高中物理曲线运动专题训练答案

高中物理曲线运动专题训练答案
高中物理曲线运动专题训练答案

高中物理曲线运动专题训练答案

一、高中物理精讲专题测试曲线运动

1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:

(1)盘的转速ω0多大时,物体A开始滑动?

(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?

【答案】(1)

g

l

μ

(2)

3

4

mgl

kl mg

μ

μ

-

【解析】

【分析】

(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.

(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.

【详解】

若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.

(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:

μmg=mlω02,

解得:ω0=

g l μ

即当ω0=

g

l

μ

A开始滑动.

(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,

r=l+△x

解得:

3

4

mgl x

kl mg

μ

μ

-

V=

【点睛】

当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.

2.如图所示,带有

1

4

光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?

(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?

【答案】(1)023v gR =(2)123gR

v =253gR v =【解析】

本题考查动量守恒与机械能相结合的问题.

(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由

02mv mu =,解得0

2

v u =

C 滑到最高点的过程: 023mv mu mu +='

2220111

23222

mv mu mu mgR +?=+'? 解得023v gR =

(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+

22220121111222222

mv mu mv mv +?=+? 解得:123gR

v =

253gR v =

3.如图1所示是某游乐场的过山车,现将其简化为如图2所示的模型:倾角37θ=o 、长

60cm L =的直轨道AB 与半径10cm R =的光滑圆弧轨道BCDEF 在B 处平滑连接,

C 、F 为圆轨道最低点,

D 点与圆心等高,

E 为圆轨道最高点;圆轨道在

F 点与水平轨道F

G 平滑连接整条轨道宽度不计.现将一质量50g m =的滑块(可视为质点)从A 端由

静止释放.已知滑块与AB 段的动摩擦因数10.25μ=,与FG 段的动摩擦因数20.5μ=,

sin370.6=o ,cos370.8=o .

(1)求滑块到达B 点时的动能1E ; (2)求滑块到达E 点时对轨道的压力N F ;

(3)若要滑块能在水平轨道FG 上停下,求FG 长度的最小值x ;

(4)若改变释放滑块的位置,使滑块第一次运动到D 点时速度刚好为零,求滑块从释放到它第5次返回轨道AB 上离B 点最远时,它在AB 轨道上运动的总路程s .

【答案】(1)0.12J ;(2)0.1N ;(3)0.52m ;(4)0.58m 【解析】 【分析】 【详解】

(1)滑块由A 点到达B 点的过程中,重力做正功,摩擦力做负功,设B 点速度为B v ,且从A 端由静止释放,根据动能定理可得:

2

11sin cos 02

B mgL mgL mv θμθ-=

-……① 2

112

B E mv =

……② 由①②代入数据可解得:10.12J E =;

(2)滑块在BCDEF 光滑圆弧轨道上做圆周运动,从B 点到E 点,设到达E 点时速度为

E v ,根据动能定理可得:

22

111cos 22

E B mgR mv mv θ-+=-?()③

且由轨道对滑块的弹力N 和重力提供向心力,则有:

2E

v N mg m R

+=……④

根据牛顿第三定律,轨道对滑块的弹力N 和滑块对轨道的压力N F 是一对相互作用力,则有:

N 0.1N F =……⑤

由③④⑤代入数据可解得:

N 0.1N F =;

(3)在BCDEF 圆弧轨道上只有重力做功,则从B 点到F 点,机械能守恒,则有:

1(1cos 0.13J F E E mgR =+-=)θ⑥

滑块在FG 轨道上由于摩擦力的作用做匀减速运动,且最终停下,根据动能定理可得:

20F mgx E μ-=-……⑦

由⑥⑦代入数据可解得:

0.52m x =

(4)该变释放滑块的位置,设此时距离B 点距离为1s ,此时滑块到达D 点时速度刚好为零,根据动能定理有:

111sin cos cos 0mgs mgs mgR θμθθ--=……⑧

设从D 点第一次返回到AB 轨道上离B 点最远时到B 点的距离为2s ,根据动能定理有:

122cos cos sin 0mgR mgs mgs θμθθ--=……⑨

设从CD 轨道第二次返回到AB 轨道上离B 点最远时到B 点的距离为3s ,根据动能定理有:

212133sin cos cos sin 0mgs mgs mgs mgs θμθμθθ---=……⑩

设从CD 轨道第三次返回到AB 轨道上离B 点最远时到B 点的距离为4s ,根据动能定理

有:313144sin cos cos sin 0mgs mgs mgs mgs θμθμθθ---=……?

设从CD 轨道第四次返回到AB 轨道上离B 点最远时到B 点的距离为5s ,根据动能定理

有:414155sin cos cos sin 0mgs mgs mgs mgs θμθμθθ---=……?

设从CD 轨道第五次返回到AB 轨道上离B 点最远时到B 点的距离为6s ,根据动能定理

有:515166sin cos cos sin 0mgs mgs mgs mgs θμθμθθ---=……?

滑块从释放到它第5次返回轨道AB 上离B 点最远时,它在AB 轨道上运动的总路程:

1234562222s s s s s s s =+++++……?

由⑧⑨⑩????代入数据可解得:

0.58m s ≈

4.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37?角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。 (1)求小物块经过B 点时对轨道的压力大小;

(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。

【答案】(1)62N (2)60N (3)10m 【解析】 【详解】

(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==? 解得:04

m /5m /cos370.8

A v v s s =

==?

小物块经过A 点运动到B 点,根据机械能守恒定律有:

()2211cos3722

A B mv mg R R mv +-?= 小物块经过B 点时,有:2

B

NB v F mg m R

-= 解得:()232cos3762N B

NB

v F mg m R

=-?+=

根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:

22011222

C B mgL mg r mv mv μ--?=

- 在C 点,由牛顿第二定律得:2

C

NC v F mg m r

+=

代入数据解得:60N NC F =

根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N

(3)小物块刚好能通过C 点时,根据22C

v mg m r

=

解得:2100.4m /2m /C v gr s s =

=?=

小物块从B 点运动到C 点的过程,根据动能定理有:

22211222

C B mgL mg r mv mv μ--?=

- 代入数据解得:L =10m

5.如图甲所示,轻质弹簧原长为2L ,将弹簧竖直放置在水平地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为L .现将该弹簧水平放置,如图乙所示.一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5L 的水平轨

道,B 端与半径为L 的光滑半圆轨道BCD 相切,半圆的直径BD 在竖直方向上.物块P 与AB 间的动摩擦因数0.5μ=,用外力推动物块P ,将弹簧压缩至长度为L 处,然后释放P ,P 开始沿轨道运动,重力加速度为g .

(1)求当弹簧压缩至长度为L 时的弹性势能p E ;

(2)若P 的质量为m ,求物块离开圆轨道后落至AB 上的位置与B 点之间的距离; (3)为使物块P 滑上圆轨道后又能沿圆轨道滑回,求物块P 的质量取值范围.

【答案】(1)5P E mgL = (2) 22S L = (3)5

53

2

m M m # 【解析】 【详解】

(1)由机械能守恒定律可知:弹簧长度为L 时的弹性势能为

(2)设P 到达B 点时的速度大小为

,由能量守恒定律得:

设P 到达D 点时的速度大小为,由机械能守恒定律得:

物体从D 点水平射出,设P 落回到轨道AB 所需的时间为

θ θ 22S L =

(3)设P 的质量为M ,为使P 能滑上圆轨道,它到达B 点的速度不能小于零 得54mgL MgL μ> 5

2

M m <

要使P 仍能沿圆轨道滑回,P 在圆轨道的上升高度不能超过半圆轨道的中点C ,得

21

2

B

Mv MgL '≤

21

42

p B

E Mv MgL μ=

'+

6.如图,AB 为倾角37θ=?的光滑斜面轨道,BP 为竖直光滑圆弧轨道,圆心角为

143?、半径0.4m R =,两轨道相切于B 点,P 、O 两点在同一竖直线上,轻弹资一端固

定在A 点另一自由端在斜面上C 点处,现有一质量0.2kg m =的小物块(可视为质点)在外力作用下将弹簧缓慢压缩到D 点后(不栓接)静止释放,恰能沿轨道到达P 点,已知

0.2m CD =、sin370.6?=、cos370.8?=,g 取210m/s .求:

(1)物块经过P 点时的速度大小p v ;

(2)若 1.0m BC =,弹簧在D 点时的弹性势能P E ; (3)为保证物块沿原轨道返回,BC 的长度至少多大. 【答案】(1)2m/s (2)32.8J (3)2.0m 【解析】 【详解】

(1)物块恰好能到达最高点P ,由重力提供圆周运动的向心力,由牛顿第二定律得:

mg=m 2

p v R

解得:

100.42m/s P v gR =?=

(2)物块从D 到P 的过程,由机械能守恒定律得:

E p =mg (s DC +s CB )sin37°+mgR (1+cos37°)+

1

2

mv P 2. 代入数据解得:

E p =32.8J

(3)为保证物块沿原轨道返回,物块滑到与圆弧轨道圆心等高处时速度刚好为零,根据能量守恒定律得:

E p =mg (s DC +s ′CB )sin37°+mgR (1+cos37°)

解得:

s ′CB =2.0m

点睛:本题综合考查了牛顿第二定律、机械能守恒定律的综合,关键是搞清物体运动的物理过程;知道圆周运动向心力的来源,即径向的合力提供向心力.

7.如图为某种鱼饵自动投放器中的投饵管装置示意图,其下半部AB 是一长为2R 的竖直细管,上半部BC 是半径为R 的四分之一圆弧弯管,管口沿水平方向,AB 管内有一原长为R 、下端固定的轻质弹簧.投饵时,每次总将弹簧长度压缩到0.5R 后锁定,在弹簧上段放置一粒鱼饵,解除锁定,弹簧可将鱼饵弹射出去.设质量为m 的鱼饵到达管口C 时,对管壁的作用力恰好为零.不计鱼饵在运动过程中的机械能损失,且锁定和解除锁定时,均不改变弹簧的弹性势能.已知重力加速度为g .求: (1)质量为m 的鱼饵到达管口C 时的速度大小v 1; (2)弹簧压缩到0.5R 时的弹性势能E p ;

(3)已知地面欲睡面相距1.5R ,若使该投饵管绕AB 管的中轴线OO ' 。在90?角的范围内来

回缓慢转动,每次弹射时只放置一粒鱼饵,鱼饵的质量在

2

3

m 到m 之间变化,且均能落到水面.持续投放足够长时间后,鱼饵能够落到水面的最大面积S 是多少?

【答案】gR ;(2)3mgR ;(3)28.25R π 【解析】 【分析】 【详解】

(1)质量为m 的鱼饵到达管口C 时做圆周运动的向心力,完全由重力提供,则

2

1v mg m R

=

可以解得

1v =

(2)从弹簧释放到最高点C 的过程中,弹簧的弹性势能全部转化为鱼饵的机械能,由系统的机械能守恒定律有

2

1102

F G W W mv +=

- 即

()2

1

2.502

F W mg R m

-=-

3F W mgR =

故弹簧弹性势能为E p =3mgR

(3)不考虑因缓慢转动装置对鱼饵速度大小的影响,质量为m 的鱼饵离开管口C 后做平抛运动,设经过t 时间落到水面上,得

t =

= 离OO'的水平距离为x 1,鱼饵的质量为m 时

113x v t R ==

鱼饵的质量为

2

3

m 时,由动能定理 ()()2

1

2122.50323F W mg R m v ??-=- '???

整理得:

1

v ' 同理:

21

6x v t R ='= 114r x r R =+= 227r x r R =+=

鱼饵能够落到水面的最大面积S 是

()

222211

8.254

S r r R πππ=

-= 【点睛】

本题考查了圆周运动最高点的动力学方程和平抛运动规律,转轴转过90°鱼饵在水平面上

形成圆周是解决问题的关键,这是一道比较困难的好题.

8.如图所示,一质量为m =1kg 的小球从A 点沿光滑斜面轨道由静止滑下,不计通过B 点时的能量损失,然后依次滑入两个相同的圆形轨道内侧,其轨道半径R =10cm ,小球恰能通过第二个圆形轨道的最高点,小球离开圆形轨道后可继续向E 点运动,E 点右侧有一壕

沟,E 、F 两点的竖直高度d =0.8m ,水平距离x =1.2m ,水平轨道CD 长为L 1=1m ,DE 长为L 2=3m .轨道除CD 和DE 部分粗糙外,其余均光滑,小球与CD 和DE 间的动摩擦因数μ=0.2,重力加速度g =10m/s 2.求:

(1)小球通过第二个圆形轨道的最高点时的速度; (2)小球通过第一个圆轨道最高点时对轨道的压力的大小;

(3)若小球既能通过圆形轨道的最高点,又不掉进壕沟,求小球从A 点释放时的高度的范围是多少?

【答案】(1)1m/s (2)40N (3)0.450.8m h m ≤≤或 1.25h m ≥ 【解析】

⑴小球恰能通过第二个圆形轨道最高点,有:

22

v mg m R

=

求得:υ2gR ①

⑵在小球从第一轨道最高点运动到第二圆轨道最高点过程中,应用动能定理有: ?μmgL 1=

12mv 22?1

2

mv 12 ② 求得:υ12

212gL υμ+5

在最高点时,合力提供向心力,即F N +mg=2

1m R

υ ③ 求得:F N = m(

2

1R

υ?g)= 40N

根据牛顿第三定律知,小球对轨道的压力为:F N ′=F N =40N ④

⑵若小球恰好通过第二轨道最高点,小球从斜面上释放的高度为h1,在这一过程中应用动能定理有:mgh 1 ?μmgL 1 ?mg 2R =

1

2

mv 22 ⑤ 求得:h 1=2R+μL 1+2

22g

υ=0.45m 若小球恰好能运动到E 点,小球从斜面上释放的高度为h 1,在这一过程中应用动能定理有:

mgh 2?μmg(L 1+L 2)=0?0 ⑥ 求得: h 2=μ(L 1+L 2)=0.8m

使小球停在BC 段,应有h 1≤h≤h 2,即:0.45m≤h≤0.8m 若小球能通过E 点,并恰好越过壕沟时,则有 d =

12gt 2 →t =2d g

= 0.4s ⑦ x=v E t →υE =

x

t

=3m/s ⑧ 设小球释放高度为h 3,从释放到运动E 点过程中应用动能定理有: mgh 3 ?μmg(L 1+L 2)=

2

12

E mv ?0 ⑨ 求得:h 3=μ(L 1+L 2)+22E

g

υ=1.25m 即小球要越过壕沟释放的高度应满足:h≥1.25m

综上可知,释放小球的高度应满足:0.45m≤h≤0.8m 或 h≥1.25m ⑩

9.如图所示,倾角θ=30°的光滑斜面上,一轻质弹簧一端固定在挡板上,另一端连接质量m B =0.5kg 的物块B ,B 通过轻质细绳跨过光滑定滑轮与质量m A =4kg 的物块A 连接,细绳平行于斜面,A 在外力作用下静止在圆心角为α=60°、半径R=lm 的光滑圆弧轨道的顶端a 处,此时绳子恰好拉直且无张力;圆弧轨道最低端b 与粗糙水平轨道bc 相切,bc 与一个半径r=0.12m 的光滑圆轨道平滑连接,静止释放A ,当A 滑至b 时,弹簧的弹力与物块A 在顶端d 处时相等,此时绳子断裂,已知bc 长度为d=0.8m ,求:(g 取l0m/s 2) (1)轻质弹簧的劲度系数k ;

(2)物块A 滑至b 处,绳子断后瞬间,圆轨道对物块A 的支持力大小;

(3)为了让物块A 能进入圆轨道且不脱轨,则物体与水平轨道bc 间的动摩擦因数μ应满足什么条件?

【答案】(1)5/k N m = (2)72N (3)0.350.5μ≤≤或0.125μ≤ 【解析】

(1)A 位于a 处时,绳无张力弹簧处于压缩状态,设压缩量为x 对B 由平衡条件可以得到:sin B kx m g θ=

当A 滑至b 时,弹簧处于拉伸状态,弹力与物块A 在顶端a 处时相等,则伸长量也为x ,

由几何关系可知:2R x =,代入数据解得:5/k N m =; (2)物块A 在a 处和在b 处时,弹簧的形变量相同,弹性势能相同 由机械能守恒有:()22111sin 22

A B A A B B m gR cos m gR m v m v αθ-=++ 将A 在b 处,由速度分解关系有:sin B A v v α=

代入数据解得:/A v s =

在b 处,对A 由牛顿定律有:2A

b A A v N m g m R

-= 代入数据解得支持力:72b N N =. (3)物块A 不脱离圆形轨道有两种情况: ①不超过圆轨道上与圆心的等高点

由动能定理,恰能进入圆轨道时需要满足:2

1102A A A m gd m v μ-=-

恰能到圆心等高处时需要满足条件:22102

A A A A m gr m gd m v μ--=- 代入数据解得:10.5μ=,20.35μ=

②过圆轨道最高点,则恰好过最高点时:2

A A v m g m r

= 由动能定理有:22311222

A A A A A m gr m gd m v m v μ--=- 代入数据解得:30.125μ=

为使物块A 能进入圆轨道且不脱轨,有:0.350.5μ≤≤或0.125μ≤.

10.如图所示,在光滑水平桌面EAB 上有质量为m =2 kg 的小球P 和质量为M =1 kg 的小球Q ,P 、Q 之间压缩一轻弹簧(轻弹簧与两小球不拴接),桌面边缘E 处放置一质量也为M =1 kg 的橡皮泥球S ,在B 处固定一与水平桌面相切的光滑竖直半圆形轨道。释放被压缩的轻弹簧,P 、Q 两小球被轻弹簧弹出,小球P 与弹簧分离后进入半圆形轨道,恰好能够通过半圆形轨道的最高点C ;小球Q 与弹簧分离后与桌面边缘的橡皮泥球S 碰撞后合为一体飞出,落在水平地面上的D 点。已知水平桌面高为h =0.2 m ,D 点到桌面边缘的水平距离为x =0.2 m ,重力加速度为g =10 m/s 2,求:

(1)小球P 经过半圆形轨道最低点B 时对轨道的压力大小N B ′; (2)小球Q 与橡皮泥球S 碰撞前瞬间的速度大小v Q ; (3)被压缩的轻弹簧的弹性势能E p 。

【答案】(1)120N (2)2 m/s (3)3 J 【解析】 【详解】

(1)小球P 恰好能通过半圆形轨道的最高点C ,则有

mg =m 2C

v R

解得

v C gR 对于小球P ,从B →C ,由动能定理有

22

11222

C B mgR mv mv -=-

解得

v B 5gR 在B 点有

N B -mg =m 2

B

v R

解得

N B =6mg =120 N

由牛顿第三定律有

N B ′=N B =120 N

(2)设Q 与S 做平抛运动的初速度大小为v ,所用时间为t ,根据公式h =

12

gt 2

,得 t =0.2 s

根据公式x =vt ,得

v =1 m/s

碰撞前后Q 和S 组成的系统动量守恒, 则有

Mv Q =2Mv

解得

v Q =2 m/s

(3)P 、Q 和弹簧组成的系统动量守恒,

则有

mv P =Mv Q

解得

v P =1 m/s

对P 、Q 和弹簧组成的系统,由能量守恒定律有

22

1122

p P Q E mv Mv =+

解得

E p =3 J

2020高考物理名师练习卷:专题四《曲线运动》含答案

2020衡水名师原创物理专题卷 专题四曲线运动 考点10 曲线运动运动的合成与分解 考点11 平抛运动的规律及应用 考点12 圆周运动的规律及应用 一、选择题(本题共17个小题,每题4分,共68分。每题给出的四个选项中,有的只有一个选项符合题意,有的有多个选项符合题意,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分) 1、一小球质量为m,用长为L的悬绳(不可伸长,质量不计)固定于O点,在O点正下方L/2处钉有一颗钉子,如图所示,将悬线沿水平方向拉直无初速释放后,当悬线碰到钉子后的瞬间( ) A.小球线速度大小没有变化 B.小球的角速度突然增大到原来的2倍 C.小球的向心加速度突然增大到原来的2倍 D.悬线对小球的拉力突然增大到原来的2倍 2、如图所示,在长约100cm一端封闭的玻璃管中注满清水,水中放一个用红蜡做成的小圆柱体(小圆柱体恰能在管中匀速上浮),将玻璃管的开口端用胶塞塞紧.然后将玻璃管竖直倒置,在红蜡块匀速上浮的同时,使玻璃管紧贴黑板面水平向右先匀加速后匀减速移动,你正对黑板面将看到红蜡块在减速阶段相对于黑板面的移动轨迹可能是下面的( )

A. B. C. D. 、质量相等,通过相同长度的缆绳悬挂在“秋3、如图,“旋转秋千”装置中的两个座椅A B 千”的不同位置。不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是( ) A.A的角速度比B的大 B.A的线速度比B的大 C.A与B的向心加速度大小相等 、的缆绳与竖直方向的夹角相等 D.悬挂A B 4、如图,在不计滑轮摩擦和绳子质量的条件下,当小车以速度v匀速向右运动当小车运动到与水平面夹角为θ时,下列关于物体A说法正确的是() vθ,物体A做减速运动,绳子拉力小于物体重力 A. 物体A此时的速度大小为cos vθ,物体A做加速运动,绳子拉力大于物体重力 B. 物体A此时的速度大小为cos vθ,物体A做减速运动,绳子拉力小于物体重力 C. 物体A此时的速度大小为/cos vθ,物体A做加速运动,绳子拉力大于物体重力 D. 物体A此时的速度大小为/cos 5、有一条两岸平直、河水均匀流动,流速恒为v的大河,一条小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直,小船在静水中的速度大小为2v,去程与回程所用时间之比为( ) A.3:2 B.2:1 C.3:1 2

【物理】物理曲线运动练习题含答案及解析

【物理】物理曲线运动练习题含答案及解析 一、高中物理精讲专题测试曲线运动 1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求: (1)子弹射入小球的过程中产生的内能; (2)当小球运动到圆形轨道的最低点时,木板对水平面的压力; (3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围. 【答案】(1)2038mv (2) 2 164mv mg R + (3)042v gR ≤或04582gR v gR ≤≤【解析】 本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111 422 Q mv mv =-? 代入数值解得:2038 Q mv = (2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式 得2 11(3)(3)m m v F m m g R +-+= 以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2 木板对水平面的压力的大小20 2164mv F mg R =+ (3)小球不脱离圆形轨有两种可能性: ①若小球滑行的高度不超过圆形轨道半径R 由机械能守恒定律得: ()()211 332 m m v m m gR +≤+

高中物理曲线运动综合复习测试题附答案详解

■专题测试 《曲线运动》专题测试卷(时间:90分钟,满分:120分) 班级姓名学号得分 一、选择题(本题共12小题。每小题4分,共48分。在每小题给出的四个选项中,有 的只有一个选项正确,有的有多个选项正确,全选对的得4分,选对但不全的得2分,有选 错或不答的得0分。) 1.平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动,在同一 坐标系中作出两个分运动的v-t图象,如图1所示,则以下说法正确的是() A.图线1表示水平方向分运动的v-t图线 B.图线2表示竖直方向分运动的v-t图线 C.t1时刻物体的速度方向与初速度方向夹角为45° D.若图线2的倾角为θ,当地重力加速度为g,则一定有g = θ tan 2.如图2所示,在地面上某一高度处将A球以初速度v1水平抛出,同时在A球正下 方地面处将B球以初速度v2斜向上抛出,结果两球在空中相遇,不计空气阻力,则两球从 抛出到相遇过程中() A.A和B初速度的大小关系为v1< v2 B.A和B加速度的大小关系为a A> a B C.A做匀变速运动,B做变加速运动 D.A和B的速度变化相同 3.如图3所示,蹲在树枝上的一只松鼠看到一个猎人正在用枪水平对准它,就在子弹 出枪口时,松鼠开始运动,下述各种运动方式中,松鼠不能逃脱厄运而被击中的是(设树枝 足够高): A.自由落下 B.竖直上跳 C.迎着枪口,沿AB方向水平跳离树枝 D.背着枪口,沿AC方向水平跳离树枝 4.在同一点O抛出的三个物体,做平抛运动的轨迹如图4所示,则 三个物体做平抛运动的初速度v A.v B、v C的关系和三个物体做平跑运动的 时间t A.t B、t C的关系分别是() A.v A>v B>v C t A>t B>t C B.v A=v B=v C t A=t B=t C C.v At B>t C D.v A>v B>v C t A

曲线运动经典例题

《曲线运动》经典例题 1、关于曲线运动,下列说法中正确的是(AC) A. 曲线运动一定是变速运动 B. 变速运动一定是曲线运动 C. 曲线运动可能是匀变速运动 D. 变加速运动一定是曲线运动 【解析】曲线运动的速度方向沿曲线的切线方向,一定是变化的,所以曲线运动一定是变速运动。变速运动可能是速度的方向不变而大小变化,则可能是直线运动。当物体受到的合力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。做变加速运动的物体受到的合力可能大小不变,但方向始终与速度方向在一条直线上,这时物体做变速直线运动。 2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,若突然撤去F1,而保持F2、F3不变,则质点(A) A.一定做匀变速运动B.一定做直线运动 C.一定做非匀变速运动D.一定做曲线运动 【解析】质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。由题意可知,当突然撤去F1而保持F2、F3不变时,质点受到的合力大小为F1,方向与F1相反,故一定做匀变速运动。在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,则撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,则撤去F1后,质点可能做直线运动(条件是F1的方向和速度方向在一条直线上),也可能做曲线运动(条件是F1的方向和速度方向不在一条直线上)。 3、关于运动的合成,下列说法中正确的是(C) A. 合运动的速度一定比分运动的速度大 B. 两个匀速直线运动的合运动不一定是匀速直线运动 C. 两个匀变速直线运动的合运动不一定是匀变速直线运动 D. 合运动的两个分运动的时间不一定相等 【解析】根据速度合成的平行四边形定则可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不一定比分速度大。两个匀速直线运动的合运动一定是匀速直线运动。两个匀变速直线运动的合运动是否是匀变速直线运动,决定于两初速度的合速度方向是否与合加速度方向在一直线上。如果在一直线上,合运动是匀变速直线运动;反之,是匀变速曲线运动。根据运动的同时性,合运动的两个分运动是同时的。 4、质量m=0.2kg的物体在光滑水平面上运动,其分速度v x和v y随时间变化的图线如图所示,求: (1)物体所受的合力。 (2)物体的初速度。 (3)判断物体运动的性质。 (4)4s末物体的速度和位移。 【解析】根据分速度v x和v y随时间变化的图线可知,物体在x 轴上的分运动是匀加速直线运动,在y轴上的分运动是匀速直线 运动。从两图线中求出物体的加速度与速度的分量,然后再合成。 (1) 由图象可知,物体在x轴上分运动的加速度大小a x=1m/s2,在y轴上分运动的加速度为0,故物体的合加速度大小为a=1m/s2,方向沿x轴的正方向。则物体所受的合力 F=ma=0.2×1N=0.2N,方向沿x轴的正方向。 (2) 由图象知,可得两分运动的初速度大小为 v x0=0,v y0=4m/s,故物体的初速度

专题四 曲线运动讲课稿

专题四曲线运动

仅供学习与交流,如有侵权请联系网站删除 谢谢2 专题四 曲线运动 1.关于运动的性质,以下说法中正确的是( ) A .曲线运动一定是变速运动 B .变速运动一定是曲线运动 C .曲线运动一定是变加速运动 D .物体加速度大小、速度大小都不变的运动一定是直线运动 2、甲、乙两人从距地面h 高处抛出两个小球,甲球的落地点距抛出点的水平距离是乙的2倍,不计空气阻力,为了使 乙球的落地点与甲球相同,则乙抛出点的高度可能为:( ) A 2 h B 2h C 4h D 3h 3.做平抛运动的物体,每秒的速度增量总是( ) A .大小相等,方向相同 B 大小不等,方向不同 C 大小相等,方向不同 D 大小不等,方向相同 4.在宽度为d 的河中,水流速度为v 2 ,船在静水中速度为v 1(且v 1>v 2),方向可以选择,现让该船开始渡河,则该船( ) A .可能的最短渡河时间为 2d v B .可能的最短渡河位移为d C 只有当船头垂直河岸渡河时,渡河时间才和水速无关 D 不管船头与河岸夹角是多少,渡河时间 和水速均无关 5.于匀速圆周运动的向心力,下列说法正确的是( ) A .向心力是指向圆心方向的合力,是根据力的作用效果命名的 B .向心力可以是多个力的合力,也可以是其中一个力或一个力的分力 C 对稳定的圆周运动,向心力是一个恒力 D 向心力的效果是改变质点的线速度大小 6如图所示的传动装置中,a 、b 两轮同轴转动.a 、b 、c 三轮的半径大小的关系是r a =r c =2r b .当皮带不打滑时,三轮的角速度之比、三轮边缘的线速度大小之比、三轮边缘的向心加速度大小之比分别为多少? 7一圆盘可绕一通过圆盘中心o 且垂直于盘面的竖直轴转 动.在圆盘上放置一木块,当圆 盘匀速转动时,木块随圆盘一起运动(见图),那么 a .木块受到圆盘对它的摩擦力,方向背离圆盘中心 b .木块受到圆盘对它的摩擦力,方向指向圆盘中心 c .因为木块随圆盘一起运动,所以木块受到圆盘对它的摩擦力,方向与木块的运动方向相同 d .因为摩擦力总是阻碍物体运动,所以木块所受圆盘对它的摩擦力的方向与木块 的运动方向相反 e .因为二者是相对静止的,圆盘与木块之间无摩擦力 (第10

高一物理曲线运动练习题(含答案)

第五章 第一节 《曲线运动》练习题 一 选择题 1. 关于运动的合成的说法中,正确的是 ( ) A .合运动的位移等于分运动位移的矢量和 B .合运动的时间等于分运动的时间之和 C .合运动的速度一定大于其中一个分运动的速度 D .合运动的速度方向与合运动的位移方向相同 A 此题考查分运动与合运动的关系,D 答案只在合运动为直线时才正确 2. 物体在几个力的作用下处于平衡状态,若撤去其中某一个力而其余力的性质(大小、方向、作用点)不变,物 体的运动情况可能是 ( ) A .静止 B .匀加速直线运动 C .匀速直线运动 D .匀速圆周运动 B 其余各力的合力与撤去的力等大反向,仍为恒力。 3.某质点做曲线运动时 (AD ) A.在某一点的速度方向是该点曲线的切线方向 B.在任意时间内,位移的大小总是大于路程 C.在某段时间里质点受到的合外力可能为零 D.速度的方向与合外力的方向必不在同一直线上 4 精彩的F 1赛事相信你不会陌生吧!车王舒马赫在2005年以8000万美元的年收入高居全世界所有运动员榜首。在观众感觉精彩与刺激的同时,车手们却时刻处在紧张与危险之中。这位车王在一个弯道上突然高速行驶的赛车后轮脱落,从而不得不遗憾地退出了比赛。关于脱落的后轮的运动情况,以下说法正确的是( C ) A. 仍然沿着汽车行驶的弯道运动 B. 沿着与弯道垂直的方向飞出 C. 沿着脱离时,轮子前进的方向做直线运动,离开弯道 D. 上述情况都有可能 5.一个质点在恒力F 作用下,在xOy 平面内从O 点运动到A 点的轨迹如图所示,且在A 点的速度方向与x 轴平行, 则恒力F 的方向不可能( ) A.沿x 轴正方向 B.沿x 轴负方向 C.沿y 轴正方向 D.沿y 轴负方向 ABC 质点到达A 点时,Vy=0,故沿y 轴负方向上一定有力。 6在光滑水平面上有一质量为2kg 2N 力水平旋转90o,则关于物体运动情况的叙述正确的是(BC ) A. 物体做速度大小不变的曲线运动 B. 物体做加速度为在2m/s 2的匀变速曲线运动 C. 物体做速度越来越大的曲线运动 D. 物体做非匀变速曲线运动,其速度越来越大 解析:物体原来所受外力为零,当将与速度反方向的2N 力水平旋转90o后其受力相当于如图所示,其中,是F x 、F y 的合力,即F=22N ,且大小、方向都不变,是恒力,那么物体的加速度为2 22== m F a m /s 2=2m /s 2恒定。又因为F 与v 夹角<90o,所以物体做速度越来越大、加速度恒为2m /s 2的匀变速曲线运动,故正确答案是B 、C 两 项。 7. 做曲线运动的物体,在运动过程中一定变化的物理量是( ) A.速度 B.加速度 C.速率 D.合外力 A 曲线运动的几个典型例子是匀变速曲线运动像平抛和匀速圆周运动,故 B 、 C 、 D 均可不变化,但速度一定变化。 8. 关于合力对物体速度的影响,下列说法正确的是(ABC ) O A x y

高中物理曲线运动经典题型总结-(1)word版本

专题 曲线运动 一、运动的合成和分解 【题型总结】 1.合力与轨迹的关系 如图所示为一个做匀变速曲线运动质点的轨迹示意图,已知在B 点的速度与加速度相互垂直,且质点的运动方向是从A 到E ,则下列说法中正确的是( ) A .D 点的速率比C 点的速率大 B .A 点的加速度与速度的夹角小于90° C .A 点的加速度比D 点的加速度大 D .从A 到D 加速度与速度的夹角先增大后减小 2.运动的合成和分解 例:一人骑自行车向东行驶,当车速为4m /s 时,他感到风从正南方向吹来,当车速增加到7m /s 时。他感到风从东南方向(东偏南45o)吹来,则风对地的速度大小为( ) A. 7m/s B. 6m /s C. 5m /s D. 4 m /s 3.绳(杆)拉物类问题 例:如图所示,重物M 沿竖直杆下滑,并通过绳带动小车m 沿斜面升高.问:当滑轮右侧的绳与竖直方向成θ角,且重物下滑的速率为v 时,小车的速度为多少? 练习1:一根绕过定滑轮的长绳吊起一重物B ,如图所示,设汽车和重物的速度的大小分别为B A v v ,,则( ) A 、 B A v v = B 、B A v v ? C 、B A v v ? D 、重物B 的速度逐渐增大 4.渡河问题 例1:在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为( ) 例2:某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T 1;若此船用最短的位移过河,则需时间为T 2,若船速大于水速,则船速与水速之比为( ) (A) (B) (C) (D) 【巩固练习】 1、 一个劈形物体M ,各面都光滑,放在固定的斜面上,上表面水平,在上表面放一个 光滑小球m ,劈形物体由静止开始释放,则小球在碰到斜面前的运动轨迹是( ) m

曲线运动经典专题复习

曲线运动经典专题 知识要点: 一、曲线运动三要点 1、条件:运动方向与所受合力不在同一直线上, 2、特点: (1)速度一定是变化的——变速运动 (2)加速度一定不为零,但加速度可能是变化的,也可能是不变的 3、研究方法——运动的合成与分解 二、运动的合成与分解 1、矢量运算:(注意方向) 2、特性: (1)独立性 (2)同时性 (3)等效性 3、合运动轨迹的确定: (1)两个分运动都是匀速直线运动 (2)两个分运动一个是匀速直线运动,另一个是匀变速直线运动 (3)两个分运动都是初速不为零的匀变速直线运动 (4)两个分运动都市初速为零的匀变速直线运动 三、平抛 1、平抛的性质:匀变速曲线运动(二维图解) 2、平抛的分解: 3、平抛的公式: 4、平抛的两个重要推论 5、平抛的轨迹 6、平抛实验中的重要应用 7、斜抛与平抛 8、等效平抛与类平抛 四、匀速圆周运动 1、运动性质: 2、公式: 3、圆周运动的动力学模型和临界问题 五、万有引力 1、万有引力定律的条件和应用 2、重力、重力加速度与万有引力 3、宇宙速度公式和意义 4、人造卫星、航天工程 5、地月系统和嫦娥工程 6、测天体的质量和密度 7、双星、黑洞、中子星 六、典型问题 1、小船过河 2、绳拉小船 3、平抛与斜面 4、等效的平抛 5、平抛与体育 6、皮带传动 7、表针问题 8、周期性与多解问题 6、转盘问题 7、圆锥摆 8、杆绳模型、圆轨道与圆管模型 9、卫星问题 10、测天体质量和密度 11、双星问题 一、绳拉小船问题 例:绳拉小船 汽车通过绳子拉小船,则( D ) A、汽车匀速则小船一定匀速 B、汽车匀速则小船一定加速 C、汽车减速则小船一定匀速 D、小船匀速则汽车一定减速 练习1:如图,汽车拉着重物G,则() A、汽车向左匀速,重物向上加速 B、汽车向左匀速,重物所受绳拉力小于重物重力 C、汽车向左匀速,重物的加速度逐渐减小 D、汽车向右匀速,重物向下减速 练习2:如左图,若已知物体A的速度大小为v A,求重物B的速度大小v B? 练习3:如右图,若α角大于β角,则汽车A的速度汽车B的速度 v B v Aθ A B

高中物理曲线运动、运动合成和分解练习题

第一讲曲线运动、运动合成和分解(1课时) 一.考点基础知识回顾及重点难点分析 知识点1、曲线运动的特点:做曲线运动的物体在某点的速度方向就是曲线在该点的切线方 向,因此速度的方向是时刻的,所以曲线运动一定是运动 过关练习1 1.做曲线运动的物体,在运动过程中,一定变化的物理量是( A.速率 B.速度 C.加速度 D.合外力 2.关于质点做曲线运动的下列说法中,正确的是() A .曲线运动一定是匀变速运动 B .变速运动一定是曲线运动 C .曲线运动轨迹上任一点的切线方向就是质点在这一点的瞬时速度方向 D .有些曲线运动也可能是匀速运动 方法点拨和归纳:曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动 不一定是曲线运动。 知识点2、物体做曲线运动的条件是:合外力(加速度)方向和初速度方向同一直线; 与物体做直线运动的条件区别是。 过关练习2:

1.物体运动的速度(v )方向、加速度(a )方向及所受合外力(F )方向三者之间的关系为 A .v 、a 、F 三者的方向相同() B .v 、a 两者的方向可成任意夹角,但a 与F 的方向总相同 C .v 与F 的方向总相同,a 与F 的方向关系不确定 D .v 与F 间或v 与a 间夹角的大小可成任意值 2.下列叙述正确的是:( A .物体在恒力作用下不可能作曲线运动 B .物体在变力作用下不可能作直线运动 C .物体在变力或恒力作用下都有可能作曲线运动 D .物体在变力或恒力作用下都可能作直线运动 3.物体受到几个外力的作用而做匀速直线运动,如果突然撤掉其中一个力,它不可能做() A .匀速直线运动 B.匀加速直线运动 C .匀减速直线运动 D.曲线运动 4.质量为m 的物体受到两个互成角度的恒力F 1和F 2的作用,若物体由静止开始,则它将做 运动,若物体运动一段时间后撤去一个外力F 1,物体继续做的运动是运动。 方法点拨和归纳: ①物体做曲线运动一定受外力。

高中物理曲线运动知识点归纳

高中物理曲线运动知识点归纳 第一章曲线运动 (一)曲线运动的位移 研究物体的运动时,坐标系的选取十分重要.在这里选择平面直角坐标系.以抛出点为坐标原点,以抛出时物体的初速度v 0方向为x 轴的正方向,以竖直方向向下为y 轴的正方向,如下图所示. 当物体运动到A 点时,它相对于抛出点O 的位移是OA ,用l 表示. 由于这类问题中位移矢量的方向在不断变化,运算起来很不方便,因此要尽量用它在坐标轴方向的分矢量来表示它. 由于两个分矢量的方向是确定的,所以只用A 点的坐标(x A 、y A )就能表示它,于是使问题简化. (二)曲线运动的速度 1、曲线运动速度方向:做曲线运动的物体,在某点的速度方向,沿曲线在这一点的切线方向. 2.对曲线运动速度方向的理解 如图所示, AB 割线的长度跟质点由A 运动到B 的时间之比,即v =Δx AB Δt , 等于AB 过程中平均速度的大小,其平均速度的方向由A 指向B .当B 非常非常接近A 时,AB 割线变成了过A 点的切线,同时Δt 变为极短的时间,故AB 间的平均速度近似等于A 点的瞬时速度,因此质点在A 点的瞬时速度方向与过A 点的切线方向一致. (三)曲线运动的特点 1、曲线运动是变速运动:做曲线运动的物体速度方向时刻在发生变化,所以曲线运动是变速运动.(曲线运动是变速运动,但变速运动不一定是曲线

运动) 2、做曲线运动的物体一定具有加速度 曲线运动中速度的方向(轨迹上各点的切线方向)时刻在发生变化,即物体的运动状态时刻在发生变化,而力是改变物体运动状态的原因,因此,做曲线运动的物体所受合力一定不为零,也就一定具有加速度.(说明:曲线运动是变速运动,只是说明物体具有加速度,但加速度不一定是变化的,例如,抛物运动都是匀变速曲线运动.) (四)物体做曲线运动的条件: 物体所受的合外力的方向与速度方向不在同一直线上,也就是加速度方向与速度方向不在同一直线上.(只要物体的合外力是恒力,它一定做匀变速运动,可能是直线运动,也可能是曲线运动) 当物体受到的合外力方向与速度方向的夹角为锐角时,物体做曲线运动的速率将增大;当物体受到的合外力方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合外力方向与速度的方向垂直时,该力只改变速度方向,不改变速度的大小. (五)曲线运动的轨迹 做曲线运动的物体,其轨迹向合外力所指一方弯曲, 若已知物体的运动轨迹,可判断出物体所受合力的大致方 向.速度和加速度在轨迹两侧,轨迹向力的方向弯曲,但不会达到力的方向.(六)运动的合成与分解的方法 1、合运动与分运动的定义 如果物体同时参与了几个运动,那么 物体实际发生的运动就是合运动,那几个

高中物理曲线运动经典题型总结(可编辑修改word版)

42+ 32 【题型总结】 专题五曲线运动 一、运动的合成和分解 1.速度的合成:(1)运动的合成和分解(2)相对运动的规律v甲地=v甲乙+v乙地 例:一人骑自行车向东行驶,当车速为 4m/s 时,他感到风从正南方向吹来,当车速增加到 7m/s 时。他感到风从东南方向(东偏南45o)吹来,则风对地的速度大小为() A. 7m/s B. 6m/s C. 5m/s D. 4 m/s 解析:“他感到风从正南方向(东南方向)吹来” ,即风相对车的方向是正南方向(东南方向)。而风相 对地的速度方向不变,由此可联立求解。 解:∵θ=45°∴V 风对车=7—4=3 m/s ∵V 风对车 +V 车对地 =V 风对地 V 风对 ∴V 风对地= =5 答案:C 2.绳(杆)拉物类问题 m/s V 风对 V 车对 ① 绳(杆)上各点在绳(杆)方向上的速度相等 ②合速度方向:物体实际运动方向 分速度方向:沿绳(杆)伸(缩)方向:使绳(杆)伸(缩) 垂直于绳(杆)方向:使绳(杆)转动 例:如图所示,重物M 沿竖直杆下滑,并通过绳带动小车m 沿斜面升高.问:当滑轮右侧的绳与竖直方向成θ 角,且重物下滑的速率为v 时,小车的速度为多少? 解:方法一:虚拟重物M 在Δt 时间内从A 移过Δh 到达C的运动,如图(1)所示,这个运动可设想为两 个分运动所合成,即先随绳绕滑轮的中心轴O 点做圆周运动到B,位移为Δs1,然后将绳拉过Δs2到C. 1 若Δt 很小趋近于0,那么Δφ→0,则Δs1=0,又OA=OB,∠OBA=β=2 (180°- Δφ)→90°.亦即Δs1近似⊥Δs2,故应有:Δs2=Δh·cosθ ?s 2 因为?t = ?h ?t ·cosθ,所以v′=v·cosθ 方法二:重物M 的速度v 的方向是合运动的速度方向,这个v 产生两个效果:一是使绳的这一端绕滑轮做顺时针方向的圆周运动;二是使绳系着重物的一端沿绳拉力的方向以速率v′运动,如图(2)所示,由图可知,v′=v·cosθ. (1)(2) V 风对 θ

2019届高考物理专题七曲线运动精准培优专练

培优点七 曲线运动 1. 曲线运动的问题每年必考,主要是在实际问题中考查速度、加速度、及位移的分解,平抛运动的处理方法,以及圆周运动与牛顿运动定律、能量等内容的综合应用。 2. 常用思想方法: (1)从分解的角度处理平抛运动。 (2)圆周运动的动力学问题实际上是牛顿第二定律的应用,且已知合外力方向(匀速圆周运动指向圆心),做好受力分析,由牛顿第二定律列方程。 典例1. (2017·全国卷Ⅱ·17)如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直,一小物块以速度v 从轨道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到轨道下端的距离与轨道半径有关,此距离最大时,对应的轨道半径为(重力加速度大小为g )( ) A. v 216g B. v 28g C. v 24g D. v 2 2g 【解析】物块由最低点到最高点有:2211 1222mv mgr mv =+;物块做平抛运动:x =v 1t ;4r t g =联立解得:22416v x r g = -,由数学知识可知,当28v r g =时,x 最大,故选B 。 【答案】B 典例2. (2018?全国III 卷?17)在一斜面顶端,将甲、乙两个小球分别以v 和2 v 的速度沿同一方向水平抛出,两球都落在该斜面上。甲球落至斜面时的速率是乙球落至斜面时速率的 ( ) A. 2倍 B. 4倍 C. 6倍 D. 8倍 【解析】设甲球落至斜面时的速率为v 1,乙落至斜面时的速率为v 2,由平抛运动规律,x = vt ,212y gt =,设斜面倾角为θ,由几何关系,tan y x θ=,小球由抛出到落至斜面,由机械能守一、考点分析 二、考题再现

高中物理曲线运动经典题型总结

专题五曲线运动 一、运动的合成和分解【题型总结】 1.速度的合成:(1)运动的合成和分解(2)相对运动的规律 乙地 甲乙 甲地 v v v+ = 例:一人骑自行车向东行驶,当车速为4m/s时,他感到风从正南方向吹来,当车速增加到7m/s时。他 感到风从东南方向(东偏南45o)吹来,则风对地的速度大小为() A. 7m/s B. 6m/s C. 5m/s D. 4 m/s 解析:“他感到风从正南方向(东南方向)吹来”,即风相对车的方向是正南方向(东南方向)。而风相对地的速度方向不变,由此可联立求解。 解:∵θ=45°∴V风对车=7—4=3 m/s ∵ 风对地 车对地 风对车 V V V= + ∴V风对地=5 3 42 2= + m/s 答案:C 2.绳(杆)拉物类问题 ①绳(杆)上各点在绳(杆)方向 ......上的速度相等 ②合速度方向:物体实际运动方向 分速度方向:沿绳(杆)伸(缩)方向:使绳(杆)伸(缩) 垂直于绳(杆)方向:使绳(杆)转动 例:如图所示,重物M沿竖直杆下滑,并通过绳带动小车m沿斜面升高.问:当滑轮右侧的绳与竖直方向成θ角,且重物下滑的速率为v时,小车的速度为多少? 解:方法一:虚拟重物M在Δt时间内从A移过Δh到达C的运动,如图(1)所示,这个运动可设想为两个分运动所合成,即先随绳绕滑轮的中心轴O点做圆周运动到B,位移为Δs1,然后将绳拉过Δs2到C. 若Δt很小趋近于0,那么Δφ→0,则Δs1=0,又OA=OB,∠OBA=β=2 1 (180°-Δφ)→90°. 亦即Δs1近似⊥Δs2,故应有:Δs2=Δh·cosθ 因为t h t s ? ? = ? ? 2 ·cosθ,所以v′=v·cosθ 方法二:重物M的速度v的方向是合运动的速度方向,这个v产生两个效果:一是使绳的这一端绕滑轮做顺时针方向的圆周运动;二是使绳系着重物的一端沿绳拉力的方向以速率v′运动,如图(2)所示,由图可知,v′=v·cosθ. (1)(2) V风对车 V风对地 V车对地 V风对车 θ

曲线运动经典专题复习总结

一、绳拉小船问题 1、汽车通过绳子拉小船,则( D ) A 、汽车匀速则小船一定匀速 B 、汽车匀速则小船一定加速 C 、汽车减速则小船一定匀速 D 、小船匀速则汽车一定减速 2 、如左图,若已知物体A 的速度大小为v A ,求重物 B 的速度大小v B ? 3、如图,竖直平面内放一直角杆,杆的水平部分 粗糙,竖直部分光滑,两部分个套有质量分别为m A =2.0kg 和m B =1.0kg 的小球A 和B ,A 小球与水平杆的动摩擦因数μ=0.20,AB 间用不可伸长的轻绳相连,图示位置处OA=1.5m ,OB=2.0m ,取g=10m/s 2,若用水平力F 沿杆向右拉A ,使B 以1m/s 的速度上升,则在B 经过图示位置上升0.5m 的过程中,拉力F 做了多少功?(6.8J) 二、小船过河问题 1、甲船对静水的速度为v 1,以最短时间过河,乙船对静水的速度为v 2,以最短位移过河,结果两船运动轨迹重合,水速恒定不变,则两船过河时间之比为( ) A 、v 1/v 2 B 、v 2/v 1 C 、(v 1/v 2)2 D 、(v 2/v 1)2 三、平抛与斜面 1、如左图一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动轨 迹如右图中虚线所示。小球在竖直方向下落的距离与在水平方向通过的距离之比为( ) A . 1tan θ B .12tan θ C .tan θ D .2tan θ 2如图,一物体自倾角为θ的固定斜面顶端平抛后落在斜面上,物体与斜面接触时速度与水平方向的夹角α满足( ) A 、tan α=sin θ B 、tan α=cos θ C 、tan α=tan θ D 、tan α=2tan θ 3、如右图物体从倾角θ为的斜面顶端以v 0平抛,求物体距斜面的最大距离? 4如图物体从倾角θ为的斜面顶端以v 0平抛,从抛出到离斜面最远所用的时间为t 1,沿斜面位移为s 1,从离斜面最远到落到斜面所用时间为t 2,沿斜面位移为s 2,则( ) A 、t 1 =t 2 B 、t 1

高中物理曲线运动常见题型及答题技巧及练习题(含答案)及解析

高中物理曲线运动常见题型及答题技巧及练习题(含答案)及解析 一、高中物理精讲专题测试曲线运动 1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求: (1)盘的转速ω0多大时,物体A开始滑动? (2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少? 【答案】(1) g l μ (2) 3 4 mgl kl mg μ μ - 【解析】 【分析】 (1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0. (2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x. 【详解】 若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力. (1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有: μmg=mlω02, 解得:ω0= g l μ 即当ω0= g l μ A开始滑动. (2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12, r=l+△x 解得: 3 4 mgl x kl mg μ μ - V= 【点睛】 当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.

高中物理专题复习 曲线运动

曲线运动 单元切块: 按照考纲的要求,本章内容可以分成三部分,即:运动的合成和分解、平抛运动;圆周运动;其中重点是平抛运动的分解方法及运动规律、匀速圆周运动的线速度、角速度、向心加速度的概念并记住相应的关系式。难点是牛顿定律处理圆周运动问题。 运动的合成与分解 平抛物体的运动 教学目标: 1.明确形成曲线运动的条件(落实到平抛运动和匀速圆周运动); 2.理解和运动、分运动,能够运用平行四边形定则处理运动的合成与分解问题。 3.掌握平抛运动的分解方法及运动规律 4.通过例题的分析,探究解决有关平抛运动实际问题的基本思路和方法,并注意到相 关物理知识的综合运用,以提高学生的综合能力. 教学重点:平抛运动的特点及其规律 教学难点:运动的合成与分解 教学方法:讲练结合,计算机辅助教学 教学过程: 一、曲线运动

1.曲线运动的条件:质点所受合外力的方向(或加速度方向)跟它的速度方向不在同一直线上。 当物体受到的合力为恒力(大小恒定、方向不变)时,物体作匀变速曲线运动,如平抛运动。 当物体受到的合力大小恒定而方向总跟速度的方向垂直,则物体将做匀速率圆周运动.(这里的合力可以是万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、弹力——绳拴着的物体在光滑水平面上绕绳的一端旋转、重力与弹力的合力——锥摆、静摩擦力——水平转盘上的物体等.) 如果物体受到约束,只能沿圆形轨道运动,而速率不断变化——如小球被绳或杆约束着在竖直平面内运动,是变速率圆周运动.合力的方向并不总跟速度方向垂直. 2.曲线运动的特点:曲线运动的速度方向一定改变,所以是变速运动。需要重点掌握的两种情况:一是加速度大小、方向均不变的曲线运动,叫匀变速曲线运动,如平抛运动,另一是加速度大小不变、方向时刻改变的曲线运动,如匀速圆周运动。 二、运动的合成与分解 1.从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。重点是判断合运动和分运动,这里分两种情况介绍。 一种是研究对象被另一个运动物体所牵连,这个牵连指的是相互作用的牵连,如船在水上航行,水也在流动着。船对地的运动为船对静水的运动与水对地的运动的合运动。一般地,物体的实际运动就是合运动。 第二种情况是物体间没有相互作用力的牵连,只是由于参照物的变换带来了运动的合成问题。如两辆车的运动,甲车以v甲=8 m/s的速度向东运动,乙车以v乙=8 m/s的速度向北运动。求甲车相对于乙车的运动速度v甲对乙。 2.求一个已知运动的分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解。 3.合运动与分运动的特征: ①等时性:合运动所需时间和对应的每个分运动时间相等 ②独立性:一个物体可以同时参与几个不同的分运动,各个分运动独立进行,互不影响。 4.物体的运动状态是由初速度状态(v0)和受力情况(F合)决定的,这是处理复杂运动的力和运动的观点.思路是:

高中物理曲线运动解题技巧及经典题型及练习题(含答案)含解析

高中物理曲线运动解题技巧及经典题型及练习题(含答案)含解析 一、高中物理精讲专题测试曲线运动 1.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的 小球从离B 点高度为h 处(3 32 R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ). (1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围; (3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围. 【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3) ( )() 21221R d R ≤≤ 【解析】 【分析】 【详解】 (1)当小球刚好通过最高点时应有:2D mv mg R = 由机械能守恒可得:()22 D mv mg h R -= 联立解得32h R = ,因为h 的取值范围为3 32 R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则 2D mv F mg R ='+ ()22 D mv mg h R ='- 联立并结合h 的取值范围 3 32 R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤

(3)由(1)知在最高点D 速度至少为min D v gR = 此时小球飞离D 后平抛,有:212 R gt = min min D x v t = 联立解得min 2x R R =>,故能落在水平面BC 上, 当小球在最高点对轨道的压力为3mg 时,有:2max 3D v mg mg m R += 解得max 2D v gR = 小球飞离D 后平抛2 12 R gt = ', max max D x v t =' 联立解得max 22x R = 故落点与B 点水平距离d 的范围为: ( )() 21221R d R -≤≤- 2.如图所示,光滑的水平地面上停有一质量,长度的平板车,平板车左端紧靠一个平台,平台与平板车的高度均为 ,一质量 的滑块以水平速度 从平板车的左端滑上平板车,并从右端滑离,滑块落地时与平板车的右端的水平 距离 。不计空气阻力,重力加速度 求: 滑块刚滑离平板车时,车和滑块的速度大小; 滑块与平板车间的动摩擦因数。 【答案】(1), (2) 【解析】 【详解】 设滑块刚滑到平板车右端时,滑块的速度大小为,平板车的速度大小为, 由动量守恒可知: 滑块滑离平板车后做平抛运动,则有: 解得: , ; 由功能关系可知: 解得: 【点睛】 本题主要是考查了动量守恒定律;对于动量守恒定律,其守恒条件是:系统不受外力作用或某一方向不受外力作用;解答时要首先确定一个正方向,利用碰撞前系统的动量和碰撞

高一物理曲线运动测试题及答案

曲线运动单元测试 一、选择题(总分41分。其中1-7题为单选题,每题3分;8-11题为多选题,每题5分,全部选对得5分,选不全得2分,有错选和不选的得0分。) 1.关于运动的性质,以下说法中正确的是( ) A .曲线运动一定是变速运动 B .变速运动一定是曲线运动 C .曲线运动一定是变加速运动 D .物体加速度大小、速度大小都不变的运动一定是直线运动 2.关于运动的合成和分解,下列说法正确的是( ) A .合运动的时间等于两个分运动的时间之和 B .匀变速运动的轨迹可以是直线,也可以是曲线 C .曲线运动的加速度方向可能与速度在同一直线上 D .分运动是直线运动,则合运动必是直线运动 3.关于从同一高度以不同初速度水平抛出的物体,比较它们落到水平地面上的时间(不计空气阻力),以下说法正确的是( ) A .速度大的时间长 B .速度小的时间长 C .一样长 D .质量大的时间长 4.做平抛运动的物体,每秒的速度增量总是( ) A .大小相等,方向相同 B .大小不等,方向不同 C .大小相等,方向不同 D .大小不等,方向相同 5.甲、乙两物体都做匀速圆周运动,其质量之比为1∶2 ,转动半径之比为1∶2 ,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为( ) A .1∶4 B .2∶3 C .4∶9 D .9∶16 6.如图所示,在不计滑轮摩擦和绳子质量的条件下,当小车匀速向右运动时,物体A 的受力情况是( ) A .绳的拉力大于A 的重力 B .绳的拉力等于A 的重力 C .绳的拉力小于A 的重力 D .绳的拉力先大于A 的重力,后变为小于重力 7.如图所示,有一质量为M 的大圆环,半径为R ,被一轻杆固定后悬挂在O 点,有两个质量为m 的小环(可视为质点),同时从大环两侧的对称位置由静止滑下。两小环同时滑到大环底部时,速度都为v ,则此时大环对轻杆的拉力大小为( ) A .(2m +2M )g

高中物理曲线运动练习题及答案

高中物理曲线运动练习题及答案 一、高中物理精讲专题测试曲线运动 1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数μ满足0.1≤μ≤0.3,g 取10m /s 2,求 (1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ; (3)A 在小车上滑动过程中产生的热量Q (计算结果可含有μ). 【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3 时, 22111 ()22A A m v m M v -+ 【解析】 【分析】 (1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ; (3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】 (1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律: 0=A A B B m v m v - 由能量关系:22 11=22 P A A B B E m v m v - 解得v A =2m/s ;v B =4m/s (2)设B 经过d 点时速度为v d ,在d 点:2d B B v m g m R = 由机械能守恒定律:22d 11=222 B B B B m v m v m g R +? 解得R=0.32m (3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律: =()A A A m v m M v +由能量关系:()2 211122 A A A A m gL m v m M v μ= -+ 解得μ1=0.2

相关文档
最新文档