(完整版)导数的概念及其运算高考数学知识点总结高考数学真题复习

(完整版)导数的概念及其运算高考数学知识点总结高考数学真题复习
(完整版)导数的概念及其运算高考数学知识点总结高考数学真题复习

§3.1 导数的概念及其运算

复习备考要这样做 1.会求某点处切线的方程或过某点的切线方程.

1. 函数y =f (x )从x 1到x 2的平均变化率

函数y =f (x )从x 1到x 2的平均变化率为f (x 2)-f (x 1)

x 2-x 1,若Δx =x 2-x 1,Δy =f (x 2)-f (x 1),则平

均变化率可表示为Δy

Δx .

2. 函数y =f (x )在x =x 0处的导数

(1)定义

称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0

f (x 0+Δx )-f (x 0)Δx

=lim Δx →0 Δy

Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx

. (2)几何意义

函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3. 函数f (x )的导函数

称函数f ′(x )=lim Δx →0

f (x +Δx )-f (x )

Δx

为f (x )的导函数,导函数有时也记作y ′.

4. 基本初等函数的导数公式

5. (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)??

??f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )

[g (x )]2

(g (x )≠0). [难点正本 疑点清源]

1. 深刻理解“函数在一点处的导数”、“导函数”、“导数”的区别与联系

(1)函数f (x )在点x 0处的导数f ′(x 0)是一个常数;

(2)函数y =f (x )的导函数,是针对某一区间内任意点x 而言的.如果函数y =f (x )在区间(a ,b )内每一点x 都可导,是指对于区间(a ,b )内的每一个确定的值x 0都对应着一个确定的导数f ′(x 0).这样就在开区间(a ,b )内构成了一个新函数,就是函数f (x )的导函数f ′(x ).在不产生混淆的情况下,导函数也简称导数.

2. 曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系

(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线.

(2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.

1. f ′(x )是函数f (x )=1

3

x 3+2x +1的导函数,则f ′(-1)的值为________.

答案 3

解析 ∵f ′(x )=x 2+2,∴f ′(-1)=(-1)2+2=3.

2. 如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)

+f ′(5)=______. 答案 2

解析 如图可知,f (5)=3,f ′(5)=-1,因此f (5)+f ′(5)=2. 3. 已知f (x )=x 2+3xf ′(2),则f ′(2)=________.

答案 -2

解析 由题意得f ′(x )=2x +3f ′(2), ∴f ′(2)=2×2+3f ′(2),∴f ′(2)=-2.

4. 已知点P 在曲线f (x )=x 4-x 上,曲线在点P 处的切线平行于3x -y =0,则点P 的坐标

为________. 答案 (1,0)

解析 由题意知,函数f (x )=x 4-x 在点P 处的切线的斜率等于3,即f ′(x 0)=4x 30

-1=3,∴x 0=1,将其代入f (x )中可得P (1,0).

5.曲线y =x

x +2在点(-1,-1)处的切线方程为____________.

答案 y =2x +1

解析 易知点(-1,-1)在曲线上,且y ′=x +2-x (x +2)2=2

(x +2)2

,∴切线斜率k =y ′|x =-1

=2

1

=2. 由点斜式得切线方程为y +1=2(x +1),即y =2x +1.

题型一 利用定义求函数的导数

例1 利用导数的定义求函数f (x )=x 3在x =x 0处的导数,并求曲线f (x )=x 3在x =x 0处的切

线与曲线f (x )=x 3的交点.

思维启迪:正确理解导数的定义,理解导数的几何意义是本题的关键.

解 f ′(x 0)=lim x →x 0

f (x )-f (x 0)x -x 0

=lim x →x 0

x 3-x 30x -x 0

=lim x →x 0 (x 2+xx 0+x 20)=3x 2

0.

曲线f (x )=x 3在x =x 0处的切线方程为

y -x 30=3x 20·(x -x 0

), 即y =3x 20x -2x 30,由?

????

y =x 3,y =3x 20x -2x 30, 得(x -x 0)2(x +2x 0)=0,解得x =x 0,x =-2x 0.

若x 0≠0,则交点坐标为(x 0,x 30),(-2x 0,-8x 30);若x 0=0,则交点坐标为(0,0).

探究提高 求函数f (x )的导数步骤:

(1)求函数值的增量Δf =f (x 2)-f (x 1); (2)计算平均变化率

Δf Δx =f (x 2)-f (x 1)x 2-x 1

; (3)计算导数f ′(x )=lim Δx →0

Δf

Δx

. 利用导数的定义,求:

(1)f (x )=

1

x

在x =1处的导数; (2)f (x )=1

x +2

的导数.

解 (1)∵Δy Δx =f (1+Δx )-f (1)

Δx =

1

1+Δx

-1Δx

1-1+Δx

Δx

1+Δx =1-(1+Δx )Δx 1+Δx (1+

1+Δx )

-Δx

Δx (

1+Δx +1+Δx )=

-1

1+Δx +1+Δx

∴f ′(1)=lim Δx →0 Δy

Δx =lim Δx →0

-1

1+Δx +1+Δx

=-1

2

.

(2)∵Δy Δx =f (x +Δx )-f (x )Δx

=1x +2+Δx -

1

x +2Δx

(x +2)-(x +2+Δx )

Δx (x +2)(x +2+Δx )

-1

(x +2)(x +2+Δx )

∴f ′(x )=lim Δx →0 Δy Δx =lim Δx →0 -1(x +2)(x +2+Δx )=-1

(x +2)2

. 题型二 导数的运算 例2 求下列函数的导数:

(1)y =e x ·ln x ; (2)y =x ????x 2+1x +1

x 3; (3)y =x -sin x 2cos x

2;

(4)y =(x +1)??

?

?1

x -1. 思维启迪:求函数的导数,首先要搞清函数的结构;若式子能化简,可先化简再求导. 解 (1)y ′=(e x ·ln x )′=e x ln x +e x ·1

x

=e x (ln x +1

x

).

(2)∵y =x 3+1+1x 2,∴y ′=3x 2-2

x 3.

(3)先使用三角公式进行化简,得 y =x -sin x 2cos x 2=x -1

2

sin x ,

∴y ′=????x -12sin x ′=x ′-12(sin x )′=1-1

2cos x . (4)先化简,y =x ·1x -x +1x -1=-x 12+x -1

2,

∴y ′=-12x -12-12x -32=-12x ?

???1+1x . 探究提高 (1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;

(2)有的函数虽然表面形式为函数的商的形式,但在求导前利用代数或三角恒等变形将函数先化简,然后进行求导,有时可以避免使用商的求导法则,减少运算量;

(3)复合函数的求导,要正确分析函数的复合层次,通过设中间变量,确定复合过程,然后求导.

求下列各函数的导数:

(1)y =11-x +1

1+x ;

(2)y =cos 2x

sin x +cos x ;

(3)y =-sin x

2????1-2cos 2x 4; (4)y =(x +1)(x +2)(x +3).

解 (1)∵y =11-x +11+x =2

1-x ,

∴y ′=? ????21-x ′=-2(1-x )′(1-x )2=2

(1-x )2.

(2)∵y =cos 2x

sin x +cos x =cos x -sin x ,

∴y ′=-sin x -cos x .

(3)∵y =-sin x

2????-cos x 2=12sin x , ∴y ′=????12sin x ′=12(sin x )′=1

2

cos x . (4)方法一 y =(x 2+3x +2)(x +3)=x 3+6x 2+11x +6, ∴y ′=3x 2+12x +11.

方法二 y ′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′ =[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)·(x +2)

=(x +2+x +1)(x +3)+(x +1)(x +2) =(2x +3)(x +3)+(x +1)(x +2) =3x 2+12x +11. 题型三 导数的几何意义 例3 已知曲线y =13x 3+4

3

.

(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程; (3)求斜率为1的曲线的切线方程.

思维启迪:求曲线的切线方程,方法是通过切点坐标,求出切线的斜率,再通过点斜式得切线方程.

解 (1)∵P (2,4)在曲线y =13x 3+4

3上,且y ′=x 2,

∴在点P (2,4)处的切线的斜率为y ′|x =2=4. ∴曲线在点P (2,4)处的切线方程为y -4=4(x -2), 即4x -y -4=0.

(2)设曲线y =13x 3+4

3与过点P (2,4)的切线相切于点A ????x 0,13x 30+43,则切线的斜率为y ′|x =x 0=x 20.

∴切线方程为y -????13x 30+43=x 2

0(x -x 0), 即y =x 20·x -23x 30+43

. ∵点P (2,4)在切线上,∴4=2x 20-23x 30+43

即x 30-3x 20+4=0,∴x 30+x 20-4x 2

0+4=0,

∴x 20(x 0+1)-4(x 0+1)(x 0

-1)=0, ∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2, 故所求的切线方程为x -y +2=0或4x -y -4=0. (3)设切点为(x 0,y 0),则切线的斜率为x 20=1,x 0=±1. 切点为(-1,1)或???

?1,5

3, ∴切线方程为y -1=x +1或y -5

3=x -1,

即x -y +2=0或3x -3y +2=0.

探究提高 利用导数研究曲线的切线问题,一定要熟练掌握以下条件:

(1)函数在切点处的导数值也就是切线的斜率.即已知切点坐标可求切线斜率,已知斜率可求切点坐标.

(2)切点既在曲线上,又在切线上.切线有可能和曲线还有其它的公共点.

已知抛物线y =ax 2+bx +c 通过点P (1,1),且在点Q (2,-1)处与直线y =x

-3相切,求实数a 、b 、c 的值. 解 ∵y ′=2ax +b ,

∴抛物线在点Q (2,-1)处的切线斜率为 k =y ′|x =2=4a +b . ∴4a +b =1.①

又∵点P (1,1)、Q (2,-1)在抛物线上,∴a +b +c =1,② 4a +2b +c =-1.③

联立①②③解方程组,得????

?

a =3,

b =-11,

c =9.

∴实数a 、b 、c 的值分别为3、-11、9.

一审条件挖隐含

典例:(14分)设函数y =x 2-2x +2的图象为C 1,函数y =-x 2+ax +b 的图象为C 2,已知过

C 1与C 2的一个交点的两切线互相垂直. (1)求a ,b 之间的关系; (2)求ab 的最大值.

审题路线图

C 1与C 2有交点

↓(可设C 1与C 2的交点为(x 0,y 0)) 过交点的两切线互相垂直 ↓(切线垂直隐含着斜率间的关系) 两切线的斜率互为负倒数 ↓(导数的几何意义) 利用导数求两切线的斜率: k 1=2x 0-2,k 2=-2x 0+a ↓(等价转换)

(2x 0-2)(-2x 0+a )=-1① ↓(交点(x 0,y 0)适合解析式)

?

????

y 0=x 20-2x 0+2

y 0=-x 20+ax 0+b ,即2x 20-(a +2)x 0+2-b =0 ②

↓(注意隐含条件方程①②同解) a +b =52

↓(消元)

ab =a ????52-a =-????a -542+2516 当a =54时,ab 最大且最大值为25

16.

规范解答

解 (1)对于C 1:y =x 2-2x +2,有y ′=2x -2,[1分] 对于C 2:y =-x 2+ax +b ,有y ′=-2x +a ,[2分] 设C 1与C 2的一个交点为(x 0,y 0),

由题意知过交点(x 0,y 0)的两切线互相垂直. ∴(2x 0-2)(-2x 0+a )=-1, 即4x 20-2(a +2)x 0+2a -1=0① 又点(x 0,y 0)在C 1与C 2上,

故有?

????

y 0=x 20-2x 0+2y 0=-x 20+ax 0+b

?2x 20-(a +2)x 0+2-b =0② 由①②消去x 0,可得a +b =5

2.[7分]

(2)由(1)知:b =5

2

-a ,

∴ab =a ????52-a =-????a -542+25

16

.[10分]

∴当a =54时,(ab )最大值=25

16

.[12分]4

温馨提醒 审题包括两方面内容:题目信息的挖掘、整合以及解题方法的选择;本题切入点是两条曲线有交点P (x 0,y 0),交点处的切线互相垂直,通过审题路线可以清晰看到审题的思维过程.

方法与技巧

1. 在对导数的概念进行理解时,特别要注意f ′(x 0)与(f (x 0))′是不一样的,f ′(x 0)代表函数

f (x )在x =x 0处的导数值,不一定为0;而(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常量,其导数一定为0,即(f (x 0))′=0.

2. 对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的

应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误. 失误与防范

1. 利用导数定义求导数时,要注意到x 与Δx 的区别,这里的x 是常量,Δx 是变量. 2. 利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.

3. 求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者

包括了前者.

4. 曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.

A 组 专项基础训练 (时间:35分钟,满分:57分)

一、选择题(每小题5分,共20分)

1. 若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于

( )

A .-1

B .-2

C .2

D .0 答案 B

解析 f ′(x )=4ax 3+2bx ,

∵f ′(x )为奇函数且f ′(1)=2,∴f ′(-1)=-2. 2. 已知f (x )=x ln x ,若f ′(x 0)=2,则x 0等于

( )

A .e 2

B .e C.ln 2

2 D .ln 2

答案 B

解析 f (x )的定义域为(0,+∞),f ′(x )=ln x +1, 由f ′(x 0)=2,即ln x 0+1=2,解得x 0=e.

3. 若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为

( )

A .4x -y -3=0

B .x +4y -5=0

C .4x -y +3=0

D .x +4y +3=0

答案 A

解析 切线l 的斜率k =4,设y =x 4的切点的坐标为(x 0,y 0),则k =4x 30=4,∴x 0=1,∴切点为(1,1),

即y -1=4(x -1),整理得l 的方程为4x -y -3=0.

4. 若曲线y =x -12在点(a ,a -1

2

)处的切线与两个坐标轴围成的三角形的面积为18,则a

等于

( )

A .64

B .32

C .16

D .8

答案 A

解析 ∵y =x -12,∴y ′=-12x -3

2

∴曲线在点(a ,a -12)处的切线斜率k =-12a -3

2,

∴切线方程为y -a -12=-12a -3

2(x -a ).

令x =0得y =32a -1

2;令y =0得x =3a .

∴该切线与两坐标轴围成的三角形的面积为 S =12·3a ·32a -12=94a 12=18,∴a =64. 二、填空题(每小题5分,共15分)

5. 若以曲线y =1

3

x 3+bx 2+4x +c (c 为常数)上任意一点为切点的切线的斜率恒为非负数,则

实数b 的取值范围为__________. 答案 [-2,2]

解析 y ′=x 2+2bx +4,∵y ′≥0恒成立, ∴Δ=4b 2-16≤0,∴-2≤b ≤2.

6. 设函数f (x )的导数为f ′(x ),且f (x )=f ′????π2sin x +cos x ,则f ′???

?π4=________. 答案 - 2

解析 因为f (x )=f ′????

π2sin x +cos x , 所以f ′(x )=f ′????π2cos x -sin x , 所以f ′????π2=f ′????π2cos π2-sin π2

即f ′????π2=-1,所以f (x )=-sin x +cos x , 故f ′????π4=-cos π4-sin π4

=- 2. 7. 已知函数f (x ),g (x )满足f (5)=5,f ′(5)=3,g (5)=4,g ′(x )=1,则函数y =

f (x )+2

g (x )

的图象在x =5处的切线方程为____________. 答案 5x -16y +3=0 解析 由y =f (x )+2

g (x )

=h (x )知

y ′=h ′(x )=f ′(x )g (x )-(f (x )+2)g ′(x )

[g (x )]2,

得h ′(5)=f ′(5)g (5)-(f (5)+2)g ′(5)

[g (5)]2

=3×4-(5+2)×142=516.

又h (5)=f (5)+2g (5)=5+24=7

4,

所以切线方程为y -74=5

16(x -5),

即5x -16y +3=0. 三、解答题(共22分)

8. (10分)已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第

三象限. (1)求P 0的坐标;

(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解 (1)由y =x 3+x -2,得y ′=3x 2+1,

由已知令3x 2+1=4,解之得x =±1. 当x =1时,y =0;当x =-1时,y =-4.

又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4). (2)∵直线l ⊥l 1,l 1的斜率为4,∴直线l 的斜率为-14.

∵l 过切点P 0,点P 0的坐标为(-1,-4), ∴直线l 的方程为y +4=-1

4(x +1),

即x +4y +17=0.

9. (12分)已知函数f (x )=x 在x =14处的切线为l ,直线g (x )=kx +9

4

与l 平行,求f (x )的图象

上的点到直线g (x )的最短距离. 解 因为f (x )=x ,所以f ′(x )=

1

2x . 所以切线l 的斜率为k =f ′????14=1,切点为T ????14,12.所以切线l 的方程为x -y +14=0. 因为切线l 与直线g (x )=kx +9

4平行,

所以k =1,即g (x )=x +9

4

.

f (x )的图象上的点到直线

g (x )=x +94的最短距离为切线l :x -y +14=0与直线x -y +9

4=0

之间的距离,

所以所求最短距离为

???

?

94-142

= 2.

B 组 专项能力提升 (时间:25分钟,满分:43分)

一、选择题(每小题5分,共15分)

1. 若函数f (x )=x 2+bx +c 的图象的顶点在第四象限,则函数f ′(x )的大致图象是( )

答案 A 解析

∵f (x )=x 2+bx +c =

????x +b 22-b 2

4

+c , 由f (x )的图象的顶点在第四象限得-b

2>0,∴b <0.

又f ′(x )=2x +b ,斜率为正,纵截距为负,故选A.

2. (2011·湖南)曲线y =sin x sin x +cos x -1

2

在点M ????π4,0处的切线的斜率为 ( )

A .-1

2

B.1

2

C .-

2

2

D.22

答案 B

解析 ∵y ′=cos x (sin x +cos x )-(cos x -sin x )sin x

(sin x +cos x )2

1(sin x +cos x )2

.故y ′|x =π4=1

2,

∴曲线在点M ????π4,0处的切线的斜率为12

. 3. 已知点P 在曲线y =4

e x +1

上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )

A.????0,π4

B.????

π4,π2 C.????

π2,3π4

D.????

3π4,π

答案 D

解析 设曲线在点P 处的切线斜率为k ,

则k =y ′=-4e x

(e x +1)2=-4

e x +1e x +2

.

因为e x >0,所以由基本不等式可得

k ≥-42

e x ·1e

x +2=-1.

又k <0,所以-1≤k <0,即-1≤tan α<0. 所以3π

4

≤α<π.故选D.

二、填空题(每小题5分,共15分)

4. 若函数f (x )=-13x 3+1

2

f ′(1)x 2-f ′(2)x +5,则曲线f (x )在点(0,f (0))处的切线l 的方程为

________. 答案 x -y +5=0

解析 f ′(x )=-x 2+f ′(1)·x -f ′(2),

∴?????

f ′(1)=-1+f ′(1)-f ′(2)

f ′(2)=-4+2f ′(1)-f ′(2)

, ∴f ′(2)=-1,f ′(1)=1.

∴f (x )=-13x 3+1

2x 2+x +5,f ′(x )=-x 2+x +1.

∴f ′(0)=1,f (0)=5.

∴曲线f (x )在点(0,f (0))处的切线方程为y =x +5.

5. 已知函数y =f (x )及其导函数y =f ′(x )的图象如图所示,则曲线y =f (x )

在点P 处的切线方程是__________. 答案 x -y -2=0

解析 根据导数的几何意义及图象可知,曲线y =f (x )在点P 处的切线 的斜率k =

f ′(2)=1,又过点P (2,0),

所以切线方程为x -y -2=0.

6. 曲边梯形由曲线y =x 2+1,y =0,x =1,x =2所围成,过曲线y =x 2+1,x ∈[1,2]上一点

P 作切线,使得此切线从曲边梯形上切出一个面积最大的普通梯形,则这一点的坐标为__________. 答案 ????

32,134

解析 设P (x 0,x 20+1),x ∈[1,2],则易知曲线y =x 2+1在点P 处的切线方程为y -(x 20

+1)=2x 0(x -x 0),

令y =2x 0(x -x 0)+x 20

+1=g (x ), 由g (1)+g (2)=2(x 20+1)+2x 0(1-x 0+2-x 0), 得S 普通梯形=g (1)+g (2)2×1=-x 20+3x 0+1 =-????x 0-322+13

4

, 所以当P 点坐标为????32,134时,S 普通梯形最大. 三、解答题

7. (13分)设函数f (x )=ax -b

x

,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.

(1)求f (x )的解析式;

(2)曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.

解 (1)方程7x -4y -12=0可化为y =7

4

x -3.

当x =2时,y =12.又f ′(x )=a +b

x

2,

于是???

2a -b 2=12

a +

b 4=7

4,

解得?????

a =1,

b =3.

故f (x )=x -3x

.

(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3

x 2知曲线在点P (x 0,y 0)处的切线方程为y -

y 0=???

?1+3

x 20

(x -x 0), 即y -?

???x 0-3x 0

=????1+3

x 20

(x -x 0). 令x =0,得y =-6

x 0

从而得切线与直线x =0的交点坐标为?

???0,-6x 0

. 令y =x ,得y =x =2x 0,

从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).

所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12????

-6x 0|2x 0

|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形面积为定值,且此定值为6.

高考数学导数题型归纳(文科)-

文科导数题型归纳 高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2010省统测2) 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常 数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数” , 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0)030 2(3)09330 g m g m <-? ?<--

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编 函数与导数 一. 选择题: 1.(全国一1 )函数y =的定义域为( C ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥ D .{}|01x x ≤≤ 2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A ) 3.(全国一6)若函数(1)y f x =- 的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e - B .2x e C .21x e + D .22x e + 4.(全国一7)设曲线11x y x += -在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .12- D .2- 5.(全国一9)设奇函数()f x 在(0)+∞, 上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D ) A .(10)(1)-+∞,, B .(1)(01)-∞-, , C .(1)(1)-∞-+∞, , D .(10)(01)-,, 6.(全国二3)函数1()f x x x = -的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 A B C D

C . 坐标原点对称 D . 直线x y =对称 8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,, ,,,则( C ) A .a > B .b a c >> C .c a b >> D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 11.(四川卷10)设()()sin f x x ω?=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213 13.(天津卷3)函数1y =04x ≤≤)的反函数是A (A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤) (C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤) 14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为B (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,

最新-2017新课标高考数学导数分类汇编(文)

2011-2017新课标(文科)导数压轴题分类汇编 【2011新课标】21. 已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。 (1)求a 、b 的值; (2)证明:当0x >,且1x ≠时, f (x )> ln x x -1 【解析】 (1)22 1 ( ln ) '()(1)x x b x f x x x α+-= -+ 由于直线230x y +-=的斜率为1 2 - ,且过点(1,1), 故(1)1,1'(1),2f f =???=-?? 即1,1,22 b a b =???-=-?? 解得1a =,1b =。 (2)由(1)知f (x )=x x x 1 1ln ++,所以f (x )-ln x x -1=11-x 2 (2ln x -x 2-1x ), 考虑函数,则2 2 222)1()1(22)(x x x x x x x h -- =---=', 所以x ≠1时h ′(x )<0,而h (1)=0 故)1,0(∈x 时,h (x )>0可得,),1(+∞∈x 时,h (x )<0可得, 从而当,且时,. 【2012新课标】21. 设函数f (x ) = e x -ax -2 (1)求f (x )的单调区间 (2)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 【解析】 (1) f (x )的定义域为(,)-∞+∞,()x f x e a '=-, 若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增. 若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(l n ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. (2)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++. 故当0x >时,()()10x k f x x '-++>等价于1(0) (1) x x k x x e +<+>-①. 令1()(1) x x g x x e +=+-,则221(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+= --. 由(1)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, ln ()1x f x x > -ln ()1x f x x >-0x >1x ≠ln ()1 x f x x >-

高考数学导数题型归纳

导数题型归纳 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 例2:设函数),10(323 1)(223R b a b x a ax x x f ∈<<+-+-= (Ⅰ)求函数f (x )的单调区间和极值; (Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围.

例3;已知函数32()f x x ax =+图象上一点(1,)P b 处的切线斜率为3-, 326()(1)3(0)2 t g x x x t x t -=+ -++> (Ⅰ)求,a b 的值; (Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例4:已知R a ∈,函数x a x a x x f )14(2 1121)(23++++=. (Ⅰ)如果函数)()(x f x g '=是偶函数,求)(x f 的极大值和极小值; (Ⅱ)如果函数)(x f 是), (∞+-∞上的单调函数,求a 的取值范围.

例5、已知函数3211()(2)(1)(0).32 f x x a x a x a =+-+-≥ (I )求()f x 的单调区间; (II )若()f x 在[0,1]上单调递增,求a 的取值范围。子集思想 例6、已知函数232 )1(31)(x k x x f +-=,kx x g -=31)(,且)(x f 在区间),2(+∞上为增函数. (1) 求实数k 的取值范围; (2) 若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围.

2020届高考数学导数的11个专题

目录 导数专题一、单调性问题 (2) 导数专题二、极值问题 (38) 导数专题三、最值问题 (53) 导数专题四、零点问题 (77) 导数专题五、恒成立问题和存在性问题 (118) 导数专题六、渐近线和间断点问题 (170) 导数专题七、特殊值法判定超越函数的零点问题 (190) 导数专题八、避免分类讨论的参变分离和变换主元 (201) 导数专题九、公切线解决导数中零点问题 (214) 导数专题十、极值点偏移问题 (219) 导数专题十一、构造函数解决导数问题 (227)

导数专题一、单调性问题 【知识结构】 【知识点】 一、导函数代数意义:利用导函数的正负来判断原函数单调性; 二、分类讨论求函数单调性:含参函数的单调性问题的求解,难点是如何对参数进行分类讨论, 讨论的关键在于导函数的零点和定义域的位置关系. 三、分类讨论的思路步骤: 第一步、求函数的定义域、求导,并求导函数零点; 第二步、以导函数的零点存在性进行讨论;当导函数存在多个零点的时,讨论他们的大小关系及与 区间的位置关系(分类讨论); 第三步、画出导函数的同号函数的草图,从而判断其导函数的符号(画导图、标正负、截定义域);第四步、(列表)根据第五步的草图列出f '(x),f (x)随x 变化的情况表,并写出函数的单调区间; 第五步、综合上述讨论的情形,完整地写出函数的单调区间,写出极值点,极值与区间端点函数 值比较得到函数的最值. 四、分类讨论主要讨论参数的不同取值求出单调性,主要讨论点: 1.最高次项系数是否为0; 2.导函数是否有极值点; 3.两根的大小关系; 4.根与定义域端点讨论等。 五、求解函数单调性问题的思路: (1)已知函数在区间上单调递增或单调递减,转化为f '(x) ≥ 0 或f '(x) ≤ 0 恒成立; (2)已知区间上不单调,转化为导函数在区间上存在变号零点,通常利用分离变量法求解参 变量的范围; (3)已知函数在区间上存在单调递增或单调递减区间,转化为导函数在区间上大于零或小于 零有解. 六、原函数单调性转化为导函数给区间正负问题的处理方法 (1)参变分离; (2)导函数的根与区间端点直接比较;

高考真题理科数学导数

2012年高考真题理科数学解析汇编:导数与积分 一、选择题 1 .(2012年高考(新课标理))已知函数1 ()ln(1)f x x x = +-;则()y f x =的图像大致为 2 .(2012年高考(浙江理))设a >0,b >0. ( ) A .若2223a b a b +=+,则a >b B .若2223a b a b +=+,则a b D .若2223a b a b -=-,则a

5 .(2012年高考(山东理))设0a >且1a ≠,则“函数()x f x a =在R 上是减函数 ”,是 “函数3 ()(2)g x a x =-在R 上是增函数”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 6 .(2012年高考(湖北理))已知二次函数()y f x =的图象如图所示,则它与x 轴 所围图形的面积为 ( ) A . 2π 5 B . 43 C . 32 D . π2 7 .(2012年高考(福建理))如图所示,在边长为1的正方形OABC 中任取一点 P,则点P 恰好取自阴影部分的概率为 ( ) A . 14 B . 15 C . 16 D . 17 8 .(2012年高考(大纲理))已知函数3 3y x x c =-+的图像与x 轴恰有两个 公共点,则c = ( ) A .2-或2 B .9-或3 C .1-或1 D .3-或1 二、填空题 9 .(2012年高考(上海理))已知函数 )(x f y =的图像是折线段ABC ,若中 A (0,0), B (21,5), C (1,0). 函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为_______ . 10.(2012年高考(山东理))设0a >.若曲线y x = 与直线,0x a y ==所围成封闭图形 的面积为2 a ,则a =______. 11.(2012年高考(江西理))计算定积分 1 21 (sin )x x dx -+=? ___________. 12.(2012年高考(广东理))曲线33y x x =-+在点()1,3处的切线方程为 ___________________. 三、解答题 13.(2012年高考(天津理))已知函数 ()=ln (+)f x x x a -的最小值为0,其中>0a . (Ⅰ)求a 的值; (Ⅱ)若对任意的[0,+)x ∈∞,有2 ()f x kx ≤成立,求实数k 的最小值; 1-y x O 第3题图 1 1

2019年高考文科数学导数及其应用分类汇编

导数及其应用 1.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+= 【答案】C 【解析】2cos sin ,y x x '=-π2cos πsin π2,x y =∴=-=-' 则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=. 故选C . 2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 3.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b ,

高中数学导数题型总结

导数 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值围。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值; (2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值围。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()() ()a x x x f --=42 。求导数()x f ';(2)若()01'=-f ,求() x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 442 3 +--=,∴ ()423'2 --=ax x x f 。 (2)()04231'=-+=-a f ,2 1= ∴a 。()()()14343'2 +-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3 4 =x , 则()x f 和()x f '在区间[] 2,2- ()2 91= -f ,275034-=??? ??f 。所以,()x f 在区间[]2,2-上的最大值为 275034-=?? ? ??f ,最 小值为()2 9 1= -f 。 答案:(1)()423'2 --=ax x x f ;(2)最大值为275034- =?? ? ??f ,最小值为()2 91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。 考点七:导数的综合性问题。 例8. 设函数3 ()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线 670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

人教版2017年高考数学真题导数专题

2017年高考真题导数专题   一.解答题(共12小题) 1.已知函数f(x)=ae2x+(a﹣2)e x﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)=x﹣1﹣alnx. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围. 5.设函数f(x)=(1﹣x2)e x. (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤ax+1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x (x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数. (Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;

(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值. 8.已知函数f(x)=e x cosx﹣x. (1)求曲线y=f(x)在点(0,f(0))处的切线方程; (2)求函数f(x)在区间[0,]上的最大值和最小值. 9.设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数. (Ⅰ)求g(x)的单调区间; (Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0; (Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且 ∈[1,x0)∪(x0,2],满足|﹣x0|≥. 10.已知函数f(x)=x3﹣ax2,a∈R, (1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程; (2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x) =e x f(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0; (ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)=e x(e x﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

高中数学函数与导数常考题型归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1 x -a . 若a≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ???? 0,1a 时,f ′(x )>0; 当x ∈? ?? ?? 1a ,+∞时,f ′(x )<0, 所以f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ?? ??1a =ln 1 a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ?? 1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.

高考数学导数专题复习(基础精心整理)学生版

导数专题复习(基础精心整理)学生版 【基础知识】 1.导数定义:在点处的导数记作k = 相应的切线方程是))((000x x x f y y -'=- 2.常见函数的导数公式: ①;②;③;④; ⑤;⑥;⑦;⑧ 。 3.导数的四则运算法则: (1) (2) (3) 4.导数的应用: (1)利用导数判断函数单调性: ①是增函数;②为减函数;③为常数; (2)利用导数求极值:①求导数;②求方程的根;③列表得极值(判断零点两边的导函数的正负)。 (3)利用导数求最值:比较端点值和极值 【基本题型】 一、求()y f x =在0x 处的导数的步骤:(1)求函数的改变量()()00y f x x f x ?=+?-;(2)求平均变化率 ()()00f x x f x y x x +?-?=?V ;(3)取极限,得导数()00lim x y f x x →?'=?V 。 例1..已知x f x f x x f x ?-?+=→?) 2()2(lim ,1)(0则的值是( ) A. 41- B. 2 C. 4 1 D. -2 变式1:()()()为则设h f h f f h 233lim ,430 --='→( ) A .-1 B.-2 C .-3 D .1 二、导数的几何意义 ()f x 0x x x f x x f x f x x y x ?-?+='=='→?) ()(lim )(|000 00'0C ='1()n n x nx -='(sin )cos x x ='(cos )sin x x =-'()ln x x a a a =x x e e =')('1(log )ln a x x a =x x 1 )(ln '= )()()()(])()(['+'='x g x f x g x f x g x f 2)()()()()()()(x g x g x f x g x f x g x f ' -'=' ??? ? ??' ?'='x u u f x u f ))(()(0)(x f x f ?>')(0)(x f x f ?<')(0)(x f x f ?≡')(x f '0)(='x f

高考数学导数题型归纳

导数题型归纳 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- (1) ()y f x =在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < 解法二:分离变量法: ∵ 当0x =时, 2 ()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2 ()30g x x mx =--<恒成立 等价于233 x m x x x ->=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 解法三:变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)0230 11(2)0230 F x x x F x x ?->--+>?????-<-+>??? 例2),10(32 R b a b x a ∈<<+- ],2不等式()f x a '≤恒成立,求a 的取值范围.

2019年高考数学理科数学 导数及其应用分类汇编

2019年高考数学理科数学 导数及其应用 1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 2.【2019年高考天津理数】已知a ∈R ,设函数222,1, ()ln , 1.x ax a x f x x a x x ?-+≤=?->?若关于x 的不等式()0 f x ≥在R 上恒成立,则a 的取值范围为 A .[] 0,1 B .[] 0,2 C .[]0,e D .[] 1,e 【答案】C 【解析】当1x =时,(1)12210f a a =-+=>恒成立; 当1x <时,2 2 ()22021 x f x x ax a a x =-+≥?≥-恒成立, 令2 ()1 x g x x =-, 则222(11)(1)2(1)1 ()111x x x x g x x x x -----+=-=-=- --- 11122(1)2011x x x x ???? =--+-≤--?= ? ? ?--???? , 当1 11x x -= -,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.

当1x >时,()ln 0f x x a x =-≥,即ln x a x ≤恒成立, 令()ln x h x x = ,则2ln 1()(ln )x h x x -'=, 当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =, ∴min ()e a h x ≤=, 综上可知,a 的取值范围是[0,e]. 故选C. 3.(2019浙江)已知,a b ∈R ,函数32 ,0 ()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b , 2(1)y x a x =+-', 当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意; 当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点. 根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点?函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

相关文档
最新文档