单片机串行通信发射机

单片机串行通信发射机
单片机串行通信发射机

1 绪论

我所做的单片机串行通信发射机主要在实验室完成,参考有关的书籍和资料,个人完成电路的设计、焊接、检查、调试,再根据自己的硬件和通信协议用汇编语言编写发射和显示程序,然后加电调试,最终达到准确无误的发射和显示。在这过程中需要选择适当的元件,合理的电路图扎实的焊接技术,基本的故障排除和纠正能力,会使用基本的仪器对硬件进行调试,会熟练的运用汇编语言编写程序,会用相关的软件对自己的程序进行翻译,并烧进芯片中,要与对方接收机统一通信协议,要耐心的反复检查、修改和调试,直到达到预期目的。

单片机串行通信发射机采用串行工作方式,发射并显示两位数字信息,既显示00-99,使数据能够在不同地方传递。硬件部分主要分两大块,由AT89C51和多个按键组成的控制模块,包括时钟电路、控制信号电路,时钟采用6MHZ晶振和30pF的电容来组成内部时钟方式,控制信号用手动开关来控制,P1口来控制,P2、P3口产生信号并通过共阳极数码管来显示,软件采用汇编语言来编写,发射程序在通信协议一致的情况下完成数据的发射,同时显示程序对发射的数据加以显示。

毕业设计的目的是了解基本电路设计的流程,丰富自己的知识和理论,巩固所学的知识,提高自己的动手能力和实验能力,从而具备一定的设计能力。

我做得的毕业设计注重于对单片机串行发射的理论的理解,明白发射机的工作原理,以便以后单片机领域的开发和研制打下基础,提高自己的设计能力,培养创新能力,丰富自己的知识理论,做到理论和实际结合。本课题的重要意义还在于能在进一步层次了解单片机的工作原理,内部结构和工作状态。理解单片机的接口技术,中断技术,存储方式,时钟方式和控制方式,这样才能更好的利用单片机来做有效的设计。

我的毕业设计分为两个部分,硬件部分和软件部分。硬件部分介绍:单片机串行通信发射机电路的设计,单片机AT89C51的功能和其在电路的作用。介绍了AT89C51的管脚结构和每个管脚的作用及各自的连接方法。AT89C51与MCS-51兼容,4K字节可编程闪烁存储器,寿命:1000次可擦,数据保存10年,全静态工作:0HZ-24HZ,三级程序存储器锁定,128*8位内部RAM,32跟可编程I/O线,两个16位定时/计数器,5个中断源,5个可编程串行通道,低功耗的闲置和掉电模式,片内震荡和时钟电路,P0和P1 可作为串行输入口,P3口因为其管脚有特殊功能,可连接其他电路。例如P3.0RXD作为串行输出口,其中时钟电路采用内时钟工作方式,控制信号采用手动控制。数据的传输方式分为单工、半双工、全双工和多工工作方式;串行通信有两种形式,异步和同步通信。介绍了串行串行口控制寄存器,电源管理寄存器PCON,中断允许寄存器IE,还介绍了数码显示管的工作方式、组成,共阳极和共阴极数码显示管的电路组成,有动态和静态显示两种方式,说明了不同显示方法与单片机的连接。再后来还介绍了硬件的焊接过程,及在焊接时遇到的问题和应该注意的方面。硬件焊接好后的检查电路、不装芯片上电检查及上电装芯片检查。软件部分:在了解电路设计原理后,根据原理和目的画出电路流程图,列出数码显示的断码表,计算波特率,设置串行口,在与接受机设置相同的通信协议的基础上编写显示和发射程序。编写完程序还要进行编译,这就必须会使用编译软件。介绍了编译软件的使用和使用过程中遇到的问题,及在编译后烧入芯片使用的软件PLDA,后来的加电调试,及遇到的问题,在没问题后与接受机连接,发射数据,直到对方准确接收到。在软件调试过程中将详细介绍调试遇到的问题,例如:通信协议是否相同,数码管是否与芯片连接对应,计数器是否开始计数等。

我所设计的单片机串行接口现在已经发展到无线收发的阶段,本文参考无线发射

部分就是参考南华大学黄智伟、朱卫华的《单片机与嵌入式系统应用》一文,该串行无线发射电路结构简单、工作可靠,可方便地在单片机与单片机之间,构成一个点对点、一点对多点的无线串行数据传输通道。单片机无线串行接口电路由MICRF102单片发射器芯片、MICRF007单片接收器芯片组成,工作在300~440 MHz ISM频段;具有ASK调制和解调能力,抗干扰能力强,适合工业控制应用;采用PLL频率合成技术,频率稳定性好;接收灵敏度高达-96 dBm,最大发射功率达-2.5 dBm;数据速率可达2 Kb/s;低工作电压:4.75~5.5 V;功耗低,接收时电流3 mA,发射时电流7.75 mA,接收待机状态仅为0.5μA,发射待机状态仅为1.0μA;可用于单片机之间的串行数据无线传输,也可在单片机数据采集、遥测遥控等系统中应用。

最后介绍了毕业设计做完后的结论以及自己的心得体会。

2 硬件

2.1硬件的基本组成:

单片机89C51、6M晶震、30pF电容、22uf/10V电容、1K电阻、共阳极数码显示管、按键。

2.2电路图

(见附录A)

2.3 硬件介绍

2.3.1 单片机概述

单片机也被称作“单片微型计算机”、“微控制器”、“嵌入式微控制器”。单片机一词最初是源于“Single Chip Microcomputer”,简称SCM。随着SCM在技术上、体系结构上不断扩展其控制功能,单片机已不能用“单片微型计算机”来表达其内涵。国际上逐渐采用“MCU”(Micro Controller Unit)来代替,形成了单片机界公认的、最终统一的名词。为了与国际接轨,以后应将中文“单片机”一词和“MCU”唯一对应解释。在国内因为“单片机”一词已约定俗成,故而可继续沿用。

2.3.1.1 单片机的发展历史

如果将8位单片机的推出作为起点,那么单片机的发展历史大致可以分为以下几个阶段:

第一阶段(1976—1978):单片机的探索阶段。以Intel公司的MCS-48为代表。MCS-48的推出是在工控领域的探索,参与这一探索的公司还有Motorola、Zilog等。都取得了满意的效果。这就是SCM的诞生年代,“单片机”一词即由此而来。

第二阶段(1978—1982):单片机的完善阶段。Intel公司在MCS-48基础上推出了完善的、典型的单片机系列MCS-51。它在以下几个方面奠定了典型的通用总线型单片机体系结构。

1.完善的外部总线。MCS-51设置了经典的8位单片机的总线结构,包括8位数据总线、16位地址总线、控制总线及具有多机通信功能的串行通信接口。

2.CPU外围功能单元的集中管理模式。

3.体现工控特性的地址空间及位操作方式。

4.指令系统趋于丰富和完善,并且增加了许多突出控制功能的指令。

第三阶段(1982—1990):8位单片机的巩固发展及16位单片机的推出阶段,也是单片机向微控制器发展的阶段。Intel公司推出的MCS-96系列单片机,将一些用于测控系统的模数转换器、程序运行监视器、脉宽调制器等纳入片中,体现了单片机的微控制器特征。

第四阶段(1990—):微控制器的全面发展阶段。随着单片机在各个领域全面、深入地发展和应用,出现了高速、大寻址范围、强运算能力的8位/16位/32位通用型单片机,以及小型廉价的专用型单片机。

2.3.1.2 单片机的发展趋势

目前,单片机正朝着高性能和多品种方向发展,今后单片机的发展趋势将是进一步向着CMOS化、低功耗化、低电压化、低噪声与高可靠性、大容量化、高性能化、

小容量、低价格化、外围电路内装化和串行扩展技术。随着半导体集成工艺的不断发展,单片机的集成度将更高、体积将更小和功能将更强。

2.3.1.3 单片机的特点

单片机主要有如下特点:

1.有优异的性能价格比。

2.集成度高、体积小、有很高的可靠性。单片机把各功能部件集成在一块芯片上,内部采用总线结构,减少了各芯片之间的连线,大大提高了单片机的可靠性和抗干扰能力。另外,其体积小,对于强磁场环境易于采取屏蔽措施,适合在恶劣环境下工作。

3.制功能强。为了满足工业控制的要求,一般单片机的指令系统中均有极丰富的转移指令、I/O口的逻辑操作以及位处理功能。单片机的逻辑控制功能及运行速度均高于同一档次的微机。

4.低功耗、低电压,便于生产便携式产品。

5.外部总线增加了I2C(Inter-Integrated Circuit)及SPI(Serial Peripheral Interface)等串行总线方式,进一步缩小了体积,简化了结构。

6.单片机的系统扩展和系统配置较典型、规范,容易构成各种规模的应用系统。

2.3.1.4 单片机的应用

由于单片机具有显著的优点,它已成为科技领域的有力工具,人类生活的得力助手。它的应用遍及各个领域,主要表现在以下几个方面:

1.单片机在智能仪表中的应用

2.单片机在机电一体化中的应用

3.单片机在实时控制中的应用

4.单片机在分布式多机系统中的应用

5.单片机在人类生活中的应用

单片机已成为计算机发展和应用的一个重要方面,另一方面,单片机应用的重要意义还在于,它从根本上改变了传统的控制系统设计思想和设计方法。从前必须由模拟电路或数字电路实现的大部分功能,现在已能通过单片机来实现了。这种用软件代替硬件的控制技术也称为微控制技术,是对传统控制技术的一次革命。

A:由单片机组成控制器的结构和特点:

单片微型计算机是微型计算机发展中的一个重要分支,是把构成一台微型计算机的主要部件如中央处理器(CPU)、存储器(RAM/ROM)和各种功能I/O接口集成在一块芯片上的单芯片微型计算机(Single Chip Micro Computer),简称单片机.由于它的结构与指令功能都是按工业控制要求设计的,且近年来单片机着力扩展了各种控制功能如A/D、PWM等,因此我们更多时候称其为一个单片形态的微控制器(Single Chip Micro Controller),或直接称其为微控制器(Micro Controller)。

B:用单片机组成的微机控制系统具有以下特点:

1.受集成度限制,片内存储器容量较小,一般片内ROM小于4—8K字节,片内RAM小于256字节;但可在外部进行扩展,如MCS—51系列单片机的片外可擦可编程只读存储器(EPROM)、静态随机存储器(SRAM)可分别扩展至64K字节。

2.可靠性高。单片机芯片本身是按工业控制环境要求设计的,其抗工业噪声的能力优于一般通用CPU;程序指令及其常数、表格固化在ROM中不易破坏;常用信号通道均在一个芯片内,故可靠性高。

3.易扩展。片内具有计算机正常运行所必须的部件,芯片外部有许多供扩展用的总线及并行、串行输入/输出端口,很容易构成各种规模的微机控制系统。

4.控制功能强。为了满足工业控制要求,单片机的指令系统中有极丰富的条件分支转移指令、I/O口的逻辑操作以及位处理功能。一般来说,单片机的逻辑控制功能及运行速度均高于同一档次的微处理器。

5.一般的单片机内无监控程序或系统管理软件,软件开发工作量大。但近年来已开始出现了片内固化有BASIC解释程序及FROTH操作系统的单片机,使单片机系统的开发提高了一个新水平。

此外,单片机成本低、集成度高、控制功能多,可灵活地组装成各种智能控制装置,并能有针对性设计成专用系统,解决从简单到复杂的各种需要,实现最佳的性价比。特别是单片机与传统机械产品相结合,使原有机械产品的结构简化、控制智能化。如数控机床就是典型实例。近年来,单片机发展极快,其产量占微机产量的70%以上。目前,至少有50个系列400余种机型,性能和结构各不相同,INTEL、MOTOROLA、ZILCG 等公司都有系列单片微型计算机。国内普及的几乎都是INTEL公司的产品。

2.3.2 AT89C51单片机简介

AT89C51是美国ATMEL公司生产的低电压,高性能的CMOS8位单片机片内4Kbytes的可反复擦写的只读程序存储器(PEROM)和128bytes的随机存储器(RAM),器件采用ATMEL公司的高密度、非易失存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器(CPU)和Flash存储单元,功能强大。AT89C51单片机可为你提供许多高性价的应用场合,可灵活的应用于各种控制领域。

AT89C51

图2.1 单片机AT89C51

主要性能参数:

·与MCS-51产品指令系统的全兼容

·4k字节可重擦写Flash闪速存储器

·1000次可擦写周期

·全静态操作:0Hz-24MHz

·三级加密程序存储器

·128×8字节内部RAM

·32个可编程I/O口线

·2个16位定时/计数器

·6个中断源

·可编程串行UART通道

·低功耗空闲和掉电模式

2.3.2.1 AT89C51功能特性描述:

AT89C51提供以下标准功能:4k字节Flash闪速存储器,128字节内部RAM,32个I/O口线,两个16位定时/计数器,一个5向量中断结构,一个全双工串行通信口,片内震荡器及时钟电路。同时,AT89C51可降至0Hz的静态逻辑操作,并支持两种软件的可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时/计数器,窜行通信口及中断系统继续工作。掉电方式保存RAM中的内容,但震荡器停止工作并禁止所有部件工作直到下一个硬件复位。

(1)AT89C51引脚功能说明:

·Vcc:电源电压

·GND:地

·P0口:PO口是一组8位漏极开路行双向I/O口,也既地址/数据总线复用口。可作为输出口使用时,每位可吸收电流的方式驱动8个TTL逻辑电路,对端口写“1”可作为高阻抗输入输入端用。在访问外部数据存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。在Flash编程时,PO口接收指令字节,而在程序校验时,输出指令字节,校验时,要求接上拉电阻。

·P1口:P1口是一个内部上拉电阻的8位双向I/O口,P1的输入缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输出口。作输入口时,因为内部存在上拉电阻,某个引脚被外部信号拉低时输出一个电流(I)。Flash编程和程序校验期间,P1口接收8位地址。

·P2口:P2口是一个带有内部上拉电阻的8位双向I/O口,P2的输入缓冲极可以驱动(输入或输出电流)4个TTL逻辑门电路。对端口“1”,通过内部的上拉电阻把端口拉到高电平,此时和作为输出口,作输出口时,因为存在内部上拉电阻,某个引脚被外部信号拉低时会输出一个电流。在访问外部存储器或1位地址的外部数据存储器(例如执行MOVX@DPTR指令)时,P2口送出高8位地址数据。在访问8位地址的外部数据存储器(如执行MOVX@RI指令)时,P2口线的内容(也既特殊功能寄存器(SFR)区中R2寄存器的内容),在整个访问期间不改变。Flash编程或校验时,P2亦接收高地址和其他控制信号。

·P3口:P3口是一组带有内部上拉电阻的8位双向I/O口,,P1的输入缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对P3口写入“1”时,它们被内部上拉电阻拉高并可作为输出端口。作输出端口时,被外部拉低的P3口将用上拉电阻输出电流。P3口除可作为一般的I/O口线外,更重要的用途是它的第二功能,如表2.1所示:

P3口还接收一些用于Flas 闪速存储器编程和程序校验的控制信号

图2.2 AT89C51方框图

·RST:复位输出。当震荡器工作时,RST引脚出现两个机器周期以上高电平使机器复位。

·ALE/PROG当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输

出脉冲用于锁存地址的低8位字节,即使不访问外部字节,ALE仍时钟震荡频率的1/6输出固定的正脉冲信号,因此它可对外输出时钟脉冲或用于定时目的。要注意的是:每次访问外部存储器时将跳过一个ALE脉冲。对Flash存储器编程期间,该引脚

还要输入编程脉冲(PROG)。如有必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的D0位置位,可禁止ALE操作。该位置位后,只有一条MOVX和MOVC 指令可激活。此外,此引脚会被微弱拉高,单片机执行外部程序时,应该置ALE无效。

·PSEN:程序存入允许(PSEN)输出的是外部程序存储器的读选通信号,当

表2.1 AT89C51端口

AT89C51由外部程序取指令(或数据)时,每个机器周期两次PSEN有效,既输出两个脉冲。在此期间,当访问外部数据存储器,这两次有效的PSEN信号不出现。

·EA/VPP:外部访问允许。欲使CPU仅访问外部程序存储器(地址为0000H--FFFFH),EA端必须保持低电平(接地)。要注意的是:如果加密位LB1被编程,复位时内部会锁存EA端状态。Flash存储器编程时,该引脚加上+12V的编程允许电源Vpp,当然这必须是该器件是使用12V的编程电压Vpp。

·XTAL1:震荡器反向放大器及内部时钟的输入端。

·XAAL2:震荡器反向放大器的输出端。

·时钟震荡器:AT89C51中有一个构成内部震荡器的高增益反向放大器,引脚XTAL1和XTAL2分别是该放大器的输入端和输出端。这个放大器与作为反馈元件的片外石英或陶瓷震荡器一起构成自激震荡器震荡电路如图。外接石英晶体(或陶瓷震荡器)及电容C1、C2接在放大器的震荡回路中构成并联震荡电路。对外接电容C1、C2虽然没有非常严格的要求,但电容的大小会轻微影响震荡频率的高低、震荡工作的稳定性、起震的难易程序及温度稳定性,如果使用石英晶体,推荐使用30pF±10pF,而如果使用陶瓷谐振器建议选择40pF±10pF。用户还可以采用外部时钟,采用外部时钟如图所示。在这种情况下,外部时钟脉冲接到XTAL1端,既内部时钟发生器的输入端,XTAL2悬空。

图2.3 内部震荡电路图2.4 外部震荡电路

由于外部时钟信号是通过一个2分频的触发器后作为内部时钟信号的所以外部

时钟的占空比没有特殊要求,但最小高电平持续的时间和最大低电平持续的时间应符合产品技术条件的要求。

·Flash闪速存储器的编程:

AT89C51单片机内部有4K字节的Flash PEROM,这个Flash存储存储阵列出厂时已处于擦除状态(既所有存储单元的内容均为FFH),用户随时可对其进行编程。程序接收高电压(+12V)或低电压(Vcc)的允许编程信号。低电压编程模式,适用与用户在线编程系统。而高电平模式可与通用EPROM编程程序兼容。

·编程方法:

编程前需设置好地址、数据及控制信号,编程单元的地址就、加在P1口和P2口的P2.0—P2.3(11位地址范围为0000H—0FFFH),数据从P0口输入,引脚P2.6、P2.7和P3.6、P3.7的电平设置见表。PSEN为低电平,RST保持高电平,EA/Vp 引脚是编程电源的输入端,按要求加上编程电压,ALE/PROG引脚输入编程脉冲(负脉冲)编程时可采用4—20MHz的时钟震荡器AT89C51的编程方法如下:1.0 在地址线上加上要编程单元的地址信号。

1.在数据线上加上要写入的数据字节。

2.激活相应的控制信号。

3.在高电压编程时,将EA/Vpp端加上+1V编程电压。

4.每对Flash存储阵列写入一个字节,加上一个ALE/PROG编程脉冲。

(2)AT89C51控制信号

RST/VPD(9脚)复位信号时钟电路工作后,在引脚上出现两个机器周期的高电平,芯片内部进行初始复位,复位后片内存储器的状态如表所示,P1—P3口输出高电平,初始值07H写入堆栈指针SP、清0程序计数器PC和其余特殊功能寄存器,但始终不影响片内RAM状态,只要该引脚保持高电平,89C51将循环复位,,RAT/VPD 从高电平到低电平单片机将从0号单元开始执行程序,另外该引脚还具有复用功能,只要将VPD接+5V备用电源,一旦Vcc电位突然降低或断电,能保护片内RAM中的信息不丢失,恢复电后能正常工作。

AT89C81通常采用上电自动复位和开关手动复位,我们采用的是手动复位开关如图所示:

图3.4 手动开关

手动开关未按下之前,电容正极处于家电状态,当按键按下去后,VCC与GND 导通,电容放电,从而实现放电。

2.4 单片机的串行接口

MCS-51单片机内部有一个全双工的串行接收和发射缓冲器(SBUFF),这两个在物理上独立的接收发射器,即可以接收也可以发射数据,但接收缓冲器只可以读出不能写入,而发送缓冲器只能写入不能读出,它们的地址是99H。这个通信口即可以用于网络通信,亦可以实现串行异步通信,还可以构成同步移位寄存器使用。如果在串行口的输入输出引脚上加上电平转换器,就可以方便的构成标准的RS-232接口。下面我们分别介绍。

2.4.1 基本概念

数据通信的传输方式:常用于数据通信的传输方式有单工、半双工、全双工和

工方式。

A.单工方式:数据仅按一个固定的方向传送。因为这种传输方式的用途有限,常用于串行口的打印数据传输与简单系统间的数据采集。

B.双工方式:数据可以实现双向传送,但不能同时进行,实际的应用采用某种协议实现收发开关转换。

C.全双工方式:允许双方同时进行数据双向传送,但一般全双工电路的线路和设备比较复杂。

D.多工方式:以上三种传输方式都是同一线路传输一种频率信号,为了充分的利用线路资源,可通过使用多路复用器或多路集线器,采用频分、时分、或码分复用技术,即可实现在同一线路上资源共享功能,我们称之为多工传输方式。

串行通信的两种通信形式

A. 异步通信

在这种通信方式中,接收器和发射器有各自的时钟,他们的工作是非同步的,异步通信用一帧来表示一个字符,其内容如下:一个起始位,紧接着是若干个数据位,图是传输45H的数据格式。

B.同步通信

同步通信格式中,发送器和接收器由同一个时钟源控制,为了克服在异步传输中,每传输一帧字符都必须加上起始位和停止位,占用了传输时间,在要求传送的数据量较大的

C. 串行数据通信的传输速率:

串行数据传输率有两个概念,既美秒传送的位数bps(Bit per second)和美秒符号数-波特率(Band rate),在具有调治解调器的通信中,波特率与调治速率有关。2.4.2 MCS-51的串行和控制寄存器

2.4.2.1 串行口和控制寄存器

MCS-51单片机串行口专用寄存器结构如图所示。SBUF为串行口的收发缓冲器,它是一个可寻址的专用寄存器,其中包含了接收器和发射器寄存器,可以实现全双工通信。但这两个寄存器具有同一地址(99H)。MCS-51的串行数据传输很简单,只要向缓冲器写入数据就可发送数据。而从接收缓冲器读出数据既可接收数据。

此外,接收缓冲器前还加上一级输入移位寄存器,MCS-51这种结构的目的在于接收数据时避免发生重叠现象,文献称这种结构为双缓冲结构。而发送数据就不需要这样设计,因为发送时,CPU是主动的,不可能出现这种情况。

A:串行通信寄存器

在上一节我们已经分析了SCON控制寄存器,它是一个可寻址的专用寄存器,用于串行数据通信的控制,单元地址是98H,其结构格式如下:

表2.3 SCON寄存器结构

下面我们对个控制位功能介绍如下:

(1)SM0、SM1:串行口工作方式控制位

SMO SM1 工作方式功能说明

0 0 方式0 移位寄存器方式(用于I/O扩展)

0 1 方式1 8位UART,波特率可变(T1溢出率/ n)

1 0 方式

2 9 位UART,波特率为fosc/64或fosc/32

1 1 方式3 9位UART,波特率可变(T1溢出率/ n)

(2)SM2:多机通信控制位

多机通信是工作方式2和方式3,SM2位主要用于方式2和方式3。接收

状态,当串行口工作方式2或3,以及SM2=1时,只有当接收到第9位数据(RB8)为1时,才把接收的前8位数据送入SBUF,且置位RI发出中断申请,否则会将收到的数据放弃。当SM2=0时,只有在接收到有效停止位时才启动RI,若没接收到有效停止位,则RI清“0”。在方式0中SM2应该为“0”。

REN:允许接收控制位。由软件置“1”时,允许接收;软件置“0”时,不许接收。

TB8:在方式3和方式3中要发送的第9位数据,需要时用软件置位和清零。

TB8:在方式2和方式3中是接收到的第9位数据。在方式1时,如SM2=0,RB8接收到的停止位。在方式0中,不使用RB8。

TI:发送中断标志。由硬件在方式0发送完第8位时置“1”,或在其它方式中串行发送停止位的开始时置“1”。必须由软件清“0”。

RI:接收中断标志。由硬件在方式0串行发射第8位结束时置“1”

B:特殊功能寄存器PCON

PCON:主要是是CHMOS型单片机的电源控制而设置的专用寄存器,单元地址为87H其机构格式如下表:

在CHMOS型单片机中,除SMOD位外其它位均为虚设的,SMOD是串行波特率倍增位,当SMOD=1时串行口波特率加倍,系统复位默认为SMOD=0。

C:中断允许寄存器IE

中断允许寄存器这里重述一下对串行口有影响的位ES。ES为串行中断允许控制位,ES=1允许串行中断,ES=0,禁止串行中断。

2.4.2.2 串行口工作方式

串行口具有4种工作方式,我从应用和毕业设计的角度,重点讨论方式1发送。

串行口定义为方式1时传送1帧数据为10位,其中1位起始地址、8位数据位(先低位后高位)、1位停止位方式1的波特率可变,波特率=

2SMOD(T1的溢出

32

/

率)

符号EA ES ET1 EX1 ETO EX0

位地址AFH AEH ADH ACH ABH AAH A8H A8H 2.5 数码显示管

要用单片机构成发射机,就需要一个人机界面。常采用的方式是LED数码管显示测试结果,用一个小键盘执行某些功能,如请零、预置值、改变测量范围等等。

LED显示器的工作原理

LED显示是用发光二极管显示字段的显示器件,也可称为数码管,其外形结构如图所示,由图可见它由8个发光二极管构成,通过不同的组合可用来显示0~9、A~F及小数点。

图3.1 “8”字型数码管

LED显示器分为共阴极和共阳极,共阴极是将8个发光二极管阴极连接在一起

作为公共端,而共阳极是将8个发光二极管的阳极连接在一起作为公共端。我们这次就是采用的共阳极LED,所以这里要介绍共阳极数码管。如图所示,LED显示器有静态和动态显示两种方式,静态显示是将共阴极联到一起接地,每位的显示段(a-dp)分别与一个8位的锁存器输出相连。由于显示的各位可以相互独立,各位可以互相显示,只要在该位的段选线上保持段选码电平,该位就能保持相应的显示字符。并且由于各位由一个8位锁存器控制段选线,故在同一时间内每一位显示的字符可以不同,

这种方式占用锁存器较多。动态显示是将所有位的段选线相应的并联在一起,由一个8位的I/O口控制,形成段选线的多路复用。而各位的阴极分别由相应的I/O口控制,

实现各位的分时选通。要LED能够显示相应的字符,就必须采用动态扫描方式,只要每位显示的时间足够短,则可造成多位同时显示的假象,达成显示的目的。在数字电路中常常要把数据或运算结果通过半导体数码管、液晶数码和荧光数码管,用十进制数显示出来。

发光二极管的工作电压为1.5-3.0伏,工作电流为己毫安到几十毫安,寿命很长。半导体数码管将十位数分成七个字段,每段为一个发光二极管,其字形结构如图所示,选择不同的字段发光,可显示出不同的字型。例如:当a,b,c,d,e,f,g七个字段同时亮时,显示8,b、c 段亮时,显示出1。

共阳极:把发光二极管的阳极连在一起构成共阳极。使用时公共端接Vcc,当某阳极为低电平时,该发光二极管就导通发光。输出一个段码就可以控制LED显示器的字型,表给出了段码与字型的关系,假定a、b、c、d、e、f、g、DP分别对应D0、D1、D2、D3、D4、D5、D6、D7。

2.6 硬件的焊接及调试过程

硬件的焊接是毕业设计中重要的环节,用的工具很简单:电烙铁、焊丝和镊子。因为我们选用的是实验板,所以要用导线把各个元器件连接起来,这就要有一定的技术基础,幸好这个在我们以前的电娤实习中已经掌握。焊接要细心,还要有耐心。焊接前要对照电路图对元器件有一个合理的布局,那样的话就会使电路简洁明朗,而且不易出错,即使出错也容易检查。下面就来介绍元器件的焊接方法和过程。

2.6.1硬件的焊接

2.6.1.1 底座的焊接

我的电路板有两个底座,一个是单片机AT89C51的,另一个是数码显示管的。我们用的是40脚的双排直插式的,在焊接时,要先把底座插到电路板上再进行焊接,底座各脚的焊点要小,以免各脚之间导通,还不能形成虚焊,虚焊会导致电路不通,底座要焊接牢固,不能和电路板距离太远,以免导致虚焊。底座还要放在公共线的两边,因为那两条线是火线和地线。焊接好后要对照电路仔细检查,再用万用表检测,看焊接是否良好。

2.6.1.2 按键的焊接

我的电路中用到了5个按键,一个复位键、一个发射键、两个置数键,还有我自己加的一个计数控制键。我虽然做的是发射机,但只要对软件进行一些改动,也可以作为接收机,那时发射控制键就变成接收控制键了。

我所用的按键是普通的断开按键,有4个脚,两边各两个,其中每边的两个脚是导通的,在焊接的时候要特别注意,我就是不小心,把相连的两个脚焊接当成不连的脚用来作开关,结果按键按下后不起作用。所以在焊接前一定要用万用表测出那两个脚是导通的,焊接完后再检测,看焊接是否良好。

2.6.1.3 时钟电路的焊接

我们的电路中时钟电路包括一个晶震,两个电容。晶震是6M的,电容是普通电容,焊接前要刮腿,以免接触不好。晶震和电容要尽量靠近芯片,这样有利于时钟电路的稳定,减少干扰。焊接好后要用万用表检测。

2.6.1.4 导线的焊接

导线的焊接比较麻烦。因为导线比较多,就要先对导线进行布局,找好于元器件相对的管脚,焊接前先要检测导线是否导通。焊接完成后要检测是不是连接良好。

2.6.1.5 电路板的检测和故障排除

电路板完成后要进行全面检测,包括以下几个方面:

2.6.1.6 火线和底线的检测

检测单片机底座的Vcc(40脚)是否与火线相连,检测数码管的功用端是否与火线连接,手动复位开关是否连接上火线。地线检查:其他按键接地是否良好,时钟电路接地端的检测,单片机GND端(20脚)是否接地。检查完后再用万用表检查火线和地线是否导通。

2.6.1.7 元器件之间的连接的检查

参照电路图,用万用表仔细检查各个元器件连接是否良好,是否对应。

2.6.2 硬件的调试机器故障排除

硬件的调试在上电后的工作是不是正常,主要包括不插单片机的调试和插上单片机的检测。

2.6.2.1 无单片机的调试

无单片机调试主要检查电路工作是否正常,调试数码管是否点亮,显示数据是否正确,具体步骤如下:

A:打开电源,将输出电压调到5伏,然后关闭电源。

B:将电路板的火线与电源正极相连,地线与负极相连。

C:打开电源,用万用表检测电路板是否有输出电压,如果有就是好的,没有就要检测是否有短路。

D:电路检查完后,关闭电源,用一根导线与电源负极相连,然后打开电源,用导线的另一端逐个与P0、P2口的管脚接触,看数码管显示是否正确。

调试过程中遇到的问题及解决办法:

(1)上电后,用导线一端接低电平,另一端逐一连接P0、P2管脚,数码管显示不正常,检测后发现管脚有短路现象,将短路管脚重新焊接后,显示正常。

(2)反复调试几次后,发现电路不稳定,有时没反应。仔细分析后,觉得是稳压管有问题,拆除后直接接5V电压源,问题解决。

2.6.2.2 有单片机的调试

加上单片机,目的是看单片机能否正常工作,有效地控制显示数据。编写一个小程序,烧入芯片中加点调试。

A:程序如下:

ORG 0000H

LJMP MAIN

ORG 0030H

MAIN:MOV DPTR,#DDSS

MOV A,#0

MOVC A,@A+DPTR

MOV P0,A

MOV P2,A

DDSS:DB 3FH,06H,5BH,4FH,66H

DB 6DH 7DH,07H,7FH,6FH

END

B:将编好的程序进行编译,即将*.ASM文件转化为*.BIN文件,然后烧入片子。程序的编译和烧入将在以后介绍。

C:把单片机AT89C51接入底座插入底座,加电,看各位显示是不是正确。

D: 用复位键看显示是否正确,如果稳定,表示调试成功。

调试过程中遇到的问题:

上电后,用示波器检测30脚,发现没有时钟频率输出,仔细分析发现30脚没接高电平,重新焊接后,输出漂亮的时钟脉冲。

3 软件的设计和调整过程

软件的设计是我毕业设计的另一个重要方面。它的好坏直接关系毕业设计的成功与否。我等软件是用汇编完成的,需要能熟练的掌握汇编语言,还要熟悉AT89C51单片机。从程序流程图、通信协议、波特率计算、编写程序、编译、和烧入软件的操作,到最后的调试,是很复杂的。下面作详细介绍:

3.1 程序流程图

程序流程图是编写软件的重要前提,它是在图表上直观的体现拟设计的目的及过程。也是编译的重要依据,按照流程图一步一步编写程序,下面是我的流程图;

图3.1 发射接口流程图

3.2 通信协议

通信协议是发射机和接收机之间通信不可缺少的部分,包括下面几方面的设置;

3.2.1 串行口控制寄存器SCON的设置

串行口控制寄存器的基本情况在前面已经介绍,这里不再重复。根据我们所做的内容,我们采用了串行工作方式1,REN设置为“1”(允许接收),综上所述我们设SCON的初始值为50H,如下表所示:

表3.1 串行口控制寄存器

3.2.2 定时器的初始化设置

在定时器为方式1时,方式字为:

表3.2 定时计数器的初始化

T1 T0

INT不参与控制

GATE:表示1

C/T:选择计数/时钟方式

M1MO:选定定时器1工作方式2

所以定时器TMOD初始值为20H

3.2.3 波特率计算

晶震为6M,波特率为1.2K单片机工作方式为串行方式1,T1是方式2,所以

1.2=1/16*X

X=19.2

19.2=1/2*(256-Y)

Y=217.6

把十进制转换成十六进制数为D9,所以初始值为D9。

3.2.4 发射程序

(见附录B)

我所做的程序实现了毕业设计的要求,并此基础上加了一个自己编的小程序,它能够在P1.3为低电平是开始从00-99计数。

3.3 编译软件的使用和PLDA的使用

两个软件的作用是将源程序转化为目标文件,再把目标文件烧到单片机AT89C51

中,他们是这个过程中不可缺少的,在这里我们详细介绍这两个软件的使用。

3.3.1 编译软件的使用和编译过程

编译软件的使用

A: 编译软件的装载:这个软件不需要安装,只要复制到机子里就行。

B:双击快捷方式,进入编辑界面,进行下一步编辑(如图)。

图3.2 仿真器使用界面

C.点击文件,新建一个文件,将源程序输入后保存(生成.ASM文件)。

D. 选择项目,点击全部编译,系统自动进行编译后弹出对话框,提示编译中出

现的问题,双击提示后系统会自动指出出问题的地方(生成.BIN文件)。

E. 单击仿真器,配置选择芯片、通信端口和晶震频率。

F. 单击执行,系统输出仿真信号。也可以选择但不执行,这样可以看到每部执

行的情况。

3.4 烧片

烧片用的是PLDA软件,它的使用方法如下:

(1)先配置软件,选择MCU89C51。

(2)导入预先编译好的程序。

(3)擦除芯片,然后烧制。

烧片时应注意的问题:

(1)芯片的放置要真确,否则有可能造成芯片烧坏。

(2)配置芯片时要注意选对芯片型号,例如用AT89C51就要选:MCU AT89C51。

(3)在烧片之前,应该先擦除芯片,防止芯片内原有遗留程序的影响。

组态王与单片机多机串口通信的设计方案

组态王与单片机多机串口通信的设计 1 引言 随着工业化要求提高,分布式系统发展以及控制设备与监控设备之间通讯需要,组态软件设计的监控系统逐步普及。现在组态软件繁多,比如KingVieW(组态王>、MCGS、W inCC等。KingView软件基于Microsoft Windows XP,NT/2000操作系统.具有友好的人机操作界面、强大的IO设备端口驱动能力,可与各种PLC、智能仪表、智能模块、板卡、变频器等实时通讯。由于在检测大量模拟量的工业现场使用PLC与组态软件通讯势必增加产品成本。而单片机接口丰富,与A/D转换模块组合可以完成相同的工作,并且系统可靠、成本低。 2 组态王与单片机的串口通讯方法 目前,组态王与单片机的通信多是通过动态数据交换(DDE>或通过自己开发通讯驱动程序完成。DDE是Windows平台上的一个完整的通信协议,组态王通过该协议与其他应用程序交换数据。但不可靠和非实时。而自己开发通讯驱动程序会带来设计困难,增加系统开发周期,可行性不高。组态王专门提供一种与单片机多机串口通信方法,可满足大多数系统需求。 3 PC机与单片机的硬件接口电路 图1为上位PC机与下位单片机80C51的连接电路。PC机与单片机本身都自带串行通讯接口,但由于在分布式系统中PC机与各单片机的分布不集中,不能利用RS-232通讯传输,只能改用RS-485。RS-485采用差分式传输信号,最大传输距离为1 219 m.最大传输速率为10 Mb/s.对同时出现的两条信号线A、B的干扰有较强的抑制能力。当两条线绞在一起时,被通信各种分布参数耦合过来的干扰信号可平均地分配到这两条线上,因此对RS-485的差分式传输线路而言,用双绞线可获得较强的抗干扰能力。RS-485采用二线与四线平衡传输方式,二线制可实现真正的多点双向通信,但需要在传输线上接电阻(约120 Ω>。

51单片机串口调试实验(C语言)

//以下程序都是在VC++6.0 上调试运行过的程序,没有错误,没有警告。 //单片机是STC89C52RC,但是在所有的51 52单片机上都是通用的。51只是一个学习的基础平台,你懂得。 //程序在关键的位置添加了注释。 /****************************************************************************** * * 实验名: 串口实验 * 使用的IO : P2 * 实验效果: 将接收到发送回电脑上面。 * 注意: ******************************************************************************* / #include void UsartConfiguration(); /****************************************************************************** * * 函数名: main * 函数功能: 主函数 * 输入: 无 * 输出: 无 ******************************************************************************* / void main() { UsartConfiguration(); while(1) { } } /****************************************************************************** * * 函数名:UsartConfiguration() * 函数功能:设置串口 * 输入: 无 * 输出: 无 ******************************************************************************* / void UsartConfiguration() { SCON=0X50; //设置为工作方式1

两个单片机之间的串行通信

两个单片机之间的串行通信 一、设计要求 在某个控制系统中有U1、U2这两个单片机,U1单片机首先将P1端口指拨开关数据载入SBUF,然后经由TXD将数据传送给U2单片机,U2单片机将接收数据存入SBUF,再由SBUF载入累加器,并输出至P1端口,点亮相应端口的LED。 二、实验所需元器件 三、电路原理图: 两个单片机之间的串行通信电路图

四、程序设计 这两个单片机均工作在半工状态,U1将P1端口的状态通过TXD发半空给U2,而U2接收U1的数据,然后控制P1端口的LED显示。因此,需编写两个不同的程序,其程序流程图如下所示:

五、C语言程序: U1的C语言程序: #include "reg51.h" #define uint unsigned int #define uchar unsigned char void send(uchar state) { SBUF=state; while(TI==0); TI=0; } void SCON_init(void) { SCON=0x50; TMOD=0x20; PCON=0x00; TH1=0xfd; TL1=0xfd; TI=0; TR1=1; ES=1; } void main() { P1=0xff; SCON_init(); while(1) { send(P1); } } U2的C语言程序: #include "reg51.h" #define uint unsigned int #define uchar unsigned char uchar state; void receive() { while(RI==0) state=SBUF; RI=0; } void SCON_init(void) { SCON=0x50; TMOD=0x20; PCON=0x00; TH1=0xfd; TL1=0xfd; RI=0; TR1=1; } void main() { SCON_init(); while(1) { receive(); P1=state; } } 六、调试与仿真:

基于51单片机的串口通讯系统课程设计论文

引言 人类社会已经进入信息化时代,信息社会的发展离不开电子产品的进步。单片机的出现使人类实现利用编程来代替复杂的硬件搭建电路,它靠程序运行,并且可以修改。通过不同的程序实现不同的功能,尤其是特殊的独特的一些功能,这是别的器件需要费很大力气才能做到的,有些则是花大力气也很难做到的。一个不是很复杂的功能要是用美国50年代开发的74系列,或者60年代的CD4000系列这些纯硬件来搞定的话,电路一定是一块大PCB板!但是如果要是用美国70年代成功投放市场的系列单片机,结果就会有天壤之别!只因为单片机的通过你编写的程序可以实现高智能,高效率,以及高可靠性! 单片机应用的主要领域非常广,智能化家用电器、办公自动化设备商业营销设备、工业自动化控制、智能化仪表、智能化通信产品、汽车电子产品、航空航天系统和国防军事、尖端武器等领域。 单片机应用的意义不仅在于它的广阔围及所带来的经济效益,更重要的意义在于,单片机的应用从根本上改变了控制系统传统的设计思想和设计方法。以前采用硬件电路实现的大部分控制功能,正在用单片机通过软件方法来实现。以前自动控制中的PID调节,现在可以用单片机实现具有智能化的数字计算控制、模糊控制和自适应控制。这种以软件取代硬件并能提高系统性能的控制技术称为微控技术。随着单片机应用的推广,微控制技术将不断发展完善。 电路的集成化不仅对硬件电路的设计相关,与电路的布局同样相关。印刷版的出现使得电路产品更加规,体积更小。Protel99se是一款专业的绘制电路及印刷版的软件,近年来的不断升级使得其功能更加完善,出现了Altium Designer 、Protel DXP等升级版本。

51单片机串口通信,232通信,485通信,程序

51单片机串口通信,232通信,485通信,程序代码1:232通信 #include #define uchar unsigned char #define uint unsigned int uchar flag,a,i; uchar code table[]="i get"; void init() { TMOD=0X20; TH1=0XFD; TH0=0XFD; TR1=1; REN=1; SM0=0; SM1=1; EA=1; ES=1; } void main() { init();

while(1) { if(flag==1) { ES=0; for(i=0;i<6;i++) { SBUF=table[i]; while(!TI); TI=0; } SBUF=a; while(!TI); TI=0; ES=1; flag=0; } } } void ser() interrupt 4 {

RI=0; a=SBUF; flag=1; } 代码2:485通信 #include #include"1602.h" #define uchar unsigned char #define uint unsigned int unsigned char flag,a,i; uchar code table[]="i get "; void init() { TMOD=0X20; TH1=0Xfd; TL1=0Xfd; TR1=1; REN=1; SM0=0; SM1=1; EA=1; ES=1;

} void main() { init_1602(); init(); while(1) { if(flag==1) { display(0,a); } } } void ser() interrupt 4 { RI=0; a=SBUF; flag=1; } Love is not a maybe thing. You know when you love someone.

基于单片机的串口通信模块设计

1 绪论 1.1 研究背景 通信是指不同的独立系统利用线路互相交换数据,它的主要目的是将数据从一端传送到另一端,实现数据的交换。在现代工业控制中,通常采用计算机作为上位机与下层的实时控制与监测设备进行通讯。现场数据必须通过一个数据收集器传给上位机,同样上位机向现场设备发命令也必须通过数据收集器。串行通信因其结构简单、执行速度快、抗干扰能力强等优点,已被广泛应用于数据采集和过程控制等领域。 计算机与外界的信息交换称为通信。基本的通信方式有并行通信和串行通信两种。串行通信是指一条信息额各位数据被逐位按顺序传送的通信方式。串行通信的特点是:数据位传送,按位顺序进行,最少只需要一根传输线即可完成,成本低但传送速度快,串行通信的距离可以从几米到几千米。 随着计算机技术尤其是单片微型机技术的发展,人们已越来越多地采用单片机来对一些工业控制系统中如温度、流量和压力等参数进行监测和控制。PC机具有强大的监控和管理能力,而单片机则具有快速及灵和的控制特点,通过PC 机的RS-232串行接口与外部设备进行通信,是许多测控系统中常用的一种通信解决方案。而随着USB接口技术的成熟和使用的普及,由于USB 接口有着 RS-232(DB-9)串口无法比拟的优点,RS-232(DB-9)串口正在逐步地为USB 接口所替代。而在现在的大多数笔记本电脑中,出于节省物理空间和用处不大等原因,RS-232(DB-9)串口已不再设置,这就约束了基于RS-232(DB-9)串口与PC 机联络的单片机设备的使用围。当前USB接口逐步取代RS-232(DB-9)串口已是大势所趋,单片机同计算机的USB通信在实际工作中的应用围也将越来越广。本文所介

单片机串行通信实验

单片机实验报告 实验名称:串行通信实验 姓名:高知明 学号:110404320 班级:通信3 实验时间:2014-6-11 南京理工大学紫金学院电光系

一、实验目的(四号+黑体) 1、理解单片机串行口的工作原理; 2、学习使用单片机的TXD\RXD口; 3、了解MAX232芯片的作用; 二、实验原理 MCS-51单片机内部集成有一个UART,用于全双工方式的串行通信,可以发送、接收数据。他有两个相互独立的接收、发送缓冲器,这两个缓冲器同名(SBUF),共用一个地址号(99H)。发送缓冲器只能写入,不能读出,接受缓冲器只能读出,不能写入。要发送的字节数据直接写入发送缓冲器。SBUF=a;当UART接收到数据后,CPU从接收缓冲器中读取数据,a=SBUF;串行口内部有两个移位寄存器,一个用于串行发送,一个用于串行接收。定时器T1作为波特率发生器,波特率发生器的溢出信号昨接受或发送移位寄存器的位移时钟。TI与RI分别为发送完数据的中断标志,用来想CPU发中断请求。 三、实验内容 1、发送信号 1)C51程序: #include void main(void) { SCON=0X40; //设置串口为接受,REN=0 PCON=0; //波特率不倍频 REN=1; TMOD=0X20; //启动定时器1的方式2 TH1=0XFD; TL1=0XFD; //初值:0XFD TR1=1; //启动定时器1 while(1) {SBUF='U'; while(!TI); TI=0; //发送中断清0 }} 2)硬件图:

2、接受装置: 1)C51程序: #include char s[32]; void main(void) { char a,b=0; SCON=0X40; //设置串口为接受,REN=0 PCON=0; //波特率不倍频 REN=1; TMOD=0X20; //启动定时器1的方式2 TH1=0XFD; TL1=0XFD; //初值:0XFD TR1=1; //启动定时器1 a=32; for(;b

第06章单片机串行通信系统习题解答

第6章单片机串行通信系统习题解答 一、填空题 1.在串行通信中,把每秒中传送的二进制数的位数叫波特率。 2.当SCON中的M0M1=10时,表示串口工作于方式 2 ,波特率为 fosc/32或fosc/64 。 3.SCON中的REN=1表示允许接收。 4.PCON 中的SMOD=1表示波特率翻倍。 5.SCON中的TI=1表示串行口发送中断请求。 6.MCS-51单片机串行通信时,先发送低位,后发送高位。 7.MCS-51单片机方式2串行通信时,一帧信息位数为 11 位。 8.设T1工作于定时方式2,作波特率发生器,时钟频率为,SMOD=0,波特率为时,T1的初值为 FAH 。 9.MCS-51单片机串行通信时,通常用指令 MOV SBUF,A 启动串行发送。 10.MCS-51单片机串行方式0通信时,数据从引脚发送/接收。 二、简答题 1.串行口设有几个控制寄存器它们的作用是什么 答:串行口设有2个控制寄存器,串行控制寄存器SCON和电源控制寄存器PCON。其中PCON中只有的SMOD与串行口的波特率有关。在SCON中各位的作用见下表: 2.MCS-51单片机串行口有几种工作方式各自的特点是什么 答:有4种工作方式。各自的特点为:

3.MCS-51单片机串行口各种工作方式的波特率如何设置,怎样计算定时器的初值 答:串行口各种工作方式的波特率设置: 工作方式O :波特率固定不变,它与系统的振荡频率fosc 的大小有关,其值为fosc/12。 工作方式1和方式3:波特率是可变的,波特率=(2SMOD/32)×定时器T1的溢出率 工作方式2:波特率有两种固定值。 当SM0D=1时,波特率=(2SM0D/64)×fosc=fosc/32 当SM0D=0时,波特率=(2SM0D/64)×fosc=fosc/64 计算定时器的初值计算: 4.若fosc = 6MHz ,波特率为2400波特,设SMOD =1,则定时/计数器T1的计数初值为多少并进行初始化编程。 答:根据公式 N=256-2SMOD ×fosc /(2400×32×12)= ≈243 =F3H TXDA: MOV TMOD,#20H ;置T1定时器工作方式2 MOV TL1,#0F3H ;置T1计数初值. MOV TH1,#0F3H B f B f N OSC SMOD OSC SMOD ??-=???-=384225612322256

单片机与PC机串口通讯设计

第一章串口通讯的系统组成与原理 1.1 系统组成及通讯原理 1.1.1 系统构成 一、MSP430F149功能简介: 本设计选用的主要芯片为MSP430F149,该单片机属于德州仪器公司MSP430F14X/16X FLASH 系列。该系列是一组工业级超低功耗的微控制器,运行环境温度为-40~+85 摄氏度工作电压范围 1.8~3.6V,MSP430 单片机之所以有超低的功耗,是因为其在降低芯片的电源电压及灵活而可控的运行时钟方面都有其独到之处。由于具有16位RISC(精简指令集)结构,16位寄存器和常数寄存器,MSP430 达到了最大的代码效率。数字控制的振荡器提供快速从所有低功耗模式苏醒到活动模式的能力时间少于6ms。MSP430F149有较高的处理速度,在8MHz 晶体驱动下指令周期为125 ns。另外它带有两个16 位定时器(带看门狗功能)、速度极快的8 通道12 位A/D 转换器(ADC)(带内部参考电压、采样保持和自动扫描功能)、一个内部比较器和两个通用同步/异步发射接收器、48个I/O口(均可独立控制)的微处理器结构。硬件乘法器提高了单片机的性能并使单片机在编码和硬件上可兼容[3]。这些特点保证了可编制出高效率的源程序。 二、系统构成 1、系统框图 系统构成如图1-1所示,由上位机(即工业控制计算机)、通讯接口和下位机3部分组成。上位机选用的是工控机,智能终端由单片机MSP430F149和外围传感器放大电路等构成(本设计部涉及该部分的设计)。单片机与PC 机之间通信方式为串行异步方式(UART),下位机采用中断方式进行与上位机的数据交换,上位机采用按时查询方式对各串口进行读写操作。单片机MSP430要想与PC 串口连接或者其它带有串口的终端设备连接,接口电路部分必须要进行EIA-RS-232-C 与MSP430 电平和逻辑关系的转换[4]。本设计将采用MAX3221芯片,完成3V~5V 电平与串口电平的双向转换。

串行口通信实验 单片机实验报告

实验六串行口通信实验 一、实验内容 实验板上有RS-232接口,将该接口与PC机的串口连接,可以实现单片机与PC机的串行通信,进行双向数据传输。本实验要求当PC机向实验板发送的数字在实验板上显示,按实验板键盘输入的数字在PC机上显示,并用串口助手工具软件进行调试。 二、实验目的 掌握单片机串行口工作原理,单片机串行口与PC机的通信工作原理及编程方法。 三、实验原理 51单片机有一个全双工的串行通讯口,所以单片机和电脑之间可以方便地进行串口通信。进行串行通讯信要满足一定的条件,比如电脑的串口是RS232电平(-5~-15V为1,+5~+15V为0),而单片机的串口是TTL电平(大于+2.4V为1,小于- 0.7V为0),两者之间必须有一个电平转换电路实现RS232电平与TTL电平的相互转换。 为了能够在PC机上看到单片机发出的数据,我们必须借助一个Windows软件进行观察,这里我们可以使用免费的串口调试程序SSCOM32或Windows的超级终端。 单片机串行接口有两个控制寄存器:SCON和PCON。串行口工作在方式0时,可通过外接移位寄存器实现串并行转换。在这种方式下,数据为8位,只能从RXD端输入输出,TXD端用于输出移位同步时钟信号,其波特率固定为振荡频率的1/12。由软件置位串行控制寄存器(SCON)的REN位后才能启动,串行接收,在CPU将数据写入SBUF寄存器后,立即启动发送。待8位数据输完后,硬件将SCON寄存器的T1位置1,必须由软件清零。 单片机与PC机通信时,其硬件接口技术主要是电平转换、控制接口设计和远近通信接口的不同处理技术。在DOS操作环境下,要实现单片机与微机的通信,只要直接对微机接口的通信芯片8250进行口地址操作即可。WINDOWS的环境下,由于系统硬件的无关性,不再允许用户直接操作串口地址。如果用户要进行串行通信,可以调用WINDOWS的API 应用程序接口函数,但其使用较为复杂,可以使用KEILC的通信控件解决这一问题。 四、实验电路 [参考学习板说明书P27]

51单片机实现的485通讯程序

51单片机实现的485通讯程序 #ifndef __485_C__ #define __485_C__ #include #include #define unsigned char uchar #define unsigned int uint /* 通信命令*/ #define __ACTIVE_ 0x01 // 主机询问从机是否存在 #define __GETDATA_ 0x02 // 主机发送读设备请求 #define __OK_ 0x03 // 从机应答 #define __STATUS_ 0x04 // 从机发送设备状态信息 #define __MAXSIZE 0x08 // 缓冲区长度 #define __ERRLEN 12 // 任何通信帧长度超过12则表示出错uchar dbuf[__MAXSIZE]; // 该缓冲区用于保存设备状态信息uchar dev; // 该字节用于保存本机设备号 sbit M_DE = P1^0; // 驱动器使能,1有效 sbit M_RE = P1^1; // 接收器使能,0有效

void get_status(); // 调用该函数获得设备状态信息,函数代码未给出 void send_data(uchar type, uchar len, uchar *buf); // 发送数据帧 bit recv_cmd(uchar *type); // 接收主机命令,主机请求仅包含命令信息 void send_byte(uchar da); // 该函数发送一帧数据中的一个字节,由send_data()函数调用void main() { uchar type; uchar len; /* 系统初始化*/ P1 = 0xff; // 读取本机设备号 dev = (P1>>2); TMOD = 0x20; // 定时器T1使用工作方式2 TH1 = 250; // 设置初值 TL1 = 250; TR1 = 1; // 开始计时 PCON = 0x80; // SMOD = 1 SCON = 0x50; // 工作方式1,波特率9600bps,允许接收 ES = 0; // 关闭串口中断 IT0 = 0; // 外部中断0使用电平触发模式 EX0 = 1; // 开启外部中断0

基于51单片机的双机串行通信

河南机电高等专科学校2015-2016学年第1学期通信实训报告 系别:电子通信工程系 班级:xxxxxx 学号:13xxxxxxxxx 姓名:xxxxxxx 2015年12月

基于51单片机的双机串行通信 摘要:串行通信是单片机的一个重要应用,本次课程设计就是要利用单片机来完成一个系统,实现爽片单片机床航通信,通信的结果使用数码管进行显示,数码管采用查表方式显示,两个单片机之间采用RS-232进行双击通信。在通信过程中,使用通信协议进行通信。 关键字:通信双机 一、总体设计 1设计目的 1.通过设计相关模块充分熟悉51单片机的最小系统的组成和原理; 2.通过软件仿真熟悉keil和proteus的配合使用; 3.通过软件编程熟悉51的C51编程规范; 4.通过实际的硬件电路搭设提高实际动手能力。 2.设计要求: 两片单片机之间进行串行通信,A机将0x06发送给B机,在B机的数码管上静态显示1,B机将0~f动态循环发送到A机,并在其数码管上显示。 3.设计方案: 软件部分,通过通信协议进行发送接收,A机先送0x06(B机数码管显示1)给B机(B机静态显示),当从机接收到后,向B机发送代表0-f的数码管编码数组。B收到0x06后就把数码表TAB[16]中的数据送给从机。 二、硬件设计

1.51单片机串行通信功能 计算机与外界的信息交换称为通信,常用的通信方式有两种:并行通信和串行通信。51单片机用4个接口与外界进行数据输入与数据输出就是并行通信,并行通信的特点是传输信号的速度快,但所用的信号线较多,成本高,传输的距离较近。串行通信的特点是只用两条信号线(一条信号线,再加一条地线作为信号回路)即可完成通信,成本低,传输的距离较远。 51单片机的串行接口是一个全双工的接口,它可以作为UART(通用异步接受和发送器)用,也可以作为同步移位寄存器用。51单片机串行接口的结构如下: 图1.AT89C51(52) (1)数据缓冲器(SBUF) 接受或发送的数据都要先送到SBUF缓存。有两个,一个缓存,另一个接受,

单片机串口通信C程序及应用实例

一、程序代码 #include//该头文件可到https://www.360docs.net/doc/fb6719297.html,网站下载#define uint unsigned int #define uchar unsigned char uchar indata[4]; uchar outdata[4]; uchar flag; static uchar temp1,temp2,temp3,temp; static uchar R_counter,T_counter; void system_initial(void); void initial_comm(void); void delay(uchar x); void uart_send(void); void read_Instatus(void); serial_contral(void); void main() { system_initial(); initial_comm(); while(1) { if(flag==1) { ES = 0; serial_contral(); ES = 1; flag = 0; } else read_Instatus(); } } void uart_send(void) { for(T_counter=0;T_counter<4;T_counter++) { SBUF = outdata[T_counter]; while(TI == 0);

TI = 0; } T_counter = 0; } uart_receive(void) interrupt 4 { if(RI) { RI = 0; indata[R_counter] = SBUF; R_counter++; if(R_counter>=4) { R_counter = 0; flag = 1; } } } void system_initial(void) { P1M1 = 0x00; P1M0 = 0xff; P1 = 0xff; //初始化为全部关闭 temp3 = 0x3f;//初始化temp3的值与六路输出的初始值保持一致 temp = 0xf0; R_counter = 0; T_counter = 0; } void initial_comm(void) { SCON = 0x50; //设定串行口工作方式:mode 1 ; 8-bit UART,enable ucvr TMOD = 0x21; //TIMER 1;mode 2 ;8-Bit Reload PCON = 0x80; //波特率不加倍SMOD = 1 TH1 = 0xfa; //baud: 9600;fosc = 11.0596 IE = 0x90; // enable serial interrupt TR1 = 1; // timer 1 RI = 0; TI = 0; ES = 1; EA = 1; }

基于51单片机的双机串行通信

机电高等专科学校2015-2016学年第1学期通信实训报告 系别:电子通信工程系 班级: xxxxxx 学号: 13xxxxxxxxx : xxxxxxx 2015年12月

基于51单片机的双机串行通信 摘要:串行通信是单片机的一个重要应用,本次课程设计就是要利用单片机来完成一个系统,实现爽片单片机床航通信,通信的结果使用数码管进行显示,数码管采用查表方式显示,两个单片机之间采用RS-232进行双击通信。在通信过程中,使用通信协议进行通信。 关键字:通信双机 一、总体设计 1设计目的 1.通过设计相关模块充分熟悉51单片机的最小系统的组成和原理; 2.通过软件仿真熟悉keil和proteus的配合使用; 3.通过软件编程熟悉51的C51编程规; 4.通过实际的硬件电路搭设提高实际动手能力。 2.设计要求: 两片单片机之间进行串行通信,A机将0x06发送给B机,在B机的数码管上静态显示1,B机将0~f动态循环发送到A机,并在其数码管上显示。 3.设计方案: 软件部分,通过通信协议进行发送接收,A机先送0x06(B机数码管显示1)给B机(B机静态显示),当从机接收到后,向B机发送代表0-f的数码管编码数组。B收到0x06后就把数码表TAB[16]中的数据送给从机。 二、硬件设计 1.51单片机串行通信功能 计算机与外界的信息交换称为通信,常用的通信方式有两种:并行通信和串行通信。51单片机用4个接口与外界进行数据输入与数据输出就是并行通信,并行通信的特点是传输信号的速度快,但所用的信号线较多,成本高,传输的距离较近。串行通信的特点是只用两条信号线(一条信号线,再加一条地线作为信号回路)即可完成通信,成本低,传输的距离较远。 51单片机的串行接口是一个全双工的接口,它可以作为UART(通用异步接受和发送器)用,也可以作为同步移位寄存器用。51单片机串行接口的结构如下:

基于51单片机串行通信的无线发射极和接收机设计

基于51单片机串行通信的无线发射极和接收机设计---- 1 概述 1.1 课题的目的、背景和意义 最近几年来,由于无线接入技术需求日益增大,以及数据交换业务(如因特 网、电子邮件、数据文件传输等)不断增加,无线通信和无线网络均呈现出指数增 加的趋势。有力的推动力无线通信向高速通信方向发展。然而,工业、农业、车载 电子系统、家用网络、医疗传感器和伺服执行机构等无线通信还未涉足或者刚刚涉 足的领域,这些领域对数据吞吐量的要求很低,功率消耗也比现有标准提供的功率 消耗低。此外,为了促使简单方便的,可以随意使用的无线装置大量涌现,需要在 未来个人活动空间内布置大量的无线接入点,因而低廉的价格将起到关键作用。为 降低元件的价格,以便这些装置批量生产,所以发展了一个关于这种网络的标准方案。Zigbee就是在这一标准下一种新兴的短距离、低功耗、低数据传输的无线网 络技术,它是一种介于无线标记技术和蓝牙之间的技术方案。 对于这种短距离、低功耗、低数据传输无线技术,它不仅在工业、农业、军 事、环境、医疗等传统领域有着巨大的应用价值,未来应用中还可以涉及人类日常 生活和社会生产活动的所有领域。由于各方面的制约,这种技术的大规模商业应用 还有待时日,但已经显示出了非凡的应用价值,相信随着相关技术的发展和推进, 一定会得到更广泛应用。 1.2国内外无线技术相关现状及Zigbee现状 无线通信从固定方式发展为移动方式,移动通信发展至今大约经历了五个阶段: 第一阶段为20年代初至50年代初,主要用于舰船及军有,采用短波频及电子 管技术,至该阶段末期出现才出现150MHVHF单工汽车公用移动电话系统MTS。

单片机串口通讯实验报告

实验十单片机串行口与PC机通讯实验报告 ㈠实验目的 1.掌握串行口工作方式的程序设计,掌握单片机通讯的编制; 2.了解实现串行通讯的硬环境,数据格式的协议,数据交换的协议; 3.了解PC机通讯的基本要求。 ㈡实验器材 1.G6W仿真器一台 2.MCS—51实验板一台 3.PC机一台 ㈢实验内容及要求 利用8051单片机串行口,实现与PC机通讯。 本实验实现以下功能,将从实验板键盘上键入的字符或数字显示到PC 机显示器上,再将PC机所接收的字符发送回单片机,并在实验板的LED上显示出来。 ㈣实验步骤 1.编写单片机发送和接收程序,并进行汇编调试。 2.运行PC机通讯软件“commtest.exe”,将单片机和PC机的波特率均设定 为1200。 3.运行单片机发送程序,按下不同按键(每个按键都定义成不同的字符), 检查PC机所接收的字符是否与发送的字符相同。 4.将PC机所接收的字符发送给单片机,与此同时运行单片机接受程序,检 查实验板LED数码管所显示的字符是否与PC机发送的字符相同。

㈤ 实验框图

源程序代码: ORG 0000H AJMP START ORG 0023H AJMP SERVE ORG 0050H START: MOV 41H,#0H ;对几个存放地址进行初始化 MOV 42H,#0H MOV 43H,#0H MOV 44H,#0H MOV SCON,#00H ;初始化串行口控制寄存器,设置其为方式0 LCALL DISPLAY ;初始化显示 MOV TMOD,#20H ;设置为定时器0,模式选用2 MOV TL1, #0E6H ;设置1200的波特率 MOV TH1, #0E6H SETB TR1 ;开定时器 MOV SCON,#50H ;选用方式1,允许接收控制 SETB ES SETB EA ;开中断 LOOP: ACALL SOUT ;键盘扫描并发送,等待中断 SJMP LOOP SERVE JNB RI,SEND ;判断是发送中断还是接收中断,若为发送中 断则调用 ACALL S IN ;发送子程序,否则调用接收子程序 RETI SEND: CLR TI ;发送子程序 RETI SIN: CLR RI ;接受子程序 MOV SCON, #00H MOV A, SBUF ;接收数据 LCALL XS ;调用显示子程序 RETI 子程序: SOUT: CLR TI ;清发送中断标志位 LCALL KEY ;调用判断按键是否按下子程序 MOV A,R0 ;将按键对应的数字存入A MOV SBUF,A ;输出按键数字给锁存 RET KEY: MOV P1,#0FFH ;将P1设置为输入口 MOV A, P1 CPL A ;将A内值取反

基于51单片机的双机串行通信课程设计 1000110061

基于AT89C51单片机的双机串行通信设计 姓名:杨应伟 学号:100110061 专业:机械设计制造及其制动化 班级:机电二班

前言 单片机广泛应用于仪器仪表、家用电器、医用设备、航空航天、专用设备的智能化管理及过程控制等领域随着计算机技术的发展及工业自动化水平的提高, 在许多场合采用单机控制已不能满足现场要求,因而必须采用多机控制的形式,而多机控制主要通过多个单片机之间的串行通信实现。串行通信作为单片机之间常用的通信方法之一, 由于其通信编程灵活、硬件简洁并遵循统一的标准, 因此其在工业控制领域得到了广泛的应用。 在测控系统和工程应用中,常遇到多项任务需同时执行的情况,因而主从式多机分布式系统成为现代工业广泛应用的模式。单片机功能强、体积小、价格低廉、开发应用方便,尤其具有全双工串行通讯的特点,在工业控制、数据采集、智能仪器仪表、家用电器方面都有广泛的应用。同时,IBM-PC机正好补充单片机人机对话和外围设备薄弱的缺陷。各单片机独立完成数据采集处理和控制任务,同时通过通信接口将数据传给PC机,PC机将这些数据进行处理、显示或打印,把各种控制命令传给单片机,以实现集中管理和最优控制。串行通信是单片机的一个重要应用,本次课程设计就是要利用单片机来完成一个系统,实现爽片单片机床航通信,通信的结果使用数码管进行显示,数码管采用查表方式显示,两个单片机之间采用RS-232进行双击通信。 在通信过程中,使用通信协议进行通信。在测控系统和工程应用中,常遇到多项任务需同时执行的情况,因而主从式多机分布式系统成为现代工业广泛应用的模式。单片机功能强、体积小、价格低廉、开发应用方便,尤其具有全双工串行通讯的特点,在工业控制、数据采集、智能仪器仪表、家用电器方面都有广泛的应用。同时,IBM-PC机正好补充单片机人机对话和外围设备薄弱的缺陷。各单片机独立完成数据采集处理和控制任务,同时通过通信接口将数据传给PC机,PC机将这些数据进行处理、显示或打印,把各种控制命令传给单片机,以实现集中管理和最优控制。 串行通信是单片机的一个重要应用,本次课程设计就是要利用单片机来完成一个系统,实现爽片单片机床航通信,通信的结果使用数码管进行显示,数码管采用查表方式显示,两个单片机之间采用RS-232进行双击通信。在通信过程中,使用通信协议进行通信。

单片机串行通信实验报告(实验要求、原理、仿真图及例程)

《嵌入式系统原理与实验》实验指导 实验三调度器设计基础 一、实验目的和要求 1.熟练使用Keil C51 IDE集成开发环境,熟练使用Proteus软件。 2.掌握Keil与Proteus的联调技巧。 3.掌握串行通信在单片机系统中的使用。 4.掌握调度器设计的基础知识:函数指针。 二、实验设备 1.PC机一套 2.Keil C51开发系统一套 3.Proteus 仿真系统一套 三、实验内容 1.甲机通过串口控制乙机LED闪烁 (1)要求 a.甲单片机的K1按键可通过串口分别控制乙单片机的LED1闪烁,LED2闪烁,LED1和LED2同时 闪烁,关闭所有的LED。 b.两片8051的串口都工作在模式1,甲机对乙机完成以下4项控制。 i.甲机发送“A”,控制乙机LED1闪烁。 ii.甲机发送“B”,控制乙机LED2闪烁。 iii.甲机发送“C”,控制乙机LED1,LED2闪烁。 iv.甲机发送“C”,控制乙机LED1,LED2停止闪烁。 c.甲机负责发送和停止控制命令,乙机负责接收控制命令并完成控制LED的动作。两机的程序要 分别编写。 d.两个单片机都工作在串口模式1下,程序要先进行初始化,具体步骤如下: i.设置串口模式(SCON) ii.设置定时器1的工作模式(TMOD) iii.计算定时器1的初值 iv.启动定时器 v.如果串口工作在中断方式,还必须设置IE和ES,并编写中断服务程序。

(2)电路原理图 Figure 1 甲机通过串口控制乙机LED闪烁的原理图 (3)程序设计提示 a.模式1下波特率由定时器控制,波特率计算公式参考: b.可以不用使用中断方式,使用查询方式实现发送与接收,通过查询TI和RI标志位完成。 2.单片机与PC串口通讯及函数指针的使用 (1)要求: a.编写用单片机求取整数平方的函数。 b.单片机把计算结果向PC机发送字符串。 c.PC机接收计算结果并显示出来。 d.可以调用Keil C51 中的printf来实现字符串的发送。 e.单片机的数码港显示发送的次数,每9次清零。

51单片机串口通信

一、串口通信原理 串口通讯对单片机而言意义重大,不但可以实现将单片机的数据传输到计算机端,而且也能实现计算机对单片机的控制。由于其所需电缆线少,接线简单,所以在较远距离传输中,得到了广泛的运用。串口通信的工作原理请同学们参看教科书。 以下对串口通信中一些需要同学们注意的地方作一点说明: 1、波特率选择 波特率(Boud Rate)就是在串口通信中每秒能够发送的位数(bits/second)。MSC-51串行端口在四种工作模式下有不同的波特率计算方法。其中,模式0和模式2波特率计算很简单,请同学们参看教科书;模式1和模式3的波特率选择相同,故在此仅以工作模式1为例来说明串口通信波特率的选择。 在串行端口工作于模式1,其波特率将由计时/计数器1来产生,通常设置定时器工作于模式2(自动再加模式)。在此模式下波特率计算公式为:波特率=(1+SMOD)*晶振频率/(384*(256-TH1)) 其中,SMOD——寄存器PCON的第7位,称为波特率倍增位; TH1——定时器的重载值。 在选择波特率的时候需要考虑两点:首先,系统需要的通信速率。这要根据系统的运作特点,确定通信的频率范围。然后考虑通信时钟误差。使用同一晶振频率在选择不同的通信速率时通信时钟误差会有很大差别。为了通信的稳定,我们应该尽量选择时钟误差最小的频率进行通信。 下面举例说明波特率选择过程:假设系统要求的通信频率在20000bit/s以下,晶振频率为12MHz,设置SMOD=1(即波特率倍增)。则TH1=256-62500/波特率 根据波特率取值表,我们知道可以选取的波特率有:1200,2400,4800,9600,19200。列计数器重载值,通信误差如下表: 因此,在通信中,最好选用波特率为1200,2400,4800中的一个。 2、通信协议的使用 通信协议是通信设备在通信前的约定。单片机、计算机有了协议这种约定,通信双方才能明白对方的意图,以进行下一步动作。假定我们需要在PC机与单片机之间进行通信,在双方程式设计过程中,有如下约定:0xA1:单片机读取P0端口数据,并将读取数据返回PC机;0xA2:单片机从PC机接收一段控制数据;0xA3:单片机操作成功信息。 在系统工作过程中,单片机接收到PC机数据信息后,便查找协议,完成相应的操作。当单片机接收到0xA1时,读取P0端口数据,并将读取数据返回PC机;当单片机接收到0xA2时,单片机等待从PC机接收一段控制数据;当PC机接收到0xA3时,就表明单片机操作已经成功。 3、硬件连接 51单片机有一个全双工的串行通讯口,所以单片机和计算机之间可以方便地进行串口通讯。进行串行通讯时要满足一定的条件,比如计算机的串口是RS232电平的,而单片机的串口是TTL电平的,两者之间必须有一个电平转换电路,我们采用了专用芯片MAX232进行转换,虽然也可以用几个三极管进行模拟转换,但是还是用专用芯片更简单可靠。我们采用了三线制连接串口,也就是说和计算机的9针串口只连接其中的3根线:第5脚的GND、第2脚的RXD、第3脚的TXD。这是最简单的连接方法,但是对我们来说已经足够使用了,电路如下图所示,MAX232的第10脚和单片机的11脚连接,第9脚和单片机的10脚连接,第15脚和单片机的20脚连接。

51单片机与上位机串口通信程序设计

51单片机与上位机串口通信程序设计 1. 发送:向总线上发命令 2. 接收:从总线接收命令,并分析是地址还是数据。 3. 定时发送:从内存中取数并向主机发送. 经过调试,以上功能基本实现,目前可以通过上位机对单片机进行实时控制。程序如下: //这是一个单片机C51串口接收(中断)和发送例程,可以用来测试51单片机的中断接收 //和查询发送,另外我觉得发送没有必要用中断,因为程序的开销是一样的 #include< reg51.h> #include< stdio.h> #include< string.h> #define INBUF_LEN 4 //数据长度 unsigned char inbuf1[INBUF_LEN]; unsigned char checksum,count3 , flag,temp,ch; bit read_flag=0; sbit cp=P1^1; sbit DIR=P1^2; int i; unsigned int xdata *RAMDATA; /*定义RAM地址指针*/ unsigned char a[6] ={0x11,0x22,0x33,0x44,0x55,0x66} ; void init_serialcomm(void) { SCON=0x50; //在11.0592MHz下,设置串行口波特率为9600,方式1,并允许接收 PCON=0x00; ES=1;

TMOD=0x21; //定时器工作于方式2,自动装载方式TH0=(65536-1000)%256; TL0=(65536-1000)/256; TL1=0xfd; TH1=0xfd; ET0=1; TR0=1; TR1=1; // TI=0; EA=1; // TI=1; RAMDATA=0x1F45; } void serial () interrupt 4 using 3 { if(RI) { RI=0; ch=SBUF; TI=1; //置SBUF空 switch(ch) { case 0x01 :printf("A"); TI=0;break; case 0x02 :printf("B"); TI=0;break; case 0x03 :printf("C"); TI=0;break; case 0x04 :printf("D"); TI=0;break; default :printf("fg"); TI=0;break; } }

相关文档
最新文档