电路实验报告记录

电路实验报告记录
电路实验报告记录

电路实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

2

3

实验一 元件特性的示波测量法

一、实验目的

1、学习用示波器测量正弦信号的相位差。

2、学习用示波器测量电压、电流、磁链、电荷等电路的基本变量

3、掌握元件特性的示波测量法,加深对元件特性的理解。

二、实验任务

1、 用直接测量法和李萨如图形法测量RC 移相器的相移??即uC u s

??-实验原理图如图 5-6示。

2、 图5-3接线,测量下列电阻元件的电流、电压波形及相应的伏安特性曲线(电源频率在

100Hz~1000Hz 内):

(1)线性电阻元件(阻值自选)

(2)给定非线性电阻元件(测量电压范围由指导教师给定)电路如图5-7

3、按图5-4接线,测量电容元件的库伏特性曲线。

4、测量线性电感线圈的韦安特性曲线,电路如图5-5

5、测量非线性电感线圈的韦安特性曲线,电源通过电源变压器供给,电路如图5-8所示。

图 5-7 图 5-8 这里,电源变压器的副边没有保护接地,示波器的公共点可以选图示接地点,以减少误差。

三、思考题

1、元件的特性曲线在示波器荧光屏上是如何形成的,试以线性电阻为例加以说明。

4

:利用示波器的X-Y 方式,此时锯齿波信号被切断,X 轴输入电阻的电流信号,经放大后加至水平偏转板。Y 轴输入电阻两端的电压信号经放大后加至垂直偏转板,荧屏上呈现的是u x ,u Y 的合成的图形。即电流电压的伏安特性曲线。

3、 为什么用示波器测量电路中电流要加取样电阻r ,说明对r 的阻值有何要求?

答:因为示波器不识别电流信号,只识别电压信号。所以要把电流信号转化为电压信号,而电阻上的电流、电压信号是同相的,只相差r 倍。r 的阻值尽可能小,减少对电路的影响。一般取1-9Ω。 四、实验结果

1.电阻元件输入输出波形及伏安特性

5 2

.二极管元件输入输出波形及伏安特性

6

实验二 基尔霍夫定律、叠加定理的验证

和线性有源一端口网络等效参数的测定

一、实验目的

1、加深对基尔霍夫定律、叠加定理和戴维南定理的内容和使用范围的理解。

2、学习线性有源一端口网络等效电路参数的测量方法

3、学习自拟实验方案,合理设计电路和正确选用元件、设备、提高分析问题和解决问题的能力

二、实验原理

1、基尔霍夫定律:

基尔霍夫定律是电路普遍适用的基本定律。无论是线性电路还是非线性电路,无论是非时变电路还是时变电路,在任一时刻流进流出节点的电流代数和为零。沿闭合回路的电压降代数和为零。

2、叠加定理

在线性电路中每一个元件的电位或电压可以看成每一个独立源单独作用于电路时,在该元件上所产生的电流或电压的代数和。叠加定理只适用于线性电路中的电压和电流。功率是不能叠加的。

3、戴维南定理

戴维南定理是指任何一个线性有源一端口网络,总可以用一个电压源与电阻串联的有源支路来代替,电压等于该网络的开路电压U oc ,而电阻等于该网络所有独立源为零时端口等效电阻R eq

4、测量线性有源一端口网络等效参数的方法介绍

(1)线性有源一端口的开路电压oc U 及短路电流sc I 的测量

用电压表、电流表直接测出开路电压oc U 或短路电流sc I 。由于电压表及电流表的内阻会影响测量结果,为了减少测量的误差,尽可能选用高内阻的电压表和低内阻的电流表,若仪表的内阻已知,则可以在测量结果中引入相应的校正值,以免由于仪表内阻的存在而引起的方法误差。

(2)线性有源一端口网络等效电阻eq R 的测量方法

1)线性有源一端口网络的开路oc U 及短路电流sc I ,则等效电阻为sc oc I U R

这种方法比较简便。

7 但是,对于不允许将外部电路直接短路或开路的网络(例如有可能因短路电流过大而损坏内部的器件),不能采用此法。

2)若被测网络的结构已知,可先将线性有源一端口网络中的所有独立电源置零,然后采用测量直流电阻的方法测量

(3)用组合测量法求oc U ,eq R

测量线路如图1-1所示。在被测网络端口接一可变电阻L R ,测得L R 两端的电压U 1和 L R 的电流I 1后,改变电阻L R 值,测得相应的U 2、I 2,则可列出方程组

11U I R U eq oc =-

22U I R U eq oc =-

解得: 1

21221I I I U I U U oc --= 1

221I I U U R eq --= 图 1--1 根据测量时电压表、电流表的接法可知,电压表内阻对解得的oc U 没有影响,但解得的eq R 中包含了电流表的内阻,所以实际的等效电阻值1eq R 只要从解得的eq R 中减去A R 即可。

由上可知,此法比起其它方法有消除电压表内阻影响及很容易对电流表内阻影响进行修正的特点。同时它又适用于不允许将网络端口直接短路和开路的网络。

(4). 参考方向

无论是应用网络定理分析电路还是进行实验测量,都要先假定电压和

电流的参考方向,只有这样才能确定电压和电流是正值还是负值。

如图1-2,如何测量该支路的电压U ?首先假定一个电压降的方向,设U 的压降方向为从A 到B 这是电压U 的参考方向。将电压表的正极和负极 图 1—2 分别与A 端和B 端相联,若电压表指针正偏则读数取正,说明参考方向

单管放大电路实验报告王剑晓

单管放大电路实验报告

电03 王剑晓 2010010929 单管放大电路报告 一、实验目的 (1)掌握放大电路直流工作点的调整与测量方法; (2)掌握放大电路主要性能指标的测量方法; (3)了解直流工作点对放大电路动态特性的影响; (4)掌握发射极负反馈电阻对放大电路动态特性的影响; (5)掌握信号源内阻R S对放大电路频带(上下截止频率)的影响; 二、实验电路与实验原理

实验电路如课本P77所示。 图中可变电阻R W是为调节晶体管静态工作点而设置的。 (1)静态工作点的估算与调整; 将图中基极偏置电路V CC、R B1、R B2用戴维南定理等效成电压源,得到直流通路, 如下图1.2所示。其开路电压V BB和内阻R B分别为: V BB= R B2/( R B1+R B2)* V CC; R B= R B1// R B2; 所以由输入特性可得: V BB= R B I BQ+U BEQ+(R E1+ R E2)(1+Β) I BQ; 即:I BQ=(V BB- U BEQ)/[Β(R E1+ R E2)+ R B]; 因此,由晶体管特性可知: I CQ=ΒI BQ; 由输出回路知: V CC= R C I CQ + U CEQ+(R E1+ R E2) I EQ; 整理得: U CEQ= V CC-(R E1+ R E2+ R C) I CQ; 分析:当R w变化(以下以增大为例)时,R B1增大,R B增大,I BQ减小;I CQ减 小;U CEQ增大,但需要防止出现顶部失真;若R w减小变化相反,需要考虑底部 失真(截止失真); (2)放大电路的电压增益、输入电阻和输出电阻 做出电路的交流微变等效模型: 则:

#电力电子技术实验报告答案

实验一锯齿波同步移相触发电路实验 一、实验目的 (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。 三、实验线路及原理 锯齿波同步移相触发电路的原理图如图1-11所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。 四、实验内容 (1)锯齿波同步移相触发电路的调试。 (2)锯齿波同步移相触发电路各点波形的观察和分析。 五、预习要求 (1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相 触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。 (2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。 六、思考题 (1)锯齿波同步移相触发电路有哪些特点? (2)锯齿波同步移相触发电路的移相范围与哪些参数有关? (3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大? 七、实验方法 (1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。 ④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。 (2)调节触发脉冲的移相范围

电路实验报告1--叠加原理

电路实验报告1-叠加原理的验证 所属栏目:电路实验- 实验报告示例发布时间:2010-3-11 实验三叠加原理的验证 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 三、实验设备 高性能电工技术实验装置DGJ-01:直流稳压电压、直流数字电压表、直流数字电流表、叠加原理实验电路板DGJ-03。 四、实验步骤 1.用实验装置上的DGJ-03线路, 按照实验指导书上的图3-1,将两路稳压电源的输出分别调节为12V和6V,接入图中的U1和U2处。 2.通过调节开关K1和K2,分别将电源同时作用和单独作用在电路中,完成如下表格。 表3-1

3.将U2的数值调到12V,重复以上测量,并记录在表3-1的最后一行中。 4.将R3(330 )换成二极管IN4007,继续测量并填入表3-2中。 表3-2 五、实验数据处理和分析 对图3-1的线性电路进行理论分析,利用回路电流法或节点电压法列出电路方程,借助计算机进行方程求解,或直接用EWB软件对电路分析计算,得出的电压、电流的数据与测量值基本相符。验证了测量数据的准确性。电压表和电流表的测量有一定的误差,都在可允许的误差范围内。 验证叠加定理:以I1为例,U1单独作用时,I1a=8.693mA,,U2单独作用时,I1b=-1.198mA,I1a+I1b=7.495mA,U1和U2共同作用时,测量值为7.556mA,因此叠加性得以验证。2U2单独作用时,测量值为-2.395mA,而2*I1b=-2.396mA,因此齐次性得以验证。其他的支路电流和电压也可类似验证叠加定理的准确性。 对于含有二极管的非线性电路,表2中的数据不符合叠加性和齐次性。 六、思考题 1.电源单独作用时,将另外一出开关投向短路侧,不能直接将电压源短接置零。 2.电阻改为二极管后,叠加原理不成立。

单管放大电路实验报告

单管放大电路 一、实验目的 1. 掌握放大电路直流工作点的调整与测量方法; 2.掌握放大电路主要性能指标的测量方法; 3.了解直流工作点对放大电路动态特性的影响; 4.掌握射极负反馈电阻对放大电路特性的影响; 5.了解射极跟随器的基本特性。 二、实验电路 实验电路如图2.1所示。图中可变电阻R W是为调节晶体管静态工作点而设置的。 三、实验原理 1.静态工作点的估算

将基极偏置电路CC V ,1B R 和2B R 用戴维南定理等效成电压源。 开路电压CC B B B BB V R R R V 2 12 += ,内阻 21//B B B R R R = 则 ) )(1(21E E B BEQ BB BQ R R R V V I +++-= β, BQ CQ I I β= CQ E E C CC CEQ I R R R V V )(21++-≈ 可见,静态工作点与电路元件参数及晶体管β均有关。 在实际工作中,一般是通过改变上偏置电阻R B1(调节电位器R W )来调节静态工作点的。R W 调大,工作点降低(I CQ 减小),R W 调小,工作点升高(I CQ 增加)。 一般为方便起见,通过间接方法测量CQ I ,先测E V ,)/(21E E E EQ CQ R R V I I +=≈。 2.放大电路的电压增益与输入、输出电阻 be L C u r R R ) //(β-= A be B B i r R R R ////21= C O R R ≈ 式中晶体管的输入电阻r be =r bb′+(β+1)V T /I EQ ≈ r bb′+(β+1)×26/I CQ (室温)。 3.放大电路电压增益的幅频特性 放大电路一般含有电抗元件,使得电路对不同频率的信号具有不同的放大能力,即电压增益是频率的函数。电压增益的大小与频率的函数关系即是幅频特性。一般用逐点法进行测量。测量时要保持输入信号幅度不变,改变信号的频率,逐点测量不同频率点的电压增益,以各点数据描绘出特性曲线。由曲线确定出放大电路的上、下限截止频率f H 、f L 和频带宽度BW =f H -f L 。 需要注意,测量放大电路的动态指标必须在输出波形不失真的条件下进行,因此输入信号不能太大,一般应使用示波器监视输出电压波形。

电路仿真实验报告要求

电路计算机仿真分析 实验指导 武汉大学电气工程学院 电工仿真实验室 2006.11 PSPICE 简介 PSPICE 简介 1984年,美国MicroSim公司推出了基于SPICE的微机版PSPICE(Personal-SPICE).可以说在同类产品中,它是功能最为强大的模拟和数字电路混合仿真EDA软件,在国内普遍使用.它可以进行各种各样的电路仿真,激励建立,温度与噪声分析,模拟控制,波形输出,数据输出,并在同一窗口内同时显示模拟与数字的仿真结果.无论对哪种器件哪些电路进行仿真,都可以得到精确的仿真结果,并可以自行建立元器件及元器件库. 在目的个人电脑广使用的向用的商用仿真软件中,以Pspice A/D系列最受人众欢迎. PSPICE 是面向PC 机的通用电路仿真软件, 该软件具有强大的电路图绘制功能,电路模拟仿真功能,图形后处理功能和元器件符号制作功能,模拟仿真快速准确,并提供了良好的人机交互环境,操作方便,易学易用.软件的用途非常广泛,不仅可用于电路分析和优化设计,还可用于电子线路,电路,信号与系统等课程的计算机辅助教学.与印刷线路板设计软件配合使用,还可以实现电子设计自动化.这些特点使得PSPICE 受到广大电子设计工作者,科研人员和高校师生的热烈欢迎,国内许多高校已将PSPICE 列入电子类本科生和硕士生的辅修课程. PSPICE 软件在国外非常流行.在大学里,它是工科类学生必会的分析与设计电路的工具;在公司中,它是产品从设计,实验到定型过程中不可缺少的设计工具.世界各国的半导体元件公司为它提供了上万种模拟和数字元件组成的元件库,使PSPICE 软件的仿真更可信,更真实. PSPICE 软件几乎完全取代了电路和电子电路实验中的元件,面包板,信号源,示波器和万用表.有了PSPICE 软件就相当有了电路和电子学实验室. PSPICE 的功能 PSPICE 用于模拟电路,数字电路及模数混合电路的分析以及电路的优化设计. PSPICE 的分析功能主要体现在以下几方面: 直流分析:当电路中某一参数(称为自变量)在一定范围内变化时,对自变量的每一个取值,计算电路的直流偏置特性(称为输出变量). 交流分析:作用是计算电路的交流小信号频率响应特性. 噪声分析:计算电路中各个器件对选定的输出点产生的噪声等效到选定的输入源(独立的电压或电流源)上.即计算输入源上的等效输入噪声. 瞬态分析:在给定输入激励信号作用下,计算电路输出端的瞬态响应. 基本工作点分析:计算电路的直流偏置状态. 蒙特卡罗统计分析:为了模拟实际生产中因元器件值具有一定分散性所引起的电路特性分散性,PSpice提供了蒙特卡罗分析功能.进行蒙特卡罗分析时,首先根据实际情况确定元器件值分布规律,然后多次"重复"进行指定的电路特性分析,每次分析时采用的元器件值是从元器件

叠加原理 实验报告范文(含数据处理)

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 叠加原理实验报告范文 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 三、实验设备 高性能电工技术实验装置DGJ-01:直流稳压电压、直流数字电压表、直流数字电流表、叠加原理实验电路板DGJ-03。 四、实验步骤 1.用实验装置上的DGJ-03线路,按照实验指导书上的图3-1,将两路稳压电源的输出分别调节为12V和6V,接入图中的U1和U2处。 2.通过调节开关K1和K2,分别将电源同时作用和单独作用在电路中,完成如下表格。 表3-1

3.将U2的数值调到12V,重复以上测量,并记录在表3-1的最后一行中。 4.将R3(330 )换成二极管IN4007,继续测量并填入表3-2中。 表3-2 五、实验数据处理和分析 对图3-1的线性电路进行理论分析,利用回路电流法或节点电压法列出电路方程,借助计算机进行方程求解,或直接用EWB软件对电路分析计算,得出的电压、电流的数据与测量值基本相符。验证了测量数据的准确性。电压表和电流表的测量有一定的误差,都在可允许的误差范围内。 验证叠加定理:以I1为例,U1单独作用时,I1a=8.693mA,,U2单独作用时, I1b=-1.198mA,I1a+I1b=7.495mA,U1和U2共同作用时,测量值为7.556mA,因此叠加性得以验证。2U2单独作用时,测量值为-2.395mA,而2*I1b=-2.396mA,因此齐次性得以验证。其他的支路电流和电压也可类似验证叠加定理的准确性。 对于含有二极管的非线性电路,表2中的数据不符合叠加性和齐次性。

一阶动态电路响应研究实验报告

一阶动态电路响应的研究 实验目的: 1.学习函数信号发生器和示波器的使用方法。 2.研究一阶动态电路的方波响应。 实验仪器设备清单: 1.示波器 1台 2.函数信号发生器 1台 3.数字万用表 1块 4. 1kΩ电阻X1 ;10kΩ电阻 X1 ;100nf电容X1 ;面包板;导线若干。 实验原理: 1.电容和电感的电压与电流的约束关系是通过导数和积分来表达的。积分电路和 微分电路时RC一阶电路中典型的电路。一个简单的RC串联电路,在方波序列 脉冲的重复激励下,由R两端的电压作为输出电压,则此时该电路为微分电路, 其输出信号电压与输入电压信号成正比。若在该电路中,由C两端的电压作为 响应输出,则该电路为积分电路。 2.电路中在没有外加激励时,仅有t=0时刻的非零初始状态引起的响应成为零输 入响应,其取决于初始状态和电路特性,这种响应随时间按指数规律衰减。在 零初始状态时仅有在t=0时刻施加于电路的激励所引起的响应成为零状态响应,其取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。 线性动态电路的全响应为零输入响应和零状态响应之和。 实验电路图: 实验内容: 1.操作步骤、: (1).调节信号源,使信号源输出频率为1KHz,峰峰值为1.2VPP的方波信号。 (2).将示波器通道CH1与信号源的红色输出端相接,黑色端也相接,调示波器显示 屏控制单位,使波形清晰,亮度适宜,位置居中。 (3).调CH1垂直控制单元,使其灵敏度为0.2V,即在示波器上显示出的方波的幅值 在屏幕垂直方向上占6格。 (4).调CH2水平控制单元,使其水平扫描速率为0.2ms,表示屏幕水平方向每格为 0.2ms。 (5).按照实验原理的电路图接线,将1K电阻和10nf电容串联,将信号源输出线的 红色夹子,示波器CH1的红色夹子连电阻的一端,电容的另一端与信号源,示波器的黑色夹子连在一起,接着将CH2的输入探极红色夹子接在电容的非接地端,黑色夹子接在电容的接地端。

(完整word版)日光灯实验报告答案

日光灯实验报告答案 篇一:日光灯实验报告 单相电路参数测量及功率因数的提高 实验目的 1.掌握单相功率表的使用。 2.了解日光灯电路的组成、工作原理和线路的连接。3.研究日光灯电路中电压、电 流相量之间的关系。4.理解改善电路功率因数的意义并掌握其应用方法。 实验原理 1.日光灯电路的组成日光灯电路是一个rl串联电路,由灯管、镇流器、起辉器组成,如图所示。由于 有感抗元件,功率因数较低,提高电路功率因数实验可以用日光灯电路来验证。图日光灯的组成电路灯管:内壁

涂上一层荧光粉,灯管两端各有一个灯丝(由钨丝组成),用以发射电子,管内抽真空后充有一定的氩气与少量水银,当管内产生辉光放电时,发出可见光。镇流器:是绕在硅钢片铁心上的电感线圈。它有两个作用,一是在起动过程中,起辉器 突然断开时,其两端感应出一个足以击穿管中气体的高电压,使灯管中气体电离而放电。二 是正常工作时,它相当于电感器,与日光灯管相串联产生一定的电压降,用以限制、稳定灯 管的电流,故称为镇流器。实验时,可以认为镇流器是由一个等效电阻rl和一个电感l串联 组成。 起辉器:是一个充有氖气的玻璃泡,内有一对触片,一个是固定的静触片,一个是用双 金属片制成的u形动触片。动触片由两种热膨胀系数不同的金属制成,受

热后,双金属片伸 张与静触片接触,冷却时又分开。所以起辉器的作用是使电路接通和自动断开,起一个自动 开关作用。 2.日光灯点亮过程 电源刚接通时,灯管内尚未产生辉光放电,起辉器的触片处在断开位置,此时电源电压通过镇流器和灯管两端的灯丝全部加在起辉器的二个触片上,起辉器的两触 片之间的气隙被击穿,发生辉光放电,使动触片受热伸张而与静触片构成通路,于是电流流 过镇流器和灯管两端的灯丝,使灯丝通电预热而发射热电子。与此同时,由于起辉器中动、 静触片接触后放电熄灭,双金属片因冷却复原而与静触片分离。在断开瞬间镇流器感应出很 高的自感电动势,它和电源电压串联加到灯管的两端,使灯管内水银蒸气

电路基础实验报告

基尔霍夫定律和叠加定理的验证 组长:曹波组员:袁怡潘依林王群梁泽宇郑勋 一、实验目的 通过本次实验验证基尔霍夫电流定律和电压定律加深对“节点电流代数和”及“回路电压代数和”的概念的理解;通过实验验证叠加定理,加深对线性电路中可加性的认识。 二、实验原理 ①基尔霍夫节点电流定律[KCL]:在集总电路中,任何时刻,对任一结点,所有流出结点的支路电流的代数和恒等于0。 ②基尔霍夫回路电压定律[KVL]:在集总电路中,任何时刻,沿任一回路,所有支路电压的代数和恒等于0。 ③叠加定理:在线性电阻电路中,某处电压或电流都是电路中各个独立电源单独作用时,在该处分别产生的电压或电流的叠加。 三、实验准备 ①仪器准备 1.0~30V可调直流稳压电源 2.±15V直流稳压电源 3.200mA可调恒流源 4.电阻 5.交直流电压电流表 6.实验电路板 7.导线

②实验电路图设计简图 四、实验步骤及内容 1、启动仪器总电源,连通整个电路,分别用导线给电路中加上直流电压U1=15v,U2=10v。 2、先大致计算好电路中的电流和电压,同时调好各电表量程。 3、依次用直流电压表测出电阻电压U AB、U BE、U ED,并记录好电压表读数。 4、再换用电流表分别测出支路电流I1、I2、I3,并记录好电流读数。 5、然后断开电压U2,用直流电压表测出电阻电压U、BE,用电流表分别测出支路电流I、1并记录好电压表读数。 6、然后断开电压U1,接通电压U2,用直流电压表测出电阻电压U、、BE,用电流表分别测出支路电流I、、1并记录好电压表读数。 7、实验完毕,将各器材整理并收拾好,放回原处。 实验过程辑录 图1 测出U AB= 图2 测出电压U BE=

数字电路组合逻辑电路设计实验报告

实验三组合逻辑电路设计(含门电路功能测试)

一、实验目的 1.掌握常用门电路的逻辑功能 2.掌握小规模集成电路设计组合逻辑电路的方法 3.掌握组合逻辑电路的功能测试方法 二、实验设备与器材 Multisim 、74LS00 四输入2与非门、示波器、导线 三、实验原理 TTL集成逻辑电路种类繁多,使用时应对选用的器件做简单逻辑功能检查,保证实验的顺利进行。 测试门电路逻辑功能有静态测试和动态测试两种方法。静态测试时,门电路输入端加固定的高(H)、低电平,用示波器、万用表、或发光二极管(LED)测出门电路的输出响应。动

态测试时,门电路的输入端加脉冲信号,用示波器观测输入波形与输出波形的同步关系。 下面以74LS00为例,简述集成逻辑门功能测试的方法。74LS00为四输入2与非门,电路图如3-1所示。74LS00是将四个二输入与非门封装在一个集成电路芯片中,共有14条外引线。使用时必须保证在第14脚上加+5V电压,第7脚与底线接好。 整个测试过程包括静态、动态和主要参数测试三部分。 表3-1 74LS00与非门真值表 1.门电路的静态逻辑功能测试 静态逻辑功能测试用来检查门电路的真值表,确认门电路的逻辑功能正确与否。实验时,可将74LS00中的一个与非门的输入端A、B分别作为输入逻辑变量,加高、低电平,观测输出电平是否符合74LS00的真值表(表3-1)描述功能。 测试电路如图3-2所示。试验中A、B输入高、低电平,由数字电路实验箱中逻辑电平产生电路产生,输入F可直接插至逻辑电平只是电路的某一路进行显示。

仿真示意 2.门电路的动态逻辑功能测试 动态测试用于数字系统运行中逻辑功能的检查,测试时,电路输入串行数字信号,用示波器比较输入与输出信号波形,以此来确定电路的功能。实验时,与非门输入端A加一频率为

电路分析基础实验报告

电路分析基础课程实验报告

院系专业:信系科学与技术软件工程 年级班级:2011 级软件五班(1105) 姓名:涂明哲 学号:20112601524 本课程实验全部采用workbench 作为试验仿真工具。 实验一基尔霍夫定理与电阻串并联 实验目的:学习使用workbench 软件,学习组建简单直流电路并使用仿真测量仪表测量电压、电流。 1、基尔霍夫电流、电压定理的验证

解决方案:自己设计一个电路,要求至少包括两个回路和两个节点,测量节点的电流代数和与回路电压代数和,验证基尔霍夫电流和电压定理并与理论计算值相比较。 实验原理图: 12.DJ "VI 山 *---- 'XAAi- 112 与理论计算数据比较分析: i3 = i1 + i2; u1 + u2 + u7 + u6 = 0; u4 + u3 +u7 + u5 = 0; u1 + u2 + u3 + u4 + u5 + u6 = 0; 2、电阻串并联分压和分流关系验证 解决方案:自己设计一个电路,要求包括三个以上的电阻,有串联电阻和并联电阻,测量电阻上的电压和电流,验证电阻串并联分压和分流关系,并与理论计算值相比较。 实验原理图:

与理论计算数据比较分析: 200Q + 100 Q=300Q; (100Q+200 Q)//600 Q = 200 Q; 11= 15/(200+200+100) = 30mA 12= i1*(600/900) = 10mA 13= i1*(300/900) = 20mA u1 = u3*(200/300) = 4v u2 = u3*(100/300) = 2v 实验心得: 1.使用大电阻可以减小误差 2.工具不能熟练的使用而且有乱码实验二叠加定理

数电逻辑门电路实验报告doc

数电逻辑门电路实验报告 篇一:组合逻辑电路实验报告 课程名称:数字电子技术基础实验指导老师:樊伟敏 实验名称:组合逻辑电路实验实验类型:设计类同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)五、实验数据记录和处理七、讨论、心得 一.实验目的 1.加深理解全加器和奇偶位判断电路等典型组合逻辑电路的工作原理。 2.熟悉74LS00、74LS11、74LS55等基本门电路的功能及其引脚。 3.掌握组合集成电路元件的功能检查方法。 4.掌握组合逻辑电路的功能测试方法及组合逻辑电路的设计方法。 二、主要仪器设备 74LS00(与非门) 74LS55(与或非门) 74LS11(与门)导线电源数电综合实验箱 三、实验内容和原理及结果 四、操作方法和实验步骤 六、实验结果与分析(必填)

实验报告 (一) 一位全加器 1.1 实验原理:全加器实现一位二进制数的加法,输入有被加数、加数和来自相邻低位的进位;输出有全加和与向高位的进位。 1.2 实验内容:用 74LS00与非门和 74LS55 与或非门设计一个一位全加器电路,并进行功能测试。 1.3 设计过程:首先列出真值表,画卡诺图,然后写出全加器的逻辑函数,函数如下: Si = Ai ?Bi?Ci-1 ;Ci = Ai Bi +(Ai?Bi)C i-1 异或门可通过Ai ?Bi?AB?AB,即一个与非门; (74LS00),一个与或非门(74LS55)来实现。Ci = Ai Bi +(Ai?Bi)C 再取非,即一个非门( i-1 ?Ai Bi +(Ai?Bi)C i-1 ,通过一个与或非门Ai Bi +(Ai?Bi)C i-1 ,

实验二 电路原理图的绘制实验报告

实验二电路原理图的绘制实验报告 一、实验目的 (1)掌握设计项目的建立和管理; (2)掌握原理图图纸参数的设置、原理图环境参数的设置; (3)掌握元器件库的装载,学会元器件、电源、接地、网络标号、总线、输入/输出端口、节点等电路元素的选取、放置等操作; (4)掌握电路元素的参数修改方法。 二、实验原理 1、创建一个新的项目文件。 在Altium Designer 10中,根据不同的设计主要有三种形式的项目文件,分别是:PCB项目文件,文件后缀为PrjPCB;FPGA项目文件,文件后缀为PrjFPG;库文件,根据电路原理图和印制电路板图设计的不同,其后缀有SchLib和PcbLib 两种。在我们实验中均建立一个PCB项目文件。 (1)执行菜单命令“文件\工程\PCB Project”,建立一个空的项目文件后的项目工作面板; (2)执行菜单命令“File\Save Project”,保存文件。 2、新建原理图文件 (1)执行菜单命令“File\New\Schematic”,在刚才建立的项目中新建原理图,默认的文件名为Sheet1.SchDoc。 (2)执行菜单命令“File\Save Project”,保存文件。 3、设置原理图选项 (1)图纸参数设定:执行菜单命令“设计\文档选项”,系统弹出文档选项对话框,在此对话框的“方块电路选项”标签页设置图纸参数。 (2)填写图纸设计信息:执行菜单命令“设计\文档选项”,系统弹出文档选项对话框,在此对话框的“参数”标签页设置图纸参数。 (3)原理图环境参数设置:执行菜单命令“工具\设置原理图参数”,系统将弹出“喜好”对话框,在此对话框的左边树状图中选择原理图选项,此选项组中有12个选项卡,它们分别是原理图参数选项、图形编辑参数选项、编译器选项、导线分割选项、默认的初始值选项和软件参数选项等,分别用于设置原理图绘制过程中的各类功能选项。

实验九实验报告(一)--一阶动态电路的响应测试

实验九 :一阶动态电路的响应测试(一) 一、实验目的: 1. 测定RC 一阶电路的零输入响应、零状态响应。 2. 学习电路时间常数的测量方法。 二、实验内容: 在面包板上搭建RC 电路,用开关控制零输入和零状态,用示波器观察其响应过程。 三、实验环境: 面包板一个,电路箱一个,单刀双掷开关一个,导线若干,电阻一个(100k Ω),DS1052E 示波器一台,电解电容一个(10μF )。 四、实验原理: 1.零输入与零状态: 电路中某时刻的电感电流和电容电压称为该时刻的电路状态。t=0时电感的初始电流 i L (0)和电容电压u c (0)称为电路的初始状态。 在没有外加激励时,仅由t=0零时刻的非零初始状态引起的响应称为零输入响应,它取决于初始状态和电路特性(通过时间常数τ=RC 来体现),这种响应时随时间按指数规律衰减的。 在零初始状态时仅由在t 0时刻施加于电路的激励引起的响应称为零状态响应,它取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。 2. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如下图所示, 根据一阶微分方程的求解得知u c =U m e -t/RC =U m e -t/τ 。当t =τ时,Uc(τ)=0.368U m 。 此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632U m 所对应的时间测得τ. 零输入响应 零状态响应 3.RC 一阶响应电路图: VDD τ τ

4.仿真波形图: 五、实验数据: 实验波形图: 六、数据分析总结: 1.τ的测量: 根据u c=U m e-t/RC=U m e-t/τ: 充电过程:当t=τ时,u2=0.632u1; 放电过程:当t=τ时,u2=0.368u1; 可得:ΔU=2.93V

电路分析基础实验报告

实验一 1. 实验目的 学习使用workbench软件,学习组建简单直流电路并使用仿真测量仪表测量电压、电流。 2.解决方案 1)基尔霍夫电流、电压定理的验证。 解决方案:自己设计一个电路,要求至少包括两个回路和两个节点,测量节点的电流代数和与回路电压代数和,验证基尔霍夫电流和电压定理并与理论计算值相比较。 2)电阻串并联分压和分流关系验证。 解决方案:自己设计一个电路,要求包括三个以上的电阻,有串联电阻和并联电阻,测量电阻上的电压和电流,验证电阻串并联分压和分流关系,并与理论计算值相比较。 3.实验电路及测试数据 4.理论计算 根据KVL和KCL及电阻VCR列方程如下: Is=I1+I2, U1+U2=U3, U1=I1*R1,

U2=I1*R2, U3=I2*R3 解得,U1=10V,U2=20V,U3=30V,I1=5A,I2=5A 5. 实验数据与理论计算比较 由上可以看出,实验数据与理论计算没有偏差,基尔霍夫定理正确; R1与R2串联,两者电流相同,电压和为两者的总电压,即分压不分流; R1R2与R3并联,电压相同,电流符合分流规律。 6. 实验心得 第一次用软件,好多东西都找不着,再看了指导书和同学们的讨论后,终于完成了本次实验。在实验过程中,出现的一些操作上的一些小问题都给予解决了。 实验二 1.实验目的 通过实验加深对叠加定理的理解;学习使用受控源;进一步学习使用仿真测量仪表测量电压、电流等变量。 2.解决方案 自己设计一个电路,要求包括至少两个以上的独立源(一个电压源和一个电流源)和一个受控源,分别测量每个独立源单独作用时的响应,并测量所有独立源一起作用时的响应,验证叠加定理。并与理论计算值比较。 3. 实验电路及测试数据 电压源单独作用:

电路原理图设计及Hspice实验报告

电子科技大学成都学院 (微电子技术系) 实验报告书 课程名称:电路原理图设计及Hspice 学号: 姓名: 教师: 年06月15日 实验一基本电路图的Hspice仿真 实验时间:同组人员: 一、实验目的 1.学习用Cadence软件画电路图。 2.用Cadence软件导出所需的电路仿真网表。 3.对反相器电路进行仿真,研究该反相器电路的特点。 二、实验仪器设备 Hspice软件、Cadence软件、服务器、电脑 三、实验原理和内容 激励源:直流源、交流小信号源。 瞬态源:正弦、脉冲、指数、分线段性和单频调频源等几种形式。 分析类型:分析类型语句由定义电路分析类型的描述语句和一些控制语句组成,如直流分析(.OP)、交流小信号分析(.AC)、瞬态分析(.TRAN)等分析语句,以及初始状态设置(.IC)、选择项设置(.OPTIONS)等控制语句。这类语句以一个“.”开头,故也称为点语句。其位置可以在标题语句之间的任何地方,习惯上写在电路描述语句之后。 基本原理:(1)当UI=UIL=0V时,UGS1=0,因此V1管截止,而此时|UGS2|> |UTP|,所以V2导通,且导通内阻很低,所以UO=UOH≈UDD,即输出电平. (2)当UI=UIH=UDD时,UGS1=UDD>UTN,V1导通,而UGS2=0<|UTP|,因此V2截止。此时UO=UOL≈0,即输出为低电平。可见,CMOS反相器实现了逻辑非的功能. 四、实验步骤

1.打开Cadence软件,画出CMOS反相器电路图,导出反相器的HSPICE网表文件。 2.修改网表,仿真出图。 3.修改网表,做电路的瞬态仿真,观察输出变化,观察波形,并做说明。 4.对5个首尾连接的反相器组成的振荡器进行波形仿真。 5.分析仿真结果,得出结论。 五、实验数据 输入输出仿真: 网表: * lab2c - simple inverter .options list node post .model pch pmos .model nch nmos *.tran 200p 20n .dc vin 0 5 1m sweep data=w .print v(1) v(2) .param wp=10u wn=10u .data w wp wn 10u 10u 20u 10u 40u 10u 40u 5u .enddata vcc vcc 0 5 vin in 0 2.5 *pulse .2 4.8 2n 1n 1n 5n 20n cload out 0 .75p m1 vcc in out vcc pch l=1u w=wp m2 out in 0 0 nch l=1u w=wn .alter vcc vcc 0 3 .end 图像: 瞬态仿真: 网表: * lab2c - simple inverter .options list node post .model pch pmos .model nch nmos .tran 200p 20n .print tran v(1) v(2) vcc vcc 0 5 vin in 0 2.5 pulse .2 4.8 2n 1n 1n 5n 20n cload out 0 .75p m1 vcc in out vcc pch l=1u w=20u

数字集成电路设计实验报告

哈尔滨理工大学数字集成电路设计实验报告 学院:应用科学学院 专业班级:电科12 - 1班 学号:32 姓名:周龙 指导教师:刘倩 2015年5月20日

实验一、反相器版图设计 1.实验目的 1)、熟悉mos晶体管版图结构及绘制步骤; 2)、熟悉反相器版图结构及版图仿真; 2. 实验内容 1)绘制PMOS布局图; 2)绘制NMOS布局图; 3)绘制反相器布局图并仿真; 3. 实验步骤 1、绘制PMOS布局图: (1) 绘制N Well图层;(2) 绘制Active图层; (3) 绘制P Select图层; (4) 绘制Poly图层; (5) 绘制Active Contact图层;(6) 绘制Metal1图层; (7) 设计规则检查;(8) 检查错误; (9) 修改错误; (10)截面观察; 2、绘制NMOS布局图: (1) 新增NMOS组件;(2) 编辑NMOS组件;(3) 设计导览; 3、绘制反相器布局图: (1) 取代设定;(2) 编辑组件;(3) 坐标设定;(4) 复制组件;(5) 引用nmos组件;(6) 引用pmos组件;(7) 设计规则检查;(8) 新增PMOS基板节点组件;(9) 编辑PMOS基板节点组件;(10) 新增NMOS基板接触点; (11) 编辑NMOS基板节点组件;(12) 引用Basecontactp组件;(13) 引用Basecontactn 组件;(14) 连接闸极Poly;(15) 连接汲极;(16) 绘制电源线;(17) 标出Vdd 与GND节点;(18) 连接电源与接触点;(19) 加入输入端口;(20) 加入输出端口;(21) 更改组件名称;(22) 将布局图转化成T-Spice文件;(23) T-Spice 模拟; 4. 实验结果 nmos版图

电路实验报告

目录实验一电位、电压的测定及电路电位图的绘制实验二基尔霍夫定律的验证 实验三线性电路叠加性和齐次性的研究 实验四受控源研究 实验六交流串联电路的研究 实验八三相电路电压、电流的测量 实验九三相电路功率的测量

330口 R B 1— 1 2. 电路中相邻两点之间的电压值 在图1 — 1中,测量电压U AB :将电压表的红笔端插入 A 点,黑笔端插入B 点,读电压表读数,记入表 1 — 1中。按同样方法测量 U BC 、U CD 、U DE 、U EF 、及U FA ,测量数据记入表1 — 1中。 实验一 电位、电压的测定及电路电位图的绘制 1.学会测量电路中各点电位和电压方法。理解电位的相对性和电压的绝对性; 2?学会电路电位图的测量、绘制方法; 3.掌握使用直流稳压电源、直流电压表的使用方法。 .原理说明 在一个确定的闭合电路中, 各点电位的大小视所选的电位参考点的不同而异, 但任意两点之间的电 压(即两点之间的电位差)则是不变的,这一性质称为电位的相对性和电压的绝对性。据此性质,我们 可用一只电压表来测量出电路中各点的电位及任意两点间的电压。 若以电路中的电位值作纵坐标, 电路中各点位置(电阻或电源)作横坐标, 将测量到的各点电位在 该平面中标出,并把标出点按顺序用直线条相连接, 就可得到电路的电位图, 每一段直线段即表示该两 点电位的变化情况。而且,任意两点的电位变化,即为该两点之间的电压。 在电路中,电位参考点可任意选定, 对于不同的参考点, 所绘出的电位图形是不同,但其各点电位 变化的规律却是一样的。 三.实验设备 1.直流数字电压表、直流数字毫安表 2 .恒压源(EEL — I 、II 、III 、IV 均含在主控制屏上,可能有两种配置( 1) +6V ( +5V ) , +12 V , 0? 30V 可调或(2)双路0?30V 可调。) 四.实验内容 实验电路如图1 — 1所示,图中的电源U S 1用恒压源中的+6V (+5V )输出端, 输出端,并将输出电压调到 +12V 。 U S2用0?+30V 可调电源 1.测量电路中各点电位 以图1 — 1中的A 点作为电位参考点,分别测量 B 、C 、 用电压表的黑笔端插入 A 点,红笔端分别插入 B 、C 、 以D 点作为电位参考点,重复上述步骤,测得数据记入表 D 、E 、F 各点的电位。 D 、 E 、 F 各点进行测量,数据记入表 1 — 1 中。 1 — 1 中。 5100 S3 VCU 5100 5ion R4

二阶电路的动态响应实验报告

二阶电路的动态响应实验报告 一、实验目的: 1. 学习用实验的方法来研究二阶动态电路的响应。 2. 研究电路元件参数对二阶电路动态响应的影响。 3. 研究欠阻尼时,元件参数对α和固有频率的影响。 4. 研究RLC 串联电路所对应的二阶微分方程的解与元件参数的关系。 二、实验原理: 图1.1 RLC 串联二阶电路 用二阶微分方程描述的动态电路称为二阶电路。图1.1所示的线性RLC 串联电路是一个典型的二阶电路。可以用下述二阶线性常系数微分方程来描述: s 2 U 2=++c c c u dt du RC dt u d LC (1-1) 初始值为 C I C i dt t du U u L t c c 0 00 )0()()0(== =-=-- 求解该微分方程,可以得到电容上的电压u c (t )。 再根据:dt du c t i c c =)( 可求得i c (t ),即回路电流i L (t )。 式(1-1)的特征方程为:01p p 2 =++RC LC 特征值为:2 0222,11)2(2p ωαα-±-=-±- =LC L R L R (1-2)

定义:衰减系数(阻尼系数)L R 2= α 自由振荡角频率(固有频率)LC 1 0= ω 由式1-2 可知,RLC 串联电路的响应类型与元件参数有关。 1. 零输入响应 动态电路在没有外施激励时,由动态元件的初始储能引起的响应,称为零输入响应。 电路如图1.2所示,设电容已经充电,其电压为U 0,电感的初始电流为0。 图1.2 RLC 串联零输入电路 (1) C L R 2 >,响应是非振荡性的,称为过阻尼情况。 电路响应为: ) () ()()()(2 1 2 1 120 121 20 t P t P t P t P C e e P P L U t i e P e P P P U t u ---= --= 图1.3 RLC 串联零输入瞬态分析 响应曲线如图1.3所示。可以看出:u C (t)由两个单调下降的指数函数组成,为非振荡的 过渡过程。整个放电过程中电流为正值, 且当2 11 2ln P P P P t m -=时,电流有极大值。 (2)C L R 2 =,响应临界振荡,称为临界阻尼情况。 电路响应为

(完整版)直流稳压电源电路的设计实验报告

直流稳压电源电路的设计实验报告 一、实验目的 1、了解直流稳压电源的工作原理。 2、设计直流稳压电路,要求输入电压:220V市电,50Hz,用单变压器设计并制作能够输出一组固定+15V输出直流电压和一组+1.2V~+12V连续可调的直流稳压电源电路,两组输出电流分别I O≥500mA。 3、了解掌握Proteus软件的基本操作与应用。 二、实验线路及原理 1、实验原理 (1)直流稳压电源 直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电的装置,它需要变压、整流、滤波、稳压四个环节才能完成。一般由电源变压器、整流滤波电路及稳压电路所组成,基本框图如下: 图2-1 直流稳压电源的原理框图和波形变换 其中: 1)电源变压器:是降压变压器,它将电网220V交流电压变换成符合需要的交流电压,并送给整流电路,变压器的变比由变压器的副边电压确定,变压器副边与原边的功率比为P2/P1=n,式中n是变压器的效率。 2)整流电路:利用单向导电元件,把50Hz的正弦交流电变换成脉动的直流电。 3)滤波电路:可以将整流电路输出电压中的交流成分大部分加以滤除,从而得到比较平滑的直流电压。滤波电路滤除较大的波纹成分,输出波纹较小的直流电压U1。 4)稳压电路:其工作原理是利用稳压管两端的电压稍有变化,会引起其电流有较大变化这一特点,通过调节与稳压管串联的限流电阻上的压降来达到稳定输出电压的目的。稳压电路的功能是使输出的直流电压稳定,不随交流电网电压和负载的变化而变化。 (2)整流电路 常采用二极管单相全波整流电路,电路如图2-2所示。在u2的正半周内,二极管D1、D2导通,D3、D4截止;u2的负半周内,D3、D4导通,D1、D2截止。正负半周内部都有电流流过的负载电阻RL,且方向是一致的。电路的输出波形如图2-3所示。 t

电路分析 等效电源定理 实验报告

电路分析等效电源定理实验报告 一、实验名称 等效电源定理 二、实验目的 1. 验证戴维宁定理和诺顿定理的正确性,加深对该定理的理解。 2. 掌握测量有源二端网络等效参数的一般方法。 三、原理说明 1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。 戴维宁定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。 诺顿定理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is等于这个有源二端网络的短路电流I SC,其等效内阻R0定义同戴维宁定理。 Uoc(Us)和R0或者I SC(I S)和R0称为有源二端网络的等效参数。 2. 有源二端网络等效参数的测量方法 (1) 开路电压的测量 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc。 (2)短路电流的测量 在有源二端网络输出端短路,用电流表测其短路电流Isc。 (3)等效内阻R0的测量 Uoc R0=── Isc 如果二端网络的内阻很小,若将其输出端口短路,则易损坏其内部元件,因此不宜用此法。

五、实验内容 被测有源二端网络如图5-1(a)所示,即HE-12挂箱中“戴维宁定理/诺顿定理”线路。 (a) (b) 图5-1 1. 用开路电压、短路电流法测定戴维宁等效电路的Uoc、R0。 按图5-1(a)接入稳压电源Us=12V和恒流源Is=10mA,不接入R L。测出U O c和Isc,并计算出R0(测U OC时,不接入mA表。),并记录于表1。 表1 实验数据表一 2. 负载实验 按图5-1(a)接入可调电阻箱R L。按表2所示阻值改变R L阻值,测量有源二端网络的外特性曲线,并记录于表2。 表2 实验数据表二 3. 验证戴维宁定理 把恒压源移去,代之用导线连接原接恒压源处;把恒流源移去,这时,A、B两点间的电阻即为R0,然后令其与直流稳压电源(调到步骤“1”时所测得的开路电压Uoc之值)相串联,如图5-1(b)所示,仿照步骤“2”测其外特性,对戴氏定理进行验证,数据记录于表3。 表3 实验数据表三 4. 验证诺顿定理 在图5-1(a)中把理想电流源及理想电压源移开,并在电路接理想电压源处用导线短接(即相当于使两电源置零了),这时,A、B两点的等效电阻值即为诺顿定理中R0,然后令

相关文档
最新文档