木质素综述

木质素综述
木质素综述

木素是芳香族的高分子化合物,也是一类性质相似的物质的总称。不同的原料木素分子的化学组成及结构都有差异。它们是一种无定形结构的物质,存在物的木化组织中,是细胞之间的粘接物,在细胞壁中叶含有,棉花、亚麻等纤维则不含木素。

木素作为具有三维立体结构的天然高分子聚合物,广泛存在于较高等的维管束植物门(被子植物、裸子植物、羊齿植物)中。特别在目本植物中,木素是木质部细胞壁的主要成分之一,在木材中木素作为一种填充和粘结物质,在木材细胞壁中能以

物理或化学的方式是纤维素纤维之间粘结和加固,增加木材的机械强度和抵抗微生物侵蚀的能力,是木化植物直立挺拔和不易

腐蚀。

木素在不同植物中的分布见下表:

这些木素具有苯基丙烷单位的基本骨架,但其芳香核部分有所不同,大致有如下三种:原始的陆生植物和针叶木的木素主要

是愈疮木酚基丙烷(1);进一步进化的阔叶木木素含有(1)和紫丁香基丙烷(2);最进化的稻科,除(1)和(2)之外还

有对—羟基苯基丙烷(3)构造单元。总之与植物进化的同时,木素的构造单元也变得复杂化。

虽然木质素只有三种基本结构,但是不同科植物,其木质素基本结构单元的数量比例差别很大。阔叶木木质素的结构中存在大量的紫丁香结构单元。如尾叶桉木质素紫外光降解产物中,w (丁香基型化合物)=58%,w (愈创木基型化合物)=%.与桉木木质素相比,硫酸盐浆木质素降解产物中愈创木酚和紫丁香酚,在硫酸盐浆木质素中,m (紫丁香基):m (愈创木基)=:1,而在桉木木质素中,该比例为:1,针叶木木质素的结构单元与愈创木基型结构单元为主,其余为少量对羟苯基型。麦草木质素主要由非缩聚愈创木基单元、非缩聚紫丁香基单元组成,其聚合度n 比例为:1:。竹类木质素中—OCH3基含量与阔叶木质素相近。

木质素的理化性质及其对应的亲电亲核反应

化学性质

木质素的化学性质包括发生在苯环上卤化、硝化和氧化反应;发生在侧链的苯甲醛基、芳醚键和烷醚键上的反应;木质

素的改性和显色反应等。其中木质素结构单元反应分为亲核和亲电两大类反应。

一些试剂的亲核性

(1)木质素结构单元侧链的化学反应木质素侧链上的反应都与制浆和木质素改性有关,其反应的本质是亲核反应。有如下一些试剂能和木质素发生亲核反应。

①在碱性介质中,由HO—、HS—、S2—亲核试剂作用使主要醚键断裂,如α—芳醚键、酚型α—烷醚键和酚型β—芳醚键的断裂,木质素大分子碎片化,部分木质素溶解于反应溶液中酚型结构单元解离成酚盐阴离子,酚盐阴离子的盐氧原子通过诱导和共轭效应影响苯环,使其邻位和对位活化,进而影响C—O键稳定性,使α—芳醚键断裂,生成了亚甲基醌中间体,亚甲基醌芳环化生成1,2-二苯乙烯。以氢氧化钠蒸煮中木质素的反应为例。祥见教材

②在中性介质中,与亲核试剂HSO3—或SO3—发生反应,是醚键断裂,引进SO3—基团于降解的木质素碎片。中性亚硫酸盐溶液和木质素的反应为例祥见教材

③在酸性介质中,主要涉及的事酸性亚硫酸盐制浆过程中木质素碎片化反应,SO2水溶液作为亲和试剂,酚型和非酚型α—芳醚键断裂,α—碳磺化,木质素分子亲水性增加,溶解于反应液中。酚型和非酚型α—烷醚键,也可以发生类似反应。以酸性亚硫酸盐溶液和木素的反应为例祥见教材

(2)木质素结构中芳环的化学反应木质素结构单元中芳香环的化学反应与木质素的漂白过程及其改性密切相关,分为亲电和亲核反应。

①亲电取代反应:主要是取代和氧化反应。亲电试剂有氯、二氧化氯、分子氧、臭氧、硝基阳离子等。木质素侧链收到亲电试剂置换二断裂,β—芳醚键氧化断裂,脂肪族侧链氧化成羧酸,芳环氧化分解成邻醌结构的化合物,最后氧化成而羧酸衍生物。以氯与木素的反应为例

CL

2+H

2

O=HOCL+HCL

2HOCL=OCL—+H

2

O+CL

H

2O+CL=H

2

O+CL—

②亲核反应:与木质素中芳环发生亲核反应的试剂有氢氧离子、次氯酸离子和过氧化氢离子。这些亲核试剂都有能降解的木质素碎片中有色结构基团发生反应,不同程度地破换有色结构。

(3)木质素的显色反应

①木质素与浓无机酸的缩合反应:主要与木质素结构中松柏醛结构有关。

②Maule显色反应:用高锰酸钾和盐酸处理木材,再以氨水处理,阔叶才木质素显紫色。紫丁香环经过高锰酸钾和盐酸处理生成甲氧基领苯二酚,在用氨水处理生成甲氧基邻苯醌结构显色反应。

③Cross-Bevan反应:用氧气处理湿润状态下的无抽提物木材,木质素反应后生成氯化木质素,后用亚硫酸及亚硫酸钠处理,阔叶材木质素显红紫色。

物理性质

(1)木质素的分子量和多分散性任何一种分离方法都有可能引起木质素的局部降解和变化。因此,原本木质素的分子量是无法确知的。

(2)木质素的溶解性木质素结构中存在羟基等许多极性基团,造成了很强的分子内和分子间的氢键,因此原本木质素是溶解于任何溶剂的。

(3)木质素的热性质木质素为无定形的热塑性高聚物。在定温下稍显脆性,在溶液中不成膜。具有玻璃态转化性质,在玻璃化温度下,木质素呈玻璃固态;在玻璃化温度以上,分子链发生运动,木质素软化变黏,并具有粘胶力。

(4)相对密度木质素的相对密度大约在~之间。

(5)颜色原本木质素是一种白色或近无色的物质,现在见到的木质素颜色是在分离、制备过程中造成的。

木质素的合成

(1)细胞壁中木质素的堆积(木化)细胞壁的木质化过程,首先在木质化之前先形成了纤维素和半纤维素,而稍后便向细胞中继续供给木质素生物合成的前驱物质,经过复杂的聚合,便形成了纤维素纤维被树脂状物质强化了细胞壁。(2)木质素结构单元的生物合成木质素母体是以苯基丙烷的葡萄糖苷形式存在的。大致过程如下:有葡萄糖经一系列变化形成2-磷酸丙烯酸和4-磷酸D-赤藓糖生成C7化合物磷酸葡庚糖酸,再经过环化而脱氢奎尼酸,,进一步进过莽草酸生成予酚酸,多数的树木,通常从予酚酸经过苯基丙酮酸经氨基化生成苯基丙氨酸,在经过苯基丙氨酸脱氢酶的作用生成桂皮酸,最后生成对-羟基肉桂酸(对-阔马酸)。对-阔马酸由于向芳香核导入羟基基甲基化,依次形成咖啡酸及阿魏酸、5-对羟基阿魏酸、芥子酸。这样生成的各种肉桂酸衍生物,在经过还原酶的作用被还原成相应的醛,进一步还原成作为木质素生物合成的前驱物质的各种桂皮酸的衍生物。

木质素的基本结构单元

木质素的基本结构单元为苯丙烷(phenyl propane unit),可用C9(或)表示。

通过化学降解的方法,如氢解、酸解、乙醚解、硫代醋酸解、硝基苯氧化、高锰酸钾氧化等证实木质素的C9单元。

(1)、氢解(hydrogenation)

木材或分离木质素经高压加氢降解,得到一系列降解产物,反推木质素的结构。

催化剂和反应条件不同,得到的产物不一样。

针叶材、阔叶材木粉及用缓和方法分离的木质素,以Cu、Cr为催化剂,高压氢解的产物为丙基环己烷衍生物;而综纤维素在同样条件下氢解,没有丙基环己烷衍生物产生。

用镍催化氢解,得到苯丙烷衍生物(保留苯环)。

证明:木质素是由苯丙烷结构单元构成。

苯环上的结构特征,可通过硝基苯氧化证明。

(2)、碱性硝酸氧化(nitrobenzene oxidation)

温和氧化:保留苯核,三C侧链氧化形成醛基(部分成羧基)

原料:可用木粉或分离木质素

反应条件:硝基苯,热NaOH溶液(170~180?C),反应2小时

主要产物:香草醛(vanillin)

紫丁香醛 (syringaldehyde)

对-羟基苯甲醛(p-hydroxyl phenyl formaldehyde)

硝基苯氧化产物香草醛紫丁香醛对-羟基苯甲醛

针叶材多很少少量

阔叶材多多很少

禾本科植物多多多

说明:a木质素是芳香族化合物

b木质素中的甲氧基与植物原料有关

用木质素的模型物进行硝基苯氧化也得到类似的结果。可见,木质素结构中存在三种类型的结构基团:

愈疮木基(guaiacyl),紫丁香基(syringyl)和对-羟基苯基(p-hydroxy phenyl)

(3)、乙醇解(ethanolysis)

云杉木粉(或木质素),在%HCl-EtOH溶液中,于90~100?C下回流48小时,得到一系列不饱和酮(Hibbert酮,具酮基的苯丙烷结构的酚类物质)。

主要产物有五种,都有愈疮木基,说明针叶材木质素的单体是愈疮木基丙烷单元。

阔叶材木质素的乙醇解产物有十种,比针叶材木质素增加五种紫丁香基型产物,说明阔叶材木质素是由愈疮木基丙烷和紫丁香基丙烷单元构成。

草类木质素乙醇解产物有十五种,除上述十种外,还有五种对-羟基苯基结构的产物,说明草木质素是由愈疮木基丙烷、紫丁香基丙烷和对-羟基苯丙烷单元构成。

乙醇解的研究不仅证明木质素的结构单元为C6-C3,也说明了Hibbert酮的来源。

?

综合木质素氢解、硝基苯氧化和乙醇解的结果,可得出木质素中有三种基本结构单元,即:

愈疮木基丙烷(guaiacyl propane,G)、紫丁香基丙烷(syringyl propane,S)和对-羟基苯基丙烷(p-hydroxy phenyl propane,H)。

G S H

针叶材多很少少量

阔叶材多多很少

禾本科多(<针)多(>针)多(>针、阔)

针叶材木质素主要由G构成,较简单(不同品种针叶材木质素的结构和性质没有大的差异);

阔叶材木质素主要由G和S构成,较复杂(随树种不同,木质素的结构、组成、反应性能变化较大,即使同一树种的不同部位,结构也不相同);

草类木质素由G、S和H构成。

木质素多数为脂溶性分子,能溶解于氯仿、乙醚、丙酮等弱极性溶液中,少数与糖结合的木脂素极性增大溶解于甲醇、乙醇甚至于水中,具体还要看你要溶解的是哪一类木脂素(具体结构如何),但是一般用氯仿、丙酮就行了。

木质素综述

木质素综述 091060002 钟毅铭 木质素是构成植物细胞壁的成分之一,具有使细胞相连的作用。在植物组织中具有增强细胞壁及黏合纤维的作用。其组成与性质比较复杂,并具有极强的活性。植物的木质部含有大量木质素,使木质部维持极高的硬度以承拓整株植物的重量。 1.木质素的结构 木质素的基本结构单元为苯丙烷可用C9(或C6.C3)表示,包含苯环的取代信息,有三种基本结构单元: 愈疮木基丙烷紫丁香基丙烷对-羟基苯基丙烷针叶材多很少少量 阔叶材多多很少 禾本科多(<针)多(>针)多(>针、阔)针叶材木质素主要由愈疮木基丙烷单元构成。 阔叶材木质素主要由愈疮木基丙烷和紫丁香基丙烷单元构成。 草类木质素由三种基本结构单元同时构成。 2.木质素结构单元的生物合成

(1)木质素代谢研究在植物的生长发育及环境适应性方面有重要意义。到目前为止关于木质素的合成代谢途径己经提出了多种模型,这些模型从不同侧面阐述了木质素的形成。 (2)普遍认为基本可分为三个大步骤: ①首先CO2经植物的光合作用形成葡萄糖,葡萄糖再经过莽草 酸途径一系列酶的催化转化为芳香族氨基酸。 ②第二步是从芳香族氨基酸经过脱氨基、羟基化与甲基化等步骤 合成羟基肉桂酸类化合物以及羟基肉桂酸醋酞类化合物的过 程。 ③最后一步是将羟基肉桂酸类化合物和羟基肉桂酸酷酞类化合 物还原为各种木质醇木质醇单体在过氧化物酶或漆酶的催化 作用下逐步脱氢聚合最终形成结构复杂的木质素。 3. 木质素的应用和在生活中的用途 (1)应用: ①木质素作为一种可再生的生物质资源,产量仅次于纤维素,是自 然界中第二大量的天然有机物,木质素成本较低,木质素及其 衍生物具有多种功能性,可作为分散剂、吸附剂/解吸剂、石 油回收助剂、沥青乳化剂。 ②工业木质素是制浆造纸工业所产生废液的主要成分,全世界每 年产量约为5000万t,其中只有不到10%得到有效利用,其他 大部分都被排入江河或烧掉,污染环境,浪费资源。将木质素等 可再生资源用于工业生产制备胶粘剂。工业木质素经化学改性

木质素

木质素编辑词条 B添加义项 ? 木质素(英语:Lignin)是一种广泛存在于植物体 中的无定形的、分子结构中含有氧代苯丙醇或其衍 生物结构单元的芳香性高聚物。植物的木质部(一 种负责运水和矿物质的构造)含有大量木质素,使 木质部维持极高的硬度以承拓整株植物的重量。 10 本词条正文缺少必要目录和内容, 欢迎各位编辑词条,额 外获取10个积分。 基本信息 ? 中文学名 ? 木质素 ? ? 别称 ? Lignin ? ? 界 ? 植物界 ? ? 门 ? 被子植物门 ? ?

纲 ? 双子叶植物纲 ? ? 分布区域 ? 许多 ? 目录 1基本简介 2主要特性3单体结构 4相关应用 5其他资料

基本简介折叠编辑本段 木质素是由聚合的芳香醇构成的一类物质,存在于木质组织中,主要作用是通过形成交织网来硬化细胞壁。木质素主要位于纤维素纤维之间,起抗压作用。在木本植物中,木质素占25%,是世界上第二位最丰富的有机物(纤维素是第一位)。 复纳新材料木质素 复纳新材料木质素主要特性折叠编辑本段 日本的八浜羲和曾对木质素下过这样的定义:木质素是在酸作用下难以水解的相对分子质量较高的物质,主要存在于木质化植物的细胞中,强化植物组织。其化学结构是苯丙烷类结构单元组成的复杂化合物,共有三种基本结构(非缩合型结构),即愈创木基结构、紫丁香基结构和对羟苯基结构,分子结构式如图所示, 木质素单体的分子结构折叠

同时含有多种活性官能团,如羟基、羰基、羧基、甲基及侧链结构。其中羟基在木质素中存在较多,以醇羟基和酚羟基两种形式存在,而酚羟基的多少又直接影响到木质素的物理和化学性质,如能反映出木质素的醚化和缩合程度,同时也能衡量木质素的溶解性能和反应能力;在木质素的侧链上,有对羟基安息香酸、香草酸、紫丁香酸、对羟基肉桂酸、阿魏酸等酯型结构存在,这些酯型结构存在于侧链的α位或γ位。在侧链α位除了酯型结构外,还有醚型连接,或作为联苯型结构的碳-碳联结。同酚羟基一样,木质素的侧链结构也直接关系到它的化学反应性。 对羟苯基结构愈创木基结构紫丁香基 结构折叠 由于木质素的分子结构中存在着芳香基、酚羟基、醇羟基、碳基共扼双键等活性基团,因此可以进行氧化、还原、水解、醇解、酸解甲氧基、梭基、光解、酞化、磺化、烷基化、卤化、硝化、缩聚或接枝共聚等许多化学反应。其中,又以氧化、酞化、磺化、缩聚和接枝共聚等反应性能在研究木质素的应用中显示着尤为重要的作用,同时也是扩大其应用的重要途径。在此过程中,磺化反应又是木质素应用的基础和前提,到目前为止,木质素的应用大都以木质素磺酸盐的形式加以利用。在亚硫酸盐法生产纸浆的工艺中,正是由于亚硫酸盐溶液与木粉中的原本木质素发生了磺化反应,引进了磺酸基,增加了亲水性,而后这种木质素磺酸盐在酸性蒸煮液中进一步发生水解反应,使与木质素结合着的半纤维素发生解聚,从而使木质素磺酸盐溶出,实现

【CN109912934A】一种木质素环氧树脂碳纤维增强复合材料【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910258445.2 (22)申请日 2019.04.01 (71)申请人 上海汉禾生物新材料科技有限公司 地址 201114 上海市闵行区陈行公路2388 号21幢202室 申请人 山西舜质新材料科技有限公司 (72)发明人 谢卓 方品文 贾杨杰  (74)专利代理机构 北京领科知识产权代理事务 所(特殊普通合伙) 11690 代理人 艾变开 (51)Int.Cl. C08L 63/00(2006.01) C08J 5/04(2006.01) C08G 59/02(2006.01) C08G 59/22(2006.01) C08G 59/42(2006.01) (54)发明名称 一种木质素环氧树脂/碳纤维增强复合材料 (57)摘要 本发明提供了一种木质素环氧树脂/碳纤维 增强复合材料,其通过木质素环氧树脂和碳纤维 材料交联固化得到,采用了特定的酶解木质素环 氧树脂去增强碳纤维材料,在碳纤维材料用量相 同的情况下,所得复合材料的强度和韧性皆显著 优于使用常规双酚A型环氧树脂的数据;而在碳 纤维用量减少16.7%的情况下,所得复合材料的 强度仍能高于普通双酚A类环氧树脂/碳纤维复 合材料的水平,并且没有对复合材料其它性能带 来不利影响,不仅降低了碳纤维复合材料的成 本,而且原料更环保,非常适合工业生产和商业 推广。权利要求书2页 说明书8页CN 109912934 A 2019.06.21 C N 109912934 A

1.一种木质素环氧树脂/碳纤维增强复合材料,其包含通过木质素环氧树脂和碳纤维材料交联固化得到的碳纤维复合材料。 2.如权利要求1所述的复合材料,其特征在于,所述木质素环氧树脂是以酶解木质素、多元醇、二酸酸酐和环氧稀释剂为原料通过缩合反应得到的高分子聚合物,优选,其粘度为9000~11000(mPa),环氧值为0.41~0.43(eq/100g)。 3.如权利要求2所述的复合材料,其特征在于,所述木质素环氧树脂是由包括以下重量份的原料制成:10份酶解木质素、10-30份多元醇、10-50份二元酸酐、40-120份环氧稀释剂和1-3份硫酸催化剂;优选的环氧稀释剂为60-100份。 4.如权利要求3所述的复合材料,其特征在于,所述多元醇选自乙二醇、丙二醇、丁二醇、甘油、季戊四醇的至少一种;所述二元酸酐选自邻苯二甲酸酐、马来酸酐、顺丁烯二酸酐、戊二酸酐的至少一种;所述环氧稀释剂选自乙二醇二缩水甘油醚、丙二醇二缩水甘油醚、1,4-丁二醇二缩水甘油醚、新戊二醇二缩水甘油醚、1,6-已二醇二缩水甘油醚的至少一种;所述硫酸催化剂为质量浓度40-70%硫酸水溶液,优选质量浓度为50%-60%硫酸水溶液。 5.权利要求3所述的复合材料,其特征在于,所述木质素环氧树脂通过包括下述步骤的制备方法制得: (S1)按照配比,将多元醇加入反应容器,再将二元酸酐和酶解木质素的混合物在搅拌条件下加入反应容器,以硫酸水溶液为催化剂,在90~140℃下反应1~5小时,直到木质素完全溶解; (S2)在反应容器中继续加入环氧稀释剂,在70~100℃下反应2~4小时,即得木质素环氧树脂。 6.如权利要求1-5任一项所述的复合材料,其特征在于,由包括以下重量份的原料制 成: 7.如权利要求6所述的复合材料,其特征在于,所述双酚A类环氧树脂选自E -51、E -55、E -44、E -42等,其中优选E -51环氧树脂;所述固化剂为酸酐类固化剂,选自四氢苯酐、甲基四氢苯酐、六氢苯酐、甲基六氢苯酐、邻苯二甲酸酐、马来酸酐的至少一种;所述促进剂为胺类促进剂,选自N ,N -二甲基甲酰胺、N ,N -二甲基乙酰胺、N ,N -二甲基苯胺、N ,N -二甲基苄胺的至少一种。 8.如权利要求6所述的复合材料,其特征在于,所述碳纤维材料选自碳纤维布、碳纤维纱、碳纤维毡,优选中复神鹰牌3K克重200,强度级别T300的碳纤维布。 9.权利要求1-8任一项所述木质素环氧树脂/碳纤维增强复合材料的制备方法,包括以下步骤: 1,将木质素环氧树脂按照比例加入促进剂和固化剂; 权 利 要 求 书1/2页2CN 109912934 A

木质素的性质及应用

木质素的性质及应用 张XX (北京联合大学生物化学工程学院,北京,100023) 摘要 随着人类对环境污染和资源危机等问题的认识不断深刻,天然高分子所具有的可再生、可降解等性质日益受到重视。在自然界中,木质素的储量仅次于纤维素,而且每年都以500亿吨的速度再生。增强其制浆造纸工业每年要从植物中分离出大约14亿吨纤维素,同时得到5000万吨左右的木质素副产品,截止到2002年时,超过95%的木质素仍直接排入江河或浓缩后烧掉,绝少得到高效利用[1]。被用于化工高分子材料却仅占 1%。所以对于木质素的研究、开发及应用等具有十分重要的意义。本文简单介绍木质素的结构、性质。主要介绍其在发泡塑料方面的应用。 关键词:木质素;树脂;改性;发泡; 木质素的结构 木质素,是聚酚类的三维网状高分子化合物,其基本结构单元为苯丙烷结构,共有三种基本结构(非缩合型结构),即愈创木基结构、紫丁香基结构和对羟基苯基结构。木质素是由松柏醇基、紫丁香基和香豆基三种单体以 C-C 键、醚键等形式连接而成的具有三维空间结构的天然高分子物质。[2] 木质素的化学性质 木质素的分子结构中存在着芳香基、酚羟基、醇羟基、羰基、甲氧基、共轭双键等活性基团,可以进行氧化、还原、水解、醇解、酸解、光解、酰化、磺化、烷基化、卤化、硝化、缩聚或接枝共聚等许多化学反应,从而奠定了木质素在多方面应用的基础。特别是在高分子材料方面,以木质素为原料可以合成酚醛树脂,既可以用作酚与甲醛反应,也可用作醛与苯酚反应[3];利用木质素所含的醇羟基,可与异氰酸酯类进行缩合反应,制得木质素聚氨酯;木质素与烯类单体在催化剂作用下能发生接枝共聚反应,如丙烯酰胺、丙烯酸、苯乙烯、甲基丙烯酸甲酯、丙烯腈等。 木质素的应用 脲醛树脂 木质素作为一种洁净资源,可制备合成树脂和胶黏剂、补强剂、油田化学品和各种助剂,在轻工业及农业中有广泛的应用。 脲醛树脂是目前市场上多用作粘合剂,作为塑料使用的很少,而且都是闭孔泡沫塑料,但脲醛树脂泡沫塑料由于其硬而脆的缺点,在应用上受到了限制。 采用加入木质素磺酸钠改性脲醛树脂,以降低游离甲醛含量及充分利用木质素资源;同时加入三聚氰胺和聚乙烯醇,以改变树脂的柔韧性。通过碳酸氢铵发泡法发泡制得开孔改性脲醛树脂泡沫塑料。实验结果表明:改性后游离甲醛含量明显降低,韧性有了较大的提高。[4]

木质素,纤维素研究论文(毛双群)

纤维素、木质素等的含量研究 木工071 毛双群200702120410 摘要:本文主要研究比较纤维板和麻杆的含量比较,了解它们的含量的区别,再结合实际情况来反映其用于生产研究的性能。 关键词:木质素纤维素含量研究 纤维素是由 D -葡萄糖构成的多糖,纤维素是葡萄糖以β- 1, 4 -糖苷键相连接的聚合多糖。纤维素水解比淀粉困难,遇水加热均不溶,需用浓酸或稀酸在一定压力下长时间加热才能水解。纤维素不能被人体吸收。但是它能辅助消化,是一种肠壁机械刺激剂,可增强肠道蠕动,促进食物向前移动。只有反刍动物能吸收纤维素,因为它们的胃中有特殊的细菌,可把纤维素分解成葡萄糖[1]。 木质素是由高度取代的苯基丙烷单元随机聚合而成的高分子,它与纤维素、半纤维素一起,形成植物骨架的主要成分。木质素的分布及木质素局部化学影响着木材在制浆造纸及纤维板材工业的使用。从20世纪50年代开始,该领域的研究一直受到广泛关注,主要包括木质素在细胞壁中的分布、木质素在木质部生长过程中的形成和沉积等[2]。 1实验材料与方法 1 . 1仪器、试剂和样品 仪器:(苯醇抽出物的测定)容量150mL索氏抽提器、恒温水浴、烘箱、平底烧瓶、分析天平;(酸不溶木素含量测定)可控温多孔水浴、砂芯漏斗、索氏抽提器(150mL)、烧杯(100mL)、锥形瓶(1000mL)、量筒(500mL)、可控温电热板、精密密度计; (硝酸乙醇纤维素的测定)锥形瓶(250mL)、回流冷凝管、恒温水浴锅、砂芯漏斗 试剂:(苯醇抽出物的测定)苯(GB 690)、乙醇(GB 679):95%(m/m)、苯-乙醇混合液: 2:1(V/V)。[将2体积的苯及1体积的95%乙醇混合均匀备用](酸不溶木素含量测定)(72士0.1)%(m/m)硫酸溶液[密度为ρ20=(1.6338士0.0012)g/mL]、10%氯化钡溶液、定量滤纸及定性滤纸、广范pH试纸。(硝酸乙醇纤维素的测定)乙醇(95%)、硝酸(密度1.428g/cm3 ) 2 实验步骤 由于水分测定和灰分测定的实验比较简单,故从略,实验数据已在下方给出。2.1酸不溶木素含量测定 =(1.6338士0.0012)g/mL]:调制试剂:(72士0.1)%(m/m)硫酸溶液[密度为ρ 20 将665mL(95-98)%硫酸在不断搅拌下慢慢倾入300mL蒸馏水中,待冷却后,加蒸馏水至总体积为1000mL。充分摇匀,将温度调至200℃,倾倒部分此溶液于500mL 量筒中,用精密密度计(2.8)测定该酸液密度,若不在(1.6338士0.0012)g/mL范围内,相应地加人适量硫酸或蒸馏水进行调整,直至符合上述密度要求。 实验操作: 1,试样称取及处理:称取1g(称准至0.0001g)试样,(同时测定水分),用定性滤纸包好并用棉线捆牢,放进索氏抽提器中,加人不少于150mL所需要用的有机溶剂使超过其溢流水平,并多加20mL左右,装上冷凝器,连接抽提仪器,置于水浴中。打开冷却水,调节加热器使其有机溶剂沸腾速率为每小时在索氏抽提器

木质素

木质素的应用研究进展 林化10-3班边少杰100524326 摘要:木质素与纤维素和半纤维素是构成植物骨架的主要成分,木质素是自然界中含量第二的天然高分子化合物,其含量仅次于纤维素。它是制浆造纸工业的主要副产物,也是木材水解工业中不可缺少的副产物,是重要的可再生资源之一。研究和发展应用木质素技术是化工领域和生物质应重视的热点和难点问题。木质素的利用面广,主要分为木质素的高分子利用和木质素的降解利用。本文主要阐述了木质素的高分子应用主要包括木质素在吸附剂,表面活性剂,水处理剂,粘合剂,橡胶复合材料,替代柴油及木质素在农业生产中的应用。木质素的降解利用主要体现在生产香草醛上。通过对木质素应用领域的研究,可以看出木质素的的应用面广泛,市场潜力巨大。同时,我们也发现在其生产中面临的问题。如何利用木质素,提高生产技术,增加产品产量,提高产品性能,减少化学污染使我们面临木质素研究主要面临的问题。相信在时代步伐的指引下,我们必将逐个击破这些问题,为更好,更广泛的应用木质素做出努力。 关键字:木质素背景高分子利用降解利用面临问题

目录 1.序言 (3) 2.概述 (3) 2.1 木质素的结构与特性 (3) 2.2 木质素的分类 (4) 3.木质素的综合利用 (4) 3.1 木质素的高分子利用 (4) 3.11 木质素在表面活性剂、活性炭的研究 (4) 3.12 在树脂粘合剂合成中的应用 (5) 3.13木质素在橡胶复合材料中的应用 (5) 3.14 木质素作水处理剂的应用 (6) 3.15 木质素替代柴油技术 (6) 3.16 木质素在农业生产中的应用 (6) 3.2 木质素的降解利用 (7) 3.21 木质素制备香草醛的研究 (7) 4. 结语 (7) 参考文献: (8)

木质素 聚乳酸 EVA热塑性复合材料的研究

Material Sciences 材料科学, 2020, 10(6), 486-494 Published Online June 2020 in Hans. https://www.360docs.net/doc/fb4252465.html,/journal/ms https://https://www.360docs.net/doc/fb4252465.html,/10.12677/ms.2020.106059 Study of Thermoplastic Composites Consisting of Lignin/PLA/EVA Ruihan Hou, Tingting Feng, Dexi Tang, Zhifeng Cao, Shouhang Wang, Zhijun Zhang* Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin Heilongjiang Received: Jun. 1st, 2020; accepted: Jun. 15th, 2020; published: Jun. 22nd, 2020 Abstract With the gradual enhancement of people’s environmental awareness, the utilization of lignin as a by-product of the papermaking and bioethanol industry is imperative. In this paper, a series of lignin-based thermoplastic composite materials were prepared by using polylactic acid as the ma-trix, lignin as the reinforcement, and a certain amount of EVA as a plasticizer through melt blend-ing and injection molding methods. A series of methods including infrared spectrum, scanning electron microscope, TG-DSC, mechanical test and rheological test were used to characterize their structures and performances. The results showed that, no obvious chemical reactions occurred among the components of the composites; addition of lignin reduced the thermal stability of the composite material to a certain extent; the bending strengthes of the composites decreased with the increase of the lignin content, due to the rigidity of lignin. While the composite’s lexural modulus increased with the lignin content; addition of EVA can improve the dispersion and compatibility of lignin in the composite material, and enhance the adhesion of the two phases. This study provides theoretical and experimental basis for the preparation of high content lignin composite. Keywords Lignin, PLA, EVA, Compatibility, Thermoplasticity 木质素/聚乳酸/EVA热塑性复合材料的研究 侯瑞菡,冯婷婷,唐德羲,曹志锋,王首航,张志军* 东北林业大学,生物质材料科学与技术教育部重点实验室,黑龙江哈尔滨 收稿日期:2020年6月1日;录用日期:2020年6月15日;发布日期:2020年6月22日 *通讯作者。

木质素的应用研究现状与进展_秋增昌

木质素的应用研究现状与进展 秋增昌,王海毅 (陕西科技大学造纸工程学院, 陕西, 咸阳, 712081) 摘 要:简要地描述了在制浆造纸行业中木质素结构的研究进展,并比较详细的介绍了木质素工业应用的研究现状。从制浆废水中提取的木质素及其衍生物在农业、石油化工、水泥及混凝土工业、塑料和高分子材料等工业中有着很广泛的应用。指出作为仅次于纤维素产量的木质素有望成为未来世界比较有影响力的一种可再生资源。对制浆废液中的木质素进行综合利用能在一定程度上减轻造纸工业的污染。 关键词:制浆黑液;木素衍生物;表面活性剂;增强剂;助留剂;塑料 中图分类号:TS79 文献标识码:A 木质素(简称木素lignin)与纤维素及半纤维素共同形成植物体骨架, 是自然界中在数量上仅次于纤维素的第二大天然高分子材料。每年都以600万亿t的速度再生, 因而是极具潜力的可再生资源。制浆造纸工业每年要从植物中分离出大约1.4亿t纤维素, 同时得到5 000万t左右的木质素副产品,但迄今为止, 超过95%的木质素仍然主要作为工业制浆的废弃物,随废水直接排入江河或浓缩后烧掉,绝少得到高效利用。从制浆废液中提取出的木质素分子量在几百到几百万之间,且具有显著的多分散性,不溶于水,具有良好的物理、化学性能,如阻燃、耐溶剂性能,良好的热稳定性能。木质素一般以碱木素形式存在,而碱木素是重要的化工原料,开展化学综合利用,对造纸厂黑液治理有重要意义。造纸黑液的排放不仅造成资源的很大浪费, 同时又污染环境, 对 其进行综合开发、利用对经济的发 展和环境保护都具有现实意义。 随着人类对环境污染和资源危 机等问题的认识不断深刻,天然高 分子所具有的可再生、可降解等性 质日益受到重视,环境、资源问题日 益突出,对木质素的综合高效利用 也受到人们的重视。世界上发达国 家都把木素资源利用作为跨世纪的 研究课题。 1 木质素的结构研究 1.1 木质素的结构特征 木质素是结构复杂的芳香族天 然高分子聚合物,具有三维网状空 间结构,含有多种功能基,木质素结 构单元之间的联接方式较多且位置 不同,具有潜在的反应性能和反应 点,因此可对其进行化学改性,开发 木素型化工材料。提取出的木质素 的样本不同,其组成与结构也不相 同,同时木质素在提纯和分离的过程 中原有结构可能会被破坏发生不同 程度的缩合、降解,因此确定木质素 的准确结构很困难。木质素的结构 和生物化学解释表明:是由多个苯 丙烷结构单元组成,结构相似的对 羟基肉桂醇、松柏醇或芥子醇的苯 氧基偶合, 形成一种异质多晶天然 高分子聚合物。木质素天然结构中, 单元间主要联接方式是β-O-4和 α-O-4,约占50%左右,其它有代 表性连接键有β-5、β-1、5-5′联 苯型联接等[1]。在工业上木质素可 降解为小分子后利用,也可以大分子 的形式直接利用。 木质素化学结构非常复杂,具 有较强的化学反应能力。其反应可 大致分为芳香核选择性反应和侧链 反应两大类,相对应的官能团分别 为芳香核、酚基和羰基、醇羟基、乙 烯基等和苯甲醇、烷基醚键、芳基醚 键等。在芳香核上优先发生的是卤 化和硝化等,此外还有羟甲基化、 酚化、接枝共聚等。 侧链官能团的反 应主要是烷基化、酰基化、异氰化、 酯化和酚化等。酚基是木质素分子 上数量最多的官能团, 因此许多学 者均将木质素简单的概括为是由三 种基本结构单元(愈创木基丙基、紫 丁香基丙基和对羟苯基丙)通过醚 键(约占2 /3)和C-C键连接在一 起的具有三维网状结构的天然酚类 无规聚合物。 1.2 木质素的降解利用 木质素在适当条件下可降解为 芳香族或脂肪族有机小分子。 降解 木质素的化学方法主要有:酸水 解、醇解、氢解、热解、氧化降 解、酶解等[1]。木质素分子结构中 β-O或α-O断裂可得到酚及取代 酚;保留苯环结构而断裂其它联结 键可得到苯及取代苯;脂肪族三碳 结构从苯环上断裂下来可得到饱和 或不饱和碳氢化合物;氧化断裂可 得到分子量不同的有机酸。化学方 法降解木质素时要断裂的化学键键 能较高且不易断裂,连接单元不易 水解断开。从碱法造纸废液中先脱 去碳水化合物,提取木质素,再与

木质素的应用研究现状及展望_张诺瑶

收稿日期:2011-12-13 作者简介:张诺瑶(1978-),女,山东省济宁市人,工程师,2004年毕 业于西南科技大学机电一体化专业,现主要从事计算机应用技术工作。 文章编号:1002-1124(2012)02-0050-02 Sum 197No.02 化学工程师 Chemical Engineer 2012年第02 期

醛树脂复合制备了碱木质素-酚醛复合胶黏剂;张杰[13]选用木质素作为脲醛树脂的改性剂,使脲醛树脂的耐水性明显改善;卜文娟等[14]系统介绍了木质素磺酸盐、碱木质素、甘蔗渣木质素、酶解木质素等代替部分苯酚应用于环保树脂胶的制备工艺及研究发展现状。 4在环氧树脂合成中的应用 冯攀等[15]介绍了木质素在环氧树脂合成中的应用进展。木质素用于环氧树脂合成的主要方式有3种:(1)与通用环氧树脂共混;(2)直接与环氧氯丙烷反应;(3)经过酚化、氢解、丙氧基化和酯化等化学改性,再进行环氧化合成制备环氧树脂。木质素用于环氧树脂合成有利于实现木质素的高值化利用。 5在土木工程中的应用 近年来,木质素在土木工程方面也得到应用和推广。如罗振扬等[16]合成了不同木质素含量的氨基系减水剂,发现木质素磺酸盐含量为30%时,可以获得最优性价比的改性产物;江嘉运[17]等探讨木质素的结构特点、化学反应性能和改性方法结合制浆方法和原料种类,对制备改性减水剂的合理工艺进行了分析总结。 6木素在其它方面的应用 木质素由于性能优越,结构复杂,可以应用于多个领域。在农业方面,它可以用作肥料,比如木质素铁肥、木质素氮肥、木质素磷肥、木质素复合肥等,可以用作土壤疏松剂,亦可以用作农药缓蚀剂;在医药方面,木质素还可以用作药物,木质素高分子的一些集团,如烃基等可以消除细胞无知与致癌剂的结合,减少致癌作用;造纸黑夜中提取的木质素与天然木质素相比有分子量小的特点,可以帮助动物消化[18]。除上所述,木质素还可以用作橡胶补强及、皮革鞣质剂、热稳定剂和交联剂等。近年来,木质素合成阻燃剂[19]可用于制备乙酸木质素基聚氨酯硬泡[20],可利用氧化碱木质素制备高效水泥助磨剂[21],而无硫木质素[22]在合成树脂中的作用也更加显著突出,另外,还有球形多孔木质素被制备出[23]。 7展望 总的来说,木质素作为一种天然可再生的高分 子,资源丰富、价格低廉、用于工业化生产的现实可能性大。在追求绿色环保、可持续发展的今天,已成为重点研究对象。随着理论和应用研究的继续深入,木质素必将得到更充分的利用。 参考文献 [1]张桂梅,廖双泉,蔺海兰,等.木质素的提取方法及综合利用研究进展[J].热带农业科学,2005,25(1):66-70. [2]朱清时.化学的绿色化和绿色植物的化学转化[J].世界科学研究与发展,1998,20(2):12-17. [3]敖先权,周素华,曾祥钦.木质素表面活性剂在水煤浆制备中的应用[J].煤炭转化,2004,27(3):45-48. [4]李道山.用质素磺酸盐预冲洗降低表面活性剂吸附的矿场试验[J].国外油田工程,2001,17(9):1-6. [5]刘欣,周永红.木质素表面活性剂的应用研究进展生[J].物质化学工程,2008,42(6):42-48. [6]方桂珍,何伟华,宋湛谦.阳离子絮凝剂木质素季胺盐的合成与脱色性能研究[J].林产化学与工业,2003,23(2):38-42. [7]刘明华,杨林,詹怀宇.复合型改性木质素絮凝剂处理抗生素类化学制药废水的研究[J].中国造纸学报,2006,21(2):47-50.[8]杨林,刘明华.改性木质素除油絮凝剂处理含油废水的研究[J]. 石油化工高等学校学报,2007,20(2):9-22. [9]乔瑞平,宁银萍,彭福勇,等.木质素基脱色絮凝剂深度处理制浆造纸废水[J].化学工程,2009,37(9):56-61. [10]刘德启.尿醛预聚体改性木质素絮凝剂对重革废水的脱色效果[J].中国皮革,2004,33(5):27-29. [11]郑钻斌,程贤延,符坚,等.酶解木质素改性酚醛树脂胶黏剂的研究[J].林产工业,2009,36(4):24-27. [12]庄晓伟,穆有炳,章江丽,等.碱木质素-酚醛复合胶黏剂在竹胶板中的应用研究[J].生物质化学工程,2011,45(5):17-20.[13]张杰.木质素的提纯以及在脲醛树脂胶粘剂中的应用[J].林业实用技术,2011,(4):33-38. [14]卜文娟,阮复昌.木质素改性酚醛树脂的研究进展[J].粘接, 2011,(2):76-78. [15]冯攀,谌凡更.木质素在环氧树脂合成中的应用进展[J].纤维素科学与技术,2010,18(2):54-60. [16]罗振扬,陈杰,何明,等.木质素改性氨基系高效减水剂性能研究[J].新型建筑材料,2011,(1):5-8. [17]江嘉运,张帅,韩莹.木质素磺酸盐减水剂化学改性方法的研究进展[J].混凝土,2011(1):87-90. [18]巨敏,翁彩珠,刘军海.木质素在农业中的应用[J].现代农业,2011,23(53):11-15. [19]刘小婧,程贤甦.新型酶解木质素阻燃剂的合成及其阻燃性能的研究[J].橡胶工业,2011,58(10):610-615. [20]李燕,敖日格勒,韩雁明.制备乙酸木质素基聚氨酯硬泡[J].林业科学,2011,47(7):160-164. [21]周明松,周莉莉,伍思龙,等.氧化碱木质素制备高效水泥助磨剂[J].精细化工,2011,28(10):1014-1018. [22]李志礼,葛媛媛.无硫木质素在合成树脂中的应用研究进展[J]. 塑料科技,2011,39(10):100-104. [23]黎先发,罗学刚.球形多孔木质素颗粒的制备及表征[J].功能材料,2011,42(2):256-263. 张诺瑶:木质素的应用研究现状及展望 2012年第2期51

木质素各类规格

木质素磺酸钠是一种天然高分子聚合物,具有很强的分散性,由于分子量和官 能团的不同而具有不同程度的分散性,是一种表面活性物质,能吸附在各种固体质点的表面上,可进行金属离子交换作用,也因为其组织结构上存在各种活性基,因而能产生缩合作用或与其他化合物发生氢键作用。木质素磺酸钠产品已在国内外化工、建筑、陶瓷、矿粉冶金、农药、石油、炭黑、耐火材料、水煤浆分散剂等行业得到广泛推广和应用。 三、主要用途 1、可用于耐火材料、陶瓷制品分散、粘结、减水增强剂,提高成品率70%-90%。 2、可用作地质、油田、巩固井壁及石油开采堵水剂。 3、可湿性农药填充剂和乳化分散剂;化肥造粒、饲料造粒的粘合剂。 4、可作为混凝土减水剂,适合于涵洞、堤坝、水库、机场及高速公路等工程。 5、锅炉上作为除垢剂、循环水质稳定剂。 6、防沙、固沙剂。 7、用于电镀电解,能使镀层均匀,无树状花纹; 8、制革工业上作为鞣革助剂; 9、用作选矿浮选剂和矿粉冶炼粘合剂。 10、水煤桨添加剂。 11、长效缓释氮肥剂,高效缓释复合肥改良添加剂。 12、还原染料、分散染料填充剂、分散剂,酸性染料的稀释剂等。 13、用于铅酸蓄电池和碱性蓄电池阴极防缩剂,提高电池低温急放电和使用寿命。 四、包装、贮存及运输: 1、包装:内衬塑料薄膜外用聚丙烯编织袋双层包装,25kg/包。 2、贮存:存放于干燥通风处,应注意防潮防湿。长期存放不变质,如有结块,粉碎或溶解后不影响使用效果。 3、运输:本产品无毒无害,系非易燃易爆危险品。采用汽车、火车运输均可。

木质素磺酸钙(简称木钙),硫酸盐木浆废液的主要成分,是一种多组分高分子 聚合物阴离子表面活性剂,外观为棕黄色粉末物质,略有芳香气味,分子量一般在800~10000之间,具有很强的分散性、粘结性、螯合性。目前我公司木质素磺酸钙产品已被广泛用做水泥减水剂、农药悬浮剂、陶瓷坯体增强剂、水煤浆分散剂、皮革鞣革剂、耐火材料结合剂、炭黑造粒剂等。 二、技术指标 三、主要性能 1、用作混凝土减水剂:掺水泥量的0.25~0.3%,可以减少用水量10~14以上,改善混凝土和易性,提高工程质量。夏季使用,可抑制坍落度损失,一般都与高效减水剂复配使用。 2、用作矿粘结剂:冶炼业,用木质素磺酸钙与矿粉混合,制成矿粉球,干燥后放入窑中,可大幅度提高冶炼回收率。 3、耐火材料:制造耐火材料砖瓦时,使用木质素磺酸钙做分散剂和粘合剂,能显著改善操作性能,并有减水、增强、防止龟裂等良好效果。 4、陶瓷:木质素磺酸钙用于陶瓷制品可以降低碳含量增加生坯强度,减少塑性粘土用量,泥浆流动性好提高成品率70-90%,烧结速度由70分钟减少为40分。 5、用作饲料粘合剂,可提高家畜和家禽的喜食性,颗粒强度好,减少饲料的微粉量,减少粉料反回率,降低成本。模的损失减少,生产能力提高10-20%,美国与加拿大在饲料中允许掺量为4.0%。 6、其它:木质素磺酸钙还可用于精炼助剂、铸造、农药可湿性粉剂加工、型煤压制、采矿、选矿业的选矿剂,道路、土壤、粉尘的控制、制革鞣革填料、炭黑造粒等方面。 四、包装及贮存 1、以内衬塑料膜的编制袋,每袋净重25Kg。 2、储存时要防雨、防潮,如有结块,可粉碎或配制成溶液使用,不影响使用效果。

木质素的研究进展

Botanical Research 植物学研究, 2016, 5(1), 17-25 Published Online January 2016 in Hans. https://www.360docs.net/doc/fb4252465.html,/journal/br https://www.360docs.net/doc/fb4252465.html,/10.12677/br.2016.51004 Progress in Research on Lignin Yongbin Meng1*, Lei Xu1, Zidong Zhang1, Ying Liu2, Ying Zhang2, Qinghuan Meng2, Siming Nie2, Qi Lu1,2 1National Engineering Laboratory for Ecological Use of Biological Resources, Harbin Heilongjiang 2Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin Heilongjiang Email: 347576614@https://www.360docs.net/doc/fb4252465.html,, luqi42700473@https://www.360docs.net/doc/fb4252465.html, Received: Dec. 10th, 2015; accepted: Dec. 24th, 2015; published: Dec. 30th, 2015 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/fb4252465.html,/licenses/by/4.0/ Abstract Lignin is a renewable aromatic polymer in nature, and it can be used in the process of high added value. In addition, the oil and natural gas are facing the serious situation of increasingly exhausted. Lignin as a part of alternative fossil raw materials shows a good application prospect. In order to realize the use of lignin, firstly, we must understand the composition and structure of lignin. Stat-ing from the chemical composition of lignin, this paper analyzed and compared some methods and techniques for separation as well as extraction, and application of lignin extraction, focused on the latest progress in the structure of lignin, and forecasted the development direction of lignin ap-plication. Keywords Lignin, Structure, Separation, Application 木质素的研究进展 孟永斌1*,徐蕾1,张子东1,刘英2,张莹2,孟庆焕2,聂思铭2,路祺1,2 1生物资源生态利用国家地方联合工程实验室,黑龙江哈尔滨 2东北林业大学森林植物生态学教育部重点实验室,黑龙江哈尔滨 Email: 347576614@https://www.360docs.net/doc/fb4252465.html,, luqi42700473@https://www.360docs.net/doc/fb4252465.html, 收稿日期:2015年12月10日;录用日期:2015年12月24日;发布日期:2015年12月30日 *第一作者。

木质素论文

枣果实内果皮发育过程中木质素沉积动态分析 学生姓名:刘旭洋导师姓名:王晓琴 摘要本次实验是以无核金丝小枣作为实验材料,以有核金丝小枣作为对照,对果实内果皮部分各发育时期石蜡切片进行观察,以及枣的各项生理指标,初步探讨枣果实出现无核形状的机理。所得研究结果如下: 1、无核金丝小枣的发育根据石蜡切片和生理指标的特征可以分为四个时期:果实缓慢生长期(花后15天内)、果实快速生长期(花后15-30天)、果核形成期(花后30-45天)、果肉快速生长期(花后45天-成熟时) 2、无核金丝小枣的含水量要比有核金丝小枣的含水量高,证明无核金丝小枣的口感更佳。 3、果实成熟时,在内果皮部分石细胞化程度上,有核金丝小枣要比无核金丝小枣的高出许多。 关键词枣;木质素;内果皮;观察;石蜡切片 Analysis of lignin deposition in jujube fruit peel during fruit development Name of student:Liu Xu-Yang Name of tutor:Wang Xiao-Qin Abstract In this study, we analyzed the changed of lignin deposition in jujube fruit peel during fruit development using gold thread jujube with nuclear or without nuclear. We also analyzed the fruit growth and their water content. The results were as follow: 1. T he fruit development was divided into four stages: slow growth (15 days after flowering); fast growth (15-30 days after flowering); nucleation (30-45 days after flowering); pulp fast growth (45 days after flowering - maturity). 2. T he water content of gold thread jujube without nuclear was higher than that of gold thread jujube with nuclear. Therefore, the fruit of gold thread jujube without nuclear might taste better than that of gold thread jujube with nuclear. 3. W hen fruits ripen, stone cell distribution in endocarps of gold thread jujube with nuclear was much more than that of gold thread jujube without nuclear Key words Jujube; lignin; endocarp; Observation; Paraffin section

木质素的测定方法研究进展

本文由dylan_may贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 第 41 卷 3 期第 2007 年 6 月 河南农业大学学报 Journal of Henan A gricultural U niversity Vol 41 No. 3 . Jun. 2007 文章编号 : 1000 - 2340 ( 2007 ) 03 - 0356 - 07 木质素的测定方法研究进展 苏同福 ,高玉珍 ,刘 ,周 ,宫长荣霞斌 1 1 1 2 1 ( 1. 河南农业大学 ,河南郑州 450002; 2. 黄河中心医院药剂科 ,河南 郑州 450003 ) 摘要 : 对木质素的制备、总量的测定及其结构和分子量的测定等进行了综述 , 并分析了这些测定方法存在的问题 ,指出了将太赫兹技术应 用于木质素测定的前景 . 关键词 : 木质素 ; 降解 ; 太赫兹中图分类号 : Q 539; O 636. 2 文献标识码 : A Rev iew of D eterm ina tion of L ign in SU Tong2fu , GAO Yu 2zhen , L I Xia , ZHOU B in , GONG Chang2rong U ( 1. Henan Agricultural University, Zhengzhou 450002, China; 1 1 1 2 1 2. Pharmacy of yellow R iver Central Hosp ital, Zhengzhou 450003, China ) Abstract: Testing methods for total lignin, p reparation of lignin, structures and molecular weight, are introduced in this article. Problem s existing in these testing methods are analysed and the p rospects of the terahertz technology app lication to lignin analysis are pointed out . Key words: lignin; decompose; terahertz 木质素 ,又称为木素 , 广泛地存在于木材与禾本植物体内 , 通常认为是植物体在次生代谢合成的 ,在植物体内具有机械支持、防止生物降解、输送水分等功能 . 木质素的化学组成是苯丙烷类物质 (包括对羟基苯丙烷、—邻甲氧基苯丙烷以及 4 —羟基—3, 5 —二甲氧

相关文档
最新文档