生物化学讲义(3)

生物化学讲义(3)
生物化学讲义(3)

第三章核酸(6学时)

核酸是生命最重要的分子,最简单的生命仅含有核酸(病毒)。1868年首次在绷带上的脓细胞核中发现一种富含磷酸呈酸性又不溶于酸溶液的分子,命名为核素,其实是核蛋白,1898年从小牛的胸腺中提取了一种溶于碱性溶液中的纯净物,这才是真正的核酸,从此,对核酸的研究全面展开,揭开了生物化学领域惊天动地的一页。1944年Avery等所完成的著名肺炎双球菌转化试验,证明了DNA是遗传物质,而不是蛋白质。1953年Watson-Crick提出DNA的双螺旋结构模型,从分子结构上阐明了DNA的遗传功能。

核酸(nucleic acid)是重要的生物大分子,它的构件分子是核苷酸(nucleotide),天然存在的核酸可分为脱氧核糖核酸(deoxyribonucleic acid,DNA)和核糖核酸(ribonucleic acid,RNA)两类。DNA贮存细胞所有的遗传信息,是物种保持进化和世代繁衍的物质基础。RNA中参与蛋白质合成的有三类:转移RNA(transfer RNA,tRNA),核糖体RNA(ribosomal RNA,rRNA)和信使RNA(messenger RNA,mRNA)。20世纪末,发现许多新的具有特殊功能的RNA,几乎涉及细胞功能的各个方面。

第一节碱基、核苷和核苷酸

一、核酸的种类、分布和化学组成

核酸分为两大类:脱氧核糖核酸(DNA)、核糖核酸(RNA)。

98%核中(染色体中)

真核mDNA)

核外

叶绿(ctDNA)

DNA 拟核

原核

核外:质粒(plasmid)

病毒:DNA病毒

RNA主要存在于细胞质中。

信使RNA --mRNA

核糖体RNA--rRNA

转移RNA--tRNA

核酸的化学组成:对核酸的水解发现

(脱氧)核酸—--→(脱氧)核苷酸—------→P+(脱氧)核苷----→戊糖+碱基

由上面可知,核酸的结构单位是(脱氧)核苷酸,核苷酸由戊糖、磷酸和含氮碱三部分构成。

核酸分类的依据:戊糖的差异。另外碱基亦不同。

列表比较脱氧核糖核酸DNA和核糖核酸RNA的基本化学组成:

二、核苷酸组成元素

主要元素组成:C、H、O、N、P(9~11%);与蛋白质比较,核酸一般不含S,而P的含量较为稳定

占9-11%;通过测定P 的含量来推算核酸的含量(定磷法)。

三、核酸基本组成单位:核苷酸

(一)含氮碱基(base):构成核苷酸中的碱基是含氮杂环化合物,有嘧啶(pyrimidine)和嘌呤(purine)两类。核酸中嘌呤碱主要是腺嘌呤和鸟嘌呤,嘧啶碱主要是胞嘧啶、胸腺嘧啶和尿嘧啶。DNA和RNA中均含有腺嘌呤、鸟嘌呤和胞嘧啶,而尿嘧啶主要存在于RNA中,胸腺嘧啶主要存在于DNA中。

在DNA和RNA中,尤其是tRNA中还有一些含量甚少的碱基,称为稀有碱基(rare bases)稀有碱基种类很多,大多数是甲基化碱基。tRNA中含稀有碱基高达10%。

1).嘌呤碱基:嘌呤(Pu)的结构及编号

A(腺嘌呤)的结构、G(鸟嘌呤)的结构2).嘧啶(Py)碱基:嘧啶(Py

C(胞嘧啶)、T(胸腺嘧啶)、U(尿嘧啶):以上各具体碱基的结构必须掌握要结合记忆。(二)戊糖pentose

核酸中有两种戊糖

DNA中为D-2-脱氧核糖(D-2-deoxyribose),RNA中则为D-核糖(D-ribose)。在核苷酸中,为了与碱基中的碳原子编号相区别核糖或脱氧核糖中碳原子标以C-1’,C-2’等。脱氧核糖与核糖两者的差别只在于脱氧核糖中与2’位碳原子连结的不是羟基而是氢,这一差别使DNA在化学上比RNA 稳定得多。

(三)磷酸phosphate

(四)核苷(碱基与戊糖结合物nucleoside )

核苷是戊糖与碱基之间以糖苷键(glycosidic bond)相连接而成的糖苷。戊糖中C-1’与嘧啶碱的N-1或者与嘌吟碱的N9相连接,戊糖与碱基间的连接键是C-N糖苷键,一般称为N-糖苷键。

C-N糖苷键:嘧啶的N1位和嘌呤的N9位与戊糖的C1'原子共价相连。

RNA中含有稀有碱基,并且还存在异构化的核苷。如在tRNA和rRNA中含有少量假尿嘧啶核苷(用ψ表示),在它的结构中戊糖的C-1不是与尿嘧啶的N-1相连接,而是与尿嘧啶C-5相连接。

(五)核苷酸(核苷与磷酸结合nucleotide)

核苷与磷酸形成的酯。磷酸出羧基,戊糖出羟基。

1.戊糖有2’、3’、5’位自由-OH,因此可以形成2’、3’、5’-核苷酸,其中5’-核苷酸为默认的核

苷酸。

2.磷酸的个数可以有1、2、3,这是指TP、DP、MP与核苷形成的酯。表示为NMP、NDP、NTP,脱氧时加“d”,如ATP、dATP。

3.可以形成环状的核苷酸:一个磷酸以二个羧基与戊糖上的两个-OH形成酯,称为磷酸二酯键,这种键可以处在3’、5’之间(默认的环核苷酸),也可以处在2’、3’之间,没有处在2’、5’之间的。表示为c,如cAMP环腺苷酸,dcAMP。

所以遇到核苷酸时要注意是否脱氧,有几个磷酸,是否成环。

核苷酸在体内除构成核酸外,尚有一些游离核苷酸参与物质代谢、能量代谢与代谢调节,如三磷酸腺苷(A TP)是体内重要能量载体;三磷酸尿苷参与糖原的合成;三磷酸胞苷参与磷脂的合成;环腺苷酸(cAMP)和环鸟苷酸(cGMP)作为第二信使,在信号传递过程中起重要作用;核苷酸还参与某些生物活性物质的组成:如尼克酰胺腺嘌呤二核苷酸(NAD+),尼克酰胺腺嘌呤二核苷酸磷酸(NADP+)和黄素腺嘌呤二核苷酸(FAD)。

第二节磷酸二酯键与多核苷酸

一、核苷酸的连接方式

核苷酸之间是通过一个核苷酸的3'-OH 与另一分子核苷酸的5'-磷酸基形成3',5'-磷酸二酯键相连。二、多聚核苷酸

多聚核苷酸是通过核苷酸的5’-磷酸基与另一分子核苷酸的C3’-OH形成磷酸二酯键相连而成的链状聚合物。

由脱氧核糖核苷酸聚合而成的称为DNA链;

由核糖核苷酸聚合而成的则称为RNA链。

多聚核苷酸的特点:

1.核苷酸之间的连接键:3′—5′磷酸二酯键。

2.两个末端:5′-磷酸端(常用5’-P表示);3′-羟基端(常用3’-OH表示)

3.多聚核苷酸链的方向:5′→3′。

三、核酸的水解

碱基与戊糖形成N-糖苷键和磷酸之间形成的3',5'-磷酸二酯键都可以被水解。

(一)核酸的酸水解

糖苷键和磷酸酯键都能被酸水解。嘌呤碱的糖苷键比嘧啶碱的糖苷键对酸不稳定。水解嘧啶糖苷键,常需要较高的温度。

DNA 无嘌呤的DNA分子(pH4)

DNA(RNA)→碱基+戊糖+磷酸(强酸高温)

(二)核酸的碱水解

RNA易被碱水解,产生核苷酸;RNA→2'-核苷酸+ 3'-核苷酸。

DNA对碱稳定,但在l mol/L NaOH中加热100℃4 h,可得到小分子寡聚脱氧核苷酸。

DNA →DNA变性(但不被水解)

RNA的磷酸酯键易被碱水解(在RNA水解时,2′-OH首先进攻磷酸基,在断开磷酯键的同时形成环状磷酸二酯,再在碱的作用形成水解产物)。DNA的磷酸酯键不易被碱水解。

(三)核酸的酶水解

磷酸二酯酶:非特异性水解磷酸二酯键的酶。

核酸酶:专一水解核酸的磷酸二酯酶称为核酸酶。

限制性内切酶:能在特定部位限制性地切割DNA分子的核酸内切酶。

第三节碱基的性质

一、碱基的结构特征

碱基都具有芳香环的结构特征。嘌呤环和嘧啶环均呈平面或接近于平面的结构。

碱基的芳香环与环外基团可以发生酮式—烯醇式或胺式—亚胺式互变异构。

二、碱基的紫外吸收特征

由于嘌呤碱和嘧啶碱具有共轭双键体系,一般在260nm左右有最大吸收峰。

第四节核酸的结构

一、核酸的一级结构

核酸是由核苷酸聚合而成的生物大分子。组成DNA的脱氧核糖核苷酸主要是dAMP、dGMP、dCMP 和dTMP,组成RNA的核糖核苷酸主要是AMP、GMP、CMP和UMP。核酸中的核苷酸以3’,5’磷酸二酯键构成无分支结构的线性分子。核酸链具有方向性,有两个末端分别是5’末端与3’末端。5’末端含磷酸基团,3’末端含羟基。核酸链内的前一个核苷酸的3’羟基和下一个核苷酸的5’磷酸形成3’,5’磷酸二酯键,故核酸中的核苷酸被称为核苷酸残基。通常将小于50个核苷酸残基组成的核酸称为寡核苷酸(oligonucleotide),大于50个核苷酸残基称为多核苷酸(polynucleotide)。

DNA一级结构的研究方法

DNA测序的实验方法(20世纪70年代三大进展促进了DNA的测序工作——限制性核酸内切酶的发现;改进多核苷酸片段的电泳分离法;DNA的克隆技术):酶法和化学法(Sanger和Gilbert法)

二、DNA高级结构(空间结构)

(一)DNA储存遗传信息的证据

1. 1944年O.T.Avery等人通过实验证明DNA是一个携带遗传信息的分子;

美国细菌学家埃弗里等(1944) 用肺炎双球菌转化实验首次证实了DNA是遗传物质,被誉为“现代DNA 研究历史平台”的构建者。

2. 1952年,A.Hershy和M.Chase通过噬菌体感染实验也证实DNA是遗传物质。

1952年,美国学者赫尔希(A·D·Hershey)和蔡斯(Chase) 分别用32P和35S标记噬菌体的DNA的磷酸基团和蛋白质衣壳的含硫氨基酸,然后感染大肠杆菌,证明DNA提供了遗传信息完成了病毒的复制。

用35S标记噬菌体的蛋白质外壳,使标记的噬菌体感染大肠杆菌,经短期保温后,噬菌体就附着在细菌上。然后用搅拌器(10000转/分)搅拌几分钟,使噬菌体与大肠杆菌分开,再用高速离心机使细菌沉淀,分析沉淀和上清中的放射性;用32P标记噬菌体DNA ,进行同样的验证实验。

结果:子代噬菌体外壳蛋白质没有35S标记;子代噬菌体DNA有32P标记;

(二)DNA的碱基组成是有规律的

DNA的碱基组成具有种属的特异性;碱基组成没有组织和器官的特异性;碱基定量关系:不管种属如何不同,但在所有的DNA中,A=T,G=C。从这些关系中可以得出,A+G=T+C。

(三)DNA二级结构

提出的DNA双螺旋模型的依据:目前公认的DNA双螺旋结构模型的建立,主要有两方面的根据:

一是对各种DNA碱基组成的定量分析;二是对DNA纤维进行X光衍射结构分析。

对各种DNA碱基组成的定量分析(Chargaff规则):

嘌呤与嘧啶的摩尔数相等:A=T;G=C;A+G=C+T;DNA的碱基组成具有种的特异性;DNA的碱基组成没有组织的特异性;年龄、营养状态、环境的改变不影响DNA的碱基组成。

对DNA纤维进行X光衍射结构分析:由Franklin和Wilkins提供,来源不同的DNA的二级结构非常相似。前者早逝,后者与Watson、Creck分享了诺贝尔奖。

1953年由Wilkins研究小组的Rosalind Franklin获得了高质量的X线衍射照片,发现了DNA晶体的X 线衍射图谱中存在两种周期性反射,并证明DNA是一种螺旋构象。

Watson-Creck的DNA二级结构模型(B-DNA,线状DNA):美国Watson、英国Creck在1953/5的《Nature》上合作了一篇文章,第一次科学的提出了DNA二级结构模型。

1.双螺旋模型要点

①DNA分子是由两条反向平行的多核苷酸链围绕同一中心轴缠绕形成的右手双螺旋结构。②由脱氧核糖和磷酸间隔相连而成的亲水骨架在螺旋分子的外侧,而疏水的碱基对则在螺旋分子内部,碱基平面与螺旋轴垂直。③螺旋旋转一周正好为10个碱基对,螺距为3.4nm,这样相邻碱基平面间隔为0.34nm并有一个36?的夹角,直径为2 nm。④两条DNA链依靠彼此碱基之间形成的氢键而结合在一起。根据碱基

结构特征,只能形成嘌呤与嘧啶配对,即A与T相配对,形成2个氢键;G与C相配对,形成3个氢键。

⑤DNA双螺旋的表面存在一个大沟(major groove)和一个小沟(minor groove),彼此相间排列。小沟较浅;大沟较深,是蛋白质识别DNA碱基序列的基础。

2.DNA双螺旋的稳定因素

氢键:横向靠两条链间的互补碱基的氢键维持

碱基堆积力:纵向靠邻近碱基对之间的疏水的相互作用和范德华力构成碱基堆积力(主要作用力)。

离子键:介质中的阳离子(如Na+、K+和Mg2+)与磷酸基团的负电荷形成离子键,降低了DNA链磷酸基之间的静电排斥力

改变介质条件和环境温度,将影响双螺旋的稳定性

3.DNA双螺旋结构提出的生物学意义

该模型揭示了DNA作为遗传物质的稳定性特征,最重要的是确认了碱基配对原则,这是DNA复制、转录和反转录的分子基础,亦是遗传信息传递和表达的分子基础。该模型的提出是本世纪生命科学的重大突破之一,它奠定了生物化学和分子生物学乃至整个生命科学飞速发展的基石。

(四)DNA二级结构的多态性:B型、A型、Z-DNA

在Watson和Crick 的DNA双螺旋模型公布之后,通过对合成的已知序列的寡核苷酸的X-射线晶体衍射图的研究发现,存在着B型、A型和Z型DNA。B-DNA和A-DNA都是右手双螺旋结构,而Z-DNA 是左手双螺旋结构。生理条件下,DNA双螺旋大多以B型形式存在。

<1>A-DNA:B-DNA脱去部分结晶水而形成的,属粗短型DNA,仍为右手双股螺旋,螺距25?,直径26?,11bp/圈,进一步脱水可形成C-DNA。

<2>Z-DNA:左手双股螺旋,人工合成的d(GC)n,属瘦长型,螺距46?,直径18?,12bp/圈,大小沟不明显。用免疫学方法探得人体内有存在,是DNA分子局部的二级结构,意义在于封闭基因表达,使复制和转录的酶找不到大沟。

三、RNA的种类和结构

绝大部分RNA分子都是线状单链,但是RNA分子的某些区域可自身回折进行碱基互补配对,形成局部双螺旋。在RNA局部双螺旋中A与U配对、G与C配对,除此以外,还存在非标准配对,如G与U 配对。RNA分子中的双螺旋与A型DNA双螺旋相似,而非互补区则膨胀形成凸出(bulge)或者环(loop),这种短的双螺旋区域和环称为发夹结构(hairpin)(图3-19)。发夹结构是RNA中最普通的二级结构形式,二级结构进一步折叠形成三级结构,RNA只有在具有三级结构时才能成为有活性的分子。RNA也能与蛋白质形成核蛋白复合物,RNA的四级结构是RNA与蛋白质的相互作用。

RNA的种类:

mRNA:信使RNA,是从基因上转录下来去指导蛋白质合成的RNA。

tRNA:转运RNA,在蛋白质合成过程中运输aa。

rRNA:核糖体RNA,是核糖体的组成部分。

它们都是单链分子

(一)RNA的一级结构

1.tRNA的一级结构

tRNA占全部RNA的16%,细胞内tRNA的种类很多,估计有50多种。每一种氨基酸都有与其相对应的一种或几种tRNA。

tRNA一级结构的共同点: (1)由74~95个核苷酸组成。(2)含10~20% 稀有碱基。如DHU、I (3)3′末端为—CCA,5′末端大多pG,少数为pC。(4)分子中约20多个位置上的核苷酸是保守的。2.rRNA的一级结构

rRNA占细胞总RNA的80%左右,rRNA分子为单链,局部有双螺旋区域(图3-22)具有复杂的空间结构,原核生物主要的rRNA有三种,即5S、16S和23S rRNA。真核生物则有4种,即5S、5.8S、18S 和28S rRNA。rRNA分子作为骨架与多种核糖体蛋白(ribosomal protein)装配成核糖体。

所有生物体的核糖体都由大小不同的两个亚基所组成。原核生物核糖体为70S,由50S和30S两个大小亚基组成。30S小亚基含16S的rRNA和21种蛋白质,50S大亚基含23S和5S两种rRNA及34种蛋白质。真核生物核糖体为80S,是由60S和40S两个大小亚基组成。40S的小亚基含18S rRNA及33种蛋白质,60S大亚基则由28S、5.8S和5S 3种rRNA及49种蛋白质组成。

3.mRNA的一级结构

mRNA占细胞总量的3~5%,由特定的DNA区域转录合成。mRNA种类多,但每一种mRNA的数

量少。mRNA的更新速度快。

原核生物中mRNA转录后一般不需加工,直接进行蛋白质翻译。mRNA转录和翻译不仅发生在同一细胞空间,而且这两个过程几乎是同时进行的。真核细胞成熟mRNA是由其前体核内不均一RNA(heterogeneous nuclear RNA,hnRNA)剪接并经修饰后才能进入细胞质中参与蛋白质合成。所以真核细胞mRNA的合成和表达发生在不同的空间和时间。mRNA的结构在原核生物中和真核生物中差别很大。

1. 原核生物mRNA结构特点

原核生物的mRNA结构简单,往往含有几个功能上相关的蛋白质的编码序列,可翻译出几种蛋白质,为多顺反子。在原核生物mRNA中编码序列之间有间隔序列,可能与核糖体的识别和结合有关。在5’端与3’端有与翻译起始和终止有关的非编码序列(图3-21),原核生物mRNA中没有修饰碱基,5’端没有帽子结构,3’端没有多聚腺苷酸的尾巴(polyadenylate tail,polyA尾巴)。原核生物的mRNA的半衰期比真

核生物的要短得多,现在一般认为,转录后1min,mRNA降解就开始。

2. 真核生物mRNA结构特点

真核生物mRNA为单顺反子结构,即一个mRNA分子只包含一条多肽链的信息。在真核生物成熟的mRNA中5’端有m7GpppN的帽子结构(图3-22),帽子结构可保护mRNA不被核酸外切酶水解,并且能与帽结合蛋白结合识别核糖体并与之结合,与翻译起始有关。3’端有polyA尾巴,其长度为20~250个腺苷酸,其功能可能与mRNA的稳定性有关,少数成熟mRNA没有polyA尾巴,如组蛋白mRNA,它们的半衰期通常较短。

真核生物成熟mRNA一级结构特点:(1)大多数真核mRNA的5′末端均在转录后加上一个7-甲基鸟苷,同时第一个核苷酸的C′2也是甲基化,形成帽子结构:m7GpppNm-;(2)大多数真核mRNA的3′末端有一个多聚腺苷酸(polyA)结构,称为多聚A尾;(3)mRNA分子中每3个核苷酸为一组,决定肽链上某一个氨基酸,称三联体密码。

(二)RNA的二级结构

1.tRNA的二级结构——三叶草形

tRNA二级结构为三叶草型。配对碱基形成局部双螺旋而构成臂,不配对的单链部分则形成环。三叶草型结构由4臂4环组成。

氨基酸臂由7对碱基组成,双螺旋区的3’末端为一个4个碱基的单链区-NCCA-OH 3’,腺苷酸残基的羟基可与氨基酸α羧基结合而携带氨基酸。

二氢尿嘧啶环以含有2个稀有碱基二氢尿嘧啶(DHU)而得名,不同tRNA其大小并不恒定,在8-14个碱基之间变动,识别氨酰-tRNA合成酶。二氢尿嘧啶臂一般由3~4对碱基组成。

反密码环由7个碱基组成,大小相对恒定,其中3个核苷酸组成反密码子(anticodon),在蛋白质生物合成时,可与mRNA上相应的密码子配对。反密码臂由5对碱基组成。

额外环在不同tRNA分子中变化较大可在4~21个碱基之间变动,又称为可变环,其大小往往是tRNA 分类的重要指标。

TψC环含有7个碱基,大小相对恒定,几乎所有的tRNA在此环中都含TψC序列,识别核蛋白体(核糖体)上5SrRNA 。TψC臂由5对碱基组成。

(三)RNA的三级结构

二十世纪七十年代初科学家用X线射衍技术分析发现tRNA的三级结构为倒L形(图3-20b)。tRNA 三级结构的特点是氨基酸臂与TψC臂构成L的一横,-CCAOH3’末端就在这一横的端点上,是结合氨基酸的部位,而二氢尿嘧啶臂与反密码臂及反密码环共同构成L的一竖,反密码环在一竖的端点上,能与mRNA上对应的密码子识别,二氢尿嘧啶环与TψC环在L的拐角上。形成三级结构的很多氢键与tRNA

中不变的核苷酸密切有关,这就使得各种tRNA三级结构都呈倒L形的。在tRNA中碱基堆积力是稳定tRNA 构型的主要因素。

第五节核酸的性质

一、核酸的一般性质

1.DNA白色纤维状固体,RNA白色粉末状固体,都微溶于水,不溶于乙醇,因此常用乙醇来沉淀。DNA 溶于苯酚而RNA不溶,故可用苯酚来沉淀RNA。

2.DNA难溶于0.14mol/L的NaCl溶液,可溶于1—2 mol/L的NaCl溶液,RNA则相反,可据此分离二者。

3. DNA、RNA糖的颜色反应区别

核糖:苔黑酚法D-核糖+浓盐酸+苔黑酚→绿色

脱氧核糖:二苯胺法D-2-脱氧核糖+酸+二苯胺→蓝紫色

4.粘度大小:DNA>RNA,粘度由分子长度/直径决定,DNA为线状分子,RNA为线团。

二、两性解离

核酸含酸性的磷酸基团,又含弱碱性的碱基,为两性电解质,可发生两性解离;由于核酸分子中的磷酸是一个中等强度的酸,而碱性(氨基)是一个弱碱,所以核酸的等电点比较低。如DNA的等电点为4~4.5,RNA的等电点为2~2.5。

RNA的等电点比DNA低的原因,是RNA分子中核糖基2′-OH通过氢键促进了磷酸基上质子的解离。DNA没有这种作用。

三、核酸的紫外吸收

DNA和RNA溶液均具有260nm紫外吸收峰,核酸的λm=260nm,碱基展开程度越大,紫外吸收就越厉害。

DNA或RNA的定量:当A=1时,DNA:50ug/ml,RNA和单链DNA:40ug/ml,寡核苷酸:20ug/ml。根据A260/A280的比值判断核酸样品的纯度::

DNA:A260/A280≈1.8 纯品;>1.8 RNA 污染;<1.8 pro 污染。

RNA:A260/A280≈2.0 纯品。

四、核酸的变性、复性与杂交

(一)核酸的变性

1.DNA的变性:在外界因素的影响下,维持DNA双螺旋的碱基堆积力和氢键遭到破坏,使DNA发生解链,物化性质随之改变,生物活性丧失的现象。

引起核酸变性的常见理化因素有加热、酸、碱、尿素和甲酰胺等。在变性过程中,核酸的空间构象被破坏,理化性质发生改变。由于双螺旋分子内部的碱基暴露,其A260值会大大增加。A260值的增加与解链程度

有一定比例关系,这种关系称为增色效应(hyperchromic effect)。

增色效应--核酸变性时,随着变性程度的增加,它的紫外吸收值A260显著增高的现象。

2.变性后的变化:一级结构不变,空间结构解体(双链解体成为两条单链); 生物活性丧失; 分子量不变;增色效应;粘度降低。

3.DNA分子的热变性:如果缓慢加热DNA溶液,并在不同温度测定其A260值,可得到“S”形DNA 解链曲线(melting curve)。从DNA解链曲线可见DNA变性作用是在一个相当窄的温度内完成的。

解链曲线:如果在连续加热DNA的过程中以温度对A260值作图,所得的曲线称为解链曲线。

DNA热变性是在一很窄的温度范围内进行,这个温度范围的中点叫解链温度。用Tm值表示。它表示有50%的DNA分子解链时的温度。

紫外吸收值达到最大值的50%时的温度称为DNA的解链温度,又称熔解温度

当A260值开始上升前DNA是双螺旋结构,在上升区域分子中的部分碱基对开始断裂,其数值随温度的升高而增加,在上部平坦的初始部分尚有少量碱基对使两条链还结合在一起,这种状态一直维持到临界温度,此时DNA分子最后一个碱基对断开,两条互补链彻底分离。通常把加热变性时DNA溶液A260升高达到最大值一半时的温度称为该DNA的熔解温度(melting temperature Tm)。Tm是研究核酸变性很有用的参数。Tm一般在85~95℃之间,Tm值与DNA分子中G C含量成正比。

影响Tm的因素:(1)DNA 的均一性越高,Tm的温度范围越小。(2)G-C含量越高, Tm的值越大,当GC 的含量上升1%,则Tm上升0.4℃。马默多蒂(Marmur-Doty)关系式:Tm = 69.3+0.41(G-C)%,

或GC%=(Tm-69.3)×2.44 。(3)介质的离子强度较高时, Tm的值较大。(4)酸性条件下,核酸容易脱嘌呤,碱性条件下,核酸容易变性,通常加NaOH 降低Tm的值。(5)尿素,甲酰胺等化学试剂可以降低Tm的值,称作变性剂。

(二)DNA的复性

复性:DNA变性后,当温度缓慢下降时,解开的双链可以重新締合形成双螺旋的过程。

当热变性的DNA经缓慢冷却后复性称为退火(annealing)。

变性DNA分子复性形成双螺旋结构时其紫外吸收降低的现象称为减色效应。

DNA复性是非常复杂的过程,影响DNA复性速度的因素很多:(1)DNA大小。DNA片段越大,复性越慢。(2)DNA复杂程度。复杂程度越低,复性越快;(3)DNA浓度。DNA浓度越大,复性越快。(4)离子强度。增加盐浓度,两条互补链重新结合的速度加快。(5)复性温度。比Tm低25℃为DNA复性的最佳条件。一般在60℃左右。离子强度一般在0.4mol/L以上。

(三)核酸分子的杂交

具有互补序列的不同来源的单链核酸分子,按碱基配对原则结合在一起称为杂交(hybridization)。杂

交可发生在DNA-DNA、RNA-RNA和DNA-RNA之间。杂交是分子生物学研究中常用的技术之一,利用它可以分析基因组织的结构,定位和基因表达等,常用的杂交方法有Southern印迹法,Northern印迹法和原位杂交(insitu hybridization)等。

第六节DNA的超螺旋和染色质结构

一、DNA的三级结构--超螺旋

1 、双螺旋DNA分子在二级结构基础上进一步扭曲折叠形成的特定构象。

2 、环形双链DNA分子可以进一步扭曲成超螺旋结构,超螺旋是DNA三级结构的一种类型。超螺旋即DNA双螺旋的螺旋。分为负超螺旋、正超螺旋

细胞中的环状DNA一般呈负超螺旋.

二、DNA 拓扑异构酶

拓扑学:是数学的一个分支,专门研究物体变形后仍然保留下来的结构特征.

DNA的拓扑研究就是研究DNA发生变形后所形成的结构特征.

(一)DNA拓扑异构酶(DNA Topisomerase):DNA的拓扑异构体之间的转变是通过拓扑异构酶实现的。J.Wang 和W.Gellert首先发现了这种酶。

1.拓扑异构酶?:使DNA一条链发生断裂和再连接,作用是松解负超螺旋。主要集中在活性转录区,同转录有关。例:大肠杆菌中的ε蛋白.

2.拓扑异构酶Π:该酶能暂时性地切断和重新连接双链DNA,作用是将负超螺旋引入DNA分子。同复制有关。例:大肠杆菌中的DNA旋转酶.

(二)DNA在真核生物细胞核内的组装

真核生物染色体由DNA和蛋白质构成,其基本单位是核小体。

核小体:由真核细胞的DNA与组蛋白结合成的核蛋白。组蛋白是碱性蛋白,富含Arg 和Lys。分为五类:H1 、H2A、H2B 、H3 、H4。

核小体由H2A 、H2B 、H3 、H4各两分子组成的八聚体和DNA的200个碱基对构成。146bp绕组蛋白八聚体外围盘绕1.75圈构成核小体核心,剩余DNA连接在相邻核小体核心之间,组蛋白H1结合其上,看起来似一串珠子。

《生物化学》实验讲义

实验一 蛋白质及氨基酸的颜色反应 一、目的意义 1、学习几种鉴定氨基酸与蛋白质的一般方法及其原理。 2、学习和了解一些鉴定蛋白质的特殊颜色反应及其原理。 二、实验原理 1、双缩脲反应 当尿素加热到180℃左右时,2分子尿素发生缩合放出1分子氨而形成双缩脲。双缩脲在碱性溶液中与铜离子结合生成复杂的紫红色化合物,这一呈色反应称为双缩脲反应。 蛋白质分子中含有多个与双缩脲相似的键,因此也具有双缩脲的颜色反应。借此可以鉴定蛋白质的存在或测定其含量。应当指出,双缩脲反应并非蛋白质的特异颜色反应,因为凡含有肽键的物质并不都是蛋白质。 2、茚三酮反应 蛋白质与茚三酮共热,产生蓝紫色化合物,此反应为一切蛋白质及α-氨基酸(除脯氨酸 和羟脯氨酸)所共有。含有氨基酸的其他化合物也呈此反应。 该反应十分灵敏,1:浓度的氨基酸水溶液就能呈现反应。因此,此反应广泛用于氨基酸的定量测定。 3、黄色反应 含有苯环侧链的(特别是含酪氨酸)蛋白质溶液与硝酸共热时,呈黄色(硝基化合物),再加碱则变为橙黄色,此反应也称为黄蛋白反应。 OH + HNO 3 HO NO 2 + H 2O HO NO 2 + O N OH OH

三、仪器与试剂 1、试剂 (1) 蛋白质溶液:取10mL鸡蛋清,用蒸馏水稀释至100mL,搅拌均匀后用纱布过滤得上清液。 (2) 0.3%色氨酸溶液、0.3%酪氨酸溶液、0.3%脯氨酸溶液、0.5%甘氨酸溶液、0.5%苯酚溶液。 (3) 0.1%茚三酮-乙醇溶液:称取0.1g茚三酮,溶于100mL 95%乙醇。 (4) 10%NaOH溶液、1%硫酸铜溶液、尿素、浓硝酸。 2、仪器:试管及试管夹、酒精灯。 四、操作方法 1、双缩脲反应 (1) 取一支干燥试管,加入少量尿素,用微火加热使之熔化,待熔化的尿素开始变硬时停止加 热。此时,尿素已缩合为双缩脲并放出氨气(可由气味辨别)。待试管冷却,加入约1mL10%NaOH溶液,振荡使其溶解,再加入1滴1%硫酸铜溶液。混匀后观察出现的粉红色。(2) 另取1支试管,加入1mL蛋白质溶液,再加入2mL 10%NaOH溶液摇匀,然后再加入2 滴1%的硫酸铜溶液。摇匀观察其颜色变化。 (3) 注意事项 加入的硫酸铜不可过量,否则会产生蓝色的氢氧化铜,从而掩盖了双缩脲反应的粉红色。 (4) 记载上述实验过程和结果,并解释现象。 2、茚三酮反应 (1) 取3支试管,分别加入蛋白质溶液、0.3%脯氨酸溶液、0.5%甘氨酸溶液各1mL,再加0.5mL 0.1%茚三酮-乙醇溶液,混匀后在小火上加热煮沸1-2min,放置冷却,观察颜色变化。 (2) 在滤纸的不同部位分别滴上一滴0.3%脯氨酸溶液、0.5%甘氨酸溶液,风干后再在原处滴 一滴0.1%茚三酮-乙醇溶液,在微火旁烘干显色,观察斑点出现及其颜色。 (3) 记载上述实验过程和结果,并解释现象。 3、黄色反应 向6个试管中按下表加试剂,观察现象并记录。

生物化学试题及复习资料

一、名词解释 二、选择题(每题1分,共20分) 1、蛋白质多肽链形成α-螺旋时,主要靠哪种次级键维持() A:疏水键;B:肽键: C:氢键;D:二硫键。 2、在蛋白质三级结构中基团分布为()。A:疏水基团趋于外部,亲水基团趋于内部;B:疏水基团趋于内部,亲水基团趋于外部;C:疏水基团与亲水基团随机分布; D:疏水基团与亲水基团相间分布。 3、双链DNA的Tm较高是由于下列哪组核苷酸含量较高所致() A:A+G;B:C+T: C:A+T;D:G+C。 4、DNA复性的重要标志是()。 A:溶解度降低; B:溶液粘度降低; C:紫外吸收增大; D:紫外吸收降低。 5、酶加快反应速度的原因是()。 A:升高反应活化能; B:降低反应活化能; C:降低反应物的能量水平; D:升高反应物的能量水平。 6、非竟争性抑制剂对酶促反应动力学的影响是()。 A:Km增大,Vm变小; B:Km减小,Vm变小; C:Km不变,Vm变小; D:Km与Vm无变化。 7、电子经FADH2呼吸链交给氧生成水时释放的能量,偶联产生的ATP数为() A:1;B:2;C:3;D:4。8、不属于呼吸链组分的是() A:Cytb;B:CoQ;C:Cytaa3;D:CO2。 9、催化直链淀粉转化为支链淀粉的是()A:R酶;B:D酶; C:Q酶;D:α—1,6糖苷酶 10、三羧酸循环过程叙述不正确的是()。A:循环一周可产生3个NADH、1个FADH2、1个GTP; B:可使乙酰CoA彻底氧化; C:有两步底物水平磷酸化; D:有4—6碳的羧酸。 11、生物体内脂肪酸氧化的主要途径是()。A:α—氧化;B:β—氧化; C:ω—氧化;D:过氧化。12、脂肪酸从头合成途径不具有的特点是()A:利用乙酰CoA作为活化底物; B:生成16碳脂肪酸; C:需要脂肪酸合成本科系催化; D:在细胞质中进行。 13、转氨酶的辅酶是() A:FAD;B:NADP+; C:NAD+;D:磷酸吡哆醛。 14、氨基酸分解的主要途径是()。 A:氧化脱氨基作用;B:裂解作用; C:脱氨基作用;D:水解作用。 15、合成嘌呤环的氨基酸是()。 A:甘氨酸、天冬氨酸、谷氨酸; B:甘氨酸、天冬氨酸、谷氨酰胺; C:甘氨酸、天冬酰胺、谷氨酰胺; D:蛋氨酸、天冬酰胺、谷氨酸。 16、植物体的嘌呤降解物是以()形式输送到细嫩组织的。 A:尿酸;B:尿囊酸; C:乙醛酸;D:尿素。 17、DNA复制方式为()。 A:全保留复制; B:半保留复制; C:混合型复制; D:随机复制。 18、DNA复制时不需要下列那种酶()。 A:DNA聚合酶; B:引物酶; C:DNA连接酶; D:RNA聚合酶。 19、细胞内编码20种氨基酸密码子总数为()A:16;B:64;C:20;D:61。20、mRNA在蛋白质合成重要性在于携带有()A:遗传密码; B:氨基酸; C:识别密码子的结构; D:各种蛋白质因子的结合部位。 三、填空题(每空1分,共20分)。 1、蛋白质在等电点时,溶解度最(),导电性最()。 2、米氏常数值大时,酶与底物的()小;酶作用于不同底物,其米氏常数(),其中米氏常数值最小的称为()。 3、生物氧化是()在细胞中(),同时产生()的过程。 4、麦芽糖是()水解的中间产物。它是

生物化学复习资料

什么是蛋白质的变性作用?引起蛋白质变性的因素有哪些?有何临床意义?在某些理化因素作用下, 使蛋白质严格的空间结构破坏,引起蛋白质理化性质改变和生物学活性丧失的现象称为蛋白质变性。引起蛋白质变性的因素有:物理因素,如紫外线照射、加热煮沸等;化学因素,如强酸、强碱、重金属盐、有机溶剂等。临床上常常利用加热或某些化学士及使病原微生物的蛋白质变性,从而达到消毒的目的,在分离、纯化或保存活性蛋白质制剂时,应采取防止蛋白质变性的措施。 比较蛋白质的沉淀与变性 蛋白质的变性与沉淀的区别是:变性强调构象破坏,活性丧失,但不一定沉淀;沉淀强调胶体溶液稳定因素破坏,构象不一定改变,活性也不一定丧失,所以不一定变性。 试述维生素B1的缺乏可患脚气病的可能机理 在体内Vit B1 转化成TPP,TPP 是α-酮酸氧化脱羧酶系的辅酶之一,该酶系是糖代谢过程的关键酶。维生素B1 缺乏则TPP 减少,必然α-酮酸氧化脱羧酶系活性下降,有关代谢反应受抑制,导致ATP 产生减少,同时α-酮酸如丙酮酸堆积,使神经细胞、心肌细胞供能不足、功能障碍,出现手足麻木、肌肉萎缩、心力衰竭、下肢水肿、神经功能退化等症状,被通称为“脚气病”。 简述体内、外物质氧化的共性和区别 共性①耗氧量相同。②终产物相同。③释放的能量相同。

区别:体外燃烧是有机物的C 和H 在高温下直接与O2 化合生成CO2 和H2O,并以光和热的形式瞬间放能;而生物氧化过程中能量逐步释放并可用于生成高能化合物,供生命活动利用。 简述生物体内二氧化碳和水的生成方式 ⑴CO2 的生成:体内CO2 的生成,都是由有机酸在酶的作用下经脱羧反应而生成的。根据释放CO2 的羧基在有机酸分子中的位置不同,将脱羧反应分为: α-单纯脱羧、α-氧化脱羧、β-单纯脱羧、β-氧化脱羧四种方式。 ⑵水的生成:生物氧化中的H2O 极大部分是由代谢物脱下的成对氢原子(2H),经一系列中间传递体(酶和辅酶)逐步传递,最终与氧结合产生的。 试述体内两条重要呼吸链的排练顺序,并分别各举两种代谢物氧化脱氢 NADH 氧化呼吸链:顺序:NADH→FMN/(Fe-S)→CoQ→Cytb→c1→c→aa3 如异柠檬酸、苹果酸等物质氧化脱氢,生成的NADH+H+均分别进入NADH 氧化呼吸链进一步氧化,生成2.5 分子ATP。 琥珀酸氧化呼吸链:FAD·2H/(Fe-S)→CoQ→Cytb→c1→c→aa3 如琥珀酸、脂酰CoA 等物质氧化脱氢,生成的FAD·2H 均分别进入琥珀酸氧化呼吸链进一步氧化,生成1.5 分子ATP。 试述生物体内ATP的生成方式 生物体内生成ATP 的方式有两种:底物水平磷酸化和氧化磷酸化。

生物化学 讲义

《生物化学》课程教学讲义1.课程简介 21世纪是生命科学的世纪,《生物化学》是现代生物学的基础,是生命科学发展的支柱,是生命科学领域的“世界语”因此奠定坚实的生物化学基础是农业科学生命科学学生和科技工作者的共同需要。 生物化学的内容:生物化学是生命的化学。生物是一个高度复杂和组织化的分子系统。这个分子系统主要是由生物大分子—糖类、脂类、蛋白质和核酸组成的。生物的多样性是生物体中生物分子多样性及其结构复杂性(一级结构和空间结构)决定的。但生物体内生物分子及其化学变化不是无序的。生命的化学有着自己的规律。 生命最突出的属性是自我复制和新陈代谢。自我复制依赖的遗传信息都存在于由核酸序列组成的基因中。代谢包含生物体内发生的所有化学反应-四大物质代谢,酶是反应的催化剂,物质代谢伴随着能量的生成和利用。 总之生物化学的内容可划分为两部分:静态生物化学—生物分子的化学组成、结构和性质;生物分子的结构、功能与生命现象的关系。动态生物化学—生物分子在生物机体中的相互作用及其变化规律。 生物化学的发展史:19世纪末,德国化学家李比希 (J.Liebig)初创了生理化学,德国的霍佩赛勒(E.F.Hoppe-seyler)将生理化学建成一门独立的学科,并于1877年提 出“Biochemie”一词,译成英语为“Biochemistry”,即生

物化学。 生物化学的发展大体可分为三个阶段:静态生物化学阶段(static biochemistry stage) 时期:19世纪末到20世纪30年代 特点:发现了生物体主要由糖、脂、蛋白质和核酸四大类有机物质组成,并对生物体各种组成成分进行分离、纯化、结构测定、合成及理化性质的研究。 动态生物化学阶段(dynamic biochemistry stage) 时期:20世纪30~60年代 主要特点:研究生物体内物质的变化,即代谢途径,所以称动态生化阶段。 现代生物化学阶段(modern biochemistry stage) 时期:从20世纪60年代开始 特点:探讨各种生物大分子的结构与其功能之间的关系。 我国:1966年王应睐和邹承鲁合成结晶牛胰岛素;1972年,X-射线衍射法测定了猪胰岛素的空间结构;1979年合成了41个核苷酸的酵母丙氨酸 tRNA3;1981年完成了该tRNA的全合成(76个核苷酸);唯一一个发展中国家,加入人类基因组计划,并出色完成了1%的任务。 生物化学的应用和发展前景:生物化学的原理和技术是研究现代生物科学的重要手段之一;生物化学的原理和技术在生产实践中广泛应用,如食品发酵制药及皮革工业,预防治疗医学等都与生物化学有着密切联系;生物化学是农业科学的重要理论基础之一,如研究植物的新陈代谢过程,可以控制植物的发育,优质高产。了解生物的遗传特性,可进行基因重组。另

生化实验讲义2010(10个)

生物化学实验讲义 赵 国 芬 2010年9月

实验之前说明 1.各班学习委员将成员分成10个大组,每个大组中2人一小组,大组采用循环实 验的方法,同时开出不同的10个实验. 2.共开出10个不同的实验 实验一温度、pH及酶的激活剂、抑制剂对酶活性的影响 实验二牛奶中蛋白质的提取与鉴定 实验三血液葡萄糖的测定-福林(Folin)-吴宪氏法 实验四双缩脲测定蛋白质的含量 实验五血清蛋白质醋酸纤维薄膜电泳 实验六植物组织中还原糖和总糖的含量测定 实验七应用纸层析法鉴定动物组织中转氨基作用 实验八植物组织中维生素C的定量测定 实验九琥珀酸脱氢酶的作用及其竞争性抑制的观察 实验十植物组织中DNA的提取和鉴定 3.穿着要利索,做好实验记录 4.注意实验室卫生和安全. 一. 实验室规则:按照实验室的规则给学生讲解. 二. 生物化学所用的实验技术 1.样品: :血液、血浆、血清、组织 植物样品:果实、花蕾、茎等 无论用什么做材料,为了提取物质,需匀浆 2.移液管的使用: 移液管吸管 移液管 奥氏吸管 读数时视线与凹面相平,取液时要用吸管嘴吸,放出液体时注意嘴部液体的残留问题。 3.离心机的使用: 平衡(管平衡、机器平衡)缓起和慢停 4.分光光度计 机器原理和测定原理(比尔定律) 5.水浴锅的使用 三、实验报告的书写(用教务处统一印刷的报告纸写) 目的、原理、仪器、药品、步骤、结果及结论、讨论

实验一、温度、pH及酶的激活剂、抑制剂对酶活性的影响 一、实验目的 通过本实验了解酶催化的特异性以及pH、温度、抑制剂和激活剂对酶活力的影响,对于进一步掌握代谢反应及其调控机理具有十分重要的意义。 二、实验原理 酶的化学本质是蛋白质。凡是能够引起蛋白质变性的因素,都可以使酶丧失活性。此外,温度、pH和抑制剂、激活剂对酶的活性都有显著的影响。酶的活性通常是用测定酶作用底物在酶作用前后的变化来进行观察的。 本实验用唾液淀粉酶作用的底物—淀粉,被唾液淀粉酶分解成各种糊精、麦芽糖等水解产物的变化来观察该酶在各种环境条件下的活性。 淀粉被酶水解的变化,可以用遇碘呈不同颜色来观察。淀粉遇碘呈蓝色;糊精按分子从大到小的顺序,遇碘可呈蓝色、紫色、暗褐色和红色;最小的糊精和麦芽糖遇碘不呈现颜色反应。 三、试剂 1.0.5%淀粉溶液 2.碘化钾-碘溶液 3.1%尿素溶液。 4.1%CuSO4溶液 5.磷酸氢二钠-柠檬酸缓冲液pH5.0-8.0: 6.0.5%NaCl溶液。 7.唾液淀粉酶制备每人用自来水漱口3次,然后取20m1蒸馏水含于口中,半分钟后吐入烧杯中,纱布过滤,取滤液lOml,稀释至2Oml为稀释唾液,供实验用。 四、操作步骤 一、温度对酶活性的影响 (一)淀粉酶的观察 1、取3支大试管,编号后按表操作 2、在白色比色板上,置碘液2滴于各孔中,每隔1分钟,从第二管中取出反应

生物化学复习参考

远程教育生物化学复习参考 一、多选题A型(每题1分,总计30分) 1、属于酸性氨基酸的是 A. Lys B. Asn C. Gln D. Glu E. Cys 2、下列哪种氨基酸代谢产生SAM A. 色氨酸 B. 苏氨酸 C. 苯丙氨酸 D. 蛋氨酸 E. 脯氨酸 3、维持蛋白质分子中α-螺旋稳定的化学键是 A.肽键 B.疏水键 C.氢键 D.二硫键 E.离子键 4、下列哪个氨基酸不是 ..L-α-氨基酸 A. Gly B. Ala C. Val D. Leu E. Asp 5、酪氨酸tRNA的反密码子是5′-GUA-3′,它能辨认mRNA上的相应密码子是A. GUA B. AUG C. UAC D. GTA E. TAC 6、DNA变性后理化性质改变正确的是 A.溶液粘度不变 B.是循序渐进的过程 C.形成三股链螺旋 D. 260nm波长处的光吸收增高 E.正旋光性增高 7、DNA的Tm值描述正确的是 A.只与DNA链的长短有直接关系 B.与G-C碱基对含量成正比 C.与A-T碱基对含量成正比 D.与碱基组成无关 E.所有真核生物Tm都一样

8、DNA上的外显子是 A.不被转录的序列 B.被转录但不被翻译的序列 C.被转录也被翻译的序列 D.调节基因序列 E.以上都不对 9、下列关于DNA复制的叙述错误 ..的是 A.有DNA指导的RNA聚合酶参加 B.有RNA指导的DNA聚合酶参加 C.为半保留复制 D.以四种dNTP为原料 E.有DNA连接酶参加 10、真核生物DNA复制中催化前导链合成的酶是A. polⅠ B. polα C. polβ D. polγ E. polδ 11、原核生物的RNA聚合酶的核心酶组成是A.α2ββ′σ B.α2ββ′ C.α2β′σ D.αββ′ E.α2βσ 12、可使原核生物转录过程终止的是 A. ρ因子 B. 核心酶 C. σ因子 D. 全酶 E. α亚基 13、原核生物辨认转录起始点的是 A.α亚基 B.β亚基 C.β′亚基 D.σ亚基 E.α2ββ′ 14、关于密码子的正确描述是 A.密码子中可以有稀有碱基 B.密码子中任何碱基的突变都会影响翻译C.每个密码子都对应一种氨基酸 D.多种氨基酸都有两个以上的密码 E.不同生物的密码子是不同的 15、蛋白质分子中没有遗传密码的氨基酸是A.丝氨酸

生物化学复习资料(人卫7版)汇总讲解

生化复习资料 第一章 一、蛋白质的生理功能 蛋白质是生物体的基本组成成分之一,约占人体固体成分的45%左右。蛋白质在生物体内分布广泛,几乎存在于所有的组织器官中。蛋白质是一切生命活动的物质基础,是各种生命功能的直接执行者,在物质运输与代谢、机体防御、肌肉收缩、信号传递、个体发育、组织生长与修复等方面发挥着不可替代的作用。 二、蛋白质的分子组成特点 蛋白质的基本组成单位是氨基酸 ?编码氨基酸:自然界存在的氨基酸有300余种,构成人体蛋白质的氨基酸只有20种,且具有自己的遗传密码。各种蛋白质的含氮量很接近,平均为16%。 ?每100mg样品中蛋白质含量(mg%):每克样品含氮质量(mg)×6.25×100。 氨基酸的分类 ?所有的氨基酸均为L型氨基酸(甘氨酸)除外。 ?根据侧链基团的结构和理化性质,20种氨基酸分为四类。 1.非极性疏水性氨基酸:甘氨酸(Gly)、丙氨酸(Ala)、缬氨酸(Val)、亮氨酸(Leu)、异亮氨酸(Ile)、苯丙氨酸(Phe)、脯氨酸(Pro)。 2.极性中性氨基酸:色氨酸(Trp)、丝氨酸(Ser)、酪氨酸(Tyr)、半胱氨酸(Cys)、蛋氨酸(Met)、天冬酰胺(Asn)、谷胺酰胺(gln)、苏氨酸(Thr)。 3.酸性氨基酸:天冬氨酸(Asp)、谷氨酸(Glu)。 4.碱性氨基酸:赖氨酸(Lys)、精氨酸(Arg)、组氨酸(His)。 ?含有硫原子的氨基酸:蛋氨酸(又称为甲硫氨酸)、半胱氨酸(含有由硫原子构成的巯基-SH)、胱氨酸(由两个半胱氨酸通过二硫键连接而成)。 ?芳香族氨基酸:色氨酸、酪氨酸、苯丙氨酸。 ?唯一的亚氨基酸:脯氨酸,其存在影响α-螺旋的形成。 ?营养必需氨基酸:八种,即异亮氨酸、甲硫氨酸、缬氨酸、亮氨酸、色氨酸、苯丙氨酸、苏氨酸、赖氨酸。可用一句话概括为“一家写两三本书来”,与之谐音。 氨基酸的理化性质 ?氨基酸的两性解离性质:所有的氨基酸都含有能与质子结合成NH4+的氨基;含有能与羟基结合成为COO-的羧基,因此,在水溶液中,它具有两性解离的特性。在某一pH环境溶液中,氨基酸解离生成的阳郭子及阴离子的趋势相同,成为兼性离子。此时环境的pH值称为该氨基酸的等电点(pI), 氨基酸带有的净电荷为零,在电场中不泳动。pI值的计算如下:pI=1/2(pK 1 + pK 2 ),(pK 1 和pK 2 分 别为α-羧基和α-氨基的解离常数的负对数值)。 ?氨基酸的紫外吸收性质 ?吸收波长:280nm ?结构特点:分子中含有共轭双键 ?光谱吸收能力:色氨酸>酪氨酸>苯丙氨酸 ?呈色反应:氨基酸与茚三酮水合物共加热,生成的蓝紫色化合物在570nm波长处有最大吸收峰;蓝紫色化合物=(氨基酸加热分解的氨)+(茚三酮的还原产物)+(一分子茚三酮)。 肽的相关概念 ?寡肽:小于10分子氨基酸组成的肽链。 ?多肽:大于10分子氨基酸组成的肽链。 ?氨基酸残基:肽链中因脱水缩合而基团不全的氨基酸分子。 ?肽键:连接两个氨基酸分子的酰胺键。 ?肽单元:参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,组成肽单元。

生物化学讲义教材

蛋白质 元素组成C、H、O、N、S、P、Fe、Zn?-?- 每100份蛋白质中约含16份N(即:每1gN相当于6.25g蛋白质) 2.1 蛋白质的分类 按蛋白质的分子组成,分子形状,溶解度,生物功能等进行分类。 2.1.1 根据分子形状分类 ①球状蛋白②纤尘维状蛋白③膜蛋白 2.1.2 根据分子组成分类 (1)简单蛋白质; (2)结合蛋白质; 2.1.3 根据功能分类 2.2 蛋白质的组成的单位-----氨基酸 ?完全水解的产物是各种AA的混合物。部分水解的产物是各种大小不等的肽段和AA。 氨基酸与蛋白质AA、非蛋白质AA。 2.2.1 AA的结构通式 氨基酸的立体异构体: D-AA ; L-AA 2.2.2 AA的分类 (1)蛋白质中常见的氨基酸见表2-2 依AA的极性状况及其在PH = 6~7间是否带电而分为 ①非极性氨基酸②极性不带电荷③极性带负电荷④极性带正电荷 (2)蛋白质中不常见的氨基酸 (3)非蛋白质氨基酸 2.2.3 AA的重要理化性质 (1)两性解离和等电点 ①何谓氨基酸的等电点PI? ②PI值: (2)AA的化学性质 ①与水合茚三酮反应;②与甲醛反应;③与2,4-二硝基氟苯(DNFB)反应;⑤与亚硝酸反应;⑥与荧光胺反应;⑦与5,5’-双硫基-双(2-硝基苯甲酸)反应。 2.3 肽 寡肽;多肽;蛋白质。 2.3.2 生物活性肽的功能 生物活性肽:谷光甘肽;催产素和升压素。促肾上腺皮质激素。 2.3.3活性肽的来源 (1)体内途径(2)体外途径 2.3.4 活性肽的应用第一个被阐明化学结构构的蛋白质--胰岛素 一级结构确定的原则: 2.4.2蛋白质的空间构象(构象或高级结构) 概念、肽键与酰胺平面 (1)稳定蛋白质空间结构的作用力 1 共价键: 肽键,二硫键。维持一级结构 2 次级键: 氢键,疏水键,盐键,范德华力等。维持空间(高级)结构。 (2)蛋白质的二级结构 概念 ①а-螺旋结构;②B-折叠;③β凸起;④?-转角(β-弯曲、发夹结构);⑤无规卷曲(3)超二级结构与结构域;(4)蛋白质的三级结构;(5)蛋白质的四级结构及亚基。 2.5 蛋白质分子结构与功能的关系 2.5.1 蛋白质一级结构与功能的关系

生物化学实验讲义

生物化学实验报告 姓名: 专业: 院系: 学号:

实验一蛋白质分子量测定------凝胶层析法 一、实验原理 凝胶层析法是利用凝胶把分子大小不同的物质分开的一种方法,又叫做分子筛层析法,排阻层析法。凝胶本身是一种分子筛,它可以把分子按大小不同进行分离,如同过筛可以把大颗粒与小颗粒分开一样。但这种“过筛”与普通的过筛不一样。将凝胶颗粒放在适宜溶剂中浸泡,使其充分戏液膨胀,然后装入层析柱中,加入欲分离的混合物后,再以同一溶剂洗脱,在洗脱过程中,大分子不能进入凝胶内部而沿凝胶颗粒间的缝隙最先流出柱外,而小分子可以进入凝胶内部,流速缓慢,以致最后流出柱外,从而使样品中分子大小不同的物质得到分离。 凝胶是由胶体溶液凝结而成的固体物质,无论是天然凝胶还是人工凝胶,它们的内部都具有很微细的多孔网状结构。凝胶层析法常用的天然凝胶是琼脂糖凝胶,人工合成的凝胶是聚丙烯酰胺凝胶和葡聚糖凝胶,后者的商品名为Sephadex型的各种交联葡聚糖凝胶,它具有不同孔隙度的立体网状结构的凝胶,不溶于水。 这种聚合物的立体网状结构,其孔隙大小与被分离物质分子的大小有相应的数量级。在凝胶充分溶胀后,交联度高的,孔隙小,只有相应的小分子可以通过,适于分离小分子物质。相反,交联度低得孔隙大,适于分离大分子物质。利用这种性质可分离不同分子量的物质。 以下进一步来说明凝胶层析的原理。将凝胶装载柱后,柱床总体

积称为“总体积”,以Vt表示。实质上Vt是由Vo,Vi与Vg三部分组成,即Vt=Vi+Vg+Vo。Vo称为“孔隙体积”或“外体积”又称“外水体积”,即存在于柱床内凝胶颗粒外面孔隙之间的水相体积,相应于一般层析柱法中内流动相体积;Vi为内体积,即凝胶颗粒内部所含水相的体积,Vg为凝胶本身的体积,因此Vt-Vo等于Vi+Vg。 洗脱体积与Vo及Vi之间的关系可用下式表示: Ve=Vo+KdVi 式中Ve为洗脱体积,自加入样品时算起,到组分最大浓度(峰)出现时所流出的体积;Kd为样品组分在二相间的分配系数,也可以说Kd是分子量不同的溶质在凝胶内部和外部的分配系数。它只与被分离物质分子的大小和凝胶颗粒孔隙的大小分布有关,而与柱的长短粗细无光,也就是说它对每一物质为常数,与柱的物理条件无关。Kd 可通过实验求得,上式可改写成: Kd=(Ve-Vo)/Vi 上式中Ve为实际测得的洗脱体积;Vo可用不被凝胶滞留的大分子物质的溶液通过实际测量求出;Vi可由g.Wr求得。因此,对一层析柱凝胶床来说,只要通过实际实验得知某一物质的洗脱体积Ve就可算出它的Kd值。 Vo表示外体积;Vi内体积;Ve II、Ve III分别代表组分II和III的洗脱体积。Kd可以有下列几种情况: 1、当Kd=0时,则Ve=Vo。即对于根本不能进入凝胶内部的大分子物质,洗脱体积等于空隙体积。

2017年中科院生物化学考研参考书

中国科学院大学硕士研究生入学考试 《生物化学》考试大纲 一、考试基本要求及适用范围概述 本《生物化学》考试大纲适用于中国科学院大学生命科学相关专业的硕士研究生入学考试。生物化学是生物学的重要组成部分,是动物学、植物学、遗传学、生理学、医学、农学、药学及食品等学科的基础理论课程,主要内容:探讨生物体的物质组成以及分子结构、性质与功能,物质代谢的规律、能量转化及其调节控制等。要求考生系统地理解和掌握生物化学的基本概念和基本理论,掌握各类生化物质的结构、性质和功能及其合成代谢和分解代谢的基本途径及调控方法,理解基因表达调控和基因工程的基本理论,了解生物化学的最新进展,能综合运用所学的知识分析问题和解决问题。 二、考试形式 硕士研究生入学生物化学考试为闭卷,笔试,考试时间为180分钟,本试卷满分为150分。 试卷结构(题型):名词解释、单项选择题、判断题、简答题、问答题 三、考试内容 1.蛋白质化学 考试内容 ●蛋白质的化学组成,20种氨基酸的简写符号 ●氨基酸的理化性质及化学反应 ●蛋白质分子的结构(一级、二级、高级结构的概念及形式) ●蛋白质一级结构测定 ●蛋白质的理化性质及分离纯化和纯度鉴定的方法 ●蛋白质的变性作用 ●蛋白质结构与功能的关系 考试要求 ●了解氨基酸、肽的分类

●掌握氨基酸与蛋白质的物理性质和化学性质 ●了解蛋白质一级结构的测定方法(建议了解即可) ●理解氨基酸的通式与结构 ●理解蛋白质二级和三级结构的类型及特点,四级结构的概念及亚基 ●掌握肽键的特点 ●掌握蛋白质的变性作用 ●掌握蛋白质结构与功能的关系 2.核酸化学 考试内容 ●核酸的基本化学组成及分类 ●核苷酸的结构 ●DNA和RNA一级结构、二级结构和DNA的三级结构 ●RNA的分类及各类RNA的生物学功能 ●核酸的主要理化特性 ●核酸的研究方法 考试要求 ●了解核苷酸组成、结构、结构单位及核苷酸的性质 ●了解核酸的组成、结构、结构单位及核酸的性质 ●掌握DNA的二级结构模型和核酸杂交技术 ●了解microRNA的序列和结构特点 3.糖类结构与功能 考试内容 ●糖的主要分类及其各自的代表 ●糖聚合物及它们的生物学功能 ●糖链和糖蛋白的生物活性 考试要求 ●掌握糖的概念及其分类 ●了解糖类的元素组成、化学本质及生物学作用 ●了解旋光异构 ●掌握单糖、二糖、寡糖和多糖的结构和性质 ●理解糖的鉴定原理

生物化学深刻复习资料(全)

生物化学复习资料 第一章蛋白质化学 第一节蛋白质的基本结构单位——氨基酸 凯氏定氮法:每克样品蛋白质含量(g)=每克样品中含氮量x 6.25 氨基酸结构通式: 蛋白质是由许多不同的α-氨基酸按一定的序列通过肽键缩合而成的具有生物学功能的生物大分子。 氨基酸分类:(1)脂肪族基团:丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甘氨酸、脯氨酸(2)芳香族基团:苯丙氨酸、色氨酸、酪氨酸(3)含硫基团:蛋氨酸(甲硫氨酸)、半胱氨酸(4)含醇基基团:丝氨酸、苏氨酸(5)碱性基团:赖氨酸、精氨酸、组氨酸(6)酸性基团:天冬氨酸、谷氨酸(7)含酰胺基团:天冬酰胺、谷氨酰胺 必需氨基酸(8种):人体必不可少,而机体内又不能合成,必需从食物中补充的氨基酸。蛋氨酸(甲硫氨酸)、缬氨酸、赖氨酸、异亮氨酸、苯丙氨酸、亮氨酸、色氨酸、苏氨酸 氨基酸的两性性质:氨基酸可接受质子而形成NH3+,具有碱性;羧基可释放质子而解离成COO-,具有酸性。这就是氨基酸的两性性质。 氨基酸等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH值。 蛋白质中的色氨酸和酪氨酸两种氨基酸具有紫外吸收特性,在波长280nm处有最大吸收值。镰刀形细胞贫血:血红蛋白β链第六位上的Glu→Val替换。 第二节肽 肽键:一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水综合而形成的酰胺键叫肽键。肽键是蛋白质分子中氨基酸之间的主要连接方式,它是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基缩合脱水而形成的酰胺键。 少于10个氨基酸的肽称为寡肽,由10个以上氨基酸形成的肽叫多肽。 谷胱甘肽(GSH)是一种存在于动植物和微生物细胞中的重要三肽,含有一个活泼的巯基。参与细胞内的氧化还原作用,是一种抗氧化剂,对许多酶具有保护作用。 化学性质:(1)茚三酮反应:生产蓝紫色物质(2)桑格反应 第三节蛋白质的分子结构 蛋白质的一级结构:是指氨基酸在肽链中的排列顺序。 蛋白质的二级结构:是指蛋白质分子中多肽链本身的折叠方式。二级结构有α-螺旋、β-折叠、β-转角和无规则卷曲。 蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。 蛋白质的四级结构:指数条具有独立的三级结构的多肽链通过非共价键相互连接而成的聚合体结构。 维持蛋白质一级结构的化学键有肽键和二硫键,维持二级结构靠氢键,维持三级结构和四级结构靠次级键,其中包括氢键、疏水键、离子键和范德华力。 第四节蛋白质的重要性质书P16 蛋白质的等电点:当蛋白质解离的阴阳离子浓度相等即净电荷为零,此时介质的pH即为蛋白质的等电点。

生物化学实验

生物化学实验讲义 化学工程与技术学院 基础部

实验一酪蛋白的制备 一、目的 学习从牛乳中制备酪蛋白的原理和方法。 二、原理. 牛乳中主要的蛋白质是酪蛋白,含量约为35g/L。酪蛋白是一些含磷蛋白质的混合物,等电点为4.7。利用等电点时溶解度最低的原理,将牛乳的pH调至4.7时,酪蛋白就沉淀出来。用乙醇洗涤沉淀物,除去脂类杂质后便可得到纯的酪蛋白。 三、器材 1 、离心机2、.抽滤装置 3、精密pH试纸或酸度计 4、电炉 5、烧杯 6、温度计. 四、试剂与材料 1、牛奶2500mL 2、95%乙醇1200mL 3、无水乙醚1200mL

4、0.2mol/L pH 4.7醋酸—醋酸钠缓冲液3000mL 5、.乙醇—乙醚混合液2000mL 五、操作 1、将100mL牛奶加热至40℃。在搅拌下慢慢加入 预热至40℃、pH 4.7的醋酸缓冲液100 mL。用精密pH试纸或酸度计调pH至4.7。将上述悬浮液冷却至室温。离心15分钟(3 000r/min)。弃去清液,得酪蛋白粗制品。 2、用水洗沉淀3次,离心10分钟(3000r/min), 弃去上清液。 3、在沉淀中加入30mL乙醇,搅拌片刻,将全部悬 浊液转移至布氏漏斗中抽滤。用乙醇—乙醚混合液洗沉淀2次。最后用乙醚洗沉淀2次,抽干。 4、将沉淀摊开在表面皿上,风干;得酪蛋白纯晶。 5、准确称重,计算含量和得率。 含量:酪蛋白g/100mL牛乳(g%)

得率: 测得含量 100 % 理论含量 思考题 1、制备高产率纯酪蛋白的关键是什么? 实验二小麦萌发前 后淀粉酶活力的比较 一、目的 1.学习分光光度计的原理和使用方法。 2.学习测定淀粉酶活力的方法。 3.了解小麦萌发前后淀粉酶活力的变化。 二、原理 种子中贮藏的糖类主要以淀粉的形式存在。淀粉酶能使淀粉分解为麦芽糖。 2(C6H10O5)n +nH2O nC12H22O11 麦芽糖有还原性,能使3,5---二硝基水杨酸还原成棕色的3-氨基-5-硝基水扬酸。后者可用分光光度计测定。

《生物化学》考试资料

2020-2021学年上学期生物化学 (各位同学:根据我们实践操作,考试资料内容有80%左右相同,但是题目的顺序会不同。请一定要认真看清楚题目,查找答案答题。如果题目不在我们提供的的考试资料里,自己就在百度查询。 答题时间为120分钟。答题完毕确认无误之后请点击交卷按钮交卷(考试期间不要随意关闭界面,否则网络平台自动计算已考1次。超出规定答题时间,系统自动会提交。)。您有3次答题的机会,请按照我们的资料来答题,尽量考高分,争取考一次就过关了。) 一、单选题(每题2分,共30道小题,总分值60分) 1.下列哪个不是人类膳食的必需脂肪酸:()(2分) A油酸 B亚油酸 C亚麻酸 D花生四烯酸 正确答案A 2.下列有关蛋白质的叙述哪项是正确的?()(2分) A蛋白质分子的净电荷为零时的pH 值是它的等电点 B大多数蛋白质在含有中性盐的溶液中会沉淀析出 C由于蛋白质在等电点时溶解度最大,所以沉淀蛋白质时应远离等电点 D以上各项均不正确 正确答案A 3.下列叙述中哪一种是正确的:()(2分) A所有的辅酶都包含维生素组分 B所有的维生素都可以作为辅酶或辅酶的组分 C所有的B 族维生素都可以作为辅酶或辅酶的组分 D只有B 族维生素可以作为辅酶或辅酶的组分 正确答案C 4.脂肪酸从头合成的酰基载体是:()(2分)

AACP BCoA C生物素 DTPP 正确答案A 5.三羧酸循环的限速酶是:()(2分) A丙酮酸脱氢酶 B顺乌头酸酶 C琥珀酸脱氢酶 D延胡索酸酶 E异柠檬酸脱氢酶 正确答案E 6.关于密码子的下列描述,其中错误的是:()(2分) A每个密码子由三个碱基组成 B每一密码子代表一种氨基酸 C每种氨基酸只有一个密码子 D有些密码子不代表任何氨基酸 正确答案C 7.下列辅酶中的哪个是来自于维生素B2:()(2分) ACoA BCoQ CPLP DFH2 EFMN 正确答案E 8.二硝基苯酚(DNP)能抑制下列细胞功能的是:()(2分)A糖酵解 B肝糖异生 C氧化磷酸化

生物化学复习资料

第一章绪论 生物化学:简单来讲,研究生物体内物质组成(化学本质)和化学变化规律的学科。生物化学的研究内容:生物分子的结构与功能(静态生化); 物质代谢及其调节(动态生化); 生命物质的结构与功能的关系及环境对机体代谢的影响(功能生化)。 第二章糖类化学 一、糖的定义及分类 糖类是一类多羟基醛(或酮),或通过水解能产生这些多羟基醛或多羟基酮的物质。糖类分类:(大体分为简单糖和复合糖) 单糖:基本单位,自身不能被水解成更简单的糖类物质。最简单的多羟基醛或多羟基酮的化合物。Eg:半乳糖 寡糖:2~10个单糖分子缩合而成,水解后可得到几分子单糖。Eg:乳糖 多糖:由许多单糖分子缩合而成。如果单糖分子相同就称为同聚多糖或均一多糖;由不同种类单糖缩合而成的多糖为杂多糖或不均一多糖。 复合糖:是指糖和非糖物质共价结合而成的复合物,分布广泛,功能多样,具有代表性的有糖蛋白或蛋白聚糖,糖脂或脂多糖。 二单糖 1、单糖的构型:在糖的化学中,采用D/L法标记单糖的构型。单糖构型的确定以甘油醛为标准。距羰基最远的手性碳与D-(+)-甘油醛的手性碳构型相同时,为D型;与L-(-)-甘油醛构型相同时,为L型。 2、对映异构体:互为镜像的旋光异构体。如:D-Glu与L-Glu 3、旋光异构现象:不对称分子中原子或原子团在空间的不同排布对平面偏振光的偏正面发生不同影响所引起的异构现象。 4、差向异构体:具有两个以上不对称碳原子的的分子中仅一个不对称碳原子上的羟基排布方式不同。如:葡萄糖与甘露糖;葡萄糖与半乳糖。 5、环状结构异构体的规定:根据半缩醛羟基与决定直链DL构型的手性碳上羟基处于同侧为α,异侧为β。(只在羰基碳原子上构型不同的同分异构体) 6、还原糖:能还原Fehling试剂或Tollens试剂的糖叫还原糖。分子结构中含有还原性基团(如游离醛基半缩醛羟基或游离羰基)的糖,还原糖是指具有还原性的糖类,叫还原糖。 1)单糖和寡糖的游离羰基,有还原性。 2)以开链结构存在的单糖中除了二羟丙酮外均具有游离羰基。 3)环式结构可通过与开链结构之间的平衡转化为后者,有半缩醛羟基的为还原糖。 4)非还原性双糖相当于由两个单糖的半缩醛羟基失水而成的,两个单糖都成为苷, 这样的双糖没有变旋现象和还原性。如:蔗糖) 7、糖含量的测定:蒽酮测糖。 三寡糖 麦芽糖:两分子葡萄糖通过α-1,4-糖苷键连接而成 纤维二糖:两分子葡糖糖通过β-1,4-糖苷键连接 乳糖:一分子葡萄糖和一分子β半乳糖通过β-1,4-糖苷键连接而成 蔗糖:一分子葡糖糖和一分子果糖通过脱水缩合而成

生物化学讲义(7)

第七章糖代谢(10学时) 第一节概述 糖是一类化学本质为多羟醛或多羟酮及其衍生物的有机化合物。在人体内糖的主要形式是葡萄糖(glucose,Glc)及糖原(glycogen,Gn)。葡萄糖是糖在血液中的运输形式,在机体糖代谢中占据主要地位;糖原是葡萄糖的多聚体,包括肝糖原、肌糖原和肾糖原等,是糖在体内的储存形式。葡萄糖与糖原都能在体内氧化提供能量。 食物中的糖是机体中糖的主要来源,被人体摄入经消化成单糖吸收后,经血液运输到各组织细胞进行合成代谢和分解代谢。机体内糖的代谢途径主要有葡萄糖的无氧酵解、有氧氧化、磷酸戊糖途径、糖原合成与糖原分解、糖异生以及其他己糖代谢等。本章重点介绍葡萄糖在机体中血糖浓度动态平衡的维持和前五种主要代谢的途径、生理意义及其调节。 一、糖的主要生理功能 ①氧化供能:糖类占人体全部供能的70%。 (1g糖可提供约16.7kJ的能量) ②构成组织细胞的基本成分:核糖:构成核酸;糖脂:生物膜成分 ③转变为体内的其它成分:转变为脂肪;转变为非必需氨基酸一、糖酵解 二、糖的消化吸收 食物中的糖主要是淀粉,另外包括一些双糖及单糖。多糖及双糖都必须经过酶的催化水解成单糖才能被吸收。 食物中的淀粉经唾液中的α淀粉酶作用,催化淀粉中α-1,4-糖苷键的水解,产物是葡萄糖、麦芽糖、麦芽寡糖及糊精。淀粉的主要消化部位在小肠。糖被消化成单糖后的主要吸收部位是小肠上段,己糖尤其是葡萄糖被小肠上皮细胞摄取是一个依赖Na+的耗能的主动摄取过程,这个过程的能量是由Na+的浓度梯度(化学势能)提供的,它足以将葡萄糖从低浓度转运到高浓度。当小肠上皮细胞内的葡萄糖浓度增高到一定程度,葡萄糖经小肠上皮细胞单向葡萄糖转运体(unidirectional glucose transporter)顺浓度梯度被动扩散到血液中。 三、糖代谢 是指葡萄糖在体内的复杂化学反应,葡萄糖吸收入血后,依赖一类葡萄糖转运体(glucose transporter, GLUT)而进入细胞内代谢。 第一节糖的无氧酵解(糖酵解) 当机体处于相对缺氧情况(如剧烈运动)时,葡萄糖或糖原分解生成乳酸和少量ATP的过程称之为糖 的无氧酵解。这个代谢过程常见于运动时的骨骼肌,因与酵母的生醇发酵非常相似,故又称为糖酵解。 糖的无氧酵解途径,亦称为EMP途径。因Meyerhof (M)、Embden (E)和Parnaas (P)的工作对阐明

生物化学作业参考答案

《生物化学》作业参考答案 第一章绪论 一、名词解释: 1.生物化学:是运用化学的理论、方法和技术,研究生物体的化学组成、化学变化极其与生理功能相联 系的一门学科。 二、问答题: 1.为什么护理学专业学生要学习生物化学? 答:生物化学在医学教育中起了承前启后的重要作用,与医学基础学科和临床医学、护理各学科都有着程度不同的联系。从分子水平阐明疾病发生的机制、药理作用的原理以及体内的代谢过程等,都离不开生物化学的知识基础。生物化学的基础知识和生化技术,为临床护理观察和护理诊断提供依据,对维持人类健康,预防疾病的发生和发展都起着重要作用。 第二章蛋白质化学 一、名词解释: 1.蛋白质的一级结构:蛋白质分子中氨基酸残基以肽键连接的排列顺序称为蛋白质的一级结构。 2.肽键:一分子氨基酸α-羧基与另一分子氨基酸α-氨基脱水缩合形成的酰胺键。 3.蛋白质的等电点(pI):在某一pH条件下,蛋白质解离成正负离子数量相等,静电荷为零,此时溶液 的pH称为蛋白质的等电点。 4.蛋白质的呈色反应:指蛋白质分子中,肽键及某些氨基酸残基的化学基团可与某些化学试剂反应显色, 这种现象称为蛋白质的呈色反应。 二、问答题: 1.什么是蛋白质的变性?简述蛋白质的变性后的临床使用价值。 答:蛋白质的变性是指蛋白质在某些理化因素的作用下,严格的空间构象受到破坏,从而改变理化性质并失去生物活性的现象称为蛋白质的变性。利用蛋白质变性原理在临床应用中有重要意义和实用价值,如: (1)利用酒精、加热煮沸、紫外线照射等方法来消毒灭菌; (2)口服大量牛奶抢救重金属中毒的病人; (3)临床检验中在稀醋酸作用下加热促进蛋白质在pI时凝固反应检查尿液中的蛋白质; (4)加热煮沸蛋白质食品,有利于蛋白酶的催化作用,促进蛋白质食品的消化吸收等。 2.简述蛋白质的二级结构的种类和α-螺旋的结构特征。答:蛋白质二级结构的种类包括α-螺旋、β-折 叠、β-转角和无规则卷曲四种。α-螺旋主要特征是多肽链主链沿长轴方向旋转,一般为右手螺旋。 每一螺旋圈含有3.6个氨基酸残基,螺距0.54nm。螺旋圈之间通过肽键上的CO与NH形成氢键,是维持α-螺旋结构稳定的主要次级键。多肽链中氨基酸残基的 R基团伸向螺旋的外侧,其空间形状、大小及电荷对α-螺旋形成和稳定有重要的影响。 3.蛋白质有哪些主要生理功能? 答:蛋白质约占人体固体成分的45%,分布广泛,主要生理功能: (1)构成组织细胞的最基本物质; (2)是生命活动的物质基础如酶的催化作用、多肽激素的调节作用、载体蛋白的转运作用、血红蛋白的运氧功能、肌肉的收缩、机体的防御、血液的凝固等所有的生命现象均有蛋白质

大学生物化学复习资料

一、名词解释 1、血液:血液中的葡萄糖称为血糖。 2、糖原合成与分解:由单糖合成糖原的过程称为糖原合成。 糖原分解成葡萄糖的过程称为糖原的分解。 3、糖异生:由非糖物质合成葡萄糖的过程叫糖异生。 4、有氧氧化:指糖、脂肪、蛋白质在氧的参与下分解为二氧化碳和水,同时释放大量能量,供二磷酸腺苷(ADP)再合成三磷酸腺苷(ATP)。 5、三羧酸循环(TAC循环):由乙酰CoA和草酰乙酸缩合成有三个羧基的柠檬酸, 柠檬酸经一系列反应, 一再氧化脱羧, 经α酮戊二酸、琥珀酸, 再降解成草酰乙酸。而参与这一循环的丙酮酸的三个碳原子, 每循环一次, 仅用去一分子乙酰基中的二碳单位, 最后生成两 分子的CO2 , 并释放出大量的能量。反应部位在线粒体基质。 6、糖酵解:是指细胞在细胞质中分解葡萄糖生成丙酮酸的过程。(在供氧不足时,葡萄糖在胞液中分解成丙酮酸,丙酮酸再进一步还原乳酸。) 7、血脂:血中的脂类物质称为血脂。 8、血浆脂蛋白:指哺乳动物血浆(尤其是人)中的脂-蛋白质复合物。(脂类在血浆中的存在形式和转运形式) 9、脂肪动员:指在病理或饥饿条件下,储存在脂肪细胞中的脂肪,被脂肪酶逐步水解为游离脂酸(FFA)及甘油并释放入血以供其他组织氧化利用,该过程称为脂肪动员。 (补充知识:脂肪酶—催化甘油三酯水解的酶的统称。甘油三酯脂肪酶—脂肪分解的限速酶。)10、酮体:在肝脏中,脂肪酸的氧化很不完全,因而经常出现一些脂肪酸氧化分解的中间产物,这些中间产物是乙酰乙酸、β-羟基丁酸及丙酮,三者统称为酮体。(知识补充:酮体是脂肪分解的产物,而不是高血糖的产物。进食糖类物质也不会导致酮体增多。)

相关文档
最新文档