声 1、高斯噪声:主要有阻性元器件内部产生。 2、椒盐噪声:主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生泊松噪声。 3、量化噪声:此类噪声与输入图像信号无关,是量化过程存在量化误差,再反映到接收端而产生,其大小显示出数字图像和原始图像差异。 一般数字图像系统中的常见噪声主要有高斯噪声和椒盐噪声等,减少噪声的方法可以在图像空间域或在图像频率域完成。在空间域对图像处理主要有均值滤波算法和中值滤波算法.图像频率域去噪方法

是对图像进行某种变换,将图像从空间域转换到频率域,对频率域中的变换系数进行处理,再进行反变换将图像从频率域转换到空间域来达到去除图像噪声的目的。将图像从空间转换到变换域的变换方法很多,常用的有傅立叶变换、小波变换等。 三、去噪常用的方法 1、均值滤波 均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。其基本原理是用均值替代原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在 f?sf(x,y),其中,s为模板,M为该点上的灰度g(x,y),即g x,y=1 M 该模板中包含当前像素在内的像素总个数。这种算法简单,处理速度快,但它的主要缺点是在降低噪声的同时使图像产生模糊,特别是在边缘和细节处。而且邻域越大,在去噪能力增强的同时模糊程度越严重。

数字图像处理 中值滤波

通信与信息工程学院数字图像处理课程设计 班级:电信科11级 1 班姓名: 学号: 指导教师: 设计时间:2014.6.30 —2014.7.4 成绩: 评 通信与信息工程学院 二〇一四年

中值滤波 一、实验目的 通过研究图像中值滤波运算的算法,编程实现对图像增强处理的基本方法,分析运行结果与理论进行对比加深对中值滤波算法的理解并独立思考算法的改进方法和如何消除各参量的矛盾性,关注当前图像处理先进的技术与未来发展的方向。 二、实验任务 用中值滤波对图像进行处理并分析结果。 三、实验内容 中值滤波:运用中值滤波完成对图片的平滑处理,要求图片所加噪声为椒盐噪声和高斯噪声。要求程序中用户可以根据需要选择窗口形状和窗口大小,根据运行结果分析窗口形状和大小对滤除效果的影响,并且比较中值滤波对于椒盐噪声和高斯噪声图片的平滑效果区别。了解当前滤波技术的发展方向,了解更有效地滤波算法。 中值滤波原因:数字图像在获取、传输、接收和处理过程中,因受到一定的外部及内部干扰,从而被噪声影响。但对图像进行边缘检测、图像分割、特征识别等许多处理工作时,都要求图像有较高的质量,因此需要先将图像中的噪声很好的进行滤除以提高图像质量。而在图像的编码及传输中,经常经过含有噪声的线路或被电子感应噪声污染时,会使图像染上一定程度的椒盐噪声(即脉冲噪声)。因此图片处理首先要进行平滑去噪。中值滤波因其特殊的对输入信号序列的映射关系,在去除脉冲噪声上有着比较好的效果,但中值滤波也会有一定程度的图像模糊。期望可以得到更好的滤波技术,更好的解决去噪和保护图像细节这一矛盾。 中值滤波思想: 中值滤波就是选择一定形式的窗口,使其在图像的各点上移动,用窗内像素灰度值的中值代替窗中心点处的像素灰度值。它对于消除孤立点和线段的干扰十分有用,能减弱或消除傅里叶空间的高频分量,但也影响低频分量。高频分量往往是图像中区域边缘灰度值急剧变化的部分,该滤波可将这些分量消除,从而使

数字图像处理-------滤波器

数字图像处理-------滤波器 1 滤波器的概念 滤波器是一种对信号有处理作用的器件或电路。主要作用是:让有用信号尽可能无衰减的通过,对无用信号尽可能大的衰减。 滤波器,顾名思义,是对波进行过滤的器件。“波”是一个非常广泛的物理概念,在电子技术领域,“波”被狭义地局限于特指描述各种物理量的取值随时间起伏变化的过程。该过程通过各类传感器的作用,被转换为电压或电流的时间函数,称之为各种物理量的时间波形,或者称之为信号。因为自变量时间是连续取值的,所以称之为连续时间信号,又习惯地称之为模拟信号(Analog Signal)。随着数字式电子计算机技术的产生和飞速发展,为了便于计算机对信号进行处理,产生了在抽样定理指导下将连续时间信号变换成离散时间信号的完整的理论和方法。也就是说可以只用原模拟信号在一系列离散时间坐标点上的样本值表达原始信号而不丢失任何信息,波、波形、信号这些概念既然表达的是客观世界中各种物理量的变化,自然就是现代社会赖以生存的各种信息的载体。信息需要传播,靠的就是波形信号的传递。信号在它的产生、转换、传输的每一个环节都可能由于环境和干扰的存在而畸变,有时,甚至是在相当多的情况下,这种畸变还很严重,以致于信号及其所携带的信息被深深地埋在噪声当中了。 滤波,本质上是从被噪声畸变和污染了的信号中提取原始信号所携带的信息的过程。 2 滤波器分类 1 按所采用的的元器件分类,滤波器可分为:有源滤波器、无源滤波器两类. 无源滤波器:仅由无源元件组成的滤波器,它是利用电容和电感元件的电抗随频率的变化而变化的原理构成的。这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;缺点是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L较大时滤波器的体积和重量都比较大,在低频域不适用。 有源滤波器:由无源元件和有源器件组成。这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重

时域 频域 空间域

时域、频域、空间域 一、什么是时域 时域是描述数学函数或物理信号对时间的关系。例如一个信号的时域波形可以表达信号随着时间的变化。二、什么是频域 频域(频率域)——自变量是频率,即横轴是频率,纵轴是该频率信号的幅度,也就是通常说的频谱图。频谱图描述了信号的频率结构及频率与该频率信号幅度的关系。 三、什么是空间域 空间域又称图像空间(image space)。由图像像元组成的空间。在图像空间中以长度(距离)为自变量直接对像元值进行处理称为空间域处理。 以时间作为变量所进行的研究就是时域 以频率作为变量所进行的研究就是频域 以空间坐标作为变量进行的研究就是空间域 以波数作为变量所进行的研究称为波数域 时域和频域 本文是转载的,感谢耐心编辑以下知识的同仁,由于忘记了链接,所以只能在此致以谢意。 最近在上数字图像处理,时域和频域的概念我没有直观的概念,搜索一下,归纳如下: 1.最简单的解释 频域就是频率域, 平常我们用的是时域,是和时间有关的, 这里只和频率有关,是时间域的倒数。时域中,X轴是时间, 频域中是频率。频域就是分析它的频率特性! 2. 图像处理中: 空间域,频域,变换域,压缩域等概念! 只是说要将图像变换到另一种域中,然后有利于进行处理和计算 比如说:图像经过一定的变换(Fourier变换,离散yuxua DCT 变换),图像的频谱函数统计特性:图像的大部分能量集中在低,中频,高频部分的分量很弱,仅仅体现了图像的某些细节。 2.离散傅立叶变换 一般有离散傅立叶变换和其逆变换 3.DCT变换 示波器用来看时域内容,频普仪用来看频域内容!!! 时域是信号在时间轴随时间变化的总体概括。 频域是把时域波形的表达式做傅立叶变化得到复频域的表达式,所画出的波形就是频谱图。是描述频率变化和幅度变化的关系。 时域做频谱分析变换到频域;空间域做频谱分析变换到波数域;

实验三 数字图像的空间域滤波

实验三、四数字图像得空间域滤波与频域滤波 1.实验目得 1.掌握图像滤波得基本定义及目得。 2.理解空间域滤波得基本原理及方法。 3.掌握进行图像得空域滤波得方法。 4.掌握傅立叶变换及逆变换得基本原理方法。 5.理解频域滤波得基本原理及方法。 6.掌握进行图像得频域滤波得方法。 2.实验基本原理 1.空间域增强 空间域滤波就是在图像空间中借助模板对图像进行领域操作,处理图像每一个像素得取值都就是根据模板对输入像素相应领域内得像素值进行计算得到得。空域滤波基本上就是让图像在频域空间内某个范围得分量受到抑制,同时保证其她分量不变,从而改变输出图像得频率分布,达到增强图像得目得。 空域滤波一般分为线性滤波与非线性滤波两类。线性滤波器得设计常基于对傅立叶变换得分析,非线性空域滤波器则一般直接对领域进行操作。各种空域滤波器根据功能主要分为平滑滤波器与锐化滤波器。平滑可用低通来实现,平滑得目得可分为两类:一类就是模糊,目得就是在提取较大得目标前去除太小得细节或将目标内得小肩端连接起来;另一类就是消除噪 声。锐化可用高通滤波来实现,锐化得目得就是为了增强被模糊得细节。结合这两种分类方法, 可将空间滤波增强分为四类: 线性平滑滤波器(低通) 非线性平滑滤波器(低通) 线性锐化滤波器(高通) 非线性锐化滤波器(高通) 空间滤波器都就是基于模板卷积,其主要工作步骤就是: 1)将模板在图中移动,并将模板中心与图中某个像素位置重合; 2)将模板上得系数与模板下对应得像素相乘; 3)将所有乘积相加; 4)将与(模板得输出响应)赋给图中对应模板中心位置得像素。 2.平滑滤波器 1)线性平滑滤波器 线性低通平滑滤波器也称为均值滤波器,这种滤波器得所有系数都就是正数,对3×3 得模板来说,最简单得就是取所有系数为1,为了保持输出图像任然在原来图像得灰度值范围内,模板与象素邻域得乘积都要除以9。 MATLAB 提供了fspecial 函数生成滤波时所用得模板,并提供filter2 函数用指定得滤 波器模板对图像进行运算。函数fspecial 得语法格式为: h=fspecial(type);

实验二 数字图像的空间域滤波和频域滤波

实验二数字图像的空间域滤波和频域滤波 一.实验目的 1.掌握图像滤波的基本定义及目的; 2.理解空间域滤波的基本原理及方法; 3.掌握进行图像的空域滤波的方法。 4.掌握傅立叶变换及逆变换的基本原理方法; 5.理解频域滤波的基本原理及方法; 6.掌握进行图像的频域滤波的方法。 二.实验内容 1.平滑空间滤波: a)读出eight.tif这幅图像,给这幅图像分别加入椒盐噪声和高斯噪 声后并与前一张图显示在同一图像窗口中;(提示:imnoise) b)对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同 模板所形成的效果,要求在同一窗口中显示;(提示:fspecial、 imfilter或filter2) c)使用函数imfilter时,分别采用不同的填充方法(或边界选项, 如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波, 显示处理后的图像 d)运用for循环,将加有椒盐噪声的图像进行10次,20次均值滤 波,查看其特点,显示均值处理后的图像;(提示:利用fspecial函 数的’average’类型生成均值滤波器) e)对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有 噪声的图像做处理,要求在同一窗口中显示结果。(提 示:medfilt2) f)自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处 理后的图像; 2.锐化空间滤波 a)读出blurry_moon.tif这幅图像,采用3×3的拉普拉斯算子w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1]对其进行滤波; b)编写函数w = genlaplacian(n),自动产生任一奇数尺寸n的拉普 拉斯算子,如5×5的拉普拉斯算子 w = [ 1 1 1 1 1 1 1 1 1 1 1 1 -24 1 1 1 1 1 1 1 1 1 1 1 1] c)分别采用5×5,9×9,15×15和25×25大小的拉普拉斯算子对

相关文档
最新文档