集成光学铌酸锂调制器偏置漂移反馈电路硕士论文

集成光学铌酸锂调制器偏置漂移反馈电路硕士论文
集成光学铌酸锂调制器偏置漂移反馈电路硕士论文

集成光学调制器工作点稳定性研究

【摘要】基于铌酸锂材料的M-Z调制器已经被广泛用于数字光通信系统、微波光子链路以及各种光交换系统中,但是调制器的偏置工作点在外界因素的干扰下以及受器件的老化影响而产生漂移,因此无论是在某些对信号的调制相位要求高的光通信系统还是在对信号的调

制幅度要求高的光通信系统中,如何实现偏置工作点的精确控制成为决定系统性能的关键技术。传统铌酸锂调制器的自动偏置控制技术是以调制器的输入与输出直流光功率之比作为反馈参量的反馈控制系统,这种技术只能用于将器件稳定地工作在线性工作点且控制精度受输入光强度影响较大,精度不高,另外一种基于抑制谐波幅度的改进技术虽然精度较高,但是受输入光强度的影响也很大。本文设计了一种运用扰动信号的二次谐波信号与基波信号幅度的比值作为反馈系

统的反馈参量的自动偏置控制系统,能够很大程度地摆脱控制精度受输入光强度的影响,本文以实现铌酸锂调制器的工作点的稳定为研究对象,进行了如下的研究工作:1、分析了调制器工作点漂移特性,理论上分析了偏置相位对光通信中的Rof链路的增益、噪声、动态范围的影响。2、分析了以扰动信号的二次谐波与基波信号幅度的比值为反馈参量的偏置控制系统的控制原理及结构。3、设计了... 更多还原

【Abstract】 Lithium niobate based Mach-Zehnder modulators

are widely used in digital opticalcommunication systems,

microwave photonic links and various photonics switchingsystems, but the operating bias point of the modulator is known to drift over time due toenvironment perturbations and aging effects. Therefore high precision bias controlbecomes very critical for application where either amplitude or phase information fromM-Z modulators determines the system performance. Conventional lithium niobate M-Zmo... 更多还原

【关键词】集成光学;铌酸锂;调制器;偏置;漂移;反馈电路;

【Key words】integrated optics;Lithium Niobate;modulator;bias;drift;Feedback circuits;

摘要4-5

ABSTRACT 5

简缩字表8-9

图表目录9-12

第一章绪论12-21

1.1 引言12

1.2 研究背景及现状12-19

1.2.1 铌酸锂集成光学器件的结构及工作原理12-15

1.2.2 集成光学铌酸锂调制器工作点漂移原理15-19

1.3 本文主要工作及内容安排19-21

第二章铌酸锂调制器工作点特性分析21-34

2.1 工作点漂移对调制器非线性的影响21-27

2.1.1 引言21

2.1.2 工作点的漂移对调制器系统直流光功率的影响21-25

2.1.3 工作点的漂移对谐波信号的影响25-27

2.2 调制器偏置点设置对模拟光通信链路的影响27-33

2.2.1 模拟光通信链路系统模型27-28

2.2.2 系统增益28-29

2.2.3 系统噪声系数29-30

2.2.4 无寄生动态范围30-31

2.2.5 计算仿真分析31-33

2.3 本章小结33-34

第三章铌酸锂调制器自动偏置控制系统设计34-45

3.1 铌酸锂调制器自动偏置控制系统理论分析34-37

3.1.1 引言34-35

3.1.2 铌酸锂自动偏置控制系统设计原理35-37

3.2 铌酸锂调制器自动偏置控制系统结构设计37-38

3.3 系统PID 控制器设计38-44

3.3.1 标准PID 控制算法38-39

3.3.2 几种改进的PID 控制算法39-41

3.3.3 系统PID 控制器仿真41-44

3.4 本章小结44-45

第四章系统硬件电路设计45-57

4.1 信号处理模块45-52

4.1.1 滤波电路模块设计45-46

4.1.2 真有效值转换电路设计46-48

4.1.3 相位检测硬件电路设计48-51

4.1.4 除法模块设计51-52

4.2 基于FPGA 的PID 控制模块设计52-56

4.2.1 基于FPGA 的PID 控制算法的仿真52-54

4.2.2 基于FPGA 的系统PID 模块硬件平台设计54-56

4.3 本章小结56-57

第五章实验与数据分析57-64

5.1 谐波测量实验与电路模块验证实验57-62

5.2 本章小结62-64

第六章总结与展望64-66

致谢66-67

参考文献

铌酸锂将主导40G调制器

铌酸锂将主导40G调制器市场 40Gb/s传送系统面世伊始所遭遇的众多技术问题现在都已经得到解决。其中推动DWDM 网络向40Gb/s传送速率升级的关键因素之一便是光信号产生技术的进步。 调制器是产生光信号的关键器件。在TDM和WDM系统的发射机中,从连续波(CW)激光器发出的光载波信号进入调制器,高速数据流将迭加到光载波信号上从而完成调制。 近些年来,由于铌酸锂(LiNbO3)波导的低损耗、高电光效率等特性,铌酸锂在2.5Gb/s 及更高速率的光调制器中得到越来越广泛的使用。基于马赫-曾德(MZ)波导结构的LiNbO3行波调制器已经成为现有系统中使用最广泛的调制器。 LiNbO3调制器通常分为X切和Z切两种规格,各有优缺点。前者的主要优点在于工作时无啁啾产生,因而发送机设计比较简单;后者的主要优点是驱动电压较低、带宽较大。传统观点认为,与Z切调制器相比,X切调制器由于带宽和电光系数的限制,不适用于10Gb/s以上的调制。 即便如此,CorningOTI(现为Avanex)的调制器研究组仍然提出了用于40Gb/s传送系统的X切调制器设计技术方案。通过多个高比特率传送系统的实验,我们发现,与其它基于LiNbO3的技术相比,单驱动的X切LiNbO3MZ调制器能够在更高比特速率上支持性能更高、成本更低的传送技术方案。X切调制器已经通过了包括Mintera公司在内众多系统实验室的40Gb/s传送实验的验证。 在去年三月的OFC2003上,Mintera公司的10,000km、40Gb/sDWDM传送演示系统使用的就是X切调制器。Mintera公司评价说,单驱动的X切LiNbO3MZ调制器适用于需要

集成光学讨论题

聚合物电光波导调制器的研究 一.概述 聚合物电光调制器具有卓越的性能和潜在的巨大应用前景,因此自上世纪九十年代以来就开始受到人们的广泛关注。迄今,由于材料研究方面的进展,聚合物调制研究已经取得了巨大进步,但是仍然存在诸如器件稳定性问题和高损耗问题。 在学习了《集成光学》这门课程之后,受到老师和其他上台演示的同学的启发,我对聚合物电光调制器产生了浓厚的兴趣,思考如何能解决器件损耗的问题,在查阅了大量的资料后发现,有一种“包层调制”的方法可以降低器件损耗,即高损耗的电光聚合物材料被用于波导的包层,而其芯层则使用低损耗的非电光的有机或无机材料,由于线性电光效应,信号电场在包层中与其中的光导模消逝场发生耦合,将信号场的能量搭载到光载波上,从而实现信号调制。由于包层中弱的导模功率,因此可以预期包层调制下的材料光损耗是可以降低的,通过优化设计与分析发现适当降低波导芯层的尺寸可以弥补因包层调制引起的调制效率的下降。本文将简单介绍聚合物电光波导调制器的发展、研究、应用以及“包层调制”的基本概念。 二.光调制的基本概念和调制器的种类 1.光调制的一些基本概念 光调制就是将电信号加载到光波上并使得光波的可观测量,如位相、频率、振幅偏偏振,发生变化的过程。最简单直接的调制就是激光光源的内调制,它是利用调制信号直接控制激光器的振荡参数,使输出光特性随信号而变。在直接调制半导体激光二极管的过程中,不仅输出光强度随调制电流发生变化,而且输出光的频率也会发生波动,也就是说在幅度调制的同时还受到频率调制,特别是在信号频率进入微波时的高速调制情况下,这个现象称为“啁啾”特性。由于啁啾的存在,不仅使单个纵模的线宽展宽,而且在单模光纤中传播时,在色散的作用下将使信号的非线性失真加剧,从而限制了通讯系统的中继距离一般小于 80km。与内调制相对照,还存在另一种调制方式--外调制。所谓外调制,就是在激光器的外部设置调制器,利用调制信号作用于调制元件时所产生的物理效应(如电光、声光或磁光等),使通过调制器的激光束的某一参量随信号变化。相比于内调制,外调制方法不仅调制速率高,带宽大,而且无频率啁啾,因此成为当今大容量、长中继的WDM光纤通讯系统和高速光处理系统的标准方法。 调制时光波的任何一个特性参数(位相、频率、振幅、偏振)都可以被调制,相应地,光调制方式可以分为相位调制、振幅调制、频率调制、偏振调制。由于通常的光探测器的输出信号直接与入射光波的强度有关,探测器可以直接从强度调制波还原出调制信号。而相位调制或频率调制等必须采用外差接收来解调,在技术上比较复杂和困难,所以强度调制用的多。 2.光调制器的种类 按照调制器的工作原理,光调制器可以分为电光调制器、声光调制器、磁光调制器、电致吸收调制器。 电光调制器是利用介质的线性电光效应(Electro-optic Effect, EO )来工作的。由于电光效应,介质的折射率变化随信号电压线性改变,介质折射

铌酸锂的性质及应用

铌酸锂的性质及应用 一、晶体基本介绍 铌酸锂(LINbO3,LN)晶体是一种集压电、铁电、热释电、非线性、电光、光弹、光折变等性能于一体的多功能材料,具有良好的热稳定性和化学稳定性,可以利用提拉法生长出大尺寸晶体,而且易于加工,成本低,是少数经久不衰、并不断开辟应用新领域的重要功能材料。目前,已经在红外探测器、激光调制器、光通讯调制器、光学开关、光参量振荡器、集成光学元件、高频宽带滤波器、窄带滤波器、高频高温换能器、微声器件、激光倍频器、自倍频激光器、光折变器件(如高分辨的全息存储)、光波导基片和光隔离器等方面获得了广泛的实际应用,被公认为光电子时代光学硅的主要侯选材料之一。基于准相位匹配技术的周期极化铌酸锂(PeriodieallyPoledLiNbO3,PPLN),可以最大程度地利用其有效非线性系数,广泛应用于倍频、和频/差频、光参量振荡等光学过程,在激光显示和光通信领域具有广阔的应用前景,因而成为非常流行的非线性光学材料。 二、基本化学性质 铌酸锂晶体简称LN,属三方晶系,钛铁矿型(畸变钙钛矿型)结构,AB03型晶体结构的一种类型。其原子堆积为ABAB堆积,并形成畸变的氧八面体空隙,1/3被A离子占据,1/3被B离子占据,余下1/3则为空位。此类结构的主要特点是:A和B两种阳离子的离子半径相近,且比氧离子半径小得多。分子式为LiNbO3,分子量为147.8456。相对密度4.30,晶格常数a=0.5147 nm,c=1.3856 nm,熔点1240℃,莫氏硬度5,折射率n0=2.797,ne=2.208(λ=600 nm),界电常数ε=44,ε=29.5,ε=84,ε=30,一次电光系数γ13=γ23=10×10m/V,

铌酸锂晶体的横向电光效应V0培训讲学

铌酸锂晶体的横向电光效应研究 1实验要求 1研究内容 1.1熟悉沿光轴条件下铌酸锂晶体的横向电光效应。 1.2研究近轴条件下铌酸锂晶体的横向电光效应,对铌酸锂晶体的电光效应进行理论推 导,分析降低晶体驱动电压的方法。 1.3研究非近轴条件下铌酸锂晶体的横向电光效应,分析入射角对晶体电光效应的影 响,进行数值仿真。 2成果形式 2.1采用理论分析与数值仿真结合的方式,研究结果以图表的形式给出。 2.2完成课题研究报告。 2背景介绍 铌酸锂( LINBO3) 晶体作为一种优良的横向电光调制材料,具有驱动电压低、插入损耗小、光谱工作范围宽、消光比高和易于大规模生产等优点,在光通信、光信号传输、电光开关等领域得到了广泛的应用。 理想情况下光线沿着铌酸锂晶体的光轴方向传播,并且在理论分析时不考虑自然双折射的影响,但是,实际应用中光线与光轴完全校准是不可能实现的,这就会造成理论与实际之间存在误差。分析铌酸锂晶体在近轴及非近轴情况下的横向电光效应,对于利用角度调节以改善其电光性能具有指导意义。同时,近轴及非近轴条件下晶体的电光特性对既需要利用晶体双折射效应进行分束或者合束,又需要利用其电光效应产生附加相移的新型电光器件来说是至关重要的。 3基础知识 研究铌酸锂晶体的横向电光效应,涉及到光的偏振、双折射及晶体的电光效应等较为基础的知识,为了更加深入地理解电光效应,更加透彻地分析不沿光轴条件下铌酸锂晶体的横向电光效应,对该问题所涉及一系列基础知识进行复习整理,如下所示。 1光的偏振 1.1电磁波是横波,具有偏振现象,这是许多的光学现象的重要基础,包括电光效应。 1.2对人眼、照相底片及光电探测器起作用的是电磁波中的电场强度E,因此常把电矢 量E称为光矢量,把E的振动称为光振动。在讨论光振动的性质时,只需要考虑 电矢量E即可。 1.3完全偏振光包括线偏振光、圆偏振光和椭圆偏振光,可用如下模型描述(图中给出 了线偏振光的例子,线偏振光的例子里x、y方向的振动无相位差):

铌酸锂晶体电光调制器的性能测试_OK

铌酸锂(LiNb03)晶体电光调制器的性能测试 铌酸锂(LiNbO3)晶体是目前用途最广泛的新型无机材料之一,它是很好的压电换能材料,铁电材料,电光材料,非线性光学材料及表面波基质材料。电光效应是指对晶体施加电场时,晶体的折射率发生变化的效应。有些晶体部由于自发极化存在着固有电偶极矩,当对这种晶体施加电场时,外电场使晶体中的固有偶极矩的取向倾向于一致或某种优势取向,因此,必然改变晶体的折射率,即外电场使晶体的光率体发生变化。铌酸锂调制器,应具有损耗低、消光比高、半波电压低、电反射小的高可靠性的性能。 【实验目的】 1.了解晶体的电光效应及电光调制器的基本原理性能. 2. 掌握电光调制器的主要性能消光比和半波电压的测试方法 3. 观察电光调制现象 【实验仪器】 1.激光器及电源 2.电光调制器(铌酸锂) 3.电光调制器驱动源 4. 检流计 5.示波器 6.音频输出的装置 7.光具台及光学元件 【实验原理】 1.电光效应原理 某些晶体在外电场作用下,构成晶体的原子、分子的排列和它们之间的相互作用随外电场E 的改变发生相应的变化,因而某些原来各向同性的晶体,在电场作用下,显示出折射率的改变。这种由于外电场作用而引起晶体折射率改变的现象称为电光效应。折射率N 和外电场E 的关系如下: ΛΛ++=-2 20 211RE rE n n (1) 式中,0n 为晶体未加外电场时某一方向的折射率,r 是线性电光系数,R 是二次电光系数。通常把电场一次项引起的电光效应叫线性电光效应,又称泡克尔斯效应;把二次项引起的电光效应叫做二次电光效应,又称克尔效应。其中,泡克尔斯效应只在无对称中心的晶体中才有,而克尔效应没有这个限制。只有在无对称中心的晶体中,与泡克尔斯效应相比,克尔效应较小,通常可忽略。 目前普遍采用线性电光效应做电光调制器,这样就不再考虑(1)式中电场E 的二次项和高次项。因此(1)式为:

铌酸锂晶体电光调制器的性能考试OK

铌酸锂晶体电光调制器的性能测试---OK

————————————————————————————————作者:————————————————————————————————日期:

铌酸锂(LiNb03)晶体电光调制器的性能测试 铌酸锂(LiNbO3)晶体是目前用途最广泛的新型无机材料之一,它是很好的压电换能材料,铁电材料,电光材料,非线性光学材料及表面波基质材料。电光效应是指对晶体施加电场时,晶体的折射率发生变化的效应。有些晶体内部由于自发极化存在着固有电偶极矩,当对这种晶体施加电场时,外电场使晶体中的固有偶极矩的取向倾向于一致或某种优势取向,因此,必然改变晶体的折射率,即外电场使晶体的光率体发生变化。铌酸锂调制器,应具有损耗低、消光比高、半波电压低、电反射小的高可靠性的性能。 【实验目的】 1.了解晶体的电光效应及电光调制器的基本原理性能. 2. 掌握电光调制器的主要性能消光比和半波电压的测试方法 3. 观察电光调制现象 【实验仪器】 1.激光器及电源 2.电光调制器(铌酸锂) 3.电光调制器驱动源 4. 检流计 5.示波器 6.音频输出的装置 7.光具台及光学元件 【实验原理】 1.电光效应原理 某些晶体在外电场作用下,构成晶体的原子、分子的排列和它们之间的相互作用随外电场E 的改变发生相应的变化,因而某些原来各向同性的晶体,在电场作用下,显示出折射率的改变。这种由于外电场作用而引起晶体折射率改变的现象称为电光效应。折射率N 和外电场E 的关系如下: ++=-2 20 211RE rE n n (1) 式中,0n 为晶体未加外电场时某一方向的折射率,r 是线性电光系数,R 是二次电光系数。通常把电场一次项引起的电光效应叫线性电光效应,又称泡克尔斯效应;把二次项引起的电光效应叫做二次电光效应,又称克尔效应。其中,泡克尔斯效应只在无对称中心的晶体中才有,而克尔效应没有这个限制。只有在无对称中心的晶体中,与泡克尔斯效应相比,克尔效应较小,通常可忽略。 目前普遍采用线性电光效应做电光调制器,这样就不再考虑(1)式中电场E 的二次项和高次项。因此(1)式为:

什么是调制器

什么是调制器? 中文名称: 调制器 英文名称: Modulator 定义1: 使光、电信号的某些参数(如振幅、强度、频率或相位)按照另一信号的变化规律而变化的部件。 定义2: 一种制约振荡或波的某一特征量,使其随着信号或者另一振荡波的变化而变化的非线性器件。 所属学科: 通信科技(一级学科);通信原理与基本技术(二级学科); 调制器定义 调制器是邻频调制器的简称,也常被称作射频调制器或电视调制器,现也有俗被称为共享器、是有线前端电视机房的主要设备之一; 调制器是调制式直流放大电路中的一个重要环节。由下图的方框可见:欲放大的直流信号ui经过调制器后,变为交流信号UA;再经过交流放大器放大后,最后由解调器转换成直流输出信号UO;振荡器产生开关信号UC;用于控制调制器的取样动作。由于信号的放大任务主要由交流放大器完成,而交流放大器的零点漂移小到可以忽略不计,调制器与解调器的零漂也可以做得很小,所以,调制式直流放大器可用来放大微弱的直流信号,

调制器通常有三种形式:机械调制器(机械斩波器)、晶体管调制器、场效应管调制器。按电路形式可分为并联调制器和串、并联调制器两种,后者比前者性能优越,但结构复杂。 功能 调制器最基本功能是信号调制功能。即将视频/音频信号尽可能不失真地调制到载波上,以满足长距离传送和分配的要求。所以,国标规定正常的调制度为87.5%。伴音信号要于图像信号同时调制。为避免对图像信号的干扰,将伴音信号先调制在调频副载波上,然后放在图像频率的6.5MHz频点上,组成一个完整的电视频道。电视频道总带宽不能超过8MHz.,这就要求调制器有良好的滤波功能,滤波特性不仅要保证每个频道具有标准的残留边带特性,还要保证带外(包括邻频道内)没有任何杂散信号。 制式 根据世界上彩色电视制式的不同,调制器也有PAL制调制器,NTSC制调制器,SECAM制调制器三种制式,我国采用的是PAL-D制式。 邻频调制器采用在48MHz-750MHz频段内PAL-D制式邻频调制方式固定频道输出,在电路设计上采用图像频率﹑伴音频率CPU双锁相环路(PLL)设计的思路,在器件上采用进口优质广播级调制芯片(TOSHIBA、MOTOROAL、

电光调制器工作点控制课程设计论文

基于锁相放大器的电光调制器工作点放大 摘要: 关键词: 引言:基于光时域反射(OTDR)技术的分布式光纤传感系统不仅具有无电磁辐射、抗干扰能力强、化学稳定性好等优点,而且其传感元件仅为光纤,单端测量即可同时获得被测量在时间和空间上的分布状况,空间分辨率可以达到米量级。相对于传统的电传感仪器,具有其自身独特的优势。 其中电光调制器EOM产生的光脉冲具有更快的上升沿,可以获得更高的空间分辨率,其消光比通常也比较高,可以达到30~40dB,且调制过程中无啁啾效应。由于基于光时域反射技术的分布式光纤传感系统常常需要达到米量级的空间分辨率,所以常采用EOM作为探测光脉冲的发生器。然而EOM的工作点在长期工作时易发生漂移现象,从而引起探测光脉冲消光比的波动,降低传感系统的信噪比。因此需要采用自动控制装置对EOM工作点进行锁定。本文在分析EOM调制特性及传统EOM工作点锁定方法局限性的基础上,提出一种基于所想放大器反馈的EOM工作点控制方法,以期实现消光比高、稳定性好的光脉冲输出,降低EOM 工作点漂移对基于光时域反射技术的分布式光纤传感系统性能的影响。 2 基于EOM的脉冲光调制原理 2.1 EOM的工作点选取 EOM 是利用某些晶体的电光效应对光信号进行调制的器件。对一个典型的铌酸锂MZ 电光调制器来说,它的传递函数可以用公式(1)来描述[1]: p=1 ?[1+cos?( π ?Vbias+VRF+ψoffset] 其中,p是归一化的输出光功率,Vbias与VRF分别是给EOM加的直流偏置电压和射频调制电压;Vπ是EOM的半波电压,ψoffset是初始的偏移相位。 为EOM输出特性曲线漂移示意图,EOM光功率-电压传递函数曲线如图1中实线所示

集成光学考试总结讲解学习

集成光学考试总结

第一章 1. 集成光学的分类: ?按集成的方式划分:个数集成和功能集成 ?按集成的类型划分:光子集成回路(PIC)和光电子集成回路(OEIC) ?按集成的技术途径划分:单片集成和混合集成 ?按研究内容划分:导波光学和集成光路 2. 集成光学的定义 (1)集成光学是在光电子学和微电子学基础上,采用集成方法研究和发展光学器件和混合光学-电子学器件系统的一门新的学科。 (2)集成光学是研究介质薄膜中的光学现象,以及光学元器件集成化的一门学科。 (3)集成光学是研究集成光路的特性和制造技术以及与微电子学相结合的学科。 3. 集成光学的主要应用 光纤通信,光子计算机,光纤传感 4. 集成光学系统有什么优点? 1)集成光学系统与离散光学器件系统的比较 (1)光波在光波导中传播,光波容易控制和保持其能量。 (2)集成化带来的稳固定位。 (3)器件尺寸和相互作用长度缩短;相关的电子器件的工作电压也较低。 (4)功率密度高。沿波导传输的光被限制在狭小的局部空间,导致较高的功率密度,容易达到必 要的器件工作阈值和利用非线性效应工作。 (5)体积小,重量轻。集成光学器件一般集成在厘米尺度的衬底上,其体积小,重量轻。 2)集成光路与集成电路的比较

把激光器、调制器、探测器等有源器件集成在同一衬底上,并用光波导、隔离器、耦合器和滤波器等无源器件连接起来构成的光学系统称为集成光路,以实现光学系统的薄膜化、微型化和集成化。 用集成光路代替集成电路的优点包括带宽增加,波分复用,多路开关。耦合损耗小,尺寸小,重量轻,功耗小,成批制备经济性好,可靠性高等。由于光和物质的多种相互作用,还可以在集成光路的构成中,利用诸如光电效应、电光效应、声光效应、磁光效应、热光效应等多种物理效应,实现新型的器件功能。 第二章 1. 光波导的分类 (a)平板波导(slab waveguide) (b)条形波导(strip waveguide) (c)圆柱波导(cylindrical waveguide) 2. 会利用射线光学方法分析平板波导的覆盖层辐射波、衬底层辐射波和传导波的形成条件。

浅议铌酸锂电光调制器的应用差异

浅议铌酸锂电光调制器的应用差异目前市面上常见的10G调制带宽的铌酸锂调制器按结构可大致分为2种, 分别是相位调制器和强度调制器. 其中强度调制器的细分种类又更多, 按应用类型划分其中用于数字光通信的可以分为固定啁啾和零啁啾的类型; 而用于光载微波通信的又有模拟强度调制器;在传感领域为了获得极窄和极高的消光比光脉冲, 又有专门工作于脉冲模式下的调制器. 一般我们在对调制器进行选型, 主要考虑应用场景(模拟or数字系统), 调制速率, 调制格式, 半波电压, 啁啾特性, ON/OFF消光比等. 因诺尔可提供远比Thorlabs更为丰富类型的铌酸锂调制器, 欢迎联系咨询. 以下是Thorlabs对数字光通信的强度调制器的关于固定啁啾和零啁啾详细描述,最后是相位调制器的细节阐述. 10 GHz强度调制器,固定啁啾 Parameter Value Operating Rangea1525 –1605 nm Optical Loss 4.0 dB (Typical) Bit Rate Frequency9.953 Gb/s Electro-optic Bandwidth(-3 dB)10 GHz PRBSb Optical Extinction Ratio13 dB 该调制器设计用于1550 nm窗口。将该调制器使用于另一波长下(例如,可见光)会导致损耗临时增大,而且不在保修范围内。例如,由更短的波长引起的损耗增大可通过将调制器加热到70 °C并维持一小时来恢复。 伪随机二进制序列 特性 C波段和L波段工作范围 低光学损耗:0 dB(典型) 钛扩散Z切面铌酸锂 驱动电压低

长期偏置稳定 Telcordia GR-468兼容 集成的光电探测器 LN82S-FC是10 GHz的LiNbO3强度调制器,0.7固定啁啾,集成光电二极管。它带有PM输入光纤尾纤和SM输出尾纤,终端为FC/PC接头。PM光纤与慢轴对齐,慢轴与e光模式对齐。集成的光电探测器可用于光学功率监测和调制器偏置控制,消除对外部光纤分路器的需要。RF输入通过一个GPO?接头输入调制器。 这些调制器是由钛扩散Z切面LiNbO3制成的,在马赫-曾德尔干涉仪的两个臂之间产生不同的推-拉相移。除了强度调制,这也导致输出信号的相位/频率(线性调频)的偏移。这种固定啁啾调频的调制器将脉冲啁啾降低,当光纤所在的网络的分散系数为正时很有用。啁啾降低的脉冲通过具有正分散系数的光纤时将被压缩,直到达到最小值。超过该点色散项将占主导。因为啁啾脉冲会增加脉冲的谱宽,所以穿过同一段光纤后,线性调频的脉冲最终会比未线性调频的脉冲宽。相比零线性调频设备,这些固定线性调频强度调制器是要求提高功率损耗(对于+1600ps/nm小于2 dB)性能的应用的理想选择。对于电信应用,该LN82S-FC 易于集成到300引脚的兼容MSA的应答器中。 10 GHz强度调制器,零啁啾 Parameter Value Operating Rangea1525 –1605 nm Optical Loss 4.0 dB(Typical) Bit Rate Frequency12.5 Gb/s Electro-optic Bandwidth(-3 dB)10 GHz PRBSb Optical Extinction Ratio13 dB 该调制器设计用于1550 nm窗口。将该调制器使用于另一波长下(例如,可见光)会导致损耗临时增大,而且不在保修范围内。例如,由更短的波长引起的损耗增大可通过将调制器加热到70 °C并维持一小时来恢复。

铌酸锂电光调制器在低频调制中的应用

铌酸锂电光调制器在低频调制中的应用 因为其高带宽的特性,铌酸锂电光调制器(LiNbO3 Modulators)被广泛应用于高速数据光通讯(up to 40 Gb/s)与高频模拟信号传输(20GHz)。铌酸锂电光调制器(LiNbO3 Modulators)较少被用于1GHz以下的低频调制应用中。然而,铌酸锂电光相位调制器(LiNbO3 Phase Modulators)与基于其他替代技术的调制器相比在低频调制方面却有着明显的优势,例如体积更紧凑、操作更容易、驱动电压更低等。因此铌酸锂电光相位调制器甚至被认为是在kHz到MHz调制频率范围的理性器件! 当要把铌酸锂相位调制器与具有较快上升沿与下降沿、低重复频率或长脉宽脉冲信号一起使用的时候,使用者需要十分谨慎。“高带宽”相位调制器(这里的“高带宽”是指>1GHz的带宽)在上述调制信号的应用中性能并非最佳。为了得到高带宽性能,“高带宽”调制器的微波线阻抗是与~50欧姆匹配的,并且负载电阻终端与射频线端相连以减少或避免电子射频信号反射。因此,较高的电流经过射频电极将因为Joule效应导致温度升高。当重复周期或脉冲宽度比热效应的时间长度更长的时候(如1kHz频率以内),发热与热耗散就成为了一个问题。在加热与冷却周期内,电极与波导的物理性质将发生改变,从而导致产生意外的相位漂移。因此5GHz, 10GHz或20GHz的铌酸锂相位调制器不适合非常低重频的应用。 为了抑制上述现象,一个有效的方法是采用带有较高输入阻抗(typ 10KΩ)或直接开路(MΩ)的调制器。有效电光带宽将被降低至几百MHz,这样的调制频率对于大多数应用尤其光纤传感方面应用是足够了,但是因为Joule效应产生的热效应将会显著降低至可以忽略。法国Photline公司为低重频的调制信号开发了一系列性能优化的相位调制器,例如可适用于800nm, 1000nm, 1300nm, 1500nm 的MPX-LN-0.1系列铌酸锂电光相位调制器。 MPX-LN-0.1系列调制器已经通过高低温测试,其在-400C~+850C范围内或

电光调制器

第三章电光调制器

内容 ?电光调制的基本原理 ?铌酸锂(LiNbO3)电光调制器?半导体电吸收调制器(EAM)

电光调制 电光调制:将电信息加载到光载波上,使光参量随着电参 量的改变而改变。光波作为信息的载波。 强度调制的方式 作为信息载体的光载波是一种电磁场:()() 0cos E t eA t ωφ=+r r 对光场的幅度、频率、相位等参数,均可进行调制。在模拟信号的调制中称为AM 、FM 和PM ;在数字信号的调制中称为ASK 、FSK 和PSK 。调制器:将连续的光波转换为光信号,使光信号随电信号的变化而变化。性能优良的调制器必须具备:高消光比、大带宽、低啁啾、低的偏置电 压。

电光调制的主要方式 直接调制:电信号直接改变半导体激光器的偏置电流,使输出激光强度随电信号而改变。 优点:采用单一器件 成本低廉 附件损耗小 缺点:调制频率受限,与激光器弛豫振荡有关 产生强的频率啁啾,限制传输距离 光波长随驱动电流而改变 光脉冲前沿、后沿产生大的波长漂移 适用于短距离、低速率的传输系统

电光调制的主要方式 外调制:调制信号作用于激光器外的调制器上,产生电光、热光或声光等物理效应,从而使通过调制器的激光束的光参量随信号 而改变。 优点:不干扰激光器工作,波长稳定 可对信号实现多种编码格式 高速率、大的消光比 低啁啾、低的调制信号劣化 缺点:额外增加了光学器件、成本增加 增加了光纤线路的损耗 目前主要的外调制器种类有:电光调制器、电吸收调制器

调制器调制器连续光源 光传输 NRZ 调制格式 其他调制格式: ?相位调制 ?偏振调制 ?相位与强度调制想结合光传输RZ 调制格式 脉冲光源电光调制 折射率的改变通过 电介质晶体Pockels 效应和半导体材料 中的电光效应 光吸收的改变通过半导体材料中的Franz-Keldysh效应量子阱半导体材料中的量子限制的Stark 效应光与物质相互作用 相位调制 偏振调制 (双折射材料) 强度调制强度调制通过-干涉仪结构-定向耦合

集成光学考试总结

第一章 1. 集成光学的分类: ?按集成的方式划分:个数集成和功能集成 ?按集成的类型划分:光子集成回路(PIC)和光电子集成回路(OEIC) ?按集成的技术途径划分:单片集成和混合集成 ?按研究内容划分:导波光学和集成光路 2. 集成光学的定义 (1)集成光学是在光电子学和微电子学基础上,采用集成方法研究和发展光学器件和混合光学-电子学器件系统的一门新的学科。 (2)集成光学是研究介质薄膜中的光学现象,以及光学元器件集成化的一门学科。 (3)集成光学是研究集成光路的特性和制造技术以及与微电子学相结合的学科。 3. 集成光学的主要应用 光纤通信,光子计算机,光纤传感 4. 集成光学系统有什么优点? 1)集成光学系统与离散光学器件系统的比较 (1)光波在光波导中传播,光波容易控制和保持其能量。 (2)集成化带来的稳固定位。 (3)器件尺寸和相互作用长度缩短;相关的电子器件的工作电压也较低。 (4)功率密度高。沿波导传输的光被限制在狭小的局部空间,导致较高的功率密度,容易达到必要的器件工作阈值和利用非线性效应工作。 (5)体积小,重量轻。集成光学器件一般集成在厘米尺度的衬底上,其体积小,重量轻。 2)集成光路与集成电路的比较 把激光器、调制器、探测器等有源器件集成在同一衬底上,并用光波导、隔离器、耦合器和滤波器等无源器件连接起来构成的光学系统称为集成光路,以实现光学系统的薄膜化、微型化和集成化。 用集成光路代替集成电路的优点包括带宽增加,波分复用,多路开关。耦合损耗小,尺寸小,重量轻,功耗小,成批制备经济性好,可靠性高等。由于光和物质的多种相互作用,还可以在集成光路的构成中,利用诸如光电效应、电光效应、声光效应、磁光效应、热光效应等多种物理效应,实现新型的器件功能。 第二章 1. 光波导的分类 (a)平板波导(slab waveguide) (b)条形波导(strip waveguide) (c)圆柱波导(cylindrical waveguide) 2. 会利用射线光学方法分析平板波导的覆盖层辐射波、衬底层辐射波和传导波的形成条件。

电光调制器

电光调制器的原理 要用激光作为传递信息的工具,首先要解决如何将传输信号加到激光 辐射上去的问题,我们把信息加载于激光辐射的过程称为激光调制,把完成这一过程的装置称为激光调制器.由已调制的激光辐射还原出所加载信息 的过程则称为解调.因为激光实际上只起到了"携带"低频信号的作用,所以称为载波,而起控制作用的低频信号是我们所需要的,称为调制信号,被调 制的载波称为已调波或调制光.按调制的性质而言,激光调制与无线电波调制相类似,可以采用连续的调幅,调频,调相以及脉冲调制等形式,但激光调制多采用强度调制.强度调制是根据光载波电场振幅的平方比例于调制信号,使输出的激光辐射的强度按照调制信号的规律变化.激光调制之所以常采用强度调制形式,主要是因为光接收器一般都是直接地响应其所接受的 光强度变化的缘故. 激光调制的方法很多,如机械调制,电光调制,声光调制,磁光调制和电源调制等.其中电光调制器开关速度快,结构简单.因此,在激光调制技术及混合型光学双稳器件等方面有广泛的应用.电光调制根据所施加的电场方 向的不同,可分为纵向电光调制和横向电光调制.利用纵向电光效应的调制,叫做纵向电光调制,利用横向电光效应的调制,叫做横向电光调制编辑本段电光调制器的应用 在电通信系统中,原始率数字信号电平的峰-峰值只有0.8V。因为数据率大于2.5Gb/s的铌酸锂调制器的半波电压(Vp)较高,故都需要用驱动器来推动调制器。驱动器不仅要有很宽的工作频带,并且要能提供足够大的微波输出功率。例如:对于10Gb/s、Vp=5.5V的调制器,需要驱动器具有75KHz 到8GHz的工作频带及20dBm(100mW)的1dB输出功率。制作率的驱动器是非常困难的,因此制作具有低Vp的调制器是很受欢迎的。 当然,也要求调制器有良好的其他性能,如低的光插入损耗、大的消光比、小的光反射损耗、弱的电反射损耗和合适的啁啾(chirp)参量。 电光调制器有很多用途。相位调制器可用于相干光纤通信系统,在密集波分复用光纤系统中用于产生多光频的梳形发生器,也能用作激光束的电光移频器。 电光调制器有良好的特性,可用于光纤有线电视(CATV)系统、无线通信系统中基站与中继站之间的光链路和其他的光纤模拟系统。 电光调制器除了用于上述的系统中用于产生高重复频率、极窄的光脉冲或光孤子(Soliton),在先进雷达的欺骗系统中用作为光子宽带微波移相器和移频器,在微波相控阵雷达中用作光子时间延迟器,用于光波元件分析仪,测量微弱的微波电场等。

LiNbO3马赫曾德调制器..

LiNbO3马赫曾德调制器在信号调制中的应用 电子信息工程学院 110421305 刘继鹏 摘要:铌酸锂马赫曾德调制器是目前广泛使用的波导型光调制器件。本文从原 理和应用两个方面对马赫曾德调制器进行分析研究,并且对由马赫曾德调制器调制的各种码型信号进行了软件仿真,通过仿真结果验证其可行性,最后给出了应用于大容量DWDM 光通信系统的载波抑制归零-差分相位键控(CSRZ-DPSK)信号的实现和特点。 关键词:LiNbO3马赫曾德调制器,NRZ,RZ,ASK,CSRZ-DPSK 1. 引言 调制器是产生光信号的关键器件。在TDM 和WDM 系统的发射机中,从连续波(CW)激光器发出的光载波信号进入调制器,高速数据流以驱动电压的方式迭加到光载波信号上从而完成调制。 在网络容量呈指数增长和全球一体化的驱动下,光通信系统正朝着大容量高速率长距离传输的方向快速发展。而调制器的性能和效率首要的决定着光通信系统能否实现这个目标。近年来,由于铌酸锂(LiNbO3)波导的低损耗、高电光效率等特性,铌酸锂在2.5Gb/s 及更高速率的光调制器中得到越来越广泛的使用。基于马赫曾德波导结构的LiNbO3 调制器(简称LiNbO3 马赫曾德调制器)更是以其啁啾可调,驱动电压低以及带宽大等优点成为光通信系统中使用最广泛的高速调制器。本文从原理和应用两个方面对马赫曾德调制器(MZM)进行分析讨论。 2. 马赫曾德调制器的原理 马赫曾德调制器是基于马赫曾德干涉原理的波导型电解质光调制器件。其结构示意下图所示 图1 马赫曾德调制器的结构示意图

在马赫曾德调制器中,输入的光信号在Y 分支器(3dB 分束器)上被分成振幅和相位完全相同的两束光,并且随着光波导在上下两支路上进行传输。如果两平行臂完全对称,在不加调制电压时,两支路光束在输出Y 分支器内重新合并成与原输入光信号相同的光束,单模波导输出。如果在调制区上加调制电压,则由于等离子体色散效应,光波导折射率发生改变,从而使得两平行臂中两束光的相位发生改变。设两臂相位差为Δφ,当Δφ为0°(相移为0)时,则光束在输出Y 分支器内发生相长干涉,此时得到代表逻辑‘1’的“开状态”信号;当Δφ为180°(相移为π)时,光束在输出Y 分支器内发生相消干涉,此时得到代表逻辑‘0’的“关状态”信号。这样,通过对调制电压进行调节可以产生不同的信号,从而实现对信号的编码。 在输出端的Y 分支器的信号可以用如下公式表示: (1) 习惯上使用信号光强来表示马赫曾德调制器的传输特性: (2) 这里E o 和E i 分别表示光波的输出电场和输入电场,V(t)是驱动电压(包括直流偏置和电调制信号), Vπ是半波电压,用于产生光波的π相位偏移。 3.马赫曾德调制器的应用 由于马赫曾德调制器的传输特性是余弦曲线形式的,如下图所示,则调制器可以被偏置在不同的区域并且驱动信号可以层叠在偏置电压上。通过调节偏置电压和驱动信号可以产生NRZ-ASK/NRZ-DPSK 信号,RZ-ASK/RZ-DPSK(包括载波抑制RZ-DPSK)信号等。

PZT型相位调制器1

OPE A K ? PZT-LSM 型相位调制器是一款光纤缠绕在压电陶瓷(PZT ) 上,利用PZT 压电效应所构成的相位调制器件,采用独特的多层缠绕方法,使得该产品具有高稳定性、高速调制特性,可选配多种类型光纤(见订购信息),可应用于开环相位调制解调、可变光纤延迟线、光纤干涉仪、& OTDR 、光纤震动校准等光学传感领域。该模块外形紧凑小巧,方便客户进行系统集成。低的电压驱动能力,适用于标准信号源驱动能力。 ? 极小封装尺寸。 ? 多种光纤类型可选(SM/PM )。 ? 高速调制速率。 ? 低电压驱动能力。 ? 独特缠绕方式。 应用领域 ? 光学(光纤)干涉仪 ? 相位调制器 ? 光纤延迟线 ? &OTDR ? 光纤传感

测试图谱 性能参数 最小值 典型值 最大值 备 注 1注:插入损耗在单模时含连接器损耗,保偏时不含连接器损耗。 性能指标 图1搭建等臂长马赫曾德干涉仪测试图谱 测试数据 图2 驱动频率29KHz 时,驱动电压与光纤膨胀量

订购参数 ESD Protection The laser diodes and photodiodes in the module can be easily destroyed by electrostatic discharge. Use wrist straps, grounded work surfaces, and anti-static techniques when operating this module. When not in use, the module shall be kept in a static-free environment. Laser Safety The module contains class 3B laser source per CDRH, 21CFR 1040.10 Laser Safety requirements. The module is Class IIIb laser products per IEC 60825-1:1993. 外形尺寸

铌酸锂的性质及应用

铌酸锂的性质及应用 The Standardization Office was revised on the afternoon of December 13, 2020

铌酸锂的性质及应用 一、晶体基本介绍 铌酸锂(LINbO3,LN)晶体是一种集压电、铁电、热释电、非线性、电光、光弹、光折变等性能于一体的多功能材料,具有良好的热稳定性和化学稳定性,可以利用提拉法生长出大尺寸晶体,而且易于加工,成本低,是少数经久不衰、并不断开辟应用新领域的重要功能材料。目前,已经在红外探测器、激光调制器、光通讯调制器、光学开关、光参量振荡器、集成光学元件、高频宽带滤波器、窄带滤波器、高频高温换能器、微声器件、激光倍频器、自倍频激光器、光折变器件(如高分辨的全息存储)、光波导基片和光隔离器等方面获得了广泛的实际应用,被公认为光电子时代光学硅的主要侯选材料之一。基于准相位匹配技术的周期极化铌酸锂 (PeriodieallyPoledLiNbO3,PPLN),可以最大程度地利用其有效非线性系数,广泛应用于倍频、和频/差频、光参量振荡等光学过程,在激光显示和光通信领域具有广阔的应用前景,因而成为非常流行的非线性光学材料。 二、基本化学性质 铌酸锂晶体简称LN,属三方晶系,钛铁矿型(畸变钙钛矿型)结构,AB03型晶体结构的一种类型。其原子堆积为ABAB堆积,并形成畸变的氧八面体空隙,1/3被A离子占据,1/3被B离子占据,余下1/3则为空位。此类结构的主要特点是:A和B两种阳离子的离子半径相近,且比氧离子半径小得多。分子式为LiNbO3,分子量为。相对密度,晶格常数a= nm,c= nm,熔点1240℃,莫氏硬度5,折射率n0=,ne=(λ=600 nm),界电常数ε=44,ε=29.5,ε=84,ε=30,一次电光系数γ13=γ23=10×10m/V,γ33=32×10m/V.Γ22=-γ12=-

铌酸锂电光调制器应用于低频调制

Use of LiNb03 modulators at low frequencies LiNb03modulators are widely used for their high bandwidth performances that make them favored devices for high data rate optical communications (up to 40 Gb/s) and high frequency (20 GHz) analog transmission. They are less often used at low frequencies under 1 GHz. However LiNb03phase modulators have also strong benefits at low frequencies (compactness, ease of use, low drive voltage) compared to devices based on alternative technologies and are thus components to be considered even for kHz to MHz frequency range applications. Users searching to implement LiNb03 phase modulators with modulation signals showing low and high frequency components, and the typical case is the one of a pulse signal with sharp rising and fall edges and low repetition rate or long pulse duration, must be very cautious. A “high bandwidth” phase modulator, and here “high bandwidth” means > 1 GHz typically, is not performing extremely well with such a modulation signal. The reason is that in order to get good high bandwidth performance, the impedance of the microwave line of the modulator is matched near to 50 ohms and a load resistance termination is connected at the end of the RF line to reduce or avoid electrical RF reflection. Thus, a significant level of current is traveling in the RF electrodes, leading to local temperature increases by Joule effect. Heating and thermal dissipation becomes a problem when the repetition period or the pulse duration becomes longer than the time constant of the thermal effects (in the range of 1kHz or below). Then the physical properties of the electrodes and waveguide are changing during the heat-on and cool-down periods, leading to unwanted phase drifts. Standard 5, 10 or 20 GHz phase modulators are not suitable for such applications involving very low repletion rate. To suppress that phenomenon, a solution is to use a modulator with a high input impedance load (typ 10 kΩ) or directly an opened electrode line (MΩ). The useful E-O bandwidth is then reduced to several hundred MHz which is sufficient for a large range of applications in particular for sensing applications, but the thermal effects are significantly reduced since the Joule effect becomes negligible. Photline has developed a family of phase modulators whose performances are optimized for low repetition rate modulation signals (MPX-LN-0.1 series are available at 800 nm, 1000 nm, 1300 nm, 1550 nm). MPX-LN-0.1 modulators has been tested in temperature and it has been demonstrated that they keep their performance in operating conditions covering a large temperature range (-40°C +85°C) and during temperature variations.

相关文档
最新文档