第二章聚合反应原理

第二章聚合反应原理
第二章聚合反应原理

第二章 聚合反应原理

第一节 概述

聚合物的合成方法可概括如下:

????

???

?加聚反应,属于连锁聚合机理

单体的聚合反应聚合物的合成反应缩聚反应,属于逐步聚合机理

大分子反应

其中,单体的聚合反应是聚合物合成的重要方法。

(一)高分子化学的一些基本概念

1.高分子化合物(high molecular weight compound )——由许多一种或几种结构单元通过共价键连接起来的呈线形、分支形或网络状的高分子量的化合物,称之为高分子量化合物,简称高分子化合物或高分子。高分子化合物也称之为大分子(macromolecule )、聚合物(polymer )。

高分子化合物的特点:

(1)高的分子量:M.W.(molecular weight )>104;M.W.<103时称为齐聚物(oligomer )、寡聚物或低聚物;

(2)存在结构单元:结构单元是由单体(小分子化合物)通过聚合反应转变成的构成大分子链的单元;

(3)结构单元通过共价键连接,连接形式有线形、分支形或网络状结构。 如聚苯乙烯(PS ):M.W.:10~30万,线形,含一种结构单元—苯乙烯单元,属通用合成

塑料。

2

n CH CH

n

★结构单元(structural unit )和重复单元(repeating unit ):

PVC PMMA PS

CH 2

CH Cl

CH 2

C CH 3

C

O

OCH 3

CH 2

CH

O

结构单元和重复单元相同

如尼龙-66(聚己二酰己二胺),有两个结构单元,两个结构单元链接起来组成其重复单元。

尼龙-66 尼龙-6

NH(CH 2)6NH CO(CH 2)4CO 结构单元

结构单元

重复单元

NH(CH 2)5C

O

2.聚合度(degree of polymerization ,DP )——即一条大分子所包含的重复单元的个数,用DP 表示;

对缩聚物,聚合度通常以结构单元计数,符号为X n ;n X

DP 、X n 对加聚物一般相同。

对缩聚物有时可能不同,如对尼龙-66,X n =2DP ;对尼龙-6,X n =DP 。因此,谈及聚合度时,一定要明确其计数对象。

3.高分子化合物的结构式(structural formula ) 高分子化合物的结构式用下式表示,其中下标n 表示重复单元的个数,即重复单元记数的聚合度。

重复单元

n

CH

2

n CH 2

CH n

Cl

CH

2

n CH 2

CH n

CH 3

CH 3

COOH HOOC

n +HO(CH 2)2OH

C O

C

O

O(CH 2)2O

n

HO H +(2n-1)H 2O

n

如果结构非常复杂,如分支、网络型大分子,不存在重复单元,其结构式一般只能写出其特征结构单元和特征结构。如醇酸树脂等:

O CH 2 CH CH 2 O C C

O

O

O

O CH 2 CH CH 2

O C C O

O

O

O CH 2 CH CH 2 O

O

(二)聚合反应的类型

1.由单体合成聚合物的反应

(1)按聚合前后组成是否变化将聚合反应分为:加聚反应(addition polymerization )和缩聚反应(polycondensation )。

加聚反应(addition polymerization )——主要指烯类单体在活性种进攻下打开双键、相互加成而生成大分子的聚合反应,单体、聚合物组成一般相同。如:

CH 2

CH C

O 3

O CH 2

CH C

O

OCH 3

O n n

缩聚反应(polycondensation )——主要指带有两个或多个可反应官能团的单体,通过官能团间多次缩合而生成大分子,同时伴有水、醇、氯化氢等小分子生成的聚合反应。如:

NH(CH 2)6NH CO(CH 2)4CO nHOOC(CH 2)4COOH+nH 2N(CH 2)6NH 2n H

+(2n-1)H 2O

OH

(2)依聚合机理分为:连锁聚合(chain polymerization )和逐步聚合(step polymerization )。 连锁聚合(chain polymerization )——其大分子的生成通常包括链引发、链增长、链转移和链终止等基元反应。其特点是:

①单体主要为烯类(一些杂环类化合物、少量醛也可以进行连锁聚合);

②存在活性中心,如自由基、阴离子、阳离子;1

10

③属链式反应,活性中心寿命短,约10-1s ,从活性中心形成、链增长到大分子生成在转瞬完成;聚合体系由单体和聚合物构成,延长聚合时间的目的是为了提高单体的转化率,分子量变化不大;

④聚合物、单体组成一般相同。加聚反应从机理上看大部分属于连锁聚合,二者常替换使用,实际上连锁聚合与加聚反应是从不同角度对聚合反应的分类,因此也有一些形式上的加聚

反应属于逐步聚合机理。

连锁聚合聚合物分子量、转化率与时间的关系可用下图表示。

t t

逐步聚合(step polymerization )——其大分子的生成是一个逐步的过程。其特点是: ①单体带有两个或两个以上可反应的官能团;

②伴随聚合往往有小分子化合物析出,聚合物、单体组成一般不同; ③聚合物主链往往带有官能团的特征;

④逐步聚合机理——大分子的生成是一个逐步的过程,由可反应官能团相互反应逐步提高聚合度;同样,缩聚反应从机理上看大部分属于逐步聚合,二者常替换使用,但也有一些缩聚反应属于连锁机理。缩聚反应其分子量、转化率与时间的关系可用下图表示。 t t

(3)开环聚合反应(ring-opening polymerization )——指由杂环状单体开环而聚合成大分子的反应。常见的单体为环醚、环酰胺(内酰胺)、环酯(内酯)、环状硅氧烷等。开环聚合反应的聚合机理可能是连锁聚合或者是逐步聚合。

聚合条件对聚合机理有重要的影响,如己内酰胺,用碱做引发剂时按连锁机理进行;用酸作催化剂有水存在时,按逐步聚合机理进行。其中环醚、内酯及环状硅氧烷的开环聚合所得到的聚环氧乙烷(PEG )、聚环氧丙烷(PPG )、聚己内酯(PCL )、聚硅氧烷对涂料工业非常重要。 (4)大分子反应——除了可以由小分子单体的聚合反应合成大分子之外,利用大分子结构上的可反应官能团的反应也可以合成新型的高分子化合物,这种方法实际上是对现有聚合物的化学改性。

聚乙烯醇的合成是一个典型的例子。由于乙烯醇不能稳定存在,容易异构化为乙醛或环氧乙烷,所以聚乙烯醇的合成路线是:醋酸乙烯酯经自由基聚合先合成出聚醋酸乙烯酯(PV Ac ),聚醋酸乙烯酯再经碱性醇解而生成聚乙烯醇(PV A )。

CH 2CH C

O

3

O CH 2

CH C

O

OCH 3

O n n nCH 3OH CH 2CH n

涂料工业用防腐树脂氯化橡胶、高氯化聚乙烯(HCPE )、高氯化聚丙烯(HCPP )以及羟乙基纤维素(HEC )、聚乙烯醇缩丁醛(或甲醛)等,都是利用大分子反应合成的。

(三)高分子化合物的分类与命名 1.高分子化合物的分类

M .W .

M .W .

C C

(1)依组成分:碳链型大分子、杂链型大分子、元素有机大分子、无机大分子 ①碳链型大分子:其大分子主链由碳元素组成,如聚烯烃类。

②杂链型大分子:大分子主链除碳元素外,还含有O 、S 、N 、P 等杂元素,

③元素有机大分子:大分子主链不含碳元素,主要有O 、S 、N 、P 及Si 、B 、Al 、Sn 、Se 、Ge 等元素组成,但侧基含有有机基团(烷基或芳基)。聚硅氧烷是其中典型的例子,其结构式如下:

O

Si

CH 3

CH 3

n

④无机大分子:主链、侧基都不含碳元素的聚合物,如聚磷酸。

(2)依用途分:包括塑料用大分子、橡胶用大分子、纤维用大分子、涂料用大分子、黏合剂用大分子等。 其中塑料用大分子、橡胶用大分子、纤维用大分子常称之为通用型高分子。此外还包括工程塑料用高分子、功能高分子、复合材料高分子等。

(3)依聚合类型分:有加聚物和缩聚物;连锁型聚合物和逐步型聚合物。 (4)依含有单体(或结构)单元的多少分:均聚物(homopolymer )、共聚物(copolymer )。 (5)依微观结构分:线形(linear )大分子,分支型(branched )大分子,体形(网络,networked )大分子。 (6)依聚合物材料的热性能分:热塑性聚合物(thermoplastics ),热固性聚合物(thermosetting polymer )。

2.大分子的命名(nomenclature of polymer )

(1)习惯命名法—由在单体的名称前加前缀“聚”构成习惯名; 如聚乙烯(PE )、聚丙烯(PP )、聚氯乙烯(PVC )、聚苯乙烯(PS )、聚甲基丙烯酸甲酯(PMMA )。

对缩聚物稍微复杂一些:如聚对苯二甲酸乙二醇酯(PET )(其中“酯”不能省略)、聚己二酰己二胺;结构复杂时(对分支、网络状高分子)常用“树脂”作后缀,如苯酚-甲醛树脂(简称酚醛树脂)、脲醛树脂、醇酸树脂、环氧树脂等。

对共聚物常用“聚”作前缀,或“共聚物”作后缀进行。如:聚(丁二烯-苯乙烯)或(丁二烯-苯乙烯)共聚物。

(2)商品名及英文缩写名

常见聚合物的英文缩写名:PE 、PP 、PS 、PVC 、PMMA 、PAN (聚丙烯腈) 、PV A (聚乙烯醇)、PV Ac (聚醋酸乙烯酯)、PTFE (聚四氟乙烯)、ABS (丙烯腈-丁二烯-苯乙烯三元共聚物)、PET 等。

(3)IUPAC 命名法 IUPAC (国际纯粹与应用化学联合会)提出了以结构为基础的系统命名法。其命名规则是: ①确定结构重复单元(constutional repeating unit );该单元即最小重复单元;

②划出次级单元(subunit )并排列次序;排序规则为:a.杂原子先排;b.带取代基的先排; ③以“聚”为前缀,依次写出次级单元的名称,即IUPAC 名。

聚亚甲基:

CH 2n ,聚氧化乙烯:O CH 2CH 2

n ,聚1-乙酰氧基乙烯:CH 2

CH C

O OCH 3

O n

聚氧乙烯氧对苯二甲酸:

C O

C

O

O(CH 2)2O

n

聚亚氨基-1,6-亚己基基亚氨基已二酰:NH(CH 2)6NH CO(CH 2)4CO

n

IUPAC 命名法比较严谨,但是名称冗长,不便与合成单体对应,应用仍不广泛。 (四) 高分子化合物的分子量及其分布 1. 分子量及其分布

为表征分子量的大小,应引入平均分子量的概念。采用不同的统计方法、测试方法可以得到不同的平均分子量。常用的有以下几种:

⑴数均分子量(number average of molecular weight )

n i i i i i i

N M W M n M N N =

==∑∑∑∑ i i i ()-i-M -i--i-W g N n -其中:聚合物试样的质量;聚体的摩尔数;聚体的相对分子量;

聚体的摩尔分数。

测定方法有端基分析法、依数性测定法(包括冰点下降法、沸点升高法、渗透压法和蒸汽压降低法)。

⑵重均分子量(weight average of molecular weight )

w i

i

i

i

i

W M M w M W

=

=∑∑∑ w i i W i i ----其中:聚体的质量;聚体的质量分数。

测定方法有光散射法、凝胶渗透色谱法(GPC 法)。 ⑶粘均分子量(viscocity average M.W.)

1

1

w 0.51,i i i i i W M Mv M W Mark αα

ααα?????

?==??????

<<∑∑∑其中:为方程中的一个常数。

[][]为试样的粘均分子量。

粘数;为聚合物稀溶液的特性其中:M KM ηηα

=

n w v n v w M M M M M M ≤≤、及三者之间的关系为:

,只有对单分散试样,才能取等号。 2.聚合物分子量多分散性的表示方法 (1)多分散系数法

为多分散系数。,其中λλ1≥=

n

M w

M λ

。对单分散试样越大分子量分布越宽,1=λλ

(2)分子量分布曲线法

分子量分布曲线法通常由沉淀分级法及溶解分级法绘制。

不同用途、成型方法对分子量分布的要求也不同。如:合成纤维用树脂分布易窄;合成橡胶用树脂则可较宽,其低分子量组分起到内增塑的作用;塑料用树脂的分布居中。

(五)高分子化合物的结构(structure of high polymer )

高分子的化学结构包括:大分子的组成、键接顺序、连接方式、分子量及其分布等。

第二节 自由基连锁聚合

(一)自由基聚合机理

聚合物可以通过单体的聚合反应合成。

monomers

addition polymer addition polymerization

monomers

condensation polymer polycondensation

加聚反应

自由基聚合

阳离子聚合(cationic polymerization)阴离子聚合(anionic polymerization)

其中自由基聚合物产量最大,约占聚合物产量的60%,占热塑性聚合物的80%。

自由基聚合属于连锁聚合,包含四种基元反应: 链引发(chain initiation)、链增长(chain propagation)、链转移(chain transfer )、链终止(chain termination )。

自由基聚合的链终止通常为双基终止:偶合终止(coupling termination )或歧化终止(disprotionation termination );

(二)链引发反应

自由基聚合的活性中心为自由基,其产生可借助力、热、光、辐射直接作用于单体来产生,但目前工业及科学研究上广泛采用的方法是使用引发剂(initiator ),引发剂是结构上含有弱键的化合物,由其均裂产生初级自由基(primary radical ),加成单体得到单体自由基(monomer radical ),然后进入链增长。

chain initiation:

I

k d

2R

R +M

RM

k i

聚合过程中引发剂不断分解,以残基型式构成大分子的端基,因此不能称之为催化剂。 1.引发剂的分类

依据结构特征可以将引发剂分为:过氧类、偶氮类及氧化-还原引发体系。

(1)过氧类引发剂:该类引发剂结构上含有—O —O —,可进一步分为无机类和有机类。

①无机类:主要有过硫酸盐(如:822O S K 、8224O S )(NH 、822O S Na )、过氧化氢。其中过氧化氢活性太低,一般不单独使用,而是同还原剂构成氧化-还原引发体系使用。过硫酸盐的分解反应方程式为:

O

S

O

O

S

O

S O

--

-

O O O

O

O O

O

过硫酸盐类引发剂主要用于乳液聚合,聚合温度80~90℃。

②有机类:

a.有机过氧化氢:异丙苯过氧化氢、叔丁基过氧化氢,该类引发剂活性较低,用于高温聚

合也可以同还原剂构成氧化-还原引发体系使用。

b.过氧化二烷基类:过氧化二叔丁基,过氧化二叔戊基,活性较低,120~1500C 使用。

c.过氧化二酰类:过氧化二苯甲酰(BPO ),活性适中,应用广泛。

C O

C

O

O 2

+ 2CO 2

O

其中,苯甲酰氧基、苯自由基皆有引发活性。 d.过氧化酯类:过氧化苯甲酸叔丁酯,活性较低。

e.过氧化二碳酸酯:过氧化二碳酸二异丙酯、过氧化二碳酸二环己酯,活性大,贮存时需冷藏,可同低活性引发剂复合使用。

(2)偶氮类引发剂:该类引发剂结构上含有-N=N-,分解时-C-N=键发生均裂,产生自由基并放出氮气。主要产品有偶氮二异丁腈(AIBN )、偶氮二异庚腈(ABVN )。AIBN 的分解反应方程式为:

C N

N

C CH 3

CH 3CH 3

CH CN

CN

2CH + N 2

(3)氧化-还原引发体系

过氧类引发剂中加入还原剂,组成氧化-还原引发体系,反应过程中生成的中间产物——活性自由基可引发自由基聚合。

特点:活化能低,可在室温或低温下引发聚合。

分类为水溶性氧化-还原引发体系和油溶性氧化-还原引发体系。

水溶性氧化-还原引发体系:氧化剂有过氧化氢、过硫酸盐等;还原剂有亚铁盐、亚硫酸钠、亚硫酸氢钠、连二硫酸钠、硫代硫酸钠等。

2.引发剂的选择(choice of the initiator ) 引发剂的选择可以从以下几方面考虑:

①引发剂的溶解性,即根据聚合方法,从溶解性角度确定引发剂的类型。

本体聚合、悬浮聚合、有机溶液聚合,一般用偶氮类或过氧类等油溶性引发剂或油溶性氧化-还原引发体系。

乳液聚合和水溶液聚合则选择过硫酸盐一类水溶性引发剂或氧化-还原引发体系。 ②根据聚合温度选择

应选择半衰期适当的引发剂,使自由基生成速率和聚合速率适中。在聚合温度下半衰期最好为30~60min 。

一般聚合温度(60~100℃)常用BPO 、AIBN 或过硫酸盐作引发剂。对于T<50℃的聚合,一般选择氧化-还原引发体系。对于T>100℃的聚合,一般选择低活性的异丙苯过氧化氢、过氧化二异丙苯、过氧化二叔丁基或过氧化二叔戊基。

③引发剂用量常需通过大量的条件试验才能确定,其质量分数通常在10-

3;也可以通过聚合度、聚合速率与引发剂的动力学关系做半定量计算。

3. 其它引发作用(other methods of initiation) (1)热引发

不加引发剂,有些烯类单体在热的作用下,也可以进行聚合,这称为热引发聚合,简称热聚合。例如苯乙烯的热聚合(已实现工业化)。目前其引发机理还不是十分清楚。

实际上,大部分单体都可以热聚合,因此St 、MMA 等单体在贮存、运输时需加阻聚剂并保持较低温度下,实验室用单体(尤其脱除了阻聚剂的单体)常置于冰箱保存,工业上可将单

最新化学反应原理第二章测试题含答案

高二化学反应原理第二章化学反应的方向、限度和速率测试题含答案 1 质量检测 2 第Ⅰ卷(选择题,共54分) 3 一、选择题(本题包括18个小题,每题3分,共54分。每题只有一个选项符合题)4 1.下列反应中,一定不能自发进行的是() 5 A.2KClO 3(s)====2KCl(s)+3O 2 (g) ΔH=-78.03 kJ·mol-1 ΔS=1 110 J·mol-1·K 6 -1 7 B.CO(g)====C(s,石墨)+1/2 O 2(g) ΔH =110.5 kJ·mol-1ΔS=-89.36 J·mol 8 -1·K-1 9 C.4Fe(OH) 2(s)+2H 2 O(l)+O 2 (g)====4Fe(OH) 3 (s) 10 ΔH =-444.3 kJ·mol-1 ΔS =-280.1 J·mol-1·K-1 11 D.NH 4HCO 3 (s)+CH 3 COOH(aq)====CO 2 (g)+CH 3 COONH 4 (aq)+H 2 O(l) 12 ΔH =37.301 kJ·mol-1ΔS =184.05 J·mol-1·K-1 13 2.下列反应中,熵减小的是() 14 A、(NH 4) 2 CO 3 (s)=NH 4 HCO 3 (s)+NH 3 (g) B、2N 2 O 5 (g)=4NO 2 (g)+O 2 (g) 15 C、 MgCO 3(s)=MgO(s)+CO 2 (g) D、2CO(g)=2C(s)+O 2 (g) 16

3. 反应4NH 3(气)+5O 2(气) 4NO (气) 17 +6H 2O (气)在10L 密闭容器中进行,半分钟后,水蒸气的物质的量增加了0.45mol ,18 则此反应的平均速率v (X)(反应物的消耗速率或产物的生成速率)可表示为( ) 19 A . (NH 3) = 0.010 mol/(L ·s ) B .v (O 2) = 0.0010 mol/(L ·s ) 20 C .v (NO) = 0.0010 mol/(L ·s ) D .v (H 2O) = 0.045 mol/(L ·s ) 21 4. 将4molA 气体和2molB 气体在2L 的容器中混合,在一定条件下发生如下反应:22 2A (g )+B (g ) 2C (g ),若经2s 后测得C 的浓度为0.6mol ·L -1,现有下列几 23 种说法: 24 ①用物质A 的浓度变化表示的反应速率为0.3mol ·L -1 ·s -1 25 ②用物质B 的浓度变化表示的反应速率为0.6 mol ·L -1·s -1 26 ③平衡时物质A 的转化率为70%, 27 ④平衡时物质B 的浓度为 0.7mol ·L -1,其中正确的是 28 ( ) 29

第2章逐步聚合习题参考答案

第二章 缩聚与逐步聚合反应-习题参考答案 1.名词解释:逐步聚合;缩合聚合;官能团等活性;线型缩聚;体型缩聚;凝胶点;转化率;反应程度。 答: 逐步聚合——单体转变成高分子是逐步进行的,即单体官能团间相互反应而逐步增长。 缩合聚合——由带有两个或两个以上官能团的单体之间连续、重复进行的缩合反应。 官能团等活性——在一定聚合度范围内,官能团活性与聚合物分子量大小无关。 线型缩聚——参加反应的单体都含有两个官能团,反应中形成的大分子向两个方向增长,得 到线型缩聚物的一类反应。 体型缩聚——参加反应的单体中至少有一种单体含有两个以上的官能团,且体系平均官能度 大于2,反应中大分子向三个方向增长,得到体型结构的聚合物的这类反应。 凝胶点——开始出现凝胶瞬间的临界反应程度。 转化率——参加反应的单体量占起始单体量的分数 反应程度——参与反应的基团数占起始基团的分数。 3.由己二元酸和己二胺等摩尔合成尼龙—6,6。已知聚合反应的平衡常数K=432,如果要合成聚合度在200的缩聚物,计算反应体系中的水含量应控制为多少? 解: n X =n X =200,K=432代入此式可得: 224320.0108200 w n K n X === 答:反应体系中的水含量应控制为0.0108 mol/L. 4.计算等摩尔的对苯二甲酸与乙二醇反应体系,在下列反应程度时的平均聚合度和分子量。0.500,0.800,0.900,0.950,0.995。 解: 等物质量条件下,有P X -=11,聚苯二甲酸乙二醇酯结构单元的分子量:M 0=192。 11n X p =-,n o n X M M ?=,因此各反应程度时的平均聚合度和分子量见下表:

(完整版)高中化学必修二第二章化学反应与能量知识点总结

第二章 化学反应与能量 第一节 化学能与热能 1、在任何的化学反应中总伴有能量的变化。 原因:当物质发生化学反应时,断开反应物中的化学键要吸收能量,而形成生成物中的化学键要放出能量。化学键的断裂和形成是化学反应中能量变化的主要原因。一个确定的化学反应在发生过程中是吸收能量还是放出能量,决定于反应物的总能量与生成物的总能量的相对大小。E 反应物总能量>E 生成物总能量,为放热反应。E 反应物总能量<E 生成物总能量,为吸热反应。 2、常见的放热反应和吸热反应 常见的放热反应:①所有的燃烧与缓慢氧化。②酸碱中和反应。③金属与酸反应制取氢气。 ④大多数化合反应(特殊:C +CO 2 △ 2CO 是吸热反应)。 常见的吸热反应:①以C 、H 2、CO 为还原剂的氧化还原反应如:C(s)+H 2O(g) △ CO(g)+H 2(g)。 ②铵盐和碱的反应如Ba(OH)2·8H 2O +NH 4Cl =BaCl 2+2NH 3↑+10H 2O ③大多数分解反应如KClO 3、KMnO 4、CaCO 3的分解等。 [思考]一般说来,大多数化合反应是放热反应,大多数分解反应是吸热反应,放热反应都不需要加热,吸热反应都需要加热,这种说法对吗?试举例说明。 点拔:这种说法不对。如C +O 2=CO 2的反应是放热反应,但需要加热,只是反应开始后不再需要加热,反应放出的热量可以使反应继续下去。Ba(OH)2·8H 2O 与NH 4Cl 的反应是吸热反应,但反应并不需要加热。 第二节 化学能与电能 2、原电池原理 (1)概念:把化学能直接转化为电能的装置叫做原电池。 (2)原电池的工作原理:通过氧化还原反应(有电子的转移)把化学能转变为电能。 (3)构成原电池的条件:(1)电极为导体且活泼性不同;(2)两个电极接触(导线连接或直接接触);(3)两个相互连接的电极插入电解质溶液构成闭合回路。 (4)电极名称及发生的反应: 负极:较活泼的金属作负极,负极发生氧化反应, 电极反应式:较活泼金属-ne -=金属阳离子 负极现象:负极溶解,负极质量减少。 正极:较不活泼的金属或石墨作正极,正极发生还原反应, 电极反应式:溶液中阳离子+ne -=单质 正极的现象:一般有气体放出或正极质量增加。 (5)原电池正负极的判断方法: ①依据原电池两极的材料:

(完整版)高中化学必修2第二章知识点归纳总结

必修2第二章化学反应与能量 第一节 化学能与热能 1、在任何的化学反应中总伴有能量的变化。 原因:当物质发生化学反应时,断开反应物中的化学键要吸收能量,而形成生成物中的化学键要放出能量。化学键的断裂和形成是化学反应中能量变化的主要原因。一个确定的化学反应在发生过程中是吸收能量还是放出能量,决定于反应物的总能量与生成物的总能量的相对大小。E 反应物总能量>E 生成物总能量,为放热反应。E 反应物总能量<E 生成物总能量,为吸热反应。 2、常见的放热反应和吸热反应 常见的放热反应:①所有的燃烧与缓慢氧化。②酸碱中和反应。③金属与酸反应制取氢气。 ④大多数化合反应(特殊:C +CO 22CO 是吸热反应)。 常见的吸热反应:①以C 、H 2、CO 为还原剂的氧化还原反应如:C(s)+H 2O(g) CO(g)+H 2(g)。 ②铵盐和碱的反应如Ba(OH)2·8H 2O +NH 4Cl =BaCl 2+2NH 3↑+10H 2O ③大多数分解反应如KClO 3、KMnO 4、CaCO 3的分解等。 需要加热,吸热反应都需要加热,这种说法对吗?试举例说明。 点拔:这种说法不对。如C +O 2=CO 2的反应是放热反应,但需要加热,只是反应开始后不再需要加热,反应放出的热量可以使反应继续下去。Ba(OH)2·8H 2O 与NH 4Cl 的反应是吸热反应,但反应并不需要加热。 第二节 化学能与电能 (1)概念:把化学能直接转化为电能的装置叫做原电池。 (2)原电池的工作原理:通过氧化还原反应(有电子的转移)把化学能转变为电能。 (3)构成原电池的条件:(1)电极为导体且活泼性不同;(2)两个电极接触(导线连接或直接接触);(3)两个相互连接的电极插入电解质溶液构成闭合回路。 △ △

化学选修4《化学反应原理》课后习题和标准答案

化学选修4《化学反应原理》课后习题和答案 第一章化学反应与能量 第二章第一节化学反应与能量的变化 P5习题 1.举例说明什么叫反应热,它的符号和单位是什么? 2.用物质结构的知识说明为什么有的反应吸热,有的反应放热。 3.依据事实,写出下列反应的热化学方程式。 (1)1 mol N2 (g)与适量H2(g)起反应,生成NH3(g),放出92.2kJ热量。 (2)1 molN2(g)与适量O2(g)起反应,生成NO2(g),吸收68 kJ热量。 (3)1 mol Cu(s)与适量O2(g)起反应,生成CuO(s),放出157 kJ热量。 (4)1mol C(s)与适量H2O(g)起反应,生成CO(g)和H2 (g),吸收131.3 kJ热量。(5)卫星发射时可用肼(N2H4)作燃料,1mol N2H4(l)在O2(g)中燃烧,生成N2(g)和H2O(l),放出622 kJ热量。 (6)汽油的重要成分是辛烷(C8H18),1molC8H18(l)在O2(g)中燃烧,生成CO2(g)和H2O(l),放出5518 kJ热量。 4.根据下列图式,写出反应的热化学方程式。 P6习题 1.举例说明什么叫反应热,它的符号和单位是什么?

1、化学反应过程中所释放或吸收的热量叫做反应热。恒压条件下,它等于反应前后物 质的焓变。、符号是ΔH、单位是kJ/mol或kJ?mol-1。例如1molH2(g)燃烧,生成1molH2O(g),其反应热ΔH=-241.8kJ/mol。 2.用物质结构的知识说明为什么有的反应吸热,有的反应放热。 2、化学反应的实质就是反应物分子中化学键断裂,形成新的化学键,重新组合成生成 物的分子。旧键断裂需要吸收能量,新键形成要放出能量。当反应完成时,若生成物释放的能量比反应物吸收的能量大,则此反应为放热反应;若生成物释放的能量比反应物吸收的能量小,反应物需要吸收能量才能转化为生成物,则此反应为吸热反应。 P10习题 1、燃烧热数据对生产、生活有什么实际意义? 1、在生产和生活中,可以根据燃烧热的数据选择燃料。如甲烷、乙烷、丙烷、甲醇、乙醇、氢气的燃烧热值均很高,它们都是良好的燃料 2、石油资源总有一天会枯竭,现在就应该寻求应对措施。目前已使用甲醇、乙醇作为汽油的代用品,这样做的好处是什么? 化石燃料蕴藏量有限,不能再生,最终将会枯竭,因此现在就应该寻找对应措施。措施之一就是用甲醇、乙醇代替汽油,农牧业废料、高产作物(甘蔗、高粱、甘薯、玉米等)、速生树木(如赤杨、刺槐、桉树等),经过发酵或高温热分解就可以制造甲醇或乙醇。由于上述制造甲醇、乙醇的原料是可以再生的,因此用甲醇、乙醇代替汽油是应对能源危机的一种有效措施。 3、用氢气作燃料有什么优点?在当今的技术条件下有什么问题?它的发展前景如何? 氢气是最轻的燃料,而且单位质量的燃烧值最高,因此它是优异的火箭燃料,再加上无污

化学反应原理第二章测试题(卷)

商河弘德中学第二章化学反应的方向、限度和速率 质量检测 第Ⅰ卷(选择题,共54分) 一、选择题(本题包括18个小题,每题3分,共54分。每题只有一个选项符合题) 1.下列反应中,一定不能自发进行的是() A.2KClO3(s)====2KCl(s)+3O2(g) ΔH=-78.03 kJ·mol-1 ΔS=1 110 J·mol-1·K-1 B.CO(g)====C(s,石墨)+1/2 O2(g) ΔH =110.5 kJ·mol-1ΔS=-89.36 J·mol-1·K-1 C.4Fe(OH)2(s)+2H2O(l)+O2(g)====4Fe(OH)3(s) ΔH =-444.3 kJ·mol-1 ΔS =-280.1 J·mol-1·K-1 D.NH4HCO3(s)+CH3COOH(aq)====CO2(g)+CH3COONH4(aq)+H2O(l) ΔH =37.301 kJ·mol-1ΔS =184.05 J·mol-1·K-1 2.下列反应中,熵减小的是() A、(NH4)2CO3(s)=NH4HCO3(s)+NH3(g) B、2N2O5(g)=4NO2(g)+O2(g) C、 MgCO3(s)=MgO(s)+CO2(g) D、2CO(g)=2C(s)+O2(g) 3.反应4NH 3(气)+5O2(气) 4NO(气)+6H2O(气)在10L密闭容器中进行,半分钟后,水蒸气的物质的量增加了0.45mol,则此反应的平均速率v(X)(反应物的消耗速率或产物的生成速率)可表示为( ) A.v (NH3) = 0.010 mol/(L·s) B.v (O2) = 0.0010 mol/(L·s) C.v (NO) = 0.0010 mol/(L·s) D.v (H2O) = 0.045 mol/(L·s) 4.将4molA气体和2molB气体在2L的容器中混合,在一定条件下发生如下反应:2A(g)+B(g) (g),若经2s后测得C的浓度为0.6mol·L-1,现有下列几种说法: ①用物质A的浓度变化表示的反应速率为0.3mol·L-1·s-1 ②用物质B的浓度变化表示的反应速率为0.6 mol·L-1·s-1 ③平衡时物质A的转化率为70%, ④平衡时物质B的浓度为0.7mol·L-1,其中正确的是()A.①③ B. ①④ C. ②③ D. ③④

第二章 逐步聚合测验题--

第二章 逐步聚合测验题 一.填空题 1. 缩聚反应通常有 小分子 析出,所以结构单元分子量与单体分子量 不相等 。 2.线型缩聚的关键问题是 控制分子量 ;体型缩聚的关键问题是 凝胶点的控制 。 3. 等当量的二元醇和二元酸进行缩聚反应,设体系中起始羧基或羟基数为N 0,那么它等于 单体总量 ,也等于反应时间为t 时的酸和醇的 结构单元数 ,t 时残留羧基或羟基数N 等于当时的 大分子总数 。 4. 影响缩聚物聚合度的因素有 平衡常数 , 反应程度 , 基团数比 ;逐步聚合的实施方法有 熔融缩聚 , 溶液聚合 , 界面聚合 , 固相聚合 。 5.邻苯二甲酸酐和甘油的摩尔比为1.50:0.98,缩聚体系的平均官能度为 ;邻苯二甲酸酐与等物质量的甘油缩聚,体系的平均官能度为 (精确到小数点后2位)。 6. 主链含—OCO —的聚合物一般称为_聚酯__,含—NHCO —的聚合物称为_聚酰胺,而含—NHCOO —的则称为_聚氨酯。 7. 在进行线性缩聚时,单体的官能度一般是_等于2_,而体型缩聚的单体的平均官能度是__大于2_______。 8. 计算体型缩聚的凝胶点有 carothers 方程和 flory 统计公式。 9. 在缩聚反应中聚合的聚合度稳步上升,延长聚合反应时间其主要目的在于提高_分子量__,而不是提高_转化率___。 二.名词解释 平均官能度 摩尔系数 三.选择题 1. 合成具有-NH-COO-特征基团的单体类型是(C ) A. 二元酸+二元醇 B. 二元酸+二元胺 C. 二异氰酸酯+二元醇 D. 二元酸+ 一元醇 2. 对缩聚反应的特征说法错误的是(C ) A 、无特定活性种 B 、不存在链引发、连增长、链终止等基元反应 C 、转化率随时间明显提高 D 、在反应过程中,聚合度稳步上升 3. 下列聚合物种按线型逐步聚合的聚合物是(C ) A 、环氧树脂 B 、碱催化酚醛树脂 C 、聚芳砜 D 醇酸树脂 4. m 为(B C )时,H 2N CH 2COOH m 进行缩聚反应易于环化反应。 A 、2 B 、3 C 、4 D 、5

酚醛树脂的聚合原理、方法及运用

酚醛树脂的聚合原理、方法及其应用 应化1102班柳宗 0121114450208 摘要:酚醛树脂也叫电木,又称电木粉。原为无色或黄褐色透明物,市场销售往往加着色剂而呈红、黄、黑、绿、棕、蓝等颜色,有颗粒、粉末状。耐弱酸和弱碱,遇强酸发生分解,遇强碱发生腐蚀。不溶于水,溶于丙酮、酒精等有机溶剂中。苯酚与甲醛缩聚而得。酚醛树脂主要用于制造各种塑料、涂料、胶粘剂及合成纤维等。 关键词:酚醛树脂聚合原理聚合方法酚醛树脂的应用 正文: 酚醛树脂是世界上人工合成的第一类树脂材料,它具有良好的耐酸性能、力学性能、耐热性能,而且由于它原料易得,合成方便,目前仍被广泛应用。在高中教材里,酚醛树脂作为缩聚反应的典例,阐述了单体分子聚合成高分子的一种形式。与加聚反应不同,单体分子在发生缩聚反应时,生成的不仅仅是高分子化合物,还有小分子物质(如水)生成。也正是因为单体间缩去小分子物质,才成为有机物彼此连接成链状或体型的直接诱因。 缩聚反应是指单体间相互反应,生成高分子化合物同时生成小分子的聚合反应。酚醛树脂是由苯酚和甲醛在催化剂条件下缩聚而成。反应机理是苯酚羟基邻位上的两个氢原子比较活泼,与甲醛醛基上的氧原子结合为水分子,其余部分连接起来成为高分子化合物——酚醛树脂。如果采用不同的催化剂,苯酚羟基对位上的氢原子也可以和甲醛进行缩聚,使分子链之间发生交联,生成体型酚醛树脂。体型酚醛树脂绝缘性很好,是用作电木的原料。另外,以玻璃纤维作骨架,以酚醛树脂为肌肉,组合固化制成复合材料即玻璃钢。 苯酚和甲醛的合成反应是一个较复杂的反应过程,目前公认的看法认为苯酚和甲醛之间反应合成酚醛树脂的反应是一种缩聚反应。其生产工艺的基本原理是由一种或几种单体化合物合成聚合物的反应。缩聚反应具有逐步的性质,中间形成物具有相当稳定的性能。苯酚和甲醛两种物质发生反应时根据缩聚反应条件的差异可以形成两大类树脂,即热固性酚醛树脂和热塑性酚醛树脂。其中需要注意的是酚醛的化学结构是影响酚醛树脂合成及性能的主要因素。在选择原料时其中对酚类物质的要求是:酚分子中必须具有2个以上的官能度。酚环上连有供电子基时反应速度会加快;连有吸电子基时,反应速度会变慢。在选用醛类物质时,没有多高的要求,工业上一般都是使用甲醛的。 ( 一)合成反应酚醛树脂的合成反应分为两步,首先是苯酚与甲醛的加成反应,随后是缩合及缩聚反应。即: 1、加成反应在适当条件下,一元羟甲基苯酚继续进行加成反应,就可生成二 ( 一)合成反应 酚醛树脂的合成反应分为两步,首先是苯酚与甲醛的加成反应,随后是缩合及缩聚反应。即: 1、加成反应 在适当条件下,一元羟甲基苯酚继续进行加成反应,就可生成二元及多元羟甲基苯酚:

第二章 聚合反应原理

第二章 聚合反应原理 第一节 概述 聚合物的合成方法可概括如下: ? ??? ????加聚反应,属于连锁聚合机理 单体的聚合反应聚合物的合成反应缩聚反应,属于逐步聚合机理大分子反应 其中,单体的聚合反应是聚合物合成的重要方法。 (一)高分子化学的一些基本概念 1.高分子化合物(high molecular weight compound )——由许多一种或几种结构单元通过共价键连接起来的呈线形、分支形或网络状的高分子量的化合物,称之为高分子量化合物,简称高分子化合物或高分子。高分子化合物也称之为大分子(macromolecule )、聚合物(polymer )。 高分子化合物的特点: (1)高的分子量:M.W.(molecular weight )>104;M.W.<103时称为齐聚物(oligomer )、寡聚物或低聚物; (2)存在结构单元:结构单元是由单体(小分子化合物)通过聚合反应转变成的构成大分子链的单元; (3)结构单元通过共价键连接,连接形式有线形、分支形或网络状结构。 如聚苯乙烯(PS ):M.W.:10~30万,线形,含一种结构单元—苯乙烯单元,属通用合成塑料。 2n CH CH n ★结构单元(structural unit )和重复单元(repeating unit ): PVC PMMA PS CH 2CH Cl CH 2C CH 3 C O OCH 3CH 2CH O 结构单元和重复单元相同 如尼龙-66(聚己二酰己二胺),有两个结构单元,两个结构单元链接起来组成其重复单元。 尼龙-66 尼龙-6 NH(CH 2)6NH CO(CH 2)4CO 结构单元结构单元重复单元 NH(CH 2)5C O 2.聚合度(degree of polymerization ,DP )——即一条大分子所包含的重复单元的个数,用DP 表示; 对缩聚物,聚合度通常以结构单元计数,符号为X n ;n X DP 、X n 对加聚物一般相同。 对缩聚物有时可能不同,如对尼龙-66,X n =2DP ;对尼龙-6,X n =DP 。因此,谈及聚合度时,一定要明确其计数对象。

化学反应原理--第二章测试题

第二章《化学反应速率和化学平衡》检测题 一、选择题(每小题只有一个选项符合题意) 1. 在一密闭容器内发生氨分解反应:2NH 3N2+3H2。已知NH3起始浓度是 2.6 mol·L-1,4s末为1.0 mol·L-1,若用NH3的浓度变化来表示此反应的速率,则v(NH3)应为() A. 0.04 mol·L-1·s-1 B. 0.4 mol·L-1 ·s-1 C. 1.6 mol·L-1·s-1 D. 0.8 mol·L-1·s-1 2.反应A(g)+3B(g) 2C(g)+2D(g),在不同情况下测得反应速率,其中反应速率最快的是() A.υ(D)=0.4 mol /(L·s) B.υ(C)=0.5 mol / (L·s) C.υ(B)=0.6 mol / (L·s) D.υ(A)=0.15 mol / (L·s) 3.某化学反应其△H== —122 kJ/mol,?S== +231 J/(mol·K),则此反应在下列哪种情况下可自发进行 ( ) A.在任何温度下都能自发进行 B.在任何温度下都不能自发进行 C.仅在高温下自发进行 D.仅在低温下自发进行 4.可逆反应N 2+3H22NH3的正逆反应速率可用各反应物或生成物浓度的变化来表示。下列关系中能说明反应已达到平衡状态的是( ) A.υ正(N2)=υ逆(NH3) B.3υ正(N2)=υ正(H2) C.2υ正(H2)=3υ逆(NH3) D.υ正(N2)=3υ逆(H2 ) 5.下列说法正确的是( ) A.增大压强,活化分子百分数增大,化学反应速率一定增大 B.升高温度,活化分子百分数增大,化学反应速率可能增大 C.加入反应物,使活化分子百分数增大,化学反应速率增大 D.一般使用催化剂可以降低反应的活化能,增大活化分子百分数,增大化学反应速率 6.在2L密闭容器中加入4molA和6molB,发生以下反应:4A(g)+6B(g) 4C(g) +5D(g)。若经5s后,剩下的A是2.5mol,则B的反应速率是() A.0.45 mol / (L·s) B.0.15 mol / (L·s) C.0.225 mol / (L·s) D.0.9 mol /(L·s) 7.有一处于平衡状态的反应:X(s)+3Y(g) 2Z(g) ΔH<0。为了使平衡向生成Z的方向移动,应选择的条件是①高温②低温③高压④低压⑤加催化剂⑥分离出Z ( ) A.①③⑤ B.②③⑤ C.②③⑥ D.②④⑥ 8. 反应2A(g)2B(g)+E(g)(正反应为吸热反应)达到平衡时,要使正反应速率降低,A的浓度增大,应采取的措施是() A. 加压 B. 减压 C. 减少E的浓度 D. 降温 9.一定温度下,在2 L的密闭容器中,X、Y、Z三种气 体的物质的量随时间变化的曲线如下图所示,下列描述 正确的是( ) A.反应开始到10 s,用Z表示的反应速率为 0.158 mol/(L·s) B.反应开始到10 s,X的物质的量浓度减少了0.79 mol/L C.反应开始到10 s时,Y的转化率为79.0% D.反应的化学方程式为:X(g)+Y(g)=Z(g)

逐步聚合习题参考答案

逐步聚合习题参考答案

作者: 日期:

第二章缩聚与逐步聚合反应-习题参考答案 1名词解释:逐步聚合;缩合聚合;官能团等活性;线型缩聚;体型缩聚;凝胶点;转化 率;反应程度。 答: 逐步聚合一一单体转变成高分子是逐步进行的,即单体官能团间相互反应而逐步增长。 缩合聚合一一由带有两个或两个以上官能团的单体之间连续、重复进行的缩合反应。 官能团等活性一一在一定聚合度范围内,官能团活性与聚合物分子量大小无关。 线型缩聚——参加反应的单体都含有两个官能团, 反应中形成的大分子向两个方向增长, 得 到线型缩聚物的一类反应。 体型缩聚一一参加反应的单体中至少有一种单体含有两个以上的官能团, 且体系平均官能度 大于2,反应中大分子向三个方向增长,得到体型结构的聚合物的这类反应。 凝胶点一一开始出现凝胶瞬间的临界反应程度。 转化率一一参加反应的单体量占起始单体量的分数 反应程度一一参与反应的基团数占起始基团的分数。 3.由己二元酸和己二胺等摩尔合成尼龙一 6,6。已知聚合反应的平衡常数 K=432,如果要合 成聚合度在200的缩聚物,计算反应体系中的水含量应控制为多少? 解: 4?计算等摩尔的对苯二甲酸与乙二醇反应体系, 在下列反应程度时的平均聚合度和分子量。 0.500, 0.800, 0.900, 0.950, 0.995。 解: 1 一 等物质量条件下,有 X ,聚苯二甲酸乙二醇酯结构单元的分子量: M 0=192。 1 P 1 X n , M n M o X n ,因此各反应程度时的平均聚合度和分子量见下表: X n 将 X n =200, K=432代入此式可得: n w 答:反应体系中的水含量应控制为 K 432 X n 2 2002 0.0108 mol/L. 0.0108

高中化学必修2第二章知识点归纳总结

必修2第二章化学反应与能量 第一节化学能与热能 1、在任何的化学反应中总伴有能量的变化。 原因:当物质发生化学反应时,断开反应物中的化学键要吸收能量,而形成生成物中的化学键要放出能量。化学键的断裂和形成是化学反应中能量变化的主要原因。一个确定的化学反应在发生过程中是吸收能量还是放出能量,决定于反应物的总能量与生成物的总能量的相对大小。E 反应物总能量>E 生成物总能量,为放热反应。E 反应物总能量<E 生成物总能量,为吸热反应。 2、常见的放热反应和吸热反应 常见的放热反应:①所有的燃烧与缓慢氧化。②酸碱中和反应。③金属与酸反应制取氢气。 ④大多数化合反应(特殊:C +CO 22CO 是吸热反应)。 常见的吸热反应:①以C 、H 2、CO 为还原剂的氧化还原反应如:C(s)+H 2O(g) CO(g) +H 2(g)。 ②铵盐和碱的反应如Ba(OH)2·8H 2O +NH 4Cl =BaCl 2+2NH 3↑+10H 2O ③大多数分解反应如KClO 3、KMnO 4、CaCO 3的分解等。 需要加热,吸热反应都需要加热,这种说法对吗?试举例说明。 点拔:这种说法不对。如C +O 2=CO 2的反应是放热反应,但需要加热,只是反应开始后不再需要加热,反应放出的热量可以使反应继续下去。Ba(OH)2·8H 2O 与NH 4Cl 的反应是吸热反应,但反应并不需要加热。 第二节化学能与电能 2、原电池原理 (1)概念:把化学能直接转化为电能的装置叫做原电池。 (2)原电池的工作原理:通过氧化还原反应(有电子的转移)把化学能转变为电能。 (3)构成原电池的条件:(1)电极为导体且活泼性不同;(2)两个电极接触(导线连接或直接接触);(3)两个相互连接的电极插入电解质溶液构成闭合回路。 (4)电极名称及发生的反应: 负极:较活泼的金属作负极,负极发生氧化反应, △ △

第二章逐步聚合习题及答案

第二章逐步聚合习题 1、解释下列概念 ①反应程度和转化率 ②当量系数和过量分数 ③平衡缩聚和不平衡缩聚 ④均缩聚、混缩聚和共缩聚 ⑤线形缩聚和体型缩聚 ⑥平均官能度和凝胶点 ⑦管能团和官能度 ⑧热塑性树脂和热固性树脂 ⑨结构预聚物和无规预聚物 2、讨论下列缩聚反应环化的可能性。m=2 —10。 ① ②K:h H. - ' , '"II 3、写出并描述下列反应所形成的聚酯的结构,聚酯结构与反应物相对量有无关系。如有关系,请说明差别。 ①HO——R--COOH ②HOOC一—COOH + HO-R-OH ③HO—-R--COOH + HO-R—OH OH ④HO — —R—COOH + HO-R-OH + HO R " OH OH 4、等摩尔二元醇与二元酸在外加酸催化下进行缩聚,证明从P从0.98到0.99所需的时间与从开始到P=0.98所需的时间相近。 5、等摩尔二元酸与二元胺缩聚,平衡常数为1000,在封闭体系中反应,问反应程度和聚 合度能达到多少?如果羧基起始浓度为4mol/L,要使聚合度达到200,需将[H?。]降低到怎 样的程度? 6、尼龙-1010是根据1010盐中过量的癸二酸控制相对分子质量的。如果要求数均相对分子质量为 2X 104,反应程度为0.995,问配料时的当量系数和过量分数各是多少? 7、等摩尔二元醇和二元酸缩聚,另加1.5% ( mol)醋酸调节相对分子质量。P=0.995及0.999 时,聚酯的聚合度各为多少?加1% (mol)醋酸时,结果如何?(醋酸% ( mol )浓度以二元酸计) 8、等摩尔的二元酸和二元胺缩聚时,画出P=0.95, 0.99和0.995时的数均分子质量分布曲线和重均分子质量分布曲线,并计算数均聚合度和重均聚合度,比较二者的相对分子质量分布的宽度。 9、计算下列混合物的凝胶点,各物质的比例为摩尔比 a、邻苯二甲酸酐:甘油=3.0 : 2.0 b、邻苯二甲酸酐:甘油=1.50 : 0.98 c、邻苯二甲酸酐:甘油=4.0 : 1.0 d、邻苯二甲酸酐:甘油:乙二醇=1.50 : 0.99: 0.002

化学反应原理第二章重难点复习

化学反应原理第二章重难点复习

化学反应原理第二章重难点复习提纲 一、可逆反应的特征:反应物和生成物共存,不可能完全反应 例题1、N 2+3H 2 2NH 3 ΔH =-Q A.反应开始时充入1mol N 2,平衡时放出热量Q kg B.当反应达到平衡时,放出Q kg 热量的同时生成2mol NH 3 例题2、在一密闭容器中进行反应:2SO 2(g )+O 2(g )2SO 3(g ),已知反应过程中的某一时 刻SO 2、O 2、SO 3的浓度分别为:0.2mol /L 、0.1mol /L 、0.2mol /L ,当反应达到平衡时,可能存在的数据是 A.SO 2为0.4mol/L,O 2为0.2mol/L B.SO 2为0.15mol/L C.SO 2,SO 3均为0.25mol/L D.SO 3为0.4mol/L 二、化学反应达到平衡的标志 1、正反应速率等于逆反应速率(一定平衡) 例题:(1)可以证明可逆反应N 2 + 3H 2 2NH 3已 达到平衡状态的是 A.一个N ≡N 断裂的同时,有3个H -H 键断裂 B.一个N ≡N 键断裂的同时,有6个N -H 键断裂

C. 2v正(H 2 )=3v逆 (NH 3) D.v正(N 2 )=3v逆(H 2 ) E.单位时间内生成1molN 2,同时生成3molH 2 F.单位时间内生成2mol NH3,同时生成3molH2 2、各组分的浓度,物质的量,质量分数,体积分数,颜色(有颜色参与)不变(一定平衡) 3、压强不变 PV=nRT(考虑反应前后气体系数是否相等) 4、密度不变(考虑恒容、恒压及是否有固体参与反应) 5、平均相对分子质量不变(考虑气体系数及是否有固体参与反应) 例题(1)、在恒温下的密闭容器中, 有可逆反应: 2NO + O 2 2NO 2 (正反应为放热反应), 不能 说明已经达到平衡状态的是() A、正反应生成NO 2的速率和逆反应生成O 2 的 速率相等 B、反应容器中压强不随时间的变化而变化 C、混合气体颜色深浅保持不变 D、混合气体的平均分子量不随时间变化而变化 (2)、可逆反应:2AB(g)=2A(g) +B 2 (s)在密闭容器中反应,达到平衡状态的标志是: A.混合气体的密度不再改变的状态; B.压强不再发生改变; C.混合气体的平均相对分子质量不再改变的状

聚合原理

第二章自由基聚合(Free radical polymerization) 本章内容: 单体结构对聚合机理的影响 自由基聚合反应机理及特征 主要引发剂类型及引发机理 自由基聚合在低转化率下的动力学及影响速率和分子量的因素 高转化率下的自动加速现象及其产生原因 阻聚和缓聚 聚合热力学 2.1 引言 自由基聚合是高分子化学的基础、重点 按产量估计,自由基聚合的产物占聚合物总产量60%以上, 一些通用塑料、橡胶、纤维(如LDPE、PVC、PTFE、PAN、SBR、ABS树脂等)都通过自由基聚合生产 自由基聚合在理论研究也相对成熟和完善 虽然世界上第一种合成材料(酚醛树酯)是用缩聚的方法合成的,但自由基聚合的生产与理论发展迅速 30年代,自由基聚合机理建立 40年代成熟,LDPE、SBR等已大规模工业化 从自由基活性中心产生、各基元反应的历程到聚合动力学以及共聚合原理等,都建立了成熟的理论 1.连锁聚合的条件 2. 聚合外因: 活性种 R*(Reactive species)的存在 活性种 R* 可以是自由基(Free radical),也可以是阳离子(Cation)和阴离子(Anion)聚合内因: 聚合的单体中存在接受活性种进攻的弱键(如C=C) 2.活性种的形成(共价键的两种断裂方式)——均裂与异裂: 均裂(homolysis): 共价键断裂后,共价键上一对电子分属两个基团,使每个基团带有一个独电子,这个带独电子的基团呈中性,称为自由基 异裂(heterolysis): 共价键断裂后后,共价键上一对电子全部归属于其中一个基团,这个基团形成阴离子,而另一缺电子的基团,称为阳离子

第2章 缩聚和逐步聚合

第二章 计算题 1、通过碱滴定法和红外光谱法,同时测得21.3 g 聚己二酰己二胺试样中含有2.50?10-3mol 羧基。 根据这一数据,计算得数均分子量为8520。计算时需作什么假定?如何通过实验来确定的可靠性?如该假定不可靠,怎样由实验来测定正确的值? 解:∑∑= i i n N m M , g m i 3.21=∑,852010 *5.23 .213 == -n M ,310*5.2=∑i N 上述计算时需假设:聚己二酰己二胺由二元胺和二元酸反应制得,每个大分子链平均只含一个羧基,且羧基数和胺基数相等。 可以通过测定大分子链端基的COOH 和NH 2摩尔数以及大分子的摩尔数来验证假设的可靠性,如果大分子的摩尔数等于COOH 和NH 2的一半时,就可假定此假设的可靠性。 用气相渗透压法可较准确地测定数均分子量,得到大分子的摩尔数。 碱滴定法测得羧基基团数、红外光谱法测得羟基基团数 2、羟基酸HO-(CH 2)4-COOH 进行线形缩聚,测得产物的质均分子量为18,400 g/mol -1,试计算:a. 羧基已经酯化的百分比 b. 数均聚合度 c. 结构单元数n X 解:已知100,184000==M M w 根据 p p X M M X w w w -+= = 110和得:p=0.989,故已酯化羧基百分数为98.9%。 9251,1=+=n n w M P M M 51.92100 9251 0===M M X n n 3、等摩尔己二胺和己二酸进行缩聚,反应程度p 为0.500、0.800、0.900、0.950、0.980、0.990、0.995,试求数均聚合度n X 、DP 和数均分子量n M ,并作n X -p 关系图。 4、等摩尔二元醇和二元酸经外加酸催化缩聚,试证明从开始到进行缩聚,反应程度p 为0.500、0.800、0.900、0.950、0.980、0.990、0.995,试求数均聚合度n X 、DP 和数均分子量n M ,并作n X -p 关系图。 解:在外加酸催化的聚酯合成反应中存在10+'=t c k X n

第二章-缩聚和逐步聚合

第二章缩聚和逐步聚合 思考题2.1简述逐步聚合和缩聚、缩合和缩聚、线形缩聚和体形缩聚、自缩聚和共缩聚的关系和区别。 解 (1)逐步聚合和缩聚逐步聚合反应中无活性中心,通过单体中不同官能团之间相互反应而逐步增长,每步反应的速率和活化能大致相同。 缩聚是指带有两个或两个以上官能团的单体间连续、重复进行的缩合反应,缩聚物为主产物,同时还有低分子副产物产生,缩聚物和单体的元素组成并不相同。 逐步聚合和缩聚归属于不同的分类。按单体—聚合物组成结构变化来看,聚合反应可以分为缩聚、加聚和开环三大类。按聚合机理,聚合反应可以分成逐步聚合和连锁聚合两类。大部分缩聚属于逐步聚合机理,但两者不是同义词。 (2)缩合和缩聚缩合反应是指两个或两个以上有机分子相互作用后以共价键结合成一个分子,并常伴有失去小分子(如水、氯化氢、醇等)的反应。 缩聚反应是缩合聚合的简称,是指带有两个或两个以上官能团的单体间连续、重复进行的缩合反应,主产物为大分子,同时还有低分子副产物产生。 l-1、1-2、1-3等体系都有一种原料是单官能度,只能进行缩合反应,不能进行缩聚反应,缩合的结果,只能形成低分子化合物。醋酸与乙醇的酯化是典型的缩合反应,2-2、2-3等体系能进行缩聚反应,生成高分子。 (3)线形缩聚和体形缩聚根据生成的聚合物的结构进行分类,可以将缩聚反应分为线形缩聚和体形缩聚。 线形缩聚是指参加反应的单体含有两个官能团,形成的大分子向两个方向增长,得到线形缩聚物的反应,如涤纶聚酯、尼龙等。线形缩聚的首要条件是需要2-2或2官能度体系作原料。 体形缩聚是指参加反应的单体至少有一种含两个以上官能团,并且体系的平均官能度大于2,在一定条件下能够生成三维交联结构聚合物的缩聚反应。如采用2-3官能度体系(邻苯二甲酸酐和甘油)或2-4官能度体系(邻苯二甲酸酐和季戊四醇)聚合,除了按线形方向缩聚外,侧基也能缩聚,先形成支链,进一步形成体形结构。 (4)自缩聚和共缩聚根据参加反应的单体种类进行分类,可以将缩聚反应分为自缩聚、混缩聚和共缩聚。 自缩聚(均缩聚):通常为aAb型的单体进行的缩聚反应,其中a和b是可以反应的官能团。如羟基酸或氨基酸的缩聚。 混缩聚:通常为aaa和bbb的单体之间进行的缩聚反应,其中a和b是可以反应的官能团。如己二酸和己二胺合成尼龙-66的反应。 共缩聚:通常将aAc型的单体(a和c是不能反应的官能团,a和c可以相同)加入到其他单体所进行的自缩聚或混缩聚反应中进行的聚合反应。共缩聚反应通常用于聚合物的改性。例如以少量丁二醇、乙二醇与对苯二甲酸共缩聚,可以降低涤纶树脂的结晶度和熔点,增加柔性,改善熔纺性能。 思考题2.3己二酸与乙醇、乙二醇、甘油、苯胺、己二胺这几种化合物反应,哪些能形成聚合物? 解:己二酸(f=2)为2官能度单体,因此能与己二酸形成聚合物的化合物有:乙二醇(f=2)、甘油(f=3)、己二胺(f=2)。其中与乙二醇(f=2)、己二胺(f=2)形成线形缩聚物,与甘油(f=3)形成体形缩聚物。

第二章 逐步聚合反应

第二章逐步聚合反应 1.解释下列名词: (1)官能团等活性理论;(2)凝胶点;(3)反应程度和转化率;(4)平均官能度 2.现以等摩尔比的二元醇和二元酸为原料于某温度下进行封管均相聚合,试问该产品最终的Xn是多少?已知该温度下反应平衡常数为4。 3.将等摩尔比的己二胺和己二酸于220℃下进行缩聚反应,已知该温度下K为365。如想所得尼龙-66的数均聚合度为100,试问此时体系中残存小分子为多少? 4.由己二胺和己二酸合成聚酰胺,分子量约15000,转化率99.5%,若己二胺过量,试计算原料比。产物端基是什么? 5.单体HORCOOH进行均缩聚反应,若在反应中加入R’COOH为分子量控制剂,如在反应中不断地排除生成的水,试求欲达到Xn =600时的配料比应是多少? 6.等摩尔二元醇和二元酸经外加酸催化聚合,试证明p从0.98到0.99所需时间与从开始至p=0.98所需时间相等。 7.用羟基戊酸经缩聚得重均分子量为18400的聚羟基戊酯,请求出:(1)羟基的反应程度; (2)该聚酯的数均和重均分子量。 8.试应用Flory分布函数,从理论上计算在缩聚反应中未反应单体理论数量。(1)当p=0; (2)当p=0.5;(3)当p=1。 9.对苯二甲酸、乙二醇、丙三醇三种物料进行缩聚反应,若按以下情况配料:(1)对苯二甲酸:乙二醇:丙三醇=2:1:0.6;(2)对苯二甲酸:、丙三醇=1.5:1,试判断当反应程度为0.90时,它们是否会出现凝胶化?若还未出现,试计算缩聚反应的数均聚合度。10.苯酚和甲醛采用酸和碱催化聚合,固化方法有何不同? 11.关于环氧树脂请回答下列问题:(1)环氧树脂是什么?(2)室温固化用何固化剂?写出固化过程。(3)欲使1000克环氧树脂(环氧值0.2)固化,试计算乙二胺的用量。

聚合反应原理论文

改性淀粉聚合物用做油田降滤失剂的文献综述 摘要:聚合物类是目前用量最大的降滤失剂之-,其发展速度较快。改性淀粉聚合物因降滤失性能好,价格便宜,环保无毒,在油田上可用做降滤失剂。本文对目前改性淀粉聚合物在油田上的应用现状进行了分析,其主要是对淀粉醚类、交联淀粉类、接枝淀粉类聚合物的研究现状进行了总结。 关键词:聚合物;改性淀粉;降滤失剂 Abstract: Polymer is one of the largest amount of fluid loss agent,its development is so fast. The modified starch polymer can be used as fluid loss agent in the oilfield for the good performance of drop filter lost,cheap price,environmental protection,and non-toxic. In this paper,the application of present polymer modified starch in the oilfield was analyzed .It is mainly summarized the starch ethers,crosslinked starch and grafted starch polymers. Key words: Polymer; modified starch; fluid loss agent 降滤失剂是钻井液外加剂的重要组成部分,是用于保证钻井液性能稳定,较少有害液体向地层滤失,以及稳定井壁、保证井径规则的重要泥浆处理剂。 淀粉来源丰富,其在自然界中的含量仅次于纤维素,而且,比之纤维素等多糖,淀粉分散在水介质中,在较温和的条件下就具有较高的反应性能,因此,可以利用比较简单的方法将其变性和转化。就我国来说,西北地区有丰富的淀粉资源,在国家大力推进节能减排的大环境下,进-步研究和开发淀粉产品不仅可以效地开辟农产品中玉米等的广阔市场,对于油田的无污染、低成本开采更是有着重大意义[1]。此外,改性后的淀粉可具有较强的抗温抗盐性能,这对石油钻探向深井、超深井和海上钻井方面发展具有重大意义。 国外将改性淀粉用于钻井液中已有60多年的历史,国内将改性淀粉用于钻井液处理剂始于八十年代初期。在国内,关于淀粉改性研究与应用虽然起步较晚,但发展迅速,尤其是近年来,随着我国粮食产量的不断农民增加,有的钻井液用改性淀粉的研究与开发已引起越来越多油田化学工作者的重视。本文首先就近年来国内外改性淀粉聚合物作为钻井液降滤失剂的研究与应用情况作如下介绍。 1 淀粉油田化学品 1.1 淀粉醚类 周玲革[2]等用淀粉在碱性条件下先与-氯醋酸钠反应,再与环氧丙基三甲基氯化铵醚化,得到-种复合离子型改性淀粉降失水剂CSJ,其在淡水钻井液、盐水钻

相关文档
最新文档