电流电压回路检查

电流电压回路检查
电流电压回路检查

电压回路核相

(1)送电前对线,查看铭牌;N600接地点验证,N相接入系统前用摇表检查PT回路N600对地绝缘良好,记

录N600全站唯一接地点电流;新设备N600搭接后,

用万用表在PT端子箱内量取N600对地电阻,验证

新回路N600接地良好,并测量N600全站唯一接地

点电流无较大变化。

(2)对侧充电,线路PT端子箱内空开先不给,在线路PT 端子箱内分别量各绕组对地电压是否为57.7V,相间

电压是否为100V,开口三角电压为0V,Sa电压为

100V

回路编号参考值测量值

A对N 57.74

B对N 57.74

C对N 57.74

A对B 100

B对C 100

C对A 100

L603对LN 0(PT运行时有少

量不平衡电压)

Sa630(L601)对LN 100

分别量一般绕组与开口三角绕组间电压。A 对Sa 为42.27V ,B 对Sa 为138.2V ,C 对Sa 为138.2V ,A 对L602为86.95V ,B 对L602为86.95V ,C 对L602为157.74V 备注只有七甸 项目

参考值 测量值 A 对Sa (L601) 42.27 B 对Sa (L601) 138.2 C 对Sa (L601) 138.2 A 对L602 86.95 B 对L602 86.95 C 对L602 157.74

(3) 给上空开到小室内与运行的线路电压进行核相

A B C A B C

新投运线路

运行线路

电路回路检查

第一种:六角图测试数据进行计算判别

线路带负荷后以线路电压A相(当保护使用线路电压时)或线路所在母线电压A相(当保护使用母线电压时)为基准,测量各相电流幅值以及各相电流与基准电压间夹角,通过比较线路各相电流间角差、计算线路的功率并与线路对侧功率进行比较来判断电流极性的正确性。

测量的量有UA,IA,IB,IC,Φa, Φb,Φc。其中角度为A相电压超前各相电流的角度。

相角差比较Φb-Φa=120°,Φc-Φb=120°,Φa-Φc=120°功率计算

P=[UA*IA*COSΦa+ UA*IB*COS(Φb-120°)+

UA*IC*COS(Φc-240°)]*TU*TI

Q= [UA*IA*SINΦa+ UA*IB*SIN (Φb-120°)+

UA*IC*SIN(Φc-240°)]*TU*TI

其中TU为PT变比,TI为CT变比

P正时为线路送出有功,负时为线路受进有功

Q正时为线路送出无功,负时为线路受进无功

计算出本侧的功率大小及方向与对侧的功率大小方向进行

比较。两侧的有功、无功功率在数值上有功功率应大致相等,无功功率间有较小差值(该差值为线路对地电容电流引起的)。功率方向当对侧是送出时,本侧应为受进;当对侧是

受进时,本侧应为送出。

1、测量时应注意钳表极性,以流进装置的方向为正方向,钳表拿反会使测得的电流与实际的电流方向反180°,在计算时造成潮流方向的计算错误。

2、相位伏安表通道选择正确,应用U1/I2。如果通道用为I1/U2测量,所测得的角度变为各相电流超前A相电压的角度,如果该测量结果仍使用上述方法进行分析,电流相序(两者判断出的电流相序相反)、潮流方向(主要是无功功率会计算为反向)判断错误。

3、基准电压的选择应正确。用A相电压作为基准电压,如果基准电压选取错误时,计算的潮流的大小与方向会错误。

第二种:线路空载电流判别

线路空载时,线路上流过的电流为线路电容电流,该电流是荣性的,对本站来说潮流的方向为受进无功功率。通过测量电流可以初步判断电流回路的极性与相序(该方法不能验证变比,因为实际的电容电流大小并不知道,并且电容电流一般较小,通过差动保护差流变化不能准确判断,但是该测量值可以给带负荷后的测试数据进行参考)。

线路空载时以线路电压A相(当保护使用线路电压时)或线路所在母线电压A相(当保护使用母线电压时)为基准,测量各相电流幅值以及各相电流与基准电压间夹角。

测量的量有UA,IA,IB,IC,Φa, Φb,Φc。

测量结果Φa=90°,Φb=210°,Φc=330°

第三种:差动电流判别

分为母差保护差流判别与线路差动保护差流判别。

母差保护:

靠母线侧断路器合闸前记录母差保护差流,断路器合闸带负荷后看母差保护差流变化,并测量开关二次电流。

(1)如果母差保护差流是开关二次电流两倍,则有可能为开关电流极性接反

(2)如果母差保护差流三相大小相等,但是比开关电流小,则有可能为电流变比接错

(3)如果母差保护三相差流相等,且为开关电流√3倍,则开关电流相序有误

线路保护:

线路空载时记录线路差动保护差流,该电流为线路电容电流,线路带负荷后线路保护的差流仍为线路电容电流,因此线路差动保护差流应变化不大。

(1)如果线路保护差流为开关电流两倍,则可能是电流极性接反。

(2)如果线路保护差流变化较大但达不到开关电流两倍则有可能是电流变比接错。

第四种:中断路器运行状态变化时相邻运行线路负荷电流变化

对于一个半断路器接线方式,在中开关分合过程中两个边开关的负荷电流会发生改变但是线路的负荷电流应基本不变化。

中开关合环前测量两个边开关及线路电流并记录(通过上面的三种方法判断边开关电流回路正确性)。中开关合环后,测量三个开关、两条线路和电流,与之前记录的线路电流大小与角度进行比较应无变化,计算通过三个断路器电流计算线路的潮流,结果应与合环前线路潮流一致。

电压电流回路讲解

互感器及其二次回路培训教案 第一部分:整体认识 首先我们有必要了解互感器的作用、验收项目、运行操作注意事项及巡视检查项目等内容. 一、变电站内互感器的作用 变电站内电压(流)互感器就是把高电压(大电流)按比例关系变换成线电压100V相电压100/√3(额定电流5A)的标准二次电压(流),供保护、计量、测量等装置使用。同时,使用电压(流)互感器将高电压与二次装置(保护、计量、测量等装置)分开保证了人员和设备安全。 电压(流)互感器的二次回路就是将电压(流)互感器与保护、计量、测量等二次用电装置连接起来的二次回路接线。 二、互感器的日常运行维护规定 1.电压(流)互感器的各个二次绕组(包括备用)均必须有可靠的 保护接地,且只允许有一个接地点。电流互感器备有的二次绕组应也应 短路接地。接地点的布置应满足有关二次回路设计的规定。由几组电流 互感器二次组合的电流回路如差动保护的电流回路,其接地点易选择在 控制室(即母差屏) 2.停运半年及以上的互感器应按有关规定试验检查合格后方可 投运。 3.电压互感器允许在倍额定电压下连续运行,中性点有效接地系 统中的互感器,允许在倍额定电压下运行30s, 中性点非有效接地系统中 的电压互感器,在系统无自动切除对地故障保护时,允许在倍额定电压下 运行8h。 1

4.中性点非有效接地系统中,作单相接地监视用的电压互感器, 一次中性点应接地,为防止谐振过电压,应在一次中性点或二次回路装设消谐装置。 5.电压互感器二次回路,除剩余电压绕组和另有专门规定者外, 应装设快速开关或熔断器;主回路熔断电流一般为最大负荷电流的倍,各级熔断器熔断电流应逐级配合,自动开关应经整定试验合格方可投入运行。 6.电流互感器二次侧严禁开路,备用的二次绕组也应短接接地, 二次回路不允许装设熔断器及其它开断设备。电压互感器二次侧严禁短路。 7.电容型电流互感器一次绕组的末(地)屏必须可靠接地。 8.66kV及以上电磁式油浸互感器应装设膨胀器或隔膜密封,应有 便于观察的油位或油温压力指示器,并有最低和最高限值标志。运行中全密封互感器应保持微正压,充氮密封互感器的压力应正常。互感器应标明绝缘油牌号。 三、操作方法及注意事项 (一)严禁用隔离开关或摘下熔断器的方法拉开有故障的电压互感器。(二)停用电压互感器前应注意下列事项: 1.防止自动装置的影响,防止误动、拒动。 2.将二次回路主熔断器或自动开关断开,防止电压反送。 四、修后设备的验收 (一)验收的项目和要求 1.所有缺陷已消除并验收合格。 2

用一次通流检查二次电流回路完整编辑性的试验工法

用一次通流检查二次电流回路完整性的试验工法 安徽电力建设第一工程公司 邵雪飞巴清华韩广松 1.前言 发电厂和变电站建设工程中的电气安装工程包括一次、二次设备的安装,由于一次设备较为直观,一般不会发生设备辨识不清而产生的安装错误。在一些运用新的设计理念项目中的设备安装中,如保护和测量所使用的TA和TV,通常会发生设备选型不合适、变比错误、变比过大无法满足保护和测量装置精度要求、设计安装方式不明确等问题,造成安装完成后无法满足系统所要达到预期功能,此外电流、电压回路系统接线复杂、连接设备多时,回路极易出现开路和短路故障。面对全厂、全站大量二次交流回路已经接线完毕的情况下,尤其是部分重要且只有在带负荷阶段才能校验出正确性的回路,如何有效在带电前检查出接线缺陷和保证回路的正确完整性,成为电力建设单位一个棘手的问题。 在接线完毕的施工现场,应用交流回路二次通电和施加380V施工交流电源进行一次通电模拟实际运行工况相结合的工法,进行二次回路缺陷性检查,可以有效检查出TA二次开路、TV二次短路故障,保证测量、计量、保护等二次回路能准确、安全、可靠运行,防止差动保护误动,减少电厂整套启动时间和提高变电站受电试运行成功概率,对电力系统稳定运行和设备安全具有积极意义。 此工法先后在华电芜湖电厂一期工程#2机组、田集电厂一期工程#1机组、合肥发电厂#5机扩建工程、龙岩电厂二期工程#5机组以及多个变电所建设工程中得到应用,并逐步总结优化方法,效果明显,经此工法检查过的二次回路接线无一错误、整套启动运行后无一发生因为电流电压回路故障造成的停机、停电事故,创造了较大的经济效益和社会效益。 2.工法特点

各种电压电流采样电路设计

常用采样电路设计方案比较 配电网静态同步补偿器(DSTATCOM)系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM的系统硬件大致可以分成三部分,即主电路部分、控制 电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM的桥式换流电路的直流侧电压信号和电流信号;电网电压 同步信号采样电路即电网电压同步信号。 信号调 理 TMS320 LF2407A DSP 键盘显示 电路电压电流信号驱动电路保护电路 控制电路检测与驱动 电路主电路 图2-1 DSTATCOM系统总体硬件结构框图 1.1常用电网电压同步采样电路及其特点 1.1.1 常用电网电压采样电路 1 从D-STATCOM的工作原理可知,当逆变器的输出电压矢量与电网电压矢 量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM 工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变 器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1 从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统 的输出频率,即该误差可忽略不计。其中R5=1K,C4=15pF,则时间常数错误!未找到引用源。<

电流采样电路的设计

电流采样电路的设计 文中研制了一套模拟并网发电系统,实现了频率跟踪、最大功率跟踪、相位跟踪、输入欠压保护、输出过流保护、反孤岛效应等功能;采用Atmega16高速单片机,实现了内部集成定时、计数器功能;利用定时器T/C2的快速PWM功能,实现SPWM信号的产生;采用T/C1的输入捕获功能,实现了频率相位监测和跟踪以及对失真度、输入电压、输出电流等物理量的检测与控制。 1 整体方案设计 设计采用Atmega16单片机为主体控制电路,工作过程为:与基准信号同频率、同相位正弦波经过SPWM调制后,输出正弦波脉宽调制信号,经驱动电胳放大,驱动H桥功率管工作,经过滤波器和工频变压器产生于基准信号通频率、同相位的正弦波电流。其中,过流、欠压保护由硬件实现,同步信号采集、频率的采集、控制信号的输出等功能,均由Atmega16完成。系统总体设计框图如图1所示。 2 硬件电路设计 分为DC/AC驱动电路、DC/AC电路和滤波电路3部分和平滑电容C1,电路原理如图2所示。 2.1 DC—AC驱动电路 是由R1、R2、R3、R4、R5、R6、Q3、Q4、P3和P4组成,其中P3和P4是控制信号输入

端,R3和R4为限流电阻。集电极的电流直接影响波形上升沿的陡峭度,集电极电流越大输出的波形越陡峭。因为R2和R1与集电极pn节的寄生电容形成了一个RC充放电的时间常数,集电极pn结的寄生电容无法改变,只有通过改变R1和R2的值来改变时间常数,所以R1和R2值越小,Q3和Q4的集电极电流就越大;RC的充电时间常数越小,波形的上升沿越陡峭,而增加集电极电流,会增加系统的功耗,权衡利弊选择一个合适的值。其次,射级pn 结的寄生电容也会影响Q3和Q4的关断时间和波形上升沿的陡峭度。所以在驱动电路中各加了一个放电回路,即拉地电阻R5和R6,R5和R6的引入,加快了Q3和Q4的关闭速度,这样就使集电极的波形更陡峭。同样在保证基极射极pn不损坏的条件下,基极的电流也是越大越好,但也会带来损耗问题,权衡利弊选择一个合适的值。关于两个电阻的取值,这里假设三极管的放大倍数为β,基极电流Ib,集电极电流Ic,流过R5的电流为I5,流过R3的电流为I3,R3的压降为V3,驱动信号为V,R5的压降为V5,有 实际中R3和R5应该比计算值小,这样是为了让三极管工作在饱和状态,提高系统稳定 性。 2.2 DC-AC电路 是由两只p沟道MOSFET。Q1、Q2和两只n沟道MOSFET Q5、Q6组成。在这里没有采用4只n沟道MOSFET,原因是驱动电路复杂,如果采用上面的驱动电路接近电源的两个导体管不能完全导通,发热量为接近地一侧导体管4倍以上,功耗增加,所以采用对管逆变即减小了功耗,而且驱动电路简单。通过控制4个导体管的开关速度再通过低通滤波器即可实 现DC/AC功能。 2.3 滤波电路 两个肖特基整流二极管1N5822为续流二极管,这里为防止产生负电压,C2、C3、C4、C5、L1、L2组成低通滤波器,其中C5、C6为瓷片电容,C2、C3用电解电容,充放电电流可以流进地,L1、L2为带铁芯的电感,带铁芯的电感对高频的抑制比空心电感更好,电感值 更高。关于参数的选取和截止频率的计算如下 3 采样电路 3.1 电流采样电路的设计 由于终端负载一定,所以电流采样实际等同于一个峰值检测的过程,此电路实际是一个峰值检测电路,P3为信号的2个输入端,调整R10,R11和R17、R18取值来实现峰值测功能,电路中的阻值并不准确,需要实际中根据信号的幅值来调整R10、R11和R17、R18阻值

东元7200MA电压检测电路

东元7200MA小功率变频器 直流回路电压检测电路 电路图与原理简述 一、直流回路电压检测电路图: 前几天,有朋友问及东元7200MA电压检测电路,现在才给出解答,不好意思了。 二、电路原理简述: 东元变频器,直流电压采样信号,大多都是从开关变压器次级绕组取出的,该绕组交流电压D12正向整流提供主板的+5V工作电源,又由D11负向整流,R、C滤波和分压后,作为直流回路电压检测信号,送入后级电路处理后,送入CPU。有的东元机型电流电压检测信号为-16V,本机电路为-42V。 -42V电压经电阻分压后,加至U8运算放大器的13脚,经反相后从14脚输出2.7V(当输入三相交流电压为380V)的电压检测信号,分为三路送入后级电路。 一路送入CPU的91脚,这是一路模拟电压信号,供CPU用作输出电压/频率比控制,和用作直流回路电压值的显示;另两路送入由U13构成的两级滞回比较器,输出“警告过电压”、“过电压”停机保护信号等。U13输出的其实是两路开关量故障报警信号。该信号除直接送入CPU的99脚外,又经U5后级数字电路在CPU相关指令信号配合下,对报警信号的优先级别

进行控制,再送入CPU。 三、故障检修: 1、在交流供电电压正常状态下,上电即跳过电压或欠电压故障,可以判断为变频器直流回路电压检测电路故障,引起误报警; 2、在运行过程中,报过、欠压故障,应检测直流回路储能电容的容量是否下降,和负载电机有无超速造成反发电现象。 检测U8的14脚电压和U13的1、7脚电压,如严重偏离正常值, 1、检查运算放大器是否损坏; 2、检查10V基准电压值是否正常。 3、以上都正常,可以为电路参数出现变异,试微调R19、R40的电阻值,使电路回复到正 状态以内,消除误报警故障。 旷野之雪 2009年9月6日

三相电源检测

三相电源检测系统设计三相电源检测系统设计 摘 要 本设计采用AT89C51单片机实现三相电压与电流的检测。该设计可检测三相交流电压(AC220V×3)及三相交流电流(A、B、C 线电流0~5A)。本系统的变压器、放大器、A/D 转换和计算产生的综合误差满足5%的精度要求。输出采用128×64 LCD 方式显示,单片机电源部分直接由AC220V 交流电经整流、滤波、稳压供电。系统采用数字时钟芯片和8kB 的RAM 进行存储器的扩展。 关键词关键词::三相交流电 AD 转换 变压器 LCD 显示 8KB RAM

1.引言 当前电力电子装置和非线性设备的广泛应用,使得电网中的电压、电流波形发生严重畸变,电能质量受到严重的影响和威胁;同时,各种高性能家用电器、办公设备、精密试验仪器、精密生产过程的自动控制设备等对供电质量敏感的用电设备不断普及对电力系统供电质量的要求越来越高,电能质量问题成为各方面关注的焦点,电能质量检测是当前的一个研究热点,有必要对三相电信号进行采样,便于进一步分析控制。 目前,精度要求不高的交流数字电压表大多采用平均值原理,只能测量不失真时的正弦信号有效值,因此受到波形失真的限制而影响测量精度和应用范围。真有效值数字仪表可以测量在任何复杂波形而不必考虑波形种类和失真度的特点以及测量精确度高、频带范围宽、响应速度快的特点而得到广泛应用。提高系统的测量精度、稳定性特性是设计中的关键。 真有效值的数字电压数字电压表和以往的仪表有所不同的是可以检测波形复杂的三相交流电压电流。这些都是以单片机为基础的智能化仪表,同时充分表明单片机是一个应用于对象体系的智能化工具。 本设计用单片机进行三相电压与电流的硬件检测系统。该系统检测三相交流电压(AC220V×3)及三相交流电流(A、B、C线电流0~5A)。本系统的变压器、放大器、A/D转换和计算产生的综合精度满足5%要求。输出显示采用128×64点阵的LCD,单片机电源由AC220V交流供电通过变压与整流稳压电路实现。系统配有数字时钟芯片、8kB的RAM存储器扩展芯片。 2总体设计方案 总体设计方案框架如图2-1所示,由交流信号处理部分、A/D转换电路、51单片机控制、数据存储器电路、LCD显示电路以及稳压电源电路组成。 图2-1总体系统原理图

常用电流和电压采样电路

2常用采样电路设计方案比较 配电网静态同步补偿器(DSTATCOM )系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM 的系统硬件大致可以分成三部分,即主电路部分、控制电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM 的桥式换流电路的直流侧电压信号和电流信号;电网电压同步信号采样电路即电网电压同步信号。 图2-1 DSTATCOM 系统总体硬件结构框图 2.2.11 常用电网电压同步采样电路及其特点 .1 常用电网电压采样电路1 从D-STATCOM 的工作原理可知,当逆变器的输出电压矢量与电网电压矢量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM 工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1 从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC 滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统的输出频率,即该误差可忽略不计。其中R 5=1K Ω,5pF,则时间常数错误!未 因此符合设计要求;第二部分由电压比较器LM311构成, 实现过零比较;第三部分为上拉箝位电路,之后再经过两个非门,以增强驱动能力,满足TMS320LF2407的输入信号要求。 C 4=1找到引用源。<

电压电流采样

电压电流采样 前言:在学习这个主题的时候,上网查了大量的资料,但大多都是基于电网里的交流大电压和大电流的采样,我个人觉得关于交流的采样以下链接有非常详尽的介绍,而我自己也只是对其进行了较为细致的阅读 https://www.360docs.net/doc/fa5773565.html,/view/2d389e06a6c30c2259019e2f.html?from=search 因为我们队里用的直流电压最大为24V,所以接下来我就直流电压及电流的采样说一下自己的见解。 一、基本电路设计及原理学习 1、电压采集回路的设计 工作原理如下所述:从分压电阻取来的电压信号经滤波后,被单片机周期采样。将采样信号转化为0~5V的模拟电压量送给单片机的A/D采样通道,使单片机能采集到当时的电压,以便进行稳压、稳流或限压、限流调节,为控制算法的分析、处理,实现控制、保护、显示等功能提供依据。 (公式推导参见电气专业的模电书,不作详细介绍) 根据上述原理,设计电压采样电路如图下图所示 由于521-4的四个光耦制的电流放电倍数是相同的。即

即把输入电压从较大的直流电压衰减到0~5V。 2、电流采集回路的设计 电流采集的原理图如上图所示。其工作原理与电压采集的原理基本相同,区别主要在电流的输入信号为分流器输出的信号,信号范围为0-75mV,显然信号太弱,对于分辨率不高的A/D精度显然不够。通过LM324将其放大。根据放大器的工作原理,放大的倍数为β=R63B/R61B=400K/10K=40。从而使得VI点的电压范围为0-3V,而VI点相对于AGNDW的电压与AC1点相对于AGND的电压的关系跟中,Vi点电压与AC0点电压的关系类似。在此处我们通过调节RW6,将0-75mV 的电压信号(分流器上的电压)放大到0-5V,供单片机采样。 二、自己设计(DIY) 经过一段时间的学习,我根据上述基本原理和所学知识设计了一款新的采样电路

用电压法测电流电压回路

建议增加以下附录: 附录1:怎样用微机试验仪测量新建变电所所有组合电器套管CT的变比和极性。 对于一个新建的变电所,所有二次回路接线工作完成后,如何利用微机保护试验仪对全封闭式组合电器的CT进行极性及变比实验? 答:如图: 甲线路乙线路 如何校验出甲线路TA1、TA2共7组二次绕组的变比及极性?设1K1、1K2对应输出为411;NK1、NK2对应输出为4N1。 (1)实验加线方法:

1)如果甲线的一次输出端子还没有连接到大线上,那么将2259-7接地刀合上,2259-6刀闸合上,2259开关合上,2259-617接地刀,2259-7接地刀均断开,用长的绝缘拉杆将裸露在外的甲线各相一次接线端子引到CT分线箱处。 2)如果甲线的一次输出端子已经连接到了大线上,由于外部大线较长可能会经过社会上已经运行的带电区域,会感应出一定的电压,会影响实验效果,故选择还没有连接到大线上的乙线一次裸露接线端子加线:将2259-67接地刀合上,2259开关合上,2259-317刀闸合上,2261-317刀闸合上,2261开关合上,2261-6刀闸合上,其余所有接地刀闸均断开,用长的绝缘拉杆将裸露在外的乙线各相一次接线端子引到CT分线箱处。 3)如果所有线路一次裸露端子均连接到了大线上,或者临时将一次大线拆开,或者利用如下方法: 将甲线TA1、TA2两侧的2259-7接地刀合上,2259-67接地刀合上,2259-6刀闸断开,再将2259-7接地刀与地之间的连接拆开并露出裸露端子,再用试验线将露出的端子将各相引到CT端子箱处。 (2)在楼上将各保护、测量、录波器、电度表所有二次CT的端子连片全部断开:用微机试验仪的电压线UA、UB、UC、UN分别加在楼上A411、BA11、C411、N411的电缆侧实验端子上。 如果CT变比为2400/5=480/1 可以设置UA=48V 、UB=72V 、UC=96V [上述值要求各相值不一样,为CT变比的可除倍数且大小低于伏安特性饱和电压的一半,一般不大于100V] 在楼下CT分线箱处用万用表可以测量到A411、BA11、C411端子对地【N411已接地】有47.90、71.90、95.90左右的电压,说明整个CT电缆接线正确【此种方法相当于不拆下CT端子来校线】,记下上述各相电压的具体数字: 比如实际为:47.91 、71.90、95.85

电压电流采样电路设计

- 常用采样电路设计方案比较 配电网静态同步补偿器(DSTATCOM)系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM的系统硬件大致可以分成三部分,即主电路部分、控制电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM的桥式换流电路的直流侧电压信号和电流信号;电网电压同步信号采样电路即电网电压同步信号。 控制电路电路主电路 图2-1 DSTATCOM系统总体硬件结构框图 常用电网电压同步采样电路及其特点 1.1.1 常用电网电压采样电路1 从D-STATCOM的工作原理可知,当逆变器的输出电压矢量与电网电压矢量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1 】 从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统的输出频率,即该误差可忽略不计。其中R5=1K ,C4=15pF,则时间常数 <

电压控制恒流充电电路设计讲解

《电子技术》课程设计报告 课题:电压控制恒流充电电路设计 班级学号 学生姓名 专业 系别 指导教师 淮阴工学院 电子信息工程系 2013年12月

课题:电压控制的恒流充电电路 一、设计目的 电子技术课程设计是模拟电子技术、数字电子技术课程结束后进行的教学环节。其目的是: 1、培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程实际问题的能力。 2、学习较复杂的电子系统设计的一般方法,提高基于模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。 3、进行基本技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。 4、培养学生的创新能力。 二、设计要求 1、充电电流为100mA; 2、控制电压为4.5V和6.5V,当充电电压上升到6.5V时自动断电,当用电电压下降到4.5V时自动通电; 3、由交流220V市电供电; 4、主要单元电路和元器件参数计算、选择; 5、画出总体电路图; 6、安装自己设计的电路图,按照自己设计的电路图,在通用版上焊接。焊接完毕后,应对照电路仔细检查,看是否有错接、漏接、虚焊的现象; 7、调试电路; 8、电路性能指标测试; 提交格式上符合要求,内容完整的设计报告。 三、总体设计 1 课题:电压控制的恒流充电电路 (1)在恒流源部分,我们通过利用9012NP硅管其发射级-基极导通电压0.7V 和6,8Ω电阻输出100mA电流。

4KRw1,大约调到2)在充电电路的控制电压部分,接入12V电压,调节(在上部电路中的电位比较器的正向输入端的电10k电阻的分压以后,左右,经过的大小,使下部电位比较器的反向输入端电压为Rw2。同理,调节压为4.5V之间时,上部电路中的电位比较器输出为高电0-6.5V 当电压在6.5V。 ,晶U0=12V>>1.4V 的电位比较器输出为低电平,电源电压为平,下部电路中中有电流流过,由电磁感应,常断开关触点导通电闸管导通,继电器的线圈J1时,上面的电压比较器输出低当电压增加到超过6.5V源开始给电池充电。 中有电流流过,常闭开关触点断开,导致晶闸管下J2电平,三极管导通,所以的常断触点打开,电源停止给电池充电。用电容和电阻J1端断开,截止工作,

10kV系统电压异常现象判断及处理

10kV系统电压异常现象判断及处理 教程来源:网络作者:未知点击:787次时间:2009-10-26 8:43:44 10kV系统电压异常现象在电网运行中经常遇到,但要想准确及时地判断处理并不是一件容易的事。10kV系统一般是中性点不接地系统或中性点经消弧线圈接地系统,随着电网的扩大,电容电流的增多,越来越多的10kV系统将会是中性点经消弧线圈接地系统。以中性点经消弧线圈接地系统为例,引起10kV系统电压异常的因素非常多,可分为两大类:一类是10kV电网运行参数异常;一类是10kV系统设备故障,包括一次设备故障(还可能出现多重故障)、测量回路故障(包括TV及其二次回路故障)、一次设备故障而且测量回路也有故障。电压的显示方式一般有三种:一种是常规有人值守变电所,配置有一个线电压表,三个相电压绝缘监测表;一种是常规变电所无人值守改造后,在调度端MMI显示出一个线电压值和三个相电压值;一种是无人值守综合自动化所,在调度端MMI 显示出三个线电压值、三个相电压值和一个零序电压值,这种模式对10kV系统电压异常的判断处理非常有利。 1 、10kV系统电压异常的表现形式 1.1 运行参数异常的电压表现 合空载母线时的谐振:电压一般显示为一相升高、两相降低;或者一相降低、两相升高。 消弧线圈脱谐度过低及系统不平衡电压过大:电压一般显示为一相降低、两相升高。 1.2 一次设备故障的电压表现 单相完全接地:电压一般显示为接地相电压为零,其余两相电压升至线电压。原因主要有:线路断线接地、瓷瓶击穿、线路避雷器击穿、配变避雷器击穿、电缆击穿、线路柱上断路器击穿。 单相不完全接地:电压一般显示为一相升高、两相降低;或者一相降低、两相升高。原因主要有:线路断线接地、配变烧毁、电缆故障。 线路单相断线:电压一般显示为一相升高、两相降低;或者一相降低、两相升高。电压的变化幅度与断线的长度成正比。 线路两相断线:电压一般显示为一相升高、两相降低;或者一相降低、两相升高。电压的变化幅度与断线的长度成正比。 1.3 测量回路故障的电压表现 TV高压熔丝一相熔断:有的相电压升高,有的降低。 TV高压熔丝两相熔断:电压一般显示为熔断相电压降低,正常相电压升高;或者三相电压均降低。 TV低压熔丝一相熔断:电压一般显示为熔断相的电压略有降低或基本不变,其余两相电压基本不变;或者熔断相电压为零,其余两相电压基本不变。 TV低压熔丝二相熔断:电压一般显示为熔断相的电压略有降低或基本不变,正常相电压基本不变;或者熔断相电压为零,正常相电压基本不变 TV高压或低压熔丝三相熔断:三相电压为零。 1.4 一次设备及测量回路均有故障信息来自:输配电设备网 其电压表现为一次设备故障电压与测量回路故障电压的叠加。常见的有一相高压熔

DSP交流采样电路设计..

DSP 交流采样电路设计

1.实验目的 本次实验针对电气工程及其自动化专业及测控专业。通过综合实验,使学生对所学过的DSP在继电保护中的应用有一个系统的认识,并运用自己学过的知识,自己设计模拟继电保护过程实验系统。要求用DSP完成对电网的电压的采样,然后经过DSP的处理,可以对系统继电器的跳合进行控制,自己设计,自己编程,最后自行调试,自行实现自己的设计。在整个试验过程中,摆脱以往由教师设计,检查处理故障的传统做法,由学生完全自己动手,互相查找处理故障,培养学生动手能力。学生试验应做到以下几点: 1. 通过DSP程序的设计模拟继电保护跳闸实验,进一步了解DSP在继电保护中的应用。 2. 通过实验线路的设计,计算及实际操作,使理论与实际相结合,增加感性认识,使书本知识更加巩固。 3. 培养动手能力,增强对DSP运用的能力。 4..培养分析,查找故障的能力。 5. 增加对DSP外围电路的认识。 2.实验设备 DSP板、仿真器、面包板、采样板器件,电烙铁,其它工具。

3.实验原理 1、DSP最小系统电路图

1、模拟电子线路 (一)、电流采样电路的设计

本次电流采样电路选择的电流互感器总共由两级,前一级互感器变比为4A :1A ,第二级互感器采用TA1015-1,其变比为5A:5mA ,也就是1000:1,两级总共的互感器比例为4000:1。 即电流互感器一次侧的电流大小为4A ,二次侧的电流大小为1A ,二级互感器的二次侧电流大小为1mA 。如图3-6,在互感器二次侧并一个1K 的电阻即可将一次侧的4A 的强电流信号变换为二次侧的弱电压信号,其计算公式为: )(0.14000/4/12mA A k i i === (3-1) )(0.1101100.13322V R i u =***==- (3-2) 其峰值为: )(414.10.1222V u u p =*== (3-3) 即电流互感器二次侧输出的电压范围为-1.414V 至+1.414V ,即一次回路里的220V 的工频交流便被线性转化为-1.414V 至+1.414V 。 信号电路共有三级,第一级为偏置放大环节,它能够将交流信号调理成DSP 能准确进行AD 转换的0V 至3.3V 的直流信号。第二级为有源滤波环节,该环节能够滤去信号调理电路里的高频干扰信号。第三极为跟随环节,其输入高阻抗,输出低阻抗,进一步增加了信号调理电路的抗干扰能力。

超全的常用测试电流检查方法

指针式直流电流表 数值式万用表能测交直流 电流一电压转换,A/D转换,显示

钳流表非接触式,交直流精度较上面仪器要低些霍尔原理 电流探头配合示波器使用,用于观察电流波形交直流霍尔原理

-gkongi.Eom 常用的用于测量电流的仪表,显示出来的电流大小大多是有效值。 有效值也指均方根值,其物理意义:一个交流电流和一个直流电流作用在同一电阻上,若在相同的时间内它们所产生的热量相等,则交流电流的有效值I等于该直流电流值。假设 交流信号的周期为T: T 2 2MT 2 由P 0i (t)Rdt=l RT I 勺〒0i (t)dt 显然,直流电流的有效值和平均值是相等的。 平均值: 1 T I i(t)dt 显然正负对称的交流信号平均值为0 T o 另种定义: 1 T I |i(t) |dt 全波整流之后的平均值 波形系数K F定义:信号的有效值与平均值(全波整流后的值)之比,K F -。 I 显然,不同类型信号的波形系数不同。 波峰系数Kp定义:信号的峰值与有效值之比,Kp “ F表为一些常见信号的一些参数

知道了波形系数和波峰系数之后,对特定信号可以很容易的进行不同值之间的转换。实际上,直接获取信号的有些仪表就利用了这一转换原理进行有效值的测量。 一.直接测量法 在被测电电路中串入适当量程的电流表,让被测电流流过电流表,从表上直接读取被测 电流值。 中学实验室里常用的直流电流表是指针式磁电系电流表,它由灵敏电流计(俗称表头)改装而成。灵敏电流计主要由永磁铁、可动线圈、螺旋弹簧(游丝)和指针刻度盘等组成。如下图: 图2-1电流计原理图 当线圈通以电流时,线圈的两边受到安培力,设导线所处位置磁感应强度大小为B线 框长为L、宽为d、匝数为n,当线圈中通有电流时,则安培力的大小为:F=nBIL。安培 力对转轴产生的力矩:M仁Fd= nBILd。不论线圈转到什么位置,它的平面都跟磁感线平行, 安培力的力矩不变。在这一力矩的作用下,线圈就会顺时针转动。当线圈转过0角时(指针偏角也为0),两弹簧相应地会产生阻碍线圈转动的扭转力矩M2 (M2=k 0,胡克定律)。

采样调理电路

3.4 A/D采样电路及信号调理电路 对连续信号) x,按一定的时间间隔s T抽取相应的瞬时值(即通常所 (t 说的离散化),这个过程称为采样。) x经过采样后转换为时间上离散的模拟 (t 信号) x,简称为采样信号。 (s s nT 本系统中采集的模拟量主要是交流电压/电流(计算功率用)、整流输出直流电压/电流(用作脉冲调整)等交流量和直流量,此外加调理电路的作用是把采样信号进行硬件上的定标,变成DSP的A/D口可以识别的0~电平以内的信号。 3.4.1互感器电路原理及选型 图电压互感器原理图 如图,电流型电压互感器采用星格SPT204A(2mA/2mA),R1是熔断电阻防止电流过大烧坏互感器,R2为限流电阻将电压信号转化为2mA电流信号,R3为压敏电阻起过电压保护作用,二次侧输出为2 mA电流信号送至采样模块。 5A输入 2.5mA输出 图电流互感器原理图 如图,电流互感器采用互感器采用星格SCT254AZ,将一次侧5A交流输入转化为输出送至采样板。 3.4.2交流电压/电流采样电路 交流电压/电流采样电流采样信号来自同步变压器经霍尔电压/电流传感器的电压电流源。

为了更清楚的阐述采样电路的工作原理,首先需对电路中的重要器件LM358作简要说明: LM358内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。 (1)交流电压采样电路整流器的输入是三相三线制,无中线,交流电压采集的是经过电流型电压互感器后的交流电流信号,以A相采样电路为例,如下图所示,输入电压经过放大电路电压跟随之后,叠加+的直流量,确保正弦电压的负半周上移到DSP能处理的单极性电压信号+电压范围之内: 图交流采样电路 Rd0为熔断电阻,防止电流过大;Rd1, Rd2为限流电阻,LM358作电压跟随。滑动变阻器Wd0另一侧输入+电压,将电压信号变为单极性信号;电容Cd2、Cd3起去耦作用;电阻Rd3为限流电阻,限定电路的工作电流.,使电路在一个合适的工作状态下运行。稳压管Dd0电压设为3V,使得ADCINB1口的输出电压基本稳定在3V及其以下。采样之后的信号送至TMS320F2812的A/D口进行处理。 (2) 交流电流采样电路交流电流采样电路与电压采样原理基本相同,但相比较而言,电流采样电路更为复杂,同样以A相电流采样为例,采样电路图如下图所示:

采样调理电路

采样调理电路 Hessen was revised in January 2021

3.4 A/D采样电路及信号调理电路 对连续信号) x,按一定的时间间隔s T抽取相应的瞬时值(即通常所说的 (t 离散化),这个过程称为采样。) x经过采样后转换为时间上离散的模拟信 (t 号) (s x,简称为采样信号。 s nT 本系统中采集的模拟量主要是交流电压/电流(计算功率用)、整流输出直流电压/电流(用作脉冲调整)等交流量和直流量,此外加调理电路的作用是把采样信号进行硬件上的定标,变成DSP的A/D口可以识别的0~电平以内的信号。 3.4.1互感器电路原理及选型 图电压互感器原理图 如图,电流型电压互感器采用星格SPT204A(2mA/2mA),R1是熔断电阻防止电流过大烧坏互感器,R2为限流电阻将电压信号转化为2mA电流信号,R3为压敏电阻起过电压保护作用,二次侧输出为2 mA电流信号送至采样模块。 5A输入 2.5mA输出 图电流互感器原理图 如图,电流互感器采用互感器采用星格SCT254AZ,将一次侧5A交流输入转化为输出送至采样板。

3.4.2交流电压/电流采样电路 交流电压/电流采样电流采样信号来自同步变压器经霍尔电压/电流传感器的电压电流源。 为了更清楚的阐述采样电路的工作原理,首先需对电路中的重要器件LM358作简要说明: LM358内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。 (1)交流电压采样电路整流器的输入是三相三线制,无中线,交流电压采集的是经过电流型电压互感器后的交流电流信号,以A相采样电路为例,如下图所示,输入电压经过放大电路电压跟随之后,叠加+的直流量,确保正弦电压的负半周上移到DSP能处理的单极性电压信号+电压范围之内: 图交流采样电路 Rd0为熔断电阻,防止电流过大;Rd1, Rd2为限流电阻,LM358作电压跟随。滑动变阻器Wd0另一侧输入+电压,将电压信号变为单极性信号;电容Cd2、Cd3起去耦作用;电阻Rd3为限流电阻,限定电路的工作电流.,使电路在一个合适的工作状态下运行。稳压管Dd0电压设为3V,使得ADCINB1口的输出电压基本稳定在3V及其以下。采样之后的信号送至TMS320F2812的A/D口进行处理。

几个常用的电压电流转换电路

I/V转换电路设计1、在实际应用中,对于不存在共模干扰的电流输入信号,可以直接利用一个精密的线绕电阻,实现电流/电压的变换,若精密电阻R1+Rw=500Ω,可实现0-10mA/0-5V的I/V变换,若精密电阻R1+Rw=250Ω,可实现4-20mA/1-5V的I/V变换。图中R,C组成低通滤波器,抑制高频干扰,Rw用于调整输出的电压范围,电流输入端加一稳压二极管。 电路图如下所示: 输出电压为: Vo=Ii?(R1+Rw)(Rw可以调节输出电压范围) 缺点是:输出电压随负载的变化而变化,使得输入电流与输出电压之间没有固定的比例关系。 优点是:电路简单,适用于负载变化不大的场合, 2、由运算放大器组成的I/V转换电路 原理: 先将输入电流经过一个电阻(高精度、热稳定性好)使其产生一个电压,在将电压经过一个电压跟随器(或放大器),将输入、输出隔离开来,使其负载不能影响电流在电阻上产生的电压。然后经一个电压跟随器(或放大器)输出。C1滤除高频干扰,应为pf级电容。 电路图如下所示:

输出电压为: Vo=Ii?R4?(1+(R3+Rw) R1 ) 注释:通过调节Rw可以调节放大倍数。 优点:负载不影响转换关系,但输入电压受提供芯片电压的影响即有输出电压上限值。 要求:电流输入信号Ii是从运算放大器A1的同相输入端输入的,因此要求选用具有较高共模抑制比的运算放大器,例如,OP-07、OP-27等。R4为高精度、热稳定性较好的电阻。 V/I转换电路设计 原理: 1、V I 变换电路的基本原理: 最简单的VI变换电路就是一只电阻,根据欧姆定律:Io=Ui R ,如果保证电阻不变,输出电流与输入电压成正比。但是,我们很快发现这样的电路无法实用,一方面接入负载后,由于不可避免负载电阻的存在,式中的R发生了变化,输出电流也发生了变化;另一方面,需要输入信号提供相应的电流,在某些场合无法满足这种需要。 1 、基于运算放大器的基本VI变换电路为了保证负载电阻不影响电压/电流的变换关系,需要对电路进行调整,如图1是基于运算放大器的基本VI变换电路。利用运算放大器的“虚短”概念可知U-=U+=0;因此流过Ri的电流: Ii=Ui R

电压电流回路讲解

标准文档 实用大全互感器及其二次回路培训教案第一部分:整体认识 首先我们有必要了解互感器的作用、验收项目、运行操作注意事项及巡视检查项目等内容. 一、变电站内互感器的作用 变电站内电压(流)互感器就是把高电压(大电流)按比例关系变换成线电压100V相电压100/√3(额定电流5A)的标准二次电压(流),供保护、计量、测量等装置使用。同时,使用电压(流)互感器将高电压与二次装置(保护、计量、测量等装置)分开保证了人员和设备安全。 电压(流)互感器的二次回路就是将电压(流)互感器与保护、计量、测量等二次用电装置连接起来的二次回路接线。 二、互感器的日常运行维护规定 1.电压(流)互感器的各个二次绕组(包括备用)均必须有可靠的保护接地, 且只允许有一个接地点。电流互感器备有的二次绕组应也应短路接地。 接地点的布置应满足有关二次回路设计的规定。由几组电流互感器二次 组合的电流回路如差动保护的电流回路,其接地点易选择在控制室(即 母差屏) 2.停运半年及以上的互感器应按有关规定试验检查合格后方可投运。 3.电压互感器允许在1.2倍额定电压下连续运行,中性点有效接地系统中的 互感器,允许在1.5倍额定电压下运行30s, 中性点非有效接地系统中的电 压互感器,在系统无自动切除对地故障保护时,允许在1.9倍额定电压下运 行8h。 4.中性点非有效接地系统中,作单相接地监视用的电压互感器,一次中性点

标准文档 实用大全应接地,为防止谐振过电压,应在一次中性点或二次回路装设消谐装置。 5.电压互感器二次回路,除剩余电压绕组和另有专门规定者外,应装设快速 开关或熔断器;主回路熔断电流一般为最大负荷电流的1.5倍,各级熔断器熔断电流应逐级配合,自动开关应经整定试验合格方可投入运行。6.电流互感器二次侧严禁开路,备用的二次绕组也应短接接地,二次回路 不允许装设熔断器及其它开断设备。电压互感器二次侧严禁短路。 7.电容型电流互感器一次绕组的末(地)屏必须可靠接地。 8.66kV及以上电磁式油浸互感器应装设膨胀器或隔膜密封,应有便于观察 的油位或油温压力指示器,并有最低和最高限值标志。运行中全密封互感器应保持微正压,充氮密封互感器的压力应正常。互感器应标明绝缘油牌号。 三、操作方法及注意事项 (一)严禁用隔离开关或摘下熔断器的方法拉开有故障的电压互感器。(二)停用电压互感器前应注意下列事项: 1.防止自动装置的影响,防止误动、拒动。 2.将二次回路主熔断器或自动开关断开,防止电压反送。 四、修后设备的验收 (一)验收的项目和要求 1.所有缺陷已消除并验收合格。 2.一、二次接线端子应连接牢固,接触良好。 3.油浸式互感器无渗漏油,油标指示正常。 4.气体绝缘互感器无漏气,压力指示与规定相符。 5.极性关系正确,电流比换接位置符合运行要求。

查找二次回路故障的基本方法

1、确定故障回路 电气设备的二次回路可分为测量仪表、监察装置、信号回路、控制回路、保护回路等。在上述回路发生异常时,一般可采用直观检查法,即先检查交流进线保险,直流总保险,再检查各分路熔断器是否熔断,在未确认熔断回路故障点和故障原因,且没有排除故障以前,禁止投入已熔断的保险。直观检查不能确定故障回路时(如直流接地),可采用拉开线路开关选择查找,并以先信号、照明部分,后操作部分;先室外部分,后室内部分为原则。在切断各专用直流回路时,切断时间不得超过3s。对不能进行切断检查的回路,应将一次设备状态转换,做好安全措施后,方可在二次回路查找,当确定故障回路后,应恢复其它回路,对照图纸进行检查。 2、检查故障回路 电源系统。一般在电源系统中装有许多保险器,因此在直流系统故障时应先检查各熔断器是否完好,电压是否正常,再检查交流输入、直流输出、支路输出。 操作回路。此回路故障时伴有断路器拒动、误动,应从以下几个部件寻找故障点:操作保险、开关辅助接点、跳闸线圈(或合闸接触器线圈)、继电器接点、万能转换开关接点、配线、机构等。 其它回路故障均可以动作结果为前提,提出上级元件动作的条件,检查条件是否满足,对照图纸逐个元件、逐级进行分析后找出故障点。 3、使用工具及注意事项 在进行二次回路检查时,一般可用试灯、绝缘电阻表、万用表、钳形电流表、多用工具、专用试验设备等。在使用上述工具时,应首先确定回路是否有电压(或电流),在确认该回路无电压无电流时,方可用试灯、绝缘电阻表等检查回路元件的通断。在使用绝缘电阻表检查绝缘时,应断开本回路交直流电源,断开与其它回路连接的充电电容器件。在故障点寻找工作中,还应注意接线接点的拆开与恢复工作,防止电流回路开路、电压回路短路,避免故障点的产生和事故扩大。 一、查找二次回路故障的基本方法 1、二次回路查找故障的一般方法: 1)根据故障现象和图纸分析原因,再确定检查处理的顺序和方法; 2)保持原状,进行外部检查和观察; 3)检查出故障可能性大的、容易出问题的、常出问题的薄弱点; 4)逐步缩小范围查找故障。二次回路故障查找重在分析判断,有正确的分析判断才能正确处理少走弯路。先根据接线情况、故障现象、设备状态、信号等情况分析判断可以缩小范围。判断准确范围后,再用正确方法,再缩小范围。检查测量中再根据结果和现象进行分析判断,再测量就能准确无误地查找出故障点。2、使用仪表查找二次回路不通故障的方法二次回路中发生断线故障时使用仪表查找不通点很有效、很准确。一般用万用表来检查测量,主要有三种方法,即测导通法,测电压降法和对地电位法。测导通法必须先断开回路的电源,而测电压降法和对地电位法可带电测量。 1)测导通法:这种方法是用万用表的欧姆档测量电阻的方法来查找二次回路不通故障。测导通法必须先断开回路的电源,否则会烧坏表计。测导通法是通过测量检查某2点之间的电阻值来判断故障点。接触良好的接点,其两端电阻值应是零;严重接触不良时有一定的电阻;为接通的接点,其两端电阻无限大。对于

相关文档
最新文档