石墨烯纤维研究报告解答

石墨烯纤维研究报告解答
石墨烯纤维研究报告解答

石墨烯调研报告(石墨烯纤维)

碳纤维因其质量轻、机械强度大及性能稳定的特点在生活中被广泛使用。但仍存在成本高,脆性高等缺点。石墨烯是一种由碳原子构成的单层蜂窝状结构的新材料,是其他维度碳材料的构造基础。石墨烯具有很多独特的性质,如高电子迁移率、高导热系数、良好的弹性和刚度等。因此,将石墨烯组装为宏观的功能结构如纤维等,是实现石墨烯实际应用的重要途径。

近年来成功合成石墨烯纤维的例子及其在某些特殊应用上发挥的重要作用激发了人们的研究兴趣。一维石墨烯纤维不仅是对二维薄膜和三维石墨烯块的补充,而且对纺织功能材料和器件的发展具有十分重要的作用。本文中将对石墨烯

纤维的研究现状和发展进行综述和展望。主要讨论石墨烯纤维的可控制备、功能性修饰及其在非传统器件(如柔性纤维状驱动器、机器人、马达、光伏电池和超级电容器)等方面的应用。

石墨烯纤维的制备

1.1液晶相湿法纺丝法

研究发现,可溶性氧化石墨烯片可以形成液晶相,呈现片状排列或螺旋结构,这使制备宏观石墨烯纤维成为可能。这种液晶结构能够使氧化石墨烯在足够咼的浓度下分散,适合高效凝结成型。高成明等用注射器将石墨烯分散液注射到质量分数为5%的氢氧化钠/甲醇溶液中,制成了均匀的氧化石墨烯纤维。然后,采用氢碘酸化学还原的方法得到了石墨烯纤维。尽管该方法制得的纤维强度有待提升,但这种湿法纺丝法具有大规模生产石墨烯纤维的潜能。于虹等随后证明可以

用氧化石墨烯悬浮液做为原料,流体纺丝后经化学还原制备石墨烯纤维,并提出了卷曲-折叠构造氧化石墨烯纤维的机理。该湿法纺丝技术促进了石墨烯与其他有机、无机材料复合纤维的多功能化发展。

湿法纺丝制得的氧化石墨烯纤维拉伸强度相对较低,这与纤维轴向的氧化石墨烯层的内部排列有关。为了解决这一问题,Tour研究组用大片氧化石墨烯(平均直径22 ym)做为湿法纺丝的原料合成纤维。结果表明,这样制得的纤维拉伸模量比之前的方法高出一个数量级,纤维具有100%的高打结率。

通过改进湿法纺丝过程,Qu研究组发明了一种双毛细管同轴纺丝法”,

该方法能够连续生产形貌可控的中空石墨烯纤维。图1展示了实验装置及制备过

程。因为咼黏性的氧化石墨烯悬液能够直接鼓泡,所以可以精确调节氧化石墨烯纤维的形貌。例如用压缩空气代替内管的液体,可以生成中空石墨烯项链”状

纤维

双毛细管同轴纺丝法制备石墨烯管

1.2限域水热组装法

由于层间的强nn相互作用,水热处理的氧化石墨烯会自发形成石墨烯的网状结构。曲向晨研究组发明了一种限域水热组装法,可以直接用氧化石墨烯溶液

在管式反应器中加热制成石墨烯纤维。例如,以毛细玻璃管作为反应器,将8 mg/mL的氧化石墨烯悬液注射到玻璃管中,封闭玻璃管两端后在230C烘焙2 h 就获得与玻璃管形貌一致的石墨烯纤维。纤维直径5~200 ym可调,长度数米(图2)。由于水热过程中石墨烯层间的强相互作用,自组装形成的石墨烯纤维强度较

高,可以达到180 MPa。

图2限域水热制备的石墨晞纤维(a)Jb)及打结2)缠绕(d)结构

1.3化学气相沉积法(CVD )辅助合成

朱晨研究组发明了一种用化学气相沉积(CVD)法生长的石墨烯膜直接抽出石墨烯纤维的直拉法”该方法首先将石墨烯膜从生长基底上转移到有机溶剂(如乙醇)中,然后用镊子从溶剂中抽出纤维结构的石墨烯。在该过程中,溶剂的表面张力和蒸发速率对石墨烯纤维的结构有很大影响。该方法制得的石墨烯纤维导电率很高,可以达到约1000 S/m,但不适用于大规模生产。同一研究组还利用CVD法直接在铜网上生长石墨烯,然后用氯化铁的盐酸溶液刻蚀掉铜网,得到网状中空石墨烯纤维,即石墨烯编织物。这种编织物可以转移到聚

二甲基硅氧烷基底上形成复合膜并用于各种器件中。

1.4氧化石墨烯的自发还原及组装

除了上述借助CVD方法外,可以通过基底辅助还原和组装氧化石墨烯的方法在铜线上自发合成中空石墨烯纤维。该方法比较温和而且有效。在这一过程中,活泼金属基底失去电子被氧化成金属离子,同时氧化石墨烯得到电子被还原。

该方法不需要加入任何还原剂,可以在任意导电基底上还原氧化石墨烯,并使其在基底上有序聚集,如活泼金属基底锌、铁、铜,惰性金属金、银、铂, 半导体硅片,非金属碳膜,以及导电玻璃(ITO)等。

采用不同的还原方法可以调节其含有的官能团, 以提高相应的机械、电学及电 化学性质。实际上,氧化石墨烯纳米带和还原的石墨烯纳米带可以分散到高浓 度氯磺酸中,形成各向异性的液晶相用于湿法纺丝制石墨烯纤维。

1.6其他制备方法

上述方法提供了多种途径合成各种石墨烯纤维, 除此之外还有一些其他的

方法。Kim 等用电泳组装法制成还原的氧化石墨烯纳米带纤维。

该方法用石墨针 做正极,将其插入含有石墨烯纳米带的胶体溶液中。通过向电极间加上恒定电 压(1~2 V ),在石墨针提拉过程获得石墨烯纤维。 该方法与之前提到的直接拉拽 法类似,但产率低, 不适合大规模生产。徐兴等采用溶液自组装法用氧化石墨

烯溶液在气液界面组装合成氧化石墨烯纤维,

该方法依托于静电斥力、 范德华 力以及n -n 堆积作用。在自组装及超声过程中, 样品逐渐从原始的石墨粉转变 成氧化石墨烯片,再过渡到氧化石墨烯纤维及纯净的氧化石墨烯纤维膜。尽管该 方法的机制还需要进一步研究,但其纤维直径小(1~2 um ),长几百微米, 是 短石墨烯纤维规模化生产的一个潜在简单途径。

二,功能化复合

2.1与功能组分的复合

在石墨烯纤维中嵌入功能组分有助于实现其在重要器件如传感器及电子纺 织物中的应用。无论是原位复合还是先合成后嵌入功能组分,

石墨烯纤维为各 种独特性质的功能材料提供了一个好的附着平台。例如, 在石墨烯纤维中原位 掺入四氧化三铁(Fe3O4)纳米颗粒可以合成磁性纤维。这种磁性纤维具有良好 的机械柔韧性及灵敏的磁响应。

二氧化钛(TiO2)纳米颗粒的掺杂是一个典型的先合成后功能化的示例。 将 初步合成的石墨烯纤维浸泡于 TiO2悬浊液中,震荡待TiO2纳米颗粒嵌入石墨 烯片层中,干燥及退火后,即获得具有良好光电流响应特性的石墨烯纤维。表 明在TiO2纳米颗粒和石墨烯片层之间通过光激发产生了电子 /空穴对,从而证

明这种材料在光电检测器、 光催化剂及光伏电池等的应用。

1.5碳纳米管纱丝

以碳纳米管制成的石墨烯纳米带为基础,

的碳纳米管膜上拉出石墨烯纳米带纱网,

壁碳纳米管逐层放到聚四氟乙烯框架上, Baughman 等用化学拉拽法从高度排列 然后干燥收缩成丝。该方法将原始多 通过溶液氧化获得氧化石墨烯纳米带。

2.2全碳复合物

石墨烯是具有独特性质的二维纳米材料,而碳纳米管则是一种重要的一维

材料。将这两种材料结合在一起可能会出现意想不到的效果。Li等用化学气相

反应经过后拉伸处理制得双壁碳纳米管和石墨烯的混合纱丝。首先用化学气相沉

积方法在卧式反应器中生成粗的棒状碳纳米管聚集体,石墨烯在碳纳米管生成过程中也自发的产生,然后从这个聚集体中抽出碳纳米管和石墨烯的混合纱,进

而拧成一根纤维。机械性质测量结果显示,该方法获得的纱强度可以达到300 MPa,电导率达到105 S - m-1。

另一种方法是在石墨烯纤维上直接生长碳纳米管。Che ng等先用水热法制

得掺杂Fe3O4纳米颗粒的石墨烯纤维,然后利用化学气相沉积法在石墨烯纤维上生长碳纳米管。虽然这种方法生产的混合纤维机械强度相对较低,但可以用来制成柔性纺织物用做柔性超级电容器的电极。不同于石墨烯/碳纳米管的这种

混合纤维,还有一种全部由石墨烯构成的核壳结构纤维。这种纤维是将三维网状石墨烯覆盖到石墨烯纤维上制得的[29]。三维石墨烯结构具有很多突出的性

能,如比表面积高、电导率高以及化学稳定性好。作为核”的石墨烯纤维的

高导电性和外部三维石墨烯的高比表面积很好地结合到一起,这样这种纤维就

可以在纤维器件中用做柔性电极。

2.3聚合物复合材料

之前的工作表明,碳纳米管增强聚合物纤维的强度要比已知的材料强。Kim 等将碳纳米管和还原氧化石墨烯片结合起来,嵌入纺织聚合物纤维,获得了高强

度复合纤维材料。他们将各种不同比例的还原石墨烯和单壁碳纳米管分散到十二烷基苯磺酸钠水溶液中,然后把分散液注射到质量分数5%的聚乙烯醇(PVA)

的流体中,待其凝结形成复合纤维。最后用甲醇处理以提高PVA的结晶度,得

到以PVA为基体的混合纤维。石墨烯薄片相互连接形成网络,使这种纤维机械的性能很好。聚合物复合纤维的质量刚性为1000 Jg-1,远超过蜘蛛丝(165 Jg-1)和Kevlar丝(78 J g-1)。实验观察到溶液纺丝过程中形成了部分排列有序的石墨烯薄片与碳纳米管的连接网络。这种混合纤维具有可编织、可穿戴以及可以变形为高模量螺旋弹簧的特点。

石墨烯与聚合物的复合研究已经很普遍了。在聚合物中加入少量的石墨烯纳米片可以显著提高材料的机械强度和电学特性。石墨烯纳米片的平面结构具有较大的界面面

积,有利于石墨烯与聚合物之间的相互作用,因此能和聚合物很好地结合到一起。此外,在氧化石墨烯纳米片面和边缘处的羧基及羟基官能团在石墨烯和聚合物之间也起到连接作用。例如,石墨烯纳米带/碳复合纤维纺纱可以通

过用含有聚丙烯腈(PAN)的静电纺丝得到。在静电纺丝过程中产生的定向剪切力与外电场力共同作用于流动的纺丝溶液。加入少量的石墨烯纳米带就能很大程度上提高复合纤维纺纱的机械性能。关于静电纺丝生产石墨烯聚合物纤维(包括以PVA、聚乙酸乙烯酯(PVAc)、聚丙烯酸(PAA)为原料)的文章多有报道。

石墨烯调研报告

石墨烯报告 一、石墨烯定义、性质 (一)石墨烯定义 “中国石墨烯产业技术创新战略联盟”发布的1号标准文件中,对石墨烯的定义如下:石墨烯是一种二维碳材料,是单层石墨烯、双层石墨烯、和少层石墨烯的统称。 单层石墨烯是指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。 双层石墨烯是指由两层以苯环结构周期性紧密堆积的碳原子层以不同堆垛方式(包括AB堆垛,AA堆垛,AA堆垛等)堆垛构成的一种二维碳材料。 少层石墨烯是指由3-10层以苯环结构周期性紧密堆积的碳原子层以不同堆垛方式(包括ABC堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。 图1 石墨烯的分类 石墨烯发展历史。石墨烯作为当下最热门的新材料之一,其经历了如下的发展历程: 图2 石墨烯的发展历程 (二)石墨烯性质

石墨烯的出现,有望在构造材料、电子器件功能性材料等诸多领域引发材料革命。由于其具有许多特殊性质,有日本的研究人员惊呼石墨烯是“神仙创造” 的材料。许多学者称石墨烯为“改变21世纪的材料”,并预测“21世纪将是碳(C)的时代”。 相比于现有材料,石墨烯拥有众多“史上最强”性能。 超强导电性:由于石墨烯拥有完美的“二维”平面晶格结构,因此电子在晶格中移动时,不会因为晶格缺陷或引入外来原子而发生散射。另外,由于石墨烯中碳原子之间作用力很强,使得运动中的电子受到的干扰极小,即使在周围碳原子发生碰撞时也是如此,因此电子具有非常快的运动速度(能够达到光速1/300),远远超过了电子在其他金属导体或半导体中的运动速度,正因如此,石墨烯拥有超强的导电性能。 超高强度:石墨烯的硬度高于金刚石,是目前为止人类已知的硬度最高的物质。由于高的硬度,石墨烯拥有很高的强度,其强度比世界上最好的钢铁还要高上100倍。而同时它又拥有很好的韧性,且可以弯曲。 导热性能:石墨烯的导热性能优于碳纳米管。普通碳纳米管的导热系数可3500w/m·k,各种金属中导热系数相对较高的有银、金、铜、铝。而单层石墨烯的导热系数可达5300w/m·k。优异的导热性能使得石墨烯有望作为未来超大规模纳米集成电路的散热材料。 超大比表面积:由于单层石墨烯只有一个碳原子厚(0.335nm),所以石墨烯拥有超大的比表面积。在理想情况下,单层石墨烯的比表面积能够达2630m2/g,而目前普通的活性炭的比表面积为1500 m2/g,石墨烯这种比表面积超大的特性使它在储能领域的应用潜力巨大。 图3 石墨烯史上最强性能 除此之外,石墨烯还有众多“独特”的特点: 图4 石墨烯独特性质

2021石墨烯行业研究分析报告

2021年石墨烯行业研究 分析报告

目录 1.石墨烯行业现状 (4) 1.1石墨烯行业定义及产业链分析 (4) 1.2石墨烯市场规模分析 (5) 2.石墨烯行业前景趋势 (6) 2.1石墨烯的应用领域十分广泛 (6) 2.2行业进入快速发展期 (6) 2.3产业集群逐步扩大 (7) 2.4用户体验提升成为趋势 (8) 2.5行业协同整合成为趋势 (8) 3.石墨烯行业存在的问题 (8) 3.1技术问题 (8) 3.2市场问题 (9) 3.3成本问题 (9) 3.4关键技术有待突破 (9) 3.5应用市场有待拓展 (10) 3.6标准体系有待完善 (10) 3.7产业结构调整进展缓慢 (11) 3.8供给不足,产业化程度较低 (11) 4.石墨烯行业政策环境分析 (13) 4.1石墨烯行业政策环境分析 (13)

4.2石墨烯行业经济环境分析 (13) 4.3石墨烯行业社会环境分析 (13) 4.4石墨烯行业技术环境分析 (14) 5.石墨烯行业竞争分析 (15) 5.1石墨烯行业竞争分析 (15) 5.1.1对上游议价能力分析 (15) 5.1.2对下游议价能力分析 (15) 5.1.3潜在进入者分析 (16) 5.1.4替代品或替代服务分析 (16) 5.2中国石墨烯行业品牌竞争格局分析 (17) 5.3中国石墨烯行业竞争强度分析 (17) 6.石墨烯产业投资分析 (18) 6.1中国石墨烯技术投资趋势分析 (18) 6.2中国石墨烯行业投资风险 (18) 6.3中国石墨烯行业投资收益 (19)

1.石墨烯行业现状 1.1石墨烯行业定义及产业链分析 石墨烯行业是指从事石墨烯相关性质的生产、服务的单位或个体的组织结构体系的总称。深刻认知石墨烯行业定义,对预测并引导石墨烯行业前景,指导行业投资方向至关重要。石墨烯具有非常好的导热性、电导性、透光性,而且具有高强度、超轻薄、超大比表面积等特性,广泛应用于锂离子电池电极材料、太阳能电池电极材料、薄膜晶体管制备、传感器、半导体器件、复合材料制备、透明显示触摸屏、透明电极等方面。并且在政策的扶持鼓励下,我国石墨烯产业近年迎来大发展,被业界普遍看好其发展,国内企业也越来越重视对石墨烯的研究和投资。 我国石墨烯行业在经过短暂的结构调整后,淘汰掉落后产能、筛选掉不合格企业,并且随着居民消费观念的转变和消费需求的

中国石墨烯行业发展报告

2016年中国石墨烯行业发展报告 前言 2016年以来,石墨烯概念股如东旭光电、华丽家族、方大炭素、中泰化学等备受资本追捧。国内外各大锂电企业有关石墨烯项目布局,有的选择石墨烯导电剂技术研发,有的走向石墨烯复合正负极材料之路。这其中,不乏号称已经生产出“石墨烯电池”的锂电企业。石墨烯火热的背后,具体应用领域潜力如何?都有哪些助推的洪荒之力? 一、国家政策鼓励支持石墨烯产业发展 近年来,国家出台多项政策,鼓励支持石墨烯产业发展。国家各部委不断出台指导意见和规划文件,明确了对石墨烯材料的支持与发展要求。 二、石墨烯的技术研究进入快速发展轨道 从石墨烯相关专利申请趋势看,其相关专利的申请在上个世纪末就已出现,但随后发展较为缓慢。直到2008年后,专利申请数量才开始出现实质性的大幅增长。特别是在安德烈·K·海姆教授和科斯佳·诺沃谢洛夫研究员因对石墨烯的研究共同获得2010年诺贝尔物理学奖以后,全球石墨烯专利申请数量开始急剧增长,其中,2014年全球石墨烯相关专利的申请数量就高达5047件,表明石墨烯的相关技术研究进入快速发展轨道。 根据石墨烯相关专利历年的申请情况,结合每年专利发明人数量,2008年以前为石墨烯研发技术的萌芽阶段,2008年至2015年为技术的成长阶段,而2015年之后石墨烯研发生产及应用技术开始趋向于成熟,即成熟阶段初期,这个阶段石墨烯开始逐步小规模生产,但是,其生产及应用技术仍有待于进一步突破。 三、石墨烯应用需求多样化,引领多领域划时代的变革 石墨烯是由碳原子组成的六角型呈蜂巢晶格材料,单层石墨烯薄膜只有一个碳原子厚度,是目前已知的最薄的一种新材料,具有极高的比表面积、超强的导电性和强度以及透明度等优点。石墨烯同时具备透光性好、导热系数高、电子迁移率高、电阻率低、机械强度高等众多普通材料所不具备的性能,未来有望在电子、储能、催化剂、传感器、光电透明薄膜、超强复合材料以及生物医疗等众多领域应用,可以说是未来最有前景的先进材料之一,引领多领域划时代的变革。 《中国制造2025》提出:明确要求高度关注颠覆性新材料对传统材料的影响,做好超导材料、纳米材料、石墨烯、生物基材料等战略前沿材料提前布局和研制,加快基础材料升级换代。《<中国制造2025>重点领域技术路线图(2015年版)》中称,石墨烯产业“2020年形成百亿产业规模,2025年整体产业规模突破千亿”的发展目标。 1、导电油墨:石墨烯导电油墨具备成本优势

石墨烯项目可行性研究报告

石墨烯项目可行性研究报告 核心提示:石墨烯项目投资环境分析,石墨烯项目背景和发展概况,石墨烯项目建设的必要性,石墨烯行业竞争格局分析,石墨烯行业财务指标分析参考,石墨烯行业市场分析与建设规模,石墨烯项目建设条件与选址方案,石墨烯项目不确定性及风险分析,石墨烯行业发展趋势分析. 【关键词】:石墨烯项目投资可行性研究报告 【收费标准】:根据项目复杂程度等方面进行核定,请致电详细沟通 【服务流程】:初步洽谈—-签订协议—-多方面地深入沟通-—编制执行—-提交初稿—-讨论修改—-排版印刷—-交付客户 【完成时间】:3-5个工作日 【报告格式】:WORD版+PDF格式+精美装订印刷版 【交付方式】:Email发送、EMS快递 【报告说明】 可行性研究报告,简称可研,是在制订生产、基建、科研计划的前期,通过全面的调查研究,分析论证某个建设或改造工程、某种科学研究、某项商务活动切实可行而提出的一种书面材料。 项目可行性研究报告主要是通过对项目的主要内容和配套条件,如市场需求、资源供应、建设规模、工艺路线、设备选型、环境影响、资金筹措、盈利能力等,从技术、经济、工程等方面进行调查研究和分析比较,并对项目建成以后可能取得的财务、经济效益及社会影响进行预测,从而提出该项目是否值得投资和如何进行建设的咨询意见,为项目决策提供依据的一种综合性的分析方法。

可行性研究具有预见性、公正性、可靠性、科学性的特点。 可行性研究报告是确定建设项目前具有决定性意义的工作,是在投资决策之前,对拟建项目进行全面技术经济分析论证的科学方法,在投资管理中,可行性研究是指对拟建项目有关的自然、社会、经济、技术等进行调研、分析比较以及预测建成后的社会经济效益。 可行性研究报告大纲(具体可根据客户要求进行调整) 第一章项目总论 第一节石墨烯项目背景 一、石墨烯项目基本信息 二、承办单位概况 三、本可行性研究报告编制依据 四、石墨烯项目提出的理由与过程 第二节石墨烯项目概况 一、建设规模与目标 二、主要建设条件 三、石墨烯项目投入总资金及效益情况 四、主要技术经济指标 第三节问题与建议 一、石墨烯项目资金来源问题 二、石墨烯项目工艺技术获取问题 三、石墨烯项目上报问题 第二章石墨烯项目所在市场发展前景预测 第一节石墨烯项目产品发展背景 一、石墨烯产品市场分析 二、石墨烯产品的相关政策 三、石墨烯产品的技术背景 第二节石墨烯产品的市场分析 一、石墨烯行业的成长性分析 二、石墨烯产品的整体优势 三、石墨烯产品成本竞争优势 四、石墨烯行业主要生产企业 第三节石墨烯产品市场预测 一、石墨烯行业的成长性预测分析 二、石墨烯行业竞争趋势 三、石墨烯行业技术发展趋势 第四节市场竞争力分析 一、产品市场竞争优劣势 二、营销策略

2014年石墨烯行业分析报告

2014年石墨烯行业分 析报告 2014年4月

目录 一、石墨烯:近乎完美的材料 (4) 1、初识石墨烯 (4) 2、无与伦比的优点 (5) 3、石墨烯将在未来各个领域大放异彩 (6) 4、各国积极布局石墨烯研究 (8) 二、石墨烯的产业化应用前景 (10) 1、电子材料领域 (11) (1)透明导电材料:实现柔性电极、可穿戴设备、高效太阳能电池等技术的关键 (11) (2)电极材料 (15) ①锂电池负极材料:助力提升其整体续航力 (15) ②超级电容器负极材料:良好的功率特性和超快充放电速度 (17) (3)芯片材料:硅的替代者 (20) 2、散热材料领域 (24) 3、环保监测领域 (26) 4、生物医学领域 (28) 三、CVD法是最具产业化条件的石墨烯制备路径 (31) 1、机械剥离法 (32) 2、化学气相沉积法(CVD法) (32) 3、外延生长法 (33) 4、氧化还原法 (33) 四、石墨烯国内外企业产业化进展 (34) 1、国外产业化进展 (34) (1)IBM (34) (2)三星 (34) (3)东芝 (35) (4)诺基亚 (36)

2、国内产业化进展 (37) (1)国内首片15英寸单层石墨烯在渝问世 (37) (2)中国首个纯石墨烯粉末产品发布 (38) (3)全球首条石墨烯生产线项目在宁波投产 (38) 五、石墨烯相关企业简况 (39) 1、金路集团 (39) 2、力合股份 (40) 3、烯碳新材 (40) 4、中国宝安 (41) 5、华丽家族 (41) 6、乐通股份 (42) 7、中钢吉炭 (42) 8、中泰化学 (42) 六、主要风险 (42) 1、石墨烯材料产业化进程不达预期风险 (42) 2、相关上市公司研究成果不达预期风险 (42)

石墨烯纤维研究报告解答

石墨烯调研报告(石墨烯纤维) 碳纤维因其质量轻、机械强度大及性能稳定的特点在生活中被广泛使用。但仍存在成本高,脆性高等缺点。石墨烯是一种由碳原子构成的单层蜂窝状结构的新材料,是其他维度碳材料的构造基础。石墨烯具有很多独特的性质,如高电子迁移率、高导热系数、良好的弹性和刚度等。因此,将石墨烯组装为宏观的功能结构如纤维等,是实现石墨烯实际应用的重要途径。 近年来成功合成石墨烯纤维的例子及其在某些特殊应用上发挥的重要作用激发了人们的研究兴趣。一维石墨烯纤维不仅是对二维薄膜和三维石墨烯块的补充,而且对纺织功能材料和器件的发展具有十分重要的作用。本文中将对石墨烯纤维的研究现状和发展进行综述和展望。主要讨论石墨烯纤维的可控制备、功能性修饰及其在非传统器件(如柔性纤维状驱动器、机器人、马达、光伏电池和超级电容器)等方面的应用。 石墨烯纤维的制备 1.1液晶相湿法纺丝法 研究发现,可溶性氧化石墨烯片可以形成液晶相,呈现片状排列或螺旋结构,这使制备宏观石墨烯纤维成为可能。这种液晶结构能够使氧化石墨烯在足够高的浓度下分散,适合高效凝结成型。高成明等用注射器将石墨烯分散液注射到质量分数为5%的氢氧化钠/甲醇溶液中,制成了均匀的氧化石墨烯纤维。然后,采用氢碘酸化学还原的方法得到了石墨烯纤维。尽管该方法制得的纤维强度有待提升,但这种湿法纺丝法具有大规模生产石墨烯纤维的潜能。于虹等随后证明可以用氧化石墨烯悬浮液做为原料,流体纺丝后经化学还原制备石墨烯纤维,并提出了卷曲-折叠构造氧化石墨烯纤维的机理。该湿法纺丝技术促进了石墨烯与其他有机、无机材料复合纤维的多功能化发展。 湿法纺丝制得的氧化石墨烯纤维拉伸强度相对较低,这与纤维轴向的氧化石墨烯层的内部排列有关。为了解决这一问题,Tour研究组用大片氧化石墨烯(平均直径22μm)做为湿法纺丝的原料合成纤维。结果表明,这样制得的纤维拉伸模量比之前的方法高出一个数量级,纤维具有100%的高打结率。 通过改进湿法纺丝过程,Qu研究组发明了一种“双毛细管同轴纺丝法”,该方法能够连续生产形貌可控的中空石墨烯纤维。图1展示了实验装置及制备过

石墨烯行业深度报告

石墨烯行业深度报告:石墨烯研发现状与产业化趋势 1、石墨烯:一种神奇的材料 石墨烯是一种平面单层紧密打包成一个二维蜂窝晶格的碳原子,并且是所有其他维度的石墨材料的基本构建模块,其具有最薄、最大比表面积、最硬、最抗拉等诸多史上最强性质和高性能传感器功能、类似催化剂功能等独特性质。目前主要有4种制备石墨烯的方法:微机械剥离法、气相沉积法、外延生长法、氧化石墨还原法。 2、目前,质量较高的工业级石墨烯尚不能量产 3、应用领域广泛 由于其独特的物理化学性质,石墨烯在多个领域具备应用价值。其在半导体、光伏、锂电池、航天、军工、显示器等传统行业和新兴行业的应用都将带来革命性进步。 4、石墨烯基础科研如火如荼 2010年之后,全球关于石墨烯的基础科研工作开展得如火如荼。目前处在研究最前沿的国家为中国、韩国、美国,主要机构为科研院所和企业。从研究领域分布看,国际上石墨烯研究热点主要在材料的导电性、导热性、石墨烯的制备研究、纳米材料研究等。 5、产业化路途漫长 由于技术障碍等因素的存在,石墨烯真正实现产业化还有很长的路要走。但是,包括中国在内的多个政府组织和科研机构仍在为实现石墨烯产业化应用持续投入,并在多领域加速布局。 6、上市公司石墨烯研究动态 我国一些上市公司已开始涉足石墨烯领域。我们根据公告进行了梳理,相关公司包括金路集团、中国宝安、烯碳新材、力合股份、中泰化学、华丽家族、乐通股份、悦达投资、康得新、方大碳素等。 7、风险提示 1、生产技术仍未突破; 2、下游大规模应用尚需时日; 3、石墨烯生产和应用成本仍然较高。 一、石墨烯定义、性质 (一)石墨烯定义

“中国石墨烯产业技术创新战略联盟”发布的1号标准文件中,对石墨烯的定义如下:石墨烯是一种二维碳材料,是单层石墨烯、双层石墨烯、和少层石墨烯的统称。 单层石墨烯是指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。 双层石墨烯是指由两层以苯环结构周期性紧密堆积的碳原子层以不同堆垛方式(包括AB堆垛,AA堆垛,AA’堆垛等)堆垛构成的一种二维碳材料。 少层石墨烯是指由3-10层以苯环结构周期性紧密堆积的碳原子层以不同堆垛方式(包括ABC堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。 石墨烯发展历史。石墨烯作为当下最热门的新材料之一,其经历了如下的发展历程:

氧化石墨烯研究报告

石墨烯调研报告(氧化石墨烯应用) 石墨烯是目前发现的唯一存在的二维自由态原子晶体,是构筑零维富勒烯、一维碳纳米管、三维石墨的基本结构单元。它具有高电导、高热导、高硬度和高强度等奇特的物理、化学性质,在电子、信息、能源、材料和生物医药领域有广阔的应用前景。但是石墨烯由于强大的范德华力具有疏水性和易团聚的特点,限制了其广泛应用。氧化石墨烯的出现正好解决了上述问题,它是石墨烯的派生物,与石墨烯的结构大体相同.只是在一层碳原子构成的二维空间无限延伸的基面上连接有大量含氧基团,平面上含有-OH和C-O-C,而在其片层边缘含有C=O和COOH。与石墨烯相比,氧化石墨烯有更加优异的性能,其不仅具有良好的润湿性能和表面活性,而且能被小分子或者聚合物插层后剥离,在改善材料的热学、电学、力学等综合性能方面发挥着非常重要的作用。有不少专家学者对氧化石墨烯的制备及应用进行了深入研究,其中氧化石墨烯复合材料的发展十分迅速,进一步拓展了氧化石墨烯的应用领域。 1 氧化石墨烯的制备 目前,氧化石墨烯的制备工艺相对成熟,比较传统的化学方法主要有Brodie 法、Staudenmaier法、Hummers法,现今仍在沿用,只是在各方法基础上做了略微改进。这些方法的制备原理都是将石墨在强酸和少量强氧化剂的共同作用下形成1阶的石墨层间化合物,然后此层间化合物在过量强氧化剂的作用下继续发生深度液相氧化反应,水解后得到氧化石墨,最后通过超声或者长时间搅拌氧化石墨和水的混合物即可获得氧化石墨烯,产物的氧化程度及合成T艺与反应时间有关,可以通过C、O的原子比进行衡量。Brodie法和Staudenmaier法氧化程度高,但反应过程中会产生ClO2、NO2或者N2O4等有害气体且反应时间长,而Hummers法反应时间短,无有毒气体ClO2产生,安全性较高,因而成为制备氧化石墨烯普遍使用的方法。但是此反应过程中需控制的工艺因素较多,过量的高锰酸离子会造成潜在的污染,因而需要用H2O2进行处理,并加以水洗和透析。 近年来,也有不少学者在探索更好的制备方法。Matsuoy采用电化学方法将石墨在强酸中,以Hg/Hg2SO4为电极电解氧化后投入水中,干燥后得到氧化石墨烯。Daniela C.Marcano等以KMnO4和9 :1(体积比)的H2SO4/H3PO4为氧化剂,采用不加入NaNO3的方法也制备出氧化石墨烯,该方法提高了氧化过程

2019年石墨烯行业深度研究报告

2019年石墨烯行业深度研究报告

目录 1.石墨烯 (4) 1.1 石墨烯简介 (4) 1.2 石墨烯特性 (4) 2. 石墨烯研究现状 (5) 2.1 石墨烯全球研究现状 (5) 2.2 国内石墨烯研究近况 (6) 3. 石墨烯产业化 (7) 3.1 石墨烯的制备 (7) 3.2 石墨烯上游-石墨 (8) 3.3 石墨烯产业化 (9) 4. 石墨烯粉体下游应用 (10) 4.1 石墨烯超级电容器 (10) 4.1.1 石墨烯超级电容器介绍 (10) 4.1.2 下游稳步增长带动石墨烯超级电容器市场发展 (11) 4.2 石墨烯复合材料种类多样,市场空间广阔 (13) 4.2.1 防腐涂料 (13) 4.2.2 导电油墨 (13) 4.2.3 散热涂料 (14) 4.3 石墨烯锂电池 (14) 4.3.1 石墨烯在负极材料中的应用 (14) 4.3.2 石墨烯在正极材料中的应用 (15) 4.3.3 石墨烯作为导电剂 (15) 5. 石墨烯薄膜下游应用 (15) 5.1 柔性屏 (15) 5.2 传感器 (17) 6. 标的公司介绍 (17) 6.1 宝泰隆(601011.SH) (17) 6.2 东旭光电(000413.SZ) (18) 6.3 中泰化学(002092.SZ) (18) 6.4 方大炭素(600516.SH) (18) 6.5 第六元素(831190.OC) (18) 表格目录 表1:石墨烯的优异性能总结 (4)

表2:世界各国主要石墨烯政策汇总 (5) 表3:石墨烯技术专利最早优先国家 (6) 表4:石墨烯技术专利最早优先国家 (7) 表5:石墨烯制备方法对比 (8) 表6:各公司石墨烯产能对比 (9) 表7:超级电容器各种电极材料性能比较 (10) 表8:不同电容器之间的性能对比 (11) 表9:超级电容器细分产品规模及预测 (12) 表10:石墨烯超级电容器市场规模预测 (13) 表11:锂电池负极材料对比 (14) 表12:石墨烯导电剂与传统导电剂比较 (15) 表13:不同透明导电膜对比 (16) 插图目录 图1:全球石墨烯专利申请数量 (5) 图2:石墨烯专利技术生命周期图 (5) 图3:石墨烯相关文献数量 (6) 图4:全球天然石墨探明可开采储量占比 (8) 图5:中国天然石墨产量 (8) 图6:石墨烯市场规模预测(亿元) (9) 图7:石墨烯产业链全景图 (10) 图8:全球超级电容器市场规模(亿美元) (12) 图9:中国超级电容器市场规模及预测(亿元) (12) 图10:中国新能源汽车产量 (12) 图11:中国涂料产量 (13) 图12:重防腐涂料产量规模 (13) 图13:全球柔性显示市场规模预测(十亿美元) (16) 图14:中国石墨烯薄膜市场规模预测(亿元) (16) 图15:中国可穿戴设备市场规模预测(亿元) (16)

相关文档
最新文档