卡拉胶-壳聚糖共混复合膜及其设备制作方法和应用与制作流程

卡拉胶-壳聚糖共混复合膜及其设备制作方法和应用与制作流程
卡拉胶-壳聚糖共混复合膜及其设备制作方法和应用与制作流程

本技术涉及一种保鲜用卡拉胶壳聚糖共混复合膜及其制备方法及其在冷鲜肉中的应用,属于食品加工技术研究领域。由以下质量百分比的原料组成:35份的卡拉胶、13份壳聚糖和0.51.5份的甘油。其制备方法包括以下步骤:步骤一,预处理龙虾壳;步骤二,脱灰分处理;步骤三,甲壳素的提取;步骤四,壳聚糖的提取;步骤五,保鲜用卡拉胶壳聚糖共混复合膜制作。所述的保鲜用卡拉胶壳聚糖共混复合膜应用在冷鲜肉的保鲜上。保鲜能力强且具有一定的抑菌作用以及能维持其保鲜物品的颜色,气味等性状的作用,在很大程度上延缓了肉制食品腐败变质快的问题,而且能够提高城市废弃物如小龙虾壳的利用率,实现小龙虾资源的多重利用。

权利要求书

1.一种卡拉胶-壳聚糖共混复合膜,其特征在于,

由以下质量百分比的原料组成:

卡拉胶 3-5份,

壳聚糖 1-3份,

甘油 0.5-1.5份。

2.根据权利要求1所述的卡拉胶-壳聚糖共混复合膜,其特征在于,由以下质量百分比的原料组成:

卡拉胶 3份,

壳聚糖 1份,

甘油 0.5份。

3.根据权利要求1所述的卡拉胶-壳聚糖共混复合膜,其特征在于,由以下质量百分比的原料组成:

卡拉胶 3份,

壳聚糖 3份,

甘油 1.5份。

4.根据权利要求1所述的卡拉胶-壳聚糖共混复合膜,其特征在于,由以下质量百分比的原料组成:

卡拉胶 4份,

壳聚糖 1份,

甘油 1份。

5.根据权利要求1所述的卡拉胶-壳聚糖共混复合膜,其特征在于,由以下质量百分比的原料组成:

卡拉胶 4份,

壳聚糖 2份,

甘油 1.5份。

卡拉胶 4份,

壳聚糖 3份,

甘油 0.5份。

7.根据权利要求1所述的卡拉胶-壳聚糖共混复合膜,其特征在于,由以下质量百分比的原料组成:

卡拉胶 5份,

壳聚糖 1份,

甘油 1.5份。

8.根据权利要求1所述的卡拉胶-壳聚糖共混复合膜,其特征在于,由以下质量百分比的原料组成:

卡拉胶 5份,

壳聚糖 2份,

甘油 0.5份。

9.根据权利要求1所述的卡拉胶-壳聚糖共混复合膜,其特征在于,由以下质量百分比的原料组成:

卡拉胶 5份,

甘油 1份。

10.一种制备如权利要求1至9任意一项所述的卡拉胶-壳聚糖共混复合膜的制备方法,其特征在于,包含以下步骤:

步骤一,预处理龙虾壳:

称取200g的Na2CO3放入水桶中,向水桶中加入适量的水,并加入适量的洗洁精,将回收的龙虾壳放入水桶中,充分洗净,待洗净后放入干燥箱中烘干,后粉碎,得到龙虾壳粉,备用;

步骤二,脱灰分处理:

向烧杯中加入20g龙虾壳粉以及200ml的9%的盐酸溶液,并置于75℃水中,进行水浴加热,得到脱灰分后的龙虾壳粉;

步骤三,甲壳素的提取:

对步骤二中的脱灰分后的龙虾壳粉末用去离子水洗至中性,然后向烧杯中加入200mlNaOH 溶液,在90℃水浴下培养6h,制得甲壳素;

步骤四,壳聚糖的提取:

将步骤三中制得的甲壳素用粉碎机磨碎,过筛,用10%的NaOH溶液浸泡,后用布氏漏斗过滤,烘干,即可得到壳聚糖;

步骤五,保鲜用卡拉胶-壳聚糖共混复合膜制作:

均匀平铺于15×15cm的有机玻璃盒中,放入烘干机里,80℃下烘8小时以上,干燥成膜,将所述的膜放入1%浓度氢氧化钠到里面浸泡,待膜从有机玻璃盒中脱落下来以后,放入蒸馏水洗净,最后风干,制得所述的保鲜用卡拉胶-壳聚糖共混复合膜。

11.一种权利要求1至9任意一项所述的卡拉胶-壳聚糖共混复合膜的应用,其特征在于,所述的卡拉胶-壳聚糖共混复合膜应用在冷鲜肉的保鲜上。

技术说明书

一种卡拉胶-壳聚糖共混复合膜及其制备方法和应用

本技术涉及一种保鲜用卡拉胶-壳聚糖共混复合膜制备方法及其在冷鲜肉保鲜中的应用,属于食品加工技术研究领域。

背景技术

目前,食品保鲜膜在食品领域应用广泛,并且处于初步发展阶段。如,2019年郗泽文等报道了柠檬精油乳液可食用膜对保鲜卤鸭脖进行研究。2019年张涵等报道了利用聚赖氨酸复合膜协同真空包装的综合包装方法对金鲳鱼进行研究,发现可以显著提高冷鲜肉制品的保鲜效果。

壳聚糖为天然多糖中仅有的带正电荷的高分子物质,它具有良好的稳定性,吸湿性,生物官能性,抑菌性等。因此能够在医药,金属提取等方面广泛应用[3]。以壳聚糖为原材料制得薄膜,具有优良的抑菌保鲜功能。小龙虾壳是食物加工或人们食用后的废弃物,长时间以来并没有得到很好的运用。运用小龙虾壳为原料生产壳聚糖既充分利用了原料又很好地保护了生活环境,对未来发展以及壳聚糖的研究都具有深远意义。

卡拉胶主要由大分子的膳食纤维组成。卡拉胶可用来增加食品的粘稠度,同样也可以用于制作可食性膜,增加膜的可塑性以及延展性。甘油是一种无色、透明、无臭、粘稠的液体,味甜,具有吸湿性。在食品中有广泛的应用。在制作保鲜涂膜中可起到增加延展性的作用。

目前,有多种肉制品保鲜的方法,如物理保鲜,化学保鲜以及生物保鲜。倪清艳研究了微生物源保鲜剂对鱼糜的防腐效果很好,在现阶段的实际生产过程中,基本上都会采取多种保鲜方法结合的方式,比如真空与低温手段结合,这样比单独采用一种保鲜方式的效果更加显著。罗红霞采用真空的物理方法与重组牛乳蛋白多肽的生物方法结合,应用于猪肉的保鲜。这些现有技术普遍存在的问题是冷鲜肉的感官评定较低,抑菌效果不是很理想。因此,开发可食用材料制作食品保鲜膜及其在冷鲜肉中的应用具有广阔的市场和发展前景。

技术内容

为本技术的目的在于提供一种性能优、保鲜能力好且抑菌效果强的卡拉胶-壳聚糖共混复合膜,以解决现有技术中冷鲜肉的感官评定差、抑菌效果不理想、城市废弃物利用率低的问题。

本技术的另一目的在于提供上述保鲜用卡拉胶-壳聚糖共混复合膜的制作方法和所述的保鲜膜在冷鲜肉保鲜中的应用。

本技术的具体技术方案如下所述:

一种卡拉胶-壳聚糖共混复合膜,由以下质量百分比的原料组成:

卡拉胶 3-5份,

壳聚糖 1-3份,

甘油 0.5-1.5份。

卡拉胶 3份,

壳聚糖 1份,

甘油 0.5份。

优选地,所述的卡拉胶-壳聚糖共混复合膜由以下质量百分比的原料组成:卡拉胶 3份,

壳聚糖 3份,

甘油 1.5份。

优选地,所述的卡拉胶-壳聚糖共混复合膜由以下质量百分比的原料组成:卡拉胶 4份,

壳聚糖 1份,

甘油 1份。

优选地,所述的卡拉胶-壳聚糖共混复合膜由以下质量百分比的原料组成:卡拉胶 4份,

壳聚糖 2份,

优选地,所述的卡拉胶-壳聚糖共混复合膜由以下质量百分比的原料组成:卡拉胶 4份,

壳聚糖 3份,

甘油 0.5份。

优选地,所述的卡拉胶-壳聚糖共混复合膜由以下质量百分比的原料组成:卡拉胶 5份,

壳聚糖 1份,

甘油 1.5份。

优选地,所述的卡拉胶-壳聚糖共混复合膜由以下质量百分比的原料组成:卡拉胶 5份,

壳聚糖 2份,

甘油 0.5份。

优选地,所述的卡拉胶-壳聚糖共混复合膜由以下质量百分比的原料组成:卡拉胶 5份,

壳聚糖 3份,

一种制备所述的卡拉胶-壳聚糖共混复合膜的方法,包含以下步骤:

步骤一,预处理龙虾壳:

称取200g的Na2CO3放入水桶中,向水桶中加入适量的水,并加入适量的洗洁精,将回收的龙虾壳放入水桶中,充分洗净,待洗净后放入干燥箱中烘干,后粉碎,得到龙虾壳粉,备用;

步骤二,脱灰分处理:

向烧杯中加入20g龙虾壳粉以及200ml的9%的盐酸溶液,并置于75℃水中,进行水浴加热,得到脱灰分后的龙虾壳粉;

步骤三,甲壳素的提取:

对步骤二中的脱灰分后的龙虾壳粉末用去离子水洗至中性,然后向烧杯中加入200mlNaOH 溶液,在90℃水浴下培养6h,制得甲壳素;

步骤四,壳聚糖的提取:

将步骤三中制得的甲壳素用粉碎机磨碎,过筛,用10%的NaOH溶液浸泡,后用布氏漏斗过滤,烘干,即可得到壳聚糖;

步骤五,保鲜用卡拉胶-壳聚糖共混复合膜制作:

称取3g的步骤四制备得到的壳聚糖,并溶于100ml的2%的醋酸溶液中,在40℃水浴下搅拌至壳聚糖完全溶解,并加入甘油和卡拉胶,搅拌均匀,制得混合溶液,取50ml所述的混合溶液均匀平铺于15×15cm的有机玻璃盒中,放入烘干机里,80℃下烘8小时以上,干燥成膜,将

所述的卡拉胶-壳聚糖共混复合膜应用在冷鲜肉的保鲜上。

本技术的有益效果:本技术提供了一种保鲜用卡拉胶-壳聚糖共混复合膜的制备方法和应用,其所制得的保鲜涂膜的性状及厚度是上佳的。制得的保鲜涂膜外观呈淡黄偏白,质硬,膜完整,具颗粒。其保鲜能力强且具有一定的抑菌作用以及能维持其保鲜物品的颜色,气味等性状的作用,在很大程度上延缓了肉制食品腐败变质快的问题。所述的壳聚糖,通过进行原料预处理、脱灰分处理、甲壳素的提取以及壳聚糖提取等步骤实现的,其脱乙酰度可达99.5%,壳聚糖在其中能够起到防腐延长保鲜的作用。而且能够提高城市废弃物如小龙虾壳的利用率,实现小龙虾资源的多重利用。所述的膜的保鲜肉制品的综合感官评定高,而且在本实验中没有加入其他抑菌物质如精油等。所述的抑菌效果明显,强于一般方法保存下的肉制品。本技术中的食品保鲜涂膜壳广泛的应用在保鲜肉制品中。

具体实施方式:

下面结合具体实施例对本技术作进一步说明。

实施例1

一种卡拉胶-壳聚糖共混复合膜,由以下质量百分比的原料组成:

卡拉胶 3-5份,

壳聚糖 1-3份,

甘油 0.5-1.5份。

所述的卡拉胶-壳聚糖共混复合膜的方法,包含以下步骤:

称取200g的Na2CO3放入水桶中,向水桶中加入适量的水,并加入适量的洗洁精,将回收的龙虾壳放入水桶中,充分洗净,待洗净后放入干燥箱中烘干,后粉碎,得到龙虾壳粉,备用;

步骤二,脱灰分处理:

向烧杯中加入20g龙虾壳粉以及200ml的9%的盐酸溶液,并置于75℃水中,进行水浴加热,得到脱灰分后的龙虾壳粉;

步骤三,甲壳素的提取:

对步骤二中的脱灰分后的龙虾壳粉末用去离子水洗至中性,然后向烧杯中加入200mlNaOH 溶液,在90℃水浴下培养6h,制得甲壳素;

步骤四,壳聚糖的提取:

将步骤三中制得的甲壳素用粉碎机磨碎,过筛,用10%的NaOH溶液浸泡,后用布氏漏斗过滤,烘干,即可得到壳聚糖;

步骤五,卡拉胶-壳聚糖共混复合膜制作:

称取3g的步骤四制备得到的壳聚糖,并溶于100ml的2%的醋酸溶液中,在40℃水浴下搅拌至壳聚糖完全溶解,并加入甘油和卡拉胶,搅拌均匀,制得混合溶液,取50ml所述的混合溶液均匀平铺于15×15cm的有机玻璃盒中,放入烘干机里,80℃下烘8小时以上,干燥成膜,将所述的膜放入1%浓度氢氧化钠到里面浸泡,待膜从有机玻璃盒中脱落下来以后,放入蒸馏水洗净,最后风干,制得所述的保鲜用卡拉胶-壳聚糖共混复合膜。

所述的卡拉胶-壳聚糖共混复合膜应用在冷鲜肉的保鲜上。

一种卡拉胶-壳聚糖共混复合膜,包括如下重量份的原料组分:卡拉胶3份,壳聚糖2份,甘油1份。

卡拉胶-壳聚糖共混复合膜的制作方法与实施例1相同。

实施例3

一种卡拉胶-壳聚糖共混复合膜,包括如下重量份的原料组分:卡拉胶3份,壳聚糖3份,甘油1.5份。

卡拉胶-壳聚糖共混复合膜的制作方法与实施例1相同。

实施例4

一种卡拉胶-壳聚糖共混复合膜,包括如下重量份的原料组分:卡拉胶4份,壳聚糖1份,甘油1份。

卡拉胶-壳聚糖共混复合膜的制作方法与实施例1相同。

实施例5

一种卡拉胶-壳聚糖共混复合膜,包括如下重量份的原料组分:卡拉胶4份,壳聚糖2份,甘油1.5份。

卡拉胶-壳聚糖共混复合膜的制作方法与实施例1相同。

实施例6

一种卡拉胶-壳聚糖共混复合膜,包括如下重量份的原料组分:卡拉胶4份,壳聚糖3份,甘

卡拉胶-壳聚糖共混复合膜的制作方法与实施例1相同。

实施例7

一种卡拉胶-壳聚糖共混复合膜,包括如下重量份的原料组分:卡拉胶5份,壳聚糖1份,甘油1.5份。

卡拉胶-壳聚糖共混复合膜的制作方法与实施例1相同。

实施例8

一种卡拉胶-壳聚糖共混复合膜,包括如下重量份的原料组分:卡拉胶5份,壳聚糖2份,甘油0.5份。

卡拉胶-壳聚糖共混复合膜的制作方法与实施例1相同。

实施例9

一种卡拉胶-壳聚糖共混复合膜,包括如下重量份的原料组分:卡拉胶5份,壳聚糖3份,甘油1份。

卡拉胶-壳聚糖共混复合膜的制作方法与实施例1相同。

性能测试:

选取冷鲜鸡胸肉,购买后带至实验室进行后续处理。先用酒精将刀具擦拭干净,尽量去除鸡胸肉表面的脂肪以及筋膜,在剩下的鸡肉组织中切取数份5g的鸡肉样品,鸡肉样品直接进行冷藏处理,备用。

1.感官分析

参照感官评价标准对上述抑菌处理过的鸡肉进行评价,将装入鸡肉的烧杯从冰箱中取出,待温度趋于室温时请五位同学对鸡肉进行感官评价,评定人员分别从外形、颜色、气味以及触感四个方面对鸡肉进行评定,具体的标准及分值如表2。

表2鸡肉的感官评价标准

按照上表2对各实验组,对照组第4d的鸡肉进行打分,可以得到表3。本次实验所得的分数为五个实验员的分数相加,分别从外形、颜色、气味以及触感四个方面进行打分。

结果如下:

表3鸡肉的感官评价成绩

根据上述实验方法测定结果表明:对比组中的鸡肉样品在培养了4d后,其感官评价成绩低于另外九组实验组,表明壳聚糖膜对鸡肉有一定的保鲜作用,观察另外九组实验组,可以明显看出第7、8、9实验组得分较高,其他实验组得分差距不明显,表明按照第7、8、9组配比比例所制得的壳聚糖膜具有较好的保鲜作用。

2.pH值测定

准确称取5g冷鲜鸡肉于50ml小烧杯中,分别用所制得的壳聚糖膜覆盖,一组为空白实验,将其放入冰箱(4℃)冷藏,分别于2、4、6、8d时取出样品,测定pH值。

(2500r/min)1min,用电子pH计直接插入混合物中,读数,重复三次取平均值,作为最后的结果。参考标准为:一级鲜度:pH<6.3;二级鲜度:pH为6.4--6.6;腐败变质:pH>6.7。

表4pH值测定

由表数据可知:第2d所有鸡肉样品的pH都低于6.3,属于一级鲜度;第4d,第一组以及对照组的样品pH已经大于6.3,其中对比组的pH已经大于二级鲜度范围;第6d只有第5、6、7、8、9这五组的样品pH仍低于6.7,其中第九组鸡肉样品仍属于一级鲜度范围,当培养到第8d只有第8、9组的鸡肉样品仍属于鲜度范围,且很明显的看出第九组所制得的壳聚糖膜覆盖的鸡肉样品pH还未到二级鲜度范围,表明其保鲜能力最强。

3.菌落总数的测定

首先进行预实验,取上述培养第4d的样品放入盛有50ml的去离子水中,均质(8000r/min)1min,无菌操作下取25ml放于225ml的灭菌生理盐水中,经振摇制成1:10的均匀稀释液,然后分别配置1:100;1:1000;1:10000的稀释度的稀释液,用灭过菌的吸管分别吸取各1ml于灭菌培养皿中,每个稀释度做两个培养皿,最后经过对比发现,1:1000这一稀释度下所制得的培养皿中的菌落数都基本为30--300CFU之间,所以选取这一稀释度为标准,比较第2、4、6d的菌落数。

表4菌落数的变化

以下数据以菌落总数的对数(lg(CFU/g))表示,从下表可知:对比组的菌落数明显多于实验组,说明壳聚糖的抑菌效果明显,实验组中第九组的菌落数明显低于其他组,则表明第九组的配比所制得的壳聚糖膜的抑菌效果最佳。

卡拉胶的交互作用特性及其在食品工业中的应用

卡拉胶的交互作用特性及其在食品工业中的应用 刘 芳,沈光林,彭志英 (华南理工大学食品与生物工程学院,广东广州 510640) 摘 要 对卡拉胶与电解质、食品胶和蛋白质等之间的交互作用特性进行了研究,同时对卡拉胶在食品工业中的研究进展进行了综述。关键词 卡拉胶;交互作用;应用 Abstract This paper rev iew s the interaction characteristics between Carrageenan and electrolyte,others food g els and protein.T he main applications and research advances of Carrag eenan in food industry are also intro duced in details here in order to provide references for making better use of Carrageenan.Key words carrageenan;interaction characteristics;application * 收稿日期:2000-06-18;修订日期:2000-06-28. 作者简介:刘芳(1971年生),女,云南宣威人,博士研究生,主攻食品生物技术. 0 前 言 食品胶是现代食品工业中不可缺少的食品添加剂,其主要来源有海藻、植物、动物和微生物。在食品加工中,食品胶在增稠、乳化稳定、凝胶、保水、组织结构和结晶控制、成膜等方面起着极为重要的作用。 卡拉胶是一类从红藻中提取出来的水溶性多糖,始于爱尔兰。在20世纪50年代,美国化学学会将它正式命名为Carrageenan 。20世纪60年代Rees 等人[1,2]对卡拉胶的组成和结构进行了深入的研究,证实卡拉胶是由1,3- -D-吡喃半乳糖和1,4- -D-吡喃半乳糖作为基本骨架交替连接而成的线性多糖。根据半酯式硫酸基在半乳糖上连接的位置不同,可分为7种类型,分别用希腊字母 -、!-、?-、#-、?-、%-、&-来表示,目前在工业上生产和使用的卡拉胶主要为 -、?-和?-卡拉胶3种,其分子结构见图1。 图1 3种主要卡拉胶的结构式 卡拉胶的反应活性主要来自半乳糖残基上带有的 半酯式硫酸基(ROSO 3- ),它具有较强的阴离子活性,是一种典型的阴离子多糖。商品化卡拉胶的相对分子质量随着所用原料和生产工艺的不同而有显著性的差异,一般的相对分子质量在105~106之间[3],卡拉胶的相对分子质量对其性能和用途有显著的影响。 卡拉胶性能优良,表现出优异的凝胶特性和流变特性,同时与其它食品胶具有广泛的配伍性和协同增效作用,与蛋白质具有强烈的交互作用和乳化稳定作用。因此,卡拉胶在食品、医药、日化及其它科研领域有着极为重要的应用。虽然卡拉胶的生产历史比琼胶短,但目前卡拉胶的年产量已突破2.5万t,超过琼胶产量1倍多。目前卡拉胶的市场需求量每年仍以5%~10%的速度递增[4]。 1 电解质对卡拉胶流变特性的影响 各种电解质一方面中和了卡拉胶半酯式硫酸基的负电荷,降低了卡拉胶与电解质的相互作用力,减小了大分子的伸展性;另一方面加入的电解质降低了大分子的亲水性,使水化层变薄,导致水溶液的粘度下降,其中磷酸氢二钾和磷酸氢钙对水溶液的影响最大。 添加钾盐、铵盐、钙盐可大幅度提高卡拉胶的凝胶强度,而钠盐对该溶液的影响较小,只有高浓度的氯化钠和碳酸钠才能使卡拉胶的凝胶强度有一定程度的提高,而一些具有螯合作用的钠盐,如焦磷酸钠、六偏磷酸钠会螯合卡拉胶中的一些多价阳离子而降低卡拉胶的 食品添加剂冷饮与速冻食品工业2000(4)

磁性壳聚糖微球的制备及其应用_杨晋青

现代食品科技 Modern Food Science and Technology 2008, Vol.24, No.10 1079 磁性壳聚糖微球的制备及其应用 杨晋青,叶盛权,郭祀远 (华南理工大学轻工与食品学院,广东广州 510640) 摘要:由新型的高分子材料制成的磁性壳聚糖微球具有很多优良的应用特性。本文着重综述磁性壳聚糖微球的制备方法和性能表征, 介绍其在生物医学,食品工程和废水处理方面的应用进展, 并展望其研究和开发的光明前景。 关键词:磁性壳聚糖微球;改性;医学;食品工程;废水处理 中图分类号:TQ333.99;文献标识码:A ;文章篇号:1673-9078(2008)10-1079-04 Review of Preparation and Application of Magnetic Chitosan Microspheres YANG Jin-qing, YE Sheng-quan, GUO Si-yuan (College of Light Industry & Food Sciences, South China University of Technology, Guangzhou 510640) Abstract: Magnetic chitosan microspheres made from novel polymer materials showed outstanding applied characteristics. In this paper, the preparation and characterization of magnetic chitosan microspheres were reviewed. The applications of magnetic chitosan microspheres in biomedical, food engineering and wastewater treatment were also introduced and their bright futures were prospected for further research and development. Key words: magnetic chitosan microspheres; modification; medicine; food engineering; wastewater treatment 新型的高分子微球材料因其具有很多优良特性为而被广为应用。如粒径小、表面积大、吸附性强,可通过共聚、表面改性赋予其多种功能性基团(如-OH 、-COOH 、-CHO 、-NH2、-SH 等),进而可结合各种物质,使高分子微球具有多种功能。对于磁性高分子微球,由于其具有磁响应性,在外加磁场的作用下可以很方便地分离、回收。因此,在许多领域有广阔的开发前景[1,2]。 壳聚糖(CTS)是自然界存在的唯一碱性多糖,可由蟹、虾壳中的甲壳素经脱乙酰化反应而制得。其资源丰富,安全无毒,具有独特的分子结构和易于化学修饰、生物可相容性和可再生性等功能。它的胺基极易形成四级胺正离子,有弱碱性阴离子交换作用。壳聚糖在酸性溶液中会溶解,稳定性差[3,4]。将壳聚糖进行交联制成磁性壳聚糖(MCS )微球[5,6],不但可提高其稳定性及机械强度,而且使其易与介质分离,利于广泛应用于医学、食品、化工等领域[7]。本文通过对磁性壳聚糖微球的制备方法和性能表征方法及其在生物医药,食品工程和废水处理方面应用的综述,介绍磁性 收稿日期:2008-04-27 基金项目:高等学校博士学科点专项科研基金资助项目(20050561014) 作者简介:杨晋青(1983-),硕士研究生,研究方向:糖类分离提纯新方法新技术 通讯作者:郭祀远,教授 壳聚糖微球有关领域的研究进展情况,并展望其发展 的前景。 1 磁性壳聚糖微球的制备及表征 1.1 乳化交联法 常用的磁性壳聚糖微球制备方法有乳化交联法[8]。将磁性Fe 3O 4粒子加到一定浓度的壳聚糖溶液中,经均质分散,再在适当的温度,pH 和搅拌条件下逐滴加入含有乳化剂的水相中,产生乳液,在常压下自由挥发或用真空抽提使溶剂挥发,通过洗涤、过滤和干燥等过程即可制得磁性壳聚糖微球[9,10]。 1.2 包埋法 1.2.1 磁性高分子微球的制备 运用机械搅拌、超声分散等方法将磁性粒子分散于高分子溶液中,通过雾化、絮凝、沉积、蒸发等过程得到内部包有磁性粒子的高分子微球,常用的包埋材料有壳聚糖、纤维素、尼龙、磷脂、聚酰胺、聚丙烯酰胺等。徐慧显利用葡聚糖制备了具有较好的单分散性磁性葡聚糖微球[11],董聿生采用反相悬浮包埋技术合成了多分散性的磁性葡聚糖微球[12]。 1.2.2 改性磁性壳聚糖微球的制备 以(NH 4)2Fe(SO 4)2·6H 2O 、NH 4Fe(SO 4)2·12H 2O 和壳聚糖为原料,经羟丙基化、胺基化,采用一步包埋法制备了一种新型的多胺基化磁性壳聚糖微球[13]。此方 DOI:10.13982/j.mfst.1673-9078.2008.10.005

化学法制备粉体材料及表征

化学法制备粉体材料及表征 此课程是材料学院设置的综合实验课。通过本实验课的学习与实践,使学生了解和掌握化学法制备(氧化物、碳化物、氮化物、金属和合金)粉体的基本原理、基本方法和相应的工艺流程,并掌握粉体材料常规的表征手段;培养学生的实际动手操作能力,独立思考问题、解决问题的能力;同时为学生提供一个科研实践的平台,为其毕业设计和将来走上工作岗位做好准备。 一、实验目的 1.掌握化学法制备粉体材料的原理并了解各种具体的制备方法。 2.熟练掌握固相热分解法和均匀沉淀法制备粉体材料的原理与工艺流程。 3.掌握粉体材料的各种表征方法。 4.对粉体的粒度分布与物相组成进行熟练的测试与分析 培养学生的实际动手操作能力和自主设计实验的能力,为毕业论文设计作好理论基础和相应的实验准备。 二、实验要求 要求学每个学生能独立查阅文献资料,小组讨论,确定实验方案,并将实验方案提前一天给任课老师审阅;所有的实验必须在我们已有的设备条件和时间条件下完成;实验方案中对每一个工艺必须给出具体的工艺参数,如反应物浓度、温度、反应时间等。该实验更要求学生发挥自己的主观能动性,自主设计,自主完成实验全过程。实验完成后认真分析实验结果,撰写实验报告。 三、实验所需仪器设备 本实验所需的主要仪器设备有:电子天平,坩埚,烧杯,角匙,恒温水浴锅,电动搅拌器,高温炉,激光粒度分布仪,X射线衍射仪等。 四、实验原理 粉体的化学合成: 从物质的原子、离子或分子入手,经过化学反应形成晶核以产生晶粒,并使晶粒在控制之下长大到其尺寸达到要求的大小。按照物质的原始状态分类,可将粉体的化学合成方法分为气相法、液相法和固相法。 化学合成粉体的特点: 优点:能得到极微细的颗粒,且颗粒尺寸比较均匀,颗粒的纯度高;

卡拉胶知识

全球知名的中国卡拉胶专业制造商 上海北连生物科技有限公司位于中国上海浦东开发区,是一家专业从事亲水胶体研发、生产和销售的科技型企业。公司的主要产品是卡拉胶、魔芋胶、琼脂及其复配产品。公司在上海拥有中国规模最大的直接面对国际市场的卡拉胶工厂和魔芋胶工厂。公司的卡拉胶工厂,直接采用菲律宾、印度尼西亚洁净海域的优质海藻,通过先进的加工工艺、完善的萃取技术生产出品质优异的产品,产品质量达到欧盟标准,除国内各大厂商外,直接销售到美国、欧洲、日本和东南亚等世界各地。 另外,公司也是中国魔芋园艺协会的理事单位,在魔芋产地建立了稳定的原料基地,并对魔芋胶市场应用进行了新的研究和开发,可以满足不同层次的市场需求。 公司作为中国科学院海洋研究所的研究基地,BLG拥有专业的研发机构及其团队,同时与国内外的一些大型科研机构和高等院校有着广泛而深入的合作与交流,生产的专业化和市场的国际化为我们赢得了客户的赞美和认同。 公司秉承一贯的社会责任感,坚持不断的创新和突破,追求产品的最高品质和完善服务,为国内外客户提供安全、健康、优质的系列产品。

上海北连生物科技有限公司重视产品质量管理和食品安全,将产品质量和安全问题贯穿于生产经营全过程,从原辅料的源头到成品的各环节进行严格管控,确保产品品质稳定和安全。 在质量管理方面,通过ISO9001:2000质量管理体系认证、ISO22000:2005和HACCP食品安全管理体系认证。 为适应不同地区消费习惯,取得了世界食品领域内的KOSHER认证(犹太食品认证)及HALAL认证(清真食品认证)。 卡拉胶在肉制品中的应用 一.卡拉胶的化学组成 卡拉胶是从麒麟菜、鹿角叉菜中提取的海藻多糖的统称,由于麒麟菜的种类与产地的不同以及加工工艺的区别,所得到的卡拉胶也不尽相同。因此卡拉胶只是一个广义的名称。商品卡拉胶相对分子量在10万道尔顿以上。目前已投入商业化生产的主要有:Kappa(卡帕)型卡拉胶、Iota(阿欧塔)型卡拉胶和Lambda (莱姆达)型卡拉胶。к-型卡拉胶由α(1→3)-D-半乳糖-4-硫酸盐和β(1→4)-3,6-脱水-D-半乳糖的部分硫酸酯基所组成,ι-型卡拉胶在所有D-半乳糖基上的4-位上衍生有硫酸酯基团,在3,6-脱水-D-半乳糖上衍生有2-硫酸酯基团。λ-型卡拉胶与其他两种不同的是,在β(1→4)-D-半乳糖上有两个硫酸酯。由于结构上的细小差别,使得卡拉胶本身性能和用途上有很大的不同。Kappa型卡拉胶在水中可以形成可逆的、硬的和脆的凝胶,Iota型卡拉胶可形成热可逆的、柔软的和有弹性的凝胶,Lambda型卡拉胶则不会形成凝胶,但有增稠作用。因此在肉制品中使用的卡拉胶多为Kappa型卡拉胶。 二.肉制品卡拉胶的凝胶保水作用 卡拉胶是肉制品中重要的保水成分,一般而言,淀粉吸水比例为1:2;大豆蛋白的吸水比例为1:4;而卡拉胶的吸水比例可达1:40-50;这完全归功于卡拉胶的特殊性能。其一,卡拉胶得分子结构中含有强阴离子性硫酸酯基团,能和游离水形成额外的氢键;其二,卡拉胶能和蛋白反应,形成强有力的三维空间结构—凝胶;结合这两点,卡拉胶就能牢牢的把游离水份“锁住”。卡拉胶形成的凝胶一般是热可逆凝胶,加热凝胶融化成溶液,冷却时又形成凝胶。卡帕型卡拉胶一般能完全溶解于70℃以上的热水中,冷却后形成结实但脆弱的可逆性凝胶,其凝胶强度、黏度和其他特性很大程度上取决于卡拉胶的类型和分子质量、体系

纤维素_壳聚糖复合膜的制备及结构表征

第18卷第2期2010年6月 纤维素科学与技术 Journal of Cellulose Science and Technology V ol. 18 No. 2 Jun. 2010 文章编号:1004-8405(2010)02-0033-06 纤维素/壳聚糖复合膜的制备及结构表征 马浩,郑长青,李毅群* (暨南大学化学系,广东广州 510632) 摘要:通过氯化1-(2-羟乙基)-3-甲基咪唑离子液体([HeMIM]Cl)溶解微晶纤维素, 并与壳聚糖的醋酸溶液混合的方法制备了质量比为2∶1的再生微晶纤维素/壳聚糖 复合膜。利用红外光谱、X射线衍射、热重分析、扫描电镜和数码相机照片对复合 材料的结构进行表征。IR结果表明再生微晶纤维素与壳聚糖分子之间存在着强烈的 氢键作用,且二者相容性较好;XRD、TGA结果表明复合材料中纤维素和壳聚糖有 较强的相互作用;SEM结果表明复合材料表面粗糙,比表面积较大,可以作为潜在 的生物医用材料。 关键词:纤维素;壳聚糖;复合膜 中图分类号:O636文献标识码:A 纤维素和壳聚糖是自然界中可生物降解、生物相容性较好的两种天然高分子材料。纤维素是由β-(1→4)-链接的D-葡萄糖组成,它含有大量羟基,易形成分子内和分子间氢键,具有一定的力学强度,但成膜性较差[1]。壳聚糖是由D-氨基葡萄糖通过β-1,4-糖苷键结合而成,具有抗菌性及多种生物活性、吸附功能等,但壳聚糖吸水性强,所形成的纤维或膜材料的湿态机械强度差,易溶胀,作为医用材料的应用受到限制[2-6]。纤维素/壳聚糖复合材料具有纤维素和壳聚糖共同的特点,具有生物相容性和可生物降解性。其复合膜可以弥补纤维素和壳聚糖存在的不足,在生物医药领域中应用有着重要意义[7]。由于纤维素难溶解[8],目前主要是通过向壳聚糖的醋酸溶液中添加纤维素粒子的方法制备纤维素/壳聚糖复合材料[9-11],但是这种固―液混合的方法无法像液―液混合一样制备混合均匀的复合材料,于是有待于建立一个制备均匀的纤维素/壳聚糖复合材料的新方法。由于离子液体为纤维素的直接溶剂,能有效地溶解纤维素[12],因此,基于纤维素的离子液体溶液与壳聚糖的醋酸溶液能够实现液―液混合制备混合更加均匀的复合材料。本文正是通过混合微晶纤维素的离子液体溶液和壳聚糖的醋酸水溶液的方法,制备得到了质量比为2∶1的再生微晶纤维素/壳聚糖复合材料,并对这一材料的结构进行了初步表征。 收稿日期:2010-01-06 ?通讯作者 基金项目:国家自然科学基金(20672046)、广东省自然科学基金(8151063201000016)资助项目。 作者简介:马浩(1985~),男,安徽濉溪人,硕士研究生;从事功能高分子材料的研究。

【化学】高中化学常见物质制备方法

高中化学常见物质制备方法 Cl2 1.实验室方法:MnO2+4HCl(浓)=MnCl2+Cl2↑+2H2O(反应条件加热)收集方法:向上排空气法或排饱和食盐水法 净化方法:用饱和的食盐水除去HCl,再用浓H2SO4除去水蒸气。 2.工业制法:原理:电解食盐水 2NaCl+2H2O====2NaOH+Cl2↑+H2↑(反应条件是通电) CO2 1.实验室方法:CaCO3+2HCl=CaCl2+CO2↑+H2O 收集方法:向上排空气法 净化方法:用饱和的NaHCO3除去HCl 2.工业制法:CaCO3=====CaO+CO2↑(条件为高温) O2 实验室方法: 1、KMnO4受热分解:2KMnO4=K2MnO4+MnO2+O2↑(条件:加热) 2、KClO3和MnO2混合共热:KClO3=2KCl+3O2↑(条件:在MnO2下加热) 工业制法:空气液化分离 NH3 实验室方法: Ca(OH)2+2NH4Cl=====2NH3↑+CaCl2+2H2O 收集方法:向下排空气法、且容器口塞一团沾有稀H2SO4的棉花团,以防止所收集的气体与空气对流,也可吸收多余的NH3 净化方法:用碱石灰吸收NH3中混有的水分 工业制法: N2+3H2=====2NH3(条件:高温、高压、催化剂且此反应为可逆反应 (上面的必需全部把握且对方程式一定要准确地记住,下面的只需知道) N2 实验室方法:NaNO2+NH4Cl==N2↑+2H2O +NaCl 工业方法:液态空气分馏法 NO2 实验室方法:Cu+4HNO3(浓)====Cu(NO3)2+2H2O↑(条件加热) 工业方法:4NH3 + 5O2= 4NO + 6H2O(条件Pt/加热) 2NO + O2= 2NO2 CO 实验室方法:HCOOH===H2O+C O↑(条件加热) 工业方法:C + H2O(g) == CO + H2(条件高温) SO2 实验室方法:Na2SO3+H2SO4=Na2SO4+H2O+SO2↑ H2 实验室制法:H2SO4+Zn=====ZnSO4+H2↑ 2HCl+Zn=====ZnCl2+H2↑ 收集方法:向下排空气法 工业制法:水煤气法 C + H2O(g) == CO + H2(条件高温) C H≡CH

壳聚糖的结构、性质及其应用--综述

壳聚糖的结构、性质及其应用 张洁海洋药学0844130 摘要:生物相容性好、可降解、对组织和细胞无毒副作用的生物材料一直是生物医学领域研究的热点。壳聚糖(α(1-4)2-氨基2-去氧β-D葡聚糖)是甲壳素脱乙酰得到的天然多糖中惟一的碱性多糖,具有很多优良的特性。本文就壳聚糖的结构、性质及其应用进行综述。 关键词:壳聚糖,结构,性质,应用 壳聚糖(Chitosan,简称CTS),壳聚糖是由N-乙酰糖胺组成,其中糖胺的含量超过90%,具有黏多糖相似的结构特点,而黏多糖在组织中分布广泛,是细胞膜有机组成成分之一,故壳聚糖具有优异的生物相容性⑴~⑵。表现为无毒、无刺激、无免疫抗原、无热原反应、不溶血,有抗菌消炎、促进伤口愈合,抗酸、抗溃疡、降脂和降低胆固醇的作用⑶~⑸。而且具有直接抑制肿瘤细胞的作用,并可通过活化免疫系统显示抗癌活性,与现有的抗癌药合用可增强抗癌效果,近年来其作为药物微球材料的研究也受到了极大的重视⑹,是一种安全可靠的天然生物活性多糖。本文就壳聚糖的结构、性质及其应用进行综述。 一.壳聚糖的结构与性质 1.壳聚糖的来源—甲壳素 壳聚糖来源于一种自然资源十分丰富的线性聚合物一甲壳素,是甲壳素经脱乙酰化反应后得到的一种生物高分子Ⅲ。甲壳素是一种天然多糖类生物高分子聚合物,在自然界中广泛存在于低等生物菌类、藻类的细胞,节支动物虾、蟹、昆虫的外壳,软体动物(如鱿鱼、乌贼)的内壳和软骨,高等植物的细胞壁等,将甲壳动物的外壳通过酸碱处理,脱去钙盐和蛋白质,即可得到甲壳素。甲壳素化学名为[(1,4)一2一乙酰胺基一2一脱氧一B—D-葡萄糖],分子式为(C8H13N05)。,单体之间以B(1-4)糖苷键连接,分子量一般在lO6左右,理论胺含量为6.9%。甲壳素的化学结构与植物中广泛存在的纤维素结构非常相似(见图l),故又称为动物纤维素。 (a)甲壳素(b)纤维素 图1甲壳素和纤维素的结构

卡拉胶在食品中应用

卡拉胶在食品中的应用 ●分散和溶胶的方法 由于卡拉胶能在较低温度下发生水合作用,因而当在水溶液中或乳品中添加卡拉胶时,若分散不当会引起结块,降低其水合率,影响黏度的生成或凝胶强度。通常可将重量为胶体5~10倍以上的砂糖、麦芽糊精或盐混合均匀后,加入水中(或其他溶剂中),再逐渐升温至溶胶温度,使卡拉胶分子分散分布,减少水中结块现象。通常在生产过程中使用高速或高剪切搅拌机将结团部分破碎使水合作用快速完全。 ●作为水性凝胶的应用 由于κ-卡拉胶在k+作用下可形成热可逆凝胶,因而在食品领域中获得了广泛的应用。传统用法是将τ-卡拉胶与κ-卡拉胶混合,以降低其脆硬性和析水性,提高其弹各种卡拉胶性质的比较溶解性胶凝性性、保水性,接下来是用刺槐豆胶与κ-卡拉胶复配,近年来又以魔芋胶代替刺槐豆胶和τ-卡拉胶,不仅提高了凝胶体的弹性和保水性,而且大大降低了生产成本。以κ-卡拉胶为主体的凝胶体目前已基本代替了以前用明胶生产的同类产品,其较明胶更为优越的性能表现为:素食者可食(如果冻);凝胶速度快;常温下凝胶性稳定(而明胶则会融化)。 κ-卡拉胶作为水性凝胶在食品领域中的应用包括: ●果冻、布丁:卡拉胶稳定剂的用量为0.5%~1%; ●软糖:卡拉胶的用量为1%~1.5%; ●肉制品:如花色肉冻、三明治火腿、鱼冻、熟肉制品、家禽制品;添加量为0.5%~1%; ●宠物制品:添加量为0.5%~1%; ●啤酒、葡萄酒的澄清剂; ●酱类/沙司。 各种卡拉胶性质的比较 溶解性 λ-卡拉胶τ-卡拉胶κ-卡拉胶 80℃热水可溶可溶可溶 20℃冷水可溶可溶于na+盐,对ca在k+、ca+盐 盐形成融变分散条件下微溶胀 80℃热乳可溶可溶可溶 20℃冷乳增稠不溶不溶 冷乳增稠或凝胶增稠或凝胶增稠或凝胶 (加焦磷酸钠) 50%蔗糖溶液可溶不溶不溶 0%盐溶液热溶热溶不溶 有机溶剂不溶不溶不溶 胶凝性 λ-卡拉胶τ-卡拉胶k—卡拉胶离子类型的影响不凝胶ca2+盐作用下凝胶k+盐作用下强凝胶 凝胶结构--弹性硬脆性 剪切可逆性凝胶--是否 脱水收缩(析水性)--无有 滞后作用--5℃-10℃10℃-20℃ 冻融稳定性是是无

壳聚糖的制备

壳聚糖及其衍生物的制备 甲壳素(chitin)在自然不仅含量十分丰富,而且可生物降解,是环境友好产品,利用沿海地区丰富的虾蟹壳为原料,可生产出甲壳素,变废为宝,净化环境。甲壳素经浓碱处理去掉乙酰其后得壳聚糖(chitosan),分子结构如下: O O CH2OH OH NH2n O 壳聚糖经化学改性可得系列的衍生物,如:羧甲基壳聚糖、低聚壳聚糖等。这些系列产品在许多方面有着极其广泛的用途。如在医学方面可作为抗癌制剂、手术缝线、人造皮肤、药物载体等;在轻工业上可作为化妆品填料、增白剂、固发剂或增强纸张的光洁度;在环保方面可作为絮凝剂、吸附剂,用于污水处理,还可用作饮料的澄清剂、无毒包装材料等;在农业方面是一种新型植物生长调节剂,促进植物生长、增加产量、提高品质、诱导植物的广谱抗病性,还可用于生产生物农药,用于果蔬保鲜。因此壳聚糖及其衍生物系列产品有很好的潜在需求和市场前景。 一、实验目的 1.了解壳聚糖及其衍生物的应用概况; 2.学习壳聚糖及其衍生物的制备原理和方法; 3.强化学生环保意识,变废为宝; 4.制备2~5g的产品。 二、实验内容 1.利用强碱制备壳聚糖; 2.测定壳聚糖的脱乙酰度。 三、实验原理

甲壳素是酰胺类多糖,壳聚糖的制备过程,就是酰胺的水解过程。酰胺有如下几种结构: 酰胺可在强酸或强碱条件下水解,对于低分子的酰胺,水解可以进行得比较 完全,但对于多糖来说,强酸更容易水解糖苷键,所以甲壳素的脱乙酰基,一般 情况下不采用强酸水解;相对说来,强碱造成糖苷键的断裂不像强酸那么严重, 所以都用强碱来脱乙酰基。 酸碱滴定法的原理是壳聚糖的自由氨基呈碱性,可与酸定量地发生质子化反应,形成壳聚糖地胶体溶液: 溶液中游离的H+用碱反滴定,这样,从用于溶解壳聚糖的酸量与滴定用去的碱量 之差,即可推算出壳聚糖自由氨基结合酸的量,从而计算出壳聚糖中自由氨基的 含量。 四、实验材料与设备 1.实验设备与仪器 水浴锅,电炉,烧杯,三角瓶,碱式滴定管,电子天平。 2.实验材料与试剂 甲壳素,NaOH,HCl,甲基橙指示剂,乙醇、丙酮。 五、实验步骤 1.壳聚糖的制备 (1)取三个烧杯,编号1﹟、2﹟、3﹟,于每个烧杯中加入甲壳素5g,于1﹟ 烧杯中加入40%NaOH 100mL,2﹟烧杯中加入50%NaOH 100mL, 3﹟烧杯中加入 60%NaOH 100mL,100℃煮沸2h,脱乙酰基。 (2)反应完毕取出,用蒸馏水洗至中性,再用乙醇、丙酮洗涤后,干燥,即得 白色壳聚糖。 2.脱乙酰度的测定 准确称取上述方法制备的三种壳聚糖各0.5g,分别置于250mL三角瓶中,加入

壳聚糖特性及其应用

壳聚糖特性及其应用 作者简介:孔佳琦,女,本科,西北民族大学化工学院,专业:制药工程。 力芬,女,本科,西北民族大学化工学院,专业:环境工程。 摘要:壳聚糖是自然界中储量丰富天然高分子化合物,壳聚糖及其衍生物具有各种优良的性质,本文主要介绍了壳聚糖的特性以及其在不同方面的应用情况,为壳聚糖的研究发展提供依据和思路。 关键词:壳聚糖;特性;应用 壳聚糖(chitosan)又称脱乙酰甲壳素,是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的,化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖。纯甲壳素和纯壳聚糖都是一种白色或灰白色透明的片状或粉状固体,无味、无臭、无毒性,纯壳聚糖略带珍珠光泽。在特定的条件下,壳聚糖能发生水解、烷基化、酰基化、羧甲基化、磺化、硝化、卤化、氧化、还原、缩合和络合等化学反应,可生成各种具有不同性能的壳聚糖衍生物,从而扩大了壳聚糖的应用围。本文就壳聚糖的特性和应用进行阐述,为其研究和发展提供依据和思路。

1.特性 1.1抗菌性。壳聚糖是唯一一种天然的弱碱性多糖在弱酸溶剂中易于溶解,溶解后的溶液中含有氨基(NH2+),这些氨基通过结合负电子来抑制细菌。壳聚糖的抗菌性会随着其浓度的增加而增强。壳聚糖对大肠杆菌、金黄色葡萄球菌等有较强的抑制作用。 1.2吸附性。壳聚糖具有很强的吸附功能,特别是对重金属离子的吸附如对铜、汞、铅等离子的吸收。壳聚糖的吸附活性可以有选择地发挥作用。当然还可以吸附胆固醇、甘油三酯、胆酸、油脂[1]等。 1.3保湿性。壳聚糖衍生物分子中有许多活泼的亲水极性基团如-OH、-COOH及-NH2,这些基团可以使其显示出保湿性。对于羧基化壳聚糖,其羟基的含量远大于其他衍生物,且羧基的亲水性所以能够结合更多的水分。因此羧基化壳聚糖的吸湿、保湿性也就明显高于其他类型的壳聚糖衍生物。 1.4成膜性。壳聚糖是线性高分子聚合物,理化性能稳定,可生物降解,粘合性好,成纤成膜性能优良。吴国杰[2]等人研究了壳聚糖膜的制备方法和性能,探讨了壳聚糖溶液成膜的最佳工艺条件。 1.5调节作用。壳聚糖可激活体具有免疫功能的淋巴细胞,使其能分辨正常细胞和癌细胞,并杀死癌细胞。还能调

卡拉胶及其应用

【摘要】本文介绍了卡拉胶的结构及其在物理化学等方面的性能,阐述了国内卡拉胶常用的提取方法及其在食品工业中的应用,最后分析了卡拉胶的发展前景。 【关键词】卡拉胶;结构;性能;提取方法;应用 carrageenan and the application of carrageenan zhao jing-kun (college of chemical science and engineering, qingdao university, qingdao shandong, 266071, china) 0 引言 卡拉胶又名角叉菜胶、鹿角藻胶,是从红藻中提取的一种高分子亲水性多糖,具有极高的经济价值,是世界三大海藻胶工业产品(琼胶、卡拉胶、褐藻胶)之一。卡拉胶为食品添加剂,而食品级的卡拉胶为白色至淡黄褐色、表面皱缩、微有光泽的半透明片状体或粉末状物,无臭无味,口感粘滑。卡拉胶形成的凝胶是热可逆性的,即加热融化成溶液,溶液放冷时,又形成凝胶。卡拉胶因具有良好的保水性、增稠性、乳化性、胶凝性和安全无毒等特点而广泛应用于食品工业中。 1 卡拉胶的结构 卡拉胶的化学结构是由d-半乳糖和3, 6-脱水-d-半乳糖残基所组成的线形多糖化合物。而根据半酯式硫酸基在半乳糖上所连接的位置不同,卡拉胶又可分为7种类型:k-卡拉胶、l-卡拉胶、r-卡拉胶、λ-卡拉胶、?谆-卡拉胶、φ-卡拉胶、ξ-卡拉胶。而目前生产和使用的有k-型、l-型和λ-型卡拉胶或它们的混合物,尤其以k-型多见。 2 卡拉胶的性能 2.1 凝胶性 卡拉胶的凝胶性能主要与其化学组成、结构和分子大小有关。卡拉胶凝胶的形成分为四个阶段:卡拉胶溶解在热水中时分子为不规则的卷曲状;温度下降的过程中其分子向螺旋化转化,形成单螺旋体;温度再下降,分子间形成双螺旋体,为立体网状结构。这时开始有凝固现象;温度再下降,双螺旋体聚集形成凝胶。 2.2 溶解性 卡拉胶都能溶解于70℃以上的温水中,一般硫酸根含量越多越易溶解。在水中卡拉胶首先形成胶粒,加入蔗糖、甘油等可以改善其分散性,或用高速搅拌器打破胶团达到分散效果。为促进卡拉胶的溶解,在食品工业生产中,一般使用80℃以上的热水对其进行溶解分散。 2.3 稳定性 在中性或碱性溶液中卡拉胶很稳定,ph值为9时最稳定,即使加热也不会发生水解。在酸性溶液中,尤其是ph=4以下时易发生酸催化水解,从而使凝冻强度和粘度下降。成凝冻状态下的卡拉胶比溶液状态时稳定性高,在室温下被酸水解的程度比溶液状态小得多。 2.4 反应性 卡拉胶与其它水溶性大分子相比最大的不同之处在于它可以和蛋白质反应。卡拉胶分子上的硫酸根具有极强的负电荷。而蛋白质是一种两性物质,在等电点以下氨基酸和卡拉胶因持相反电荷而结合产生沉淀,在等电点以上的条件下,二者持相同电荷,有多价阳离子作为胶联剂和卡拉胶结合形成亲水胶体,在等电点,由于多价阳离子为胶联剂与卡拉胶相结合而形成沉淀。 2.5 流变性 卡拉胶溶液粘度随浓度增大而呈指数规律增加,随温度升高呈指数规律下降。而在恒温状态下,随时间的增长,大分子开始解离,分子间缠绕减少,溶液粘度下降。卡拉胶溶液的粘度随ph的增大而增大,酸性增大促进卡拉胶分子解离并中和其电性,削弱了半酯化硫酸根

甲壳素_壳聚糖的制备与应用

甲壳素/壳聚糖的制备与应用 郭建民1,徐晓军2,李林1 (1.宁波市环境保护科学研究设计院,浙江宁波315010; 2.青岛建筑工程学院,山东青岛266000) [摘要]甲壳素/壳聚糖是一种资源丰富、用途广泛的天然高分子。简介了其物理化学性质及 常见的制备方法;详细介绍了功能化甲壳素/壳聚糖近期的研究状况;综述了甲壳素/壳聚糖的应用;展望了我国甲壳素/壳聚糖资源的开发利用趋势。[关键词]甲壳素;壳聚糖;制备;功能化;应用 [中图分类号]TQ282 [文献标识码]A [文章编号]1006-1878(2004)07-0126-03 甲壳素(chitin )学名为无水-N -乙酰基-D -氨基葡聚糖,是一种重要的天然高分子,其结构与纤维素相似,通常分子量为几百万,是多糖化合物中最重要的一种聚氨基葡萄糖。甲壳素因主要来源于节肢动物如虾、蟹等的甲壳而得名。它也广泛存在于低等植物如真菌、藻类的细胞壁中。据统计,自然界中每年甲壳素的生物合成量在1000kt 以上,可见其自然界储量之丰富。 壳聚糖(chitosan )是甲壳素脱乙酰化而得到的一种生物高分子。由于壳聚糖分子中有大量游离氨的存在,其溶解性大大优于甲壳素,兼具有甲壳素的天然、无毒、生物相容性好与易于降解等优点,所以壳聚糖有十分良好的经济应用价值。人们对壳聚糖的研究十分活跃,其应用领域也不断拓宽。 我国有着丰富的甲壳素资源。充分利用现有资源,结合区域优势,加强对甲壳素的开发研究及产业化是我国甲壳素化学工业发展的必然趋势。 1 甲壳素的提取 目前,甲壳素主要还是从工业废弃的虾、蟹壳中 提取。把甲壳中的甲壳素,蛋白质和无机物质分离开,最后再进行脱色,获得纯净的甲壳素,其工艺流程为:虾蟹壳—水洗—酸浸(6%HCl )—碱煮(10% NaOH )—脱色(KMnO 4)—干燥—甲壳素成品。可见甲壳素的制备过程主要由简单的酸碱处理 工艺组成,技术难度不大。但是以这种传统的工艺制得的甲壳素存在着一些不足,如溶解度不高,溶液过滤性差等。近年来又提出了一些新的方法,使传统工艺得到了改进。如采用浓度递减,循环酸浸以及脱蛋白质交叉工艺制取的甲壳素可以获得较高的粘度。但是在甲壳素的制取过程中,对于动物壳中 的蛋白质和有机肥料的综合利用程度低及工艺过程中排放的废水量大等缺点,仍然是甲壳素制备工艺中需要改进的问题。此外,从蚕蛹壳、蝉和蝇蛹中提取甲壳素都有过系统的报道。 由于壳聚糖还是真菌细胞壁的常见组成部分,因此以微生物发酵来制取壳聚糖也有着巨大的环保意义。陈忻等采用生物发酵放射毛霉为原料制备了壳聚糖。研究表明,在反应温度为28℃,摇床转速为250r/min ,p H 为7.4~7.6,培养时间为45h 的条件下,壳聚糖对菌丝体产率为15.68%,脱乙酰度85%~90%。谭天伟等提出了以发酵工业废菌丝体为原料生产壳聚糖的新工艺。该工艺成本低廉,经济效益可观。 2 甲壳素的功能化改性 活性侧基的存在,赋予甲壳素较之其他多糖更强的功能性,而通过化学修饰在高聚物骨架上引入其他基团,从而改变高分子的物理化学性质,赋予其新的功能,即高分子的功能化。它已经成为甲壳素应用研究的一个热点。甲壳素/壳聚糖的功能化主要是利用分子结构中的羟基/氨基等活性基团,通过对其进行酰化、酯化、交联、醚化等反应来完成。功能化后的甲壳素/壳聚糖的物化性质得到了改善而具有优异的功能。2.1 交联反应 为了使壳聚糖得到很好的应用,需要把它制成[收稿日期]2003-12-18;[修订日期]2004-02-12 [作者简介]郭建民(1977— )男,河北省宣化市人,宁波市环境保护科学研究设计院工程师,硕士,主要从事环保药剂的开发与三废处理技术研究。 ? 621?2004年第24卷 化 工 环 保 ENV IRONMEN TAL PRO TECTION OF CHEMICAL INDUSTR Y

壳聚糖复合膜的制备及其性能研究(可编辑)

摘要 本文的目的是采用涂布法以聚乙烯醇(PVA)膜作为基膜制备壳聚糖复合膜, 以得到具有高阻隔性、较好力学性能、可降解性和抗菌性的食品包装材料,用乌氏粘度计测定壳聚糖的相对黏均分子质量。所用 3 种壳聚糖的相对黏均分 5 5 5 子质量分别为:4.68×10 、4.77×10 、6.68×10 。 比较抑菌圈法、比浊法、稀释平板计数法发现,比浊法结合稀释平板计数法用 于空白组与实验组的活菌计数,可以更准确地显示壳聚糖的抑菌效果。壳聚糖溶液 浓度为 0.01%的 LB 培养液在培养过程中出现絮状沉淀,而高浓度(0.1%)和空白实 验则不出现。这一有趣现象未见文献报导。相对分子质量大的壳聚糖的抑菌作用较 强。太低浓度的壳聚糖溶液,如 0.01%浓度,对两种细菌的抑菌效果不理想。对 E. coli 抑菌活性昀好的壳聚糖溶液浓度是 0.05%;而对 S. aureus 抑菌活性昀好的浓度则是 0.025%。 合成的两种壳聚糖衍生物样品(PCS、TMC)为白色絮状,都能溶于中性水。

浓度为 0.1%的 PCS 和 TMC 溶液都能有效抑制 E. coli 的生长。壳聚糖衍生物对细菌 的抑菌活性有一定的选择性。TMC 对 E. coli 菌比对 S. aureus 菌具有更好的抑菌效 果。 以 PVA 膜作为基材,采用涂布法制备了 PVA/壳聚糖复合膜。用万能材料试验机 测定复合膜的力学性能。复合膜的弹性模量随所用壳聚糖浓度的增大而增大。复合 膜的断裂伸长率和抗拉强度比 PVA 膜略微减小。 用透湿仪测定了复合膜的水蒸汽透过系数。各类复合膜的水蒸汽透过系数略高 于 PVA 膜。用 CS-1 和 CS-2 制得的复合膜的水蒸汽透过系数随壳聚糖浓度的增大而 增大;然而涂布 CS-3 的复合膜的水蒸汽透过系数却随着壳聚糖浓度的增大而减小。 复合膜的水蒸汽透过系数受环境相对湿度影响较大。用透氧仪测定了复合膜的氧气 透过系数,涂布壳聚糖可以提高 PVA 膜对 O 阻隔性能。 2 采用 QB/T 2591-2003 标准方法评价了复合膜对 E. coli 和 S. aureus抑菌效果。复

壳聚糖的功用详解

壳聚糖的功用详解,每位卫康家人必备的资料 壳聚糖的应用 1、食道癌——壳聚糖兑水,虫草兑水喷。每小时交替使用。 2、降压——壳聚糖每天6粒。 3、拉肚子——孩子1粒壳聚糖抖在饭里。 4、孩子长的过快——肌肉裂断,加壳聚糖。 5、癌症——每天50粒,可以活命。 6、身上所有包块——均需壳聚糖。 7、肾衰竭——壳聚糖加虫草。 8、减肥——壳聚糖加银兰。 9、肠胃不好,便秘——壳聚糖。 10、白癜风——壳聚糖,虫草,金苓,五个月。 11、糖尿病——壳聚糖加虫草。 12、脑血栓——壳聚糖,银兰,虫草。 壳聚糖溶液的作用 2粒壳聚糖+纯净水35毫升+白醋2毫升——壳聚糖啫喱水 一、浓度:加200毫升纯净水 1、去角质,每天2-3次 2、足,手上的白癣 3、伤口愈合,淡化瘢痕 4、喂鱼5-10毫升 二、浓度:1000毫升

1、皮肤过敏 2、黑斑,汗斑,湿疹,皮炎 3、香港脚,富贵手 4、代替洗发精 三、浓度:2000毫升 1、面疮,颜面白癣 2、荨麻疹 3、基础化妆 4、男士剃须后使用 壳聚糖的妙用 1、外伤:有外伤、烧伤烫伤、溃疡时可以将产品直接敷于伤口处,有止血止疼、止痒、杀菌、消炎之功效,且愈后不留疤痕。 2、治带状疱疹:用白醋把产品调成稠糊状,涂抹于患处,3-7天可痊愈。 3、治褥疮:将伤处清理消毒后,把产品直接敷于患处,1-3天可结痂愈合。 4、治口腔、食道溃疡:将产品直接倒入口中含放2-3次/日,1-2天可痊愈。 5、治红斑狼疮:内服:每日3次,每次4-6粒;外涂:把产品用白醋调匀,涂抹于患处,一个疗程可痊愈。 6、治面瘫:每天3次,每次3-4粒,2-7天(麻痹的面部神经修复)痊愈。 7、治便秘:早晚服2-4粒/次,饭前服用,多喝水。多吃水果蔬菜效果明显。对肠胃炎和痔疮有奇效!8、治脚气:将产品直接敷于患处,2-3天痊愈不复发。用白醋调和以后,涂抹于手脚表面可预防、治疗脚气、手脚发痒、脱皮。 9、治疗湿疹:用白醋把产品调匀,涂于患处2-4天可痊愈。此法对治疗男女阴部瘙痒、阴湿、湿疹有奇效!2-3次可痊愈。 10、减肥:早晚服用,每次6-10粒,饭前服用,配合晚餐少吃主食效果显著。

壳聚糖制备

甲壳素的化学名称为(1,4)222乙酰胺基222脱 氧2β2D葡萄糖。当甲壳素通过脱乙酰基反应转变为壳聚糖时,由于游离胺基的产生,应用性大为增加。壳聚糖分子链上的胺基和羟基都是很好的配位基团,使其具有很多纤维素不具有的用途,它既是一种天然的高分子螯合剂,可与重金属离子如Hg2+、Cu2+、Ag+形成稳定的螯合物,用于提取回 收金属和从污水中去除有害的重金属离子[1,2] ,又是一种天然的阳离子型絮凝剂,能使水中的悬浮 物凝聚而沉降,用于污水的净化处理[3] 。表征壳聚糖性能的主要参数有:脱乙酰度和分子量,它们都受甲壳素脱乙酰化反应控制。因此甲壳素脱乙酰化反应是基础性研究工作,虽然已有一些论文报道了甲壳素脱乙酰化反应的研究结果[4] ,但尚不系统完全。另外由于壳聚糖的缩醛键结构,在H+ 的攻击下很容易水解,随着存贮时间的增长, 壳聚糖溶液的粘度将发生很大的变化,给应用带来影响。因此,对壳聚糖溶液存贮期间粘度变化的研究也是很有实际意义的。 1 实验部分 111 试剂及原料 所用试剂都是分析纯。甲壳素由青岛某生化公司提供。112 测定方法 脱乙酰度测定采用线性电位滴定法[5] ,溶液 粘度测定采用NDJ24型旋转粘度计测定 [6] 。 113 壳聚糖的制备 将甲壳素与氢氧化钠溶液在三口烧瓶中混合搅拌,在一定温度下回流一定时间后,过滤,洗涤,烘干,产物即为壳聚糖。114 壳聚糖的水解延缓将壳聚糖分别溶于醋酸水溶液,醋酸2乙醇水溶液,醋酸2甲醇水溶液,醋酸2丙酮水溶液,醋酸2丙酮2甲醇水溶液,常温下测定放置不同时间的上述各溶液的粘度。 2 结果和讨论 211 正交实验法确定反应条件 甲壳素脱乙酰化反应需在浓碱介质中进行,加温可有效地加速乙酰化反应,提高碱液浓度和延长反应时间也可以提高脱乙酰度。但是随着脱乙酰化反应条件的强化,甲壳素主链的降解也越来越严重,这又直接影响产品的质量。因此碱液浓度、温度和反应时间都是主要影响因素。控制脱乙酰化反应条件,就可获得不同脱乙酰度的壳聚糖。目前,常采用高温短时间反应和低温长时 间反应的壳聚糖碱液制备方法。韩怀芬等[7] 研究在100~120℃下反应2~4小时制备壳聚糖,脱乙酰度达89.31%。本实验在低温段80~90℃下反应12~16小时。 本实验首先进行三因素三水平L9(34 )正交实验,各因素和各水平见表1。实验结果见表2。对每个样品测其脱乙酰度。 表1 三因素三水平正交试验

明胶_壳聚糖复合膜的制备与性能_宋慧君

第27卷第8期高分子材料科学与工程 Vol .27,No .8  2011年8月 POLYMER MA TERIALS SCIENCE AND ENGINEERING Aug 2011 明胶-壳聚糖复合膜的制备与性能 宋慧君 1,2 ,孟春丽2,汤克勇 1 (1.郑州大学材料科学与工程学院,河南郑州450001; 2.河南工程学院材料与化学工程系,河南郑州450007) 摘要:制备了一系列不同配比的明胶-壳聚糖复合膜,研究了壳聚糖含量对复合膜力学性能、吸湿性能的影响,通过X 射线衍射和红外光谱分析了复合膜的结构。结果表明,复合膜及纯壳聚糖膜的断裂伸长率和拉伸强度均大于纯明胶膜,壳聚糖的加入可改善膜的力学性能。随壳聚糖含量的增加,复合膜的吸湿率增大。明胶与壳聚糖分子间存在较强的相互作用,与明胶共混可改变壳聚糖的晶粒大小,降低壳聚糖的结晶度。明胶与壳聚糖之间的相容性良好。关键词:明胶;壳聚糖;复合膜;性能;结构 中图分类号:T B383 文献标识码:A 文章编号:1000-7555(2011)08-0165-03 收稿日期:2010-12-20 基金项目:国家自然科学基金资助项目(50973097);河南省高校科技创新人才支持计划资助项目(2009HAS TIT015)通讯联系人:汤克勇,主要从事天然高分子及其复合材料的研究, E -mail :keyongtangzzu @yahoo .com 明胶来源广泛,价格低廉,具有良好的生物相容性和可降解性。但是,它的成膜性、力学性能及抗水性较差。壳聚糖价廉易得、易于加工,具有良好的生物相容 性、可降解性、抗菌防腐性和成膜性等。明胶-壳聚糖复合膜可用于生物医药、组织工程、食品等。目前,对增塑及改性明胶-壳聚糖复合膜的性能与应用的研究较多[1~3] ,但有关未增塑及改性明胶-壳聚糖复合膜的结构与性能的研究很少[4]。为了开发具有新性能的复合材料,使明胶-壳聚糖复合材料在可食性包装方面得到应用,有必要系统研究明胶-壳聚糖复合物的结构与性能,进一步了解其制备、结构与性能之间的关系,以制备性能特点互补、功能协同增效的绿色包装材料。本文采用溶液共混法制备了一系列明胶-壳聚糖复合膜,并研究了复合膜的结构和性能。1 实验部分1.1 实验材料 明胶:生物级,天津市科密欧化学试剂有限公司;壳聚糖:脱乙酰度95%,山东奥康生物科技有限公司;冰醋酸、氢氧化钠、碳酸钾、氯化钠:均为分析纯(市售)。1.2 明胶-壳聚糖复合膜的制备 将一定量的明胶(Gel )溶于去离子水中,40℃水浴加热,配成10%的明胶溶液;将一定量的壳聚糖(CS )溶解于2%的醋酸溶液中制备2%的壳聚糖溶 液。二者按照一定比例混合,使复合膜中壳聚糖的质量分数分别为0%、10%、20%、30%、40%、50%、60%、70%、80%、90%和100%,分别用Gel 、10%CS 、20%CS 、30%CS 、40%CS 、50%CS 、60%CS 、70%CS 、80%CS 、90%CS 和CS 表示。将不同比例的明胶-壳聚糖溶液共混后,于40℃水浴中搅拌均匀,静置24h ,在洁净的水平聚氯乙烯板上流延成膜。用0.3mol /L 的NaOH 溶液洗涤后再用去离子水洗至中性,室温下自然干燥,揭膜。 1.3 明胶-壳聚糖复合膜的性能测试 1.3.1 力学性能:将所制复合膜裁成哑铃型标准试样,于室温、相对湿度65%的环境中调湿48h 以上至恒量。参照GB /T 1040-92《塑料拉伸性能试验方法》,以CM T6104型微机控制电子万能试验机(深圳新三思计量技术有限公司)测定试样的拉伸强度和断裂伸长率,拉伸速率50mm /min ,每个试样测5次,取平均值。 1.3.2 吸湿性能:将膜裁成1cm ×1cm 大小的薄片,在装有P 2O 5的干燥器中干燥至恒量,然后放在相对湿度为75%的密闭容器中,定时称量,至吸湿平衡。吸湿率以Q 表示,按式(1)计算。 Q =m w -m d m d (1) 式中:m d 、m w ———吸湿前、后试样的质量。每个试样

相关文档
最新文档