《简谐运动》教案

《简谐运动》教案
《简谐运动》教案

简谐运动

一、教学目的

1、知识与能力:

(1)认识弹簧振子

(2)通过观察和分析,理解简谐运动的位移——时间图像是一条正弦曲线,培养分析和概括能力;

2、过程与方法:经历对简谐运动运动学特征的探究过程,加深领悟用图像描绘运动的方法;

3、情感、态度、价值观:培养学习物理的兴趣,陶冶热爱生活的情操。

二、教学重点:简谐运动位移——时间图像的建立及图像的物理含义

三、教学难点:简谐运动位移——时间图像的建立

四、教具:水平弹簧振子、竖直弹簧振子、单摆、振铃、托盘天平、物体平衡仪、音叉、乒乓球等。

五、教学过程

[引入]今天我们开始学习第十一章机械振动,第一节简谐运动(板书)。首先请大家欣赏一段古筝演奏。

问题1:古筝为什么能够发出声音?(琴弦的振动)

问题2:还有哪些乐器是靠琴弦的振动发出声音的?(小提琴、大提琴、吉他、二胡、琵琶等)

振动在我们生活中十分常见

问题3:能不能再举例一些生活中类似这样的振动?(说话时声带振动等;剧烈而令人恐惧的振动——地震)

我们实验室也普遍存在这样的振动,请大家仔细观察,演示如:天平指针的振动、音叉的振动、单摆的振动、水平弹簧振子、竖直弹簧振子。在我们演示的振动中有水平方向的振动也有竖直方向的振动。

问题4:它们具有共同的特征是什么?(在某一中心位置来回运动,强化“往复”和“周期性”)

我们把这个中心位置叫做平衡位置(原来静止的位置,标出竖直弹簧振子的平衡位置,把振动的物体叫做振子)

一、机械振动:物体在平衡位置附近所做的往复运动。简称为振动

特点:往复性、周期性

简图示意:

实际的振动是非常复杂的,大家已经观察到刚刚的振动在阻力的作用下,有些很快就停下来,有些振动的幅度正在减弱。为了研究的方便,我们

突出主要矛盾、忽略次要因素,不计一切阻力,简化为理想模型。我们把像这样由弹簧和振子构成的振动系统称为弹簧振子。弹簧振子将保持这个幅度永远运动下去。

二、弹簧振子:是理想模型

1、条件:振子看做质点;轻质弹簧;不计一切阻力

本章从最简单的开始研究,学习怎样描述振动,振动有什么性质。

我们以前学习过几种运动形式,如匀速直线运动、匀变速直线运动、平抛运动、匀速圆周运动。

问题5:要描述一种运动,应该从哪些物理量着手?(位移、速度、加速度等)

本节课我们主要研究弹簧振子的位移与时间的关系。

2、振动位移:指由平衡位置指向某一振动位置的有向线段。(注意矢量方向的选取和表示方法,以竖直弹簧振子为例)

以简图为例:

研究直线运动的位移与时间关系时,我们采用过公式法,还有图像法。对于振动这样一个复杂的运动,我们可以用位移——时间图像来研究。如何得到振子振动的x-t图像呢?

问题6:首先要解决的问题就是怎样把振子振动的轨迹记录下来?

借助沙漏实验:

先让振子静止,记录振子的平衡位置;

问题7:先不拉动木板,振子的轨迹是什么形状?

漏下的沙子就记录了振子振动的轨迹。困惑的是,后面的运动把前面的运动覆盖了。

问题8:怎样把振子在不同时间的运动分开呢?(匀速拖动底板)

我们试一试,演示实验:

“做一做”学生实验(教材第4页练习2,明确实验要求,匀速拉动纸带)板书曲线

问题8:留下的痕迹是振子运动的轨迹吗?(不是,轨迹是直线)

问题9:展示学生的记录纸带,图像间隔疏与密分别是什么原因?拉动纸带的快慢是否影响振子振动的快慢?(不影响,是独立的)

问题10:留下来的曲线是否能表示振子的位移随时间变化的规律呢?位移和时间在曲线是如何体现的?(能,建立坐标轴,纵轴表示位移、横轴表示时间)

问题11:在这里,我们看不见时间,只能看见振子的空间位移,纸带的

空间位移,那么时间到底是怎么体现的?(通过纸带的空间位移体现时间)

问题12:为什么匀速拉动纸带上的位移就可以表示时间呢?(因为匀速

直线运动中,发生相等的位移需要相等的时间,纸带上位移的均匀变化

反映了时间均匀的流逝,所以可以用移动纸带的位移长短来表示时间的

长短)

因此,这样得到的曲线实际上就是某一个振子振动的位移——时间图像。

板书图像

教材采用了频闪照片的方法获得振子的位移——时间图像,请大家阅读

教材第2页。这种方法我们以前研究自由落体运动和平抛运动时学习过。

演示:动画模拟

问题13:大家观察振子的位移——时间图像呈现什么形状?(正弦函数

的图像)怎么证明?(证明的方法,数学已经学过,不详细讲)

三、如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图

像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。

简谐运动是最简单、最基本的振动,弹簧振子的运动就是简谐运动。

动画演示:

观察1:某一段图像对应哪段振动?(下坡的图像对应振子向下运动,上

坡的图像对应振子向上运动。)

观察2:位移在t轴上方的时间段里,振子的运动方向都向上吗?

问题13:那么,我们能从振动的x-t图像获得哪些信息呢?(思考与讨论)

四、图像信息:

1、某一质点做简谐运动时,位移随时间变化的图像

2、某一时刻该质点振动的位移大小和方向

3、某一时刻该质点振动的瞬时速度方向

4、某一段时间内质点运动的路程

强调:图像不是轨迹,振子始终在一条直线上做往复运动。

练习1:观察黑板上上竖直方向的弹簧振子运动,画出振动的位移——时

间图像。

练习2:教材第5页3、4题。

请大家用两分钟的时间回顾这节课,对本堂课所学内容做个小结。

强调过程与方法的总结:突出主要矛盾,忽略次要因素的哲学思想;借助空间位移表示时间来记录振动的方法;尤其是这堂课学到的记录振动的方法在

在实际中有很多应用,如医院里心电图仪、绘制地震曲线的装置。因此这些思考问题的方式和解决问题的方法对我们以后的人生来说或许比知识本身更有价值。

简谐振动特性研究实验

实验一、简谐振动特性研究与弹簧劲度系数测量【实验目的】 1. 胡克定律的验证与弹簧劲度系数的测量; 2. 测量弹簧的简谐振动周期,求得弹簧的劲度系数; 3. 测量两个不同弹簧的劲度系数,加深对弹簧的劲度系数与它的线径、外径关系的了解。 4. 了解并掌握集成霍耳开关传感器的基本工作原理和应用方法。 【实验原理】 1. 弹簧在外力作用下将产生形变(伸长或缩短)。在弹性限度内由胡克定律知:外力和它的变形量成正比,即: (1) (1)式中,为弹簧的劲度系数,它取决于弹簧的形状、材料的性质。通过测量和的对应关系,就可由(1)式推算出弹簧的劲度系数。 2. 将质量为的物体挂在垂直悬挂于固定支架上的弹簧的下端,构成一个弹簧振子,若物体在外力作用下(如用手下拉,或向上托)离开平衡位置少许,然后释放,则物体就在平衡点附近做简谐振动,其周期为: (2) 式中是待定系数,它的值近似为,可由实验测得,是弹簧本身的质量,而被称为弹簧的有效质量。通过测量弹簧振子的振动周期,就可由(2)式计算出弹簧的劲度系数。 3. 磁开关(磁场控制开关): 如图1所示,集成霍耳传感器是一种磁敏开关。在“1脚”和“2 脚”间加直流电压,“1脚”接电源正极、“2脚”接电源负极。当垂直于该传感器的磁感应强度大于某值时,该传感器处于“导通”状 态,这时处于“”脚和“”脚之间输出电压极小,近似为零,当磁感

强度小于某值时,输出电压等于“1脚”、“2脚”端所加的电源电压,利用集成霍耳开关这个特性,可以将传感器输出信号输入周期测定仪,测量物体转动的周期或物体移动所经时间。 【实验仪器】 FB737新型焦利氏秤实验仪1台,FB213A型数显计时计数毫秒仪 【实验步骤】 1. 用拉伸法测定弹簧劲度系数:(不使用毫秒仪) (1)按图2,调节底板的三个水平调节螺丝,使重锤尖端对准重锤基准的尖端。 (2)在主尺顶部安装弹簧,再依次挂入带配重的指针吊钩、砝码托盘,松开顶端挂钩锁紧螺钉,旋转顶端弹簧挂钩,使小指针正好轻轻靠在平面镜上(注意:力度要适当,若靠得太紧,可能会因摩擦太大带来附加的系统误差),以便准确读数。这时因初始砝码等已使弹簧被拉伸了一段距离。(可参考说明书中的装置图)

RLC联谐振频率及其计算公式

RLC串联谐振频率及其计算公式串联谐振是指所研究的串联电路部分的电压和电流达到同相位,即电路中电感的感抗和电容的容抗在数值上时相等的,从而使所研究电路呈现纯电阻特性,在给定端电压的情况下,所研究的电路中将出现最大电流,电路中消耗的有功功率也最大. 1. 谐振定义:电路中L、C 两组件之能量相等,当能量由电路中某一电抗组件释 出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。 2. 电路欲产生谐振,必须具备有电感器L及电容器C 两组件。 3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。 4. 串联谐振电路之条件如图1所示:当Q=Q ?I2X L = I2 X C也就是X L =X C时,为R-L-C串联电路产生谐振之条件。

图1 串联谐振电路图 5. 串联谐振电路之特性: (1) 电路阻抗最小且为纯电阻。即 Z =R+jX L?jX C=R (2) 电路电流为最大。即 (3) 电路功率因子为1。即 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即Q L=Q C?Q T=Q L?Q C=0 6. 串联谐振电路之频率: (1) 公式: (2) R - L -C串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C 使其达到谐振频率f r,而与电阻R完全无关。

7. 串联谐振电路之质量因子: (1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率 之比,称为谐振时之品质因子。 (2) 公式: (3) 品质因子Q值愈大表示电路对谐振时之响应愈佳。一般Q值在10~100 之 间。 8. 串联谐振电路阻抗与频率之关系如图(2)所示: (1) 电阻R 与频率无关,系一常数,故为一横线。 (2) 电感抗X L=2 πfL ,与频率成正比,故为一斜线。 (3) 电容抗与频率成反比,故为一曲线。 (4) 阻抗Z = R+ j(X L?X C) 当 f = f r时, Z = R 为最小值,电路为电阻性。

1简谐运动

11.1 简谐运动 1.某做简谐运动的物体的位移一时间图象如图所示,下列说法正确的是() A. 简谐运动的振幅为2cm B. 简谐运动的周期为0.3s C. 位移一时间图象就是振动物体的运动轨迹 D. 物体经过图象中A点时速度方向沿t轴负方向 2.一个弹簧振子相邻两次加速度相同的时间间隔分别为0.2s和0.6s,则该弹簧振子的周期为() A. 1.6 s B. 1.2s C. 0.8s D. 0.6s 3.如图所示,弹簧振子以O点为平衡位置在A、B间振动,AB=8cm,振子由A点向右运动到B点所需的时间为0.2 s,则() A. 振幅是8 cm B. 从A至C振子做减速运动 C. 周期是0.8 s D. 周期是0.4 4.如图所示为某个弹簧振子做简谐运动的振动图象,由图象可知() A. 在0.1s时,由于位移为零,所以振动能量为零 B. 在0.2s时,振子具有最大势能 C. 在0.35s时,振子具有的能量尚未达到最大值 D. 在0.4s时,振子的动能最大

5.水平方向振动的弹簧振子,其质量为m,最大速率为v,则下列正确的是() 从某时刻算起,在四分之一个周期的时间内,弹力做的功不可能为零A. 2v m B. 从某时刻算起,在半个周期的时间内,弹力做的功可能是零到之间的某一2个值 C. 从某时刻算起,在半个周期的时间内,弹力的冲量一定为零 D. 从某时刻算起,在半个周期的时间内,弹力的冲量可能是零到2m v之间的某一个值 6.如图所示,在光滑水平桌面上有一弹簧,弹簧一端固定在墙上,另一端连接一物体.开始时,弹簧处于原长,物体在O点.当物体被拉到O的右侧A处,此时拉力大小为F,然后释放物体从静止开始向左运动,经过时间t后第一次到达O处,此时物体的速度为v,在这个过程中物体的 平均速度为() A. 大于v/2 B. 等于v/2 C. 小于v/2 D. 0 7.弹簧振子做简谐运动的图象如图所示,下列说法正确的是 A. 在第1s末,振子的速度最大且沿+x方向 B. 在第2s末,振子的回复力最大且沿-x方向 C. 在第3s末,振子的加速度最大且沿+x方向 D. 在0到5s内,振子运动的路程为2cm 8.物体做简谐运动的过程中,有两点A、A′关于平衡位置对称,则物体() A. 在两点处的位移相同 B. 在两点处的速度可能相同 C. 在两点处的速率一定相同 D. 在两点处的加速度一定相同 9.如图为某质点做简谐运动的图象,则由图线可知() A. t=2.5s时,质点的速度与加速度同向 B. t=1.5s时,质点的速度与t=0.5s时速度等大反向 C. t=3.5s时,质点正处在动能向势能转化的过程之中 时质点受到相同的回复力=2.1st和=0.1s tD. 10.一弹簧振子的振幅为A,下列说法正确的是( )

《简谐运动》教学设计

《简谐运动》教学设计 江苏省溧阳中学狄云峰 [教学内容及对象分析] 本节是人教版全日制普通高级中学教科书(试验修订本·必修)《物理》第一册、第九章《机械振动》第一节《简谐运动》。 机械振动是较复杂的机械运动,振动的知识在实际生活中有很多应用(如心电图、核磁共振仪、地震仪、钟摆等),可以使学生联系实际,扩大知识面;同时,也是以后学习波动知识的基础。因此,学好此章内容,具有承上启下的作用。《简谐运动》是《机械振动》这一章中最基本而又最重要的一节,是全章的基础。 简谐运动是机械振动中最简单、最基本的一种运动形式,简谐运动过程中的位移、回复力、加速度和速度均在做周期性的变化。正确理解简谐运动过程中各物理量的变化规律,可以加深对以往所学的运动学和动力学知识的理解;通过已学的运动形式的对比,可以更深入的比较各种条件下运动的变化情况。本节通过对机械振动的教学和对简谐运动规律的分析,帮助学生建立在周期性外力作用下运动的基本概念。 现阶段高一的学生已具有一定的运动学和动力学的基本知识,对高中物理的学习要求和方法已具有一定的认识,但周期性变力作用下物体的运动还是第一次遇到,对这种运动模式的运动形式没有抽象认识;同时,高一学生只习惯于运动模式较为单一的情况,很难对较为复杂的运动由清晰的认识。为此,如何帮助他们建立合理的简谐运动情景是教学的关键。心理学研究表明,在学生的学习中调动眼、耳、口等各种感觉器官共同参与学习过程,则学习效率将得到极大的提高;而建构主义学习理论所要求的学习环境必须具备的基本要素是“情景创设”、“协商会话”和“信息资源提供”。为此在课堂教学上首先通过实验演示给学生以直观的感受,创设学习的良好情景;再引导学生观察、思考、讨论得出初步的简谐运动规律;最后通过电脑动画设计科学的模拟出各种情况下的运动情景,动态的分析各个相关物理量的变化情况,给学生提供科学而丰富的信息资源,然后再次通过观察、思考、讨论得出正确而科学的结论。由此培养学生的观察能力、空间想象能力、协同学习的能力和科学的思维能力,使学生的学习过程变得轻松而高效,并且同步培养学生自主学习的能力,为学生的可持续发展提供必要的训练。 [教学目标] (一)知识目标: 1.知道什么是机械振动及其产生条件;理解回复力的含义; 2.理解简谐运动的条件,学会鉴别简谐运动; 3.掌握简谐运动中相对于平衡位置的位移、速度、回复力和加速度的变化规律。(二)能力目标: 1.通过对物理现象的观察、分析、讨论和归纳,培养学习物理的科学的方法; 2.通过对简谐运动的认识,培养对忽略次要因素、突出主要矛盾的理想化方法的 页脚内容8

串联谐振电路实验报告

串联谐振电路 学号: 1028401083 姓名:赵静怡 一、实验目的 1、加深对串联谐振电路条件及特性的理解 2、掌握谐振频率的测量方法 3、理解电路品质因数Q和通频带的物理意义及其测量方法 4、测量RLC串联谐振电路的频率特性曲线 5、深刻理解和掌握串联谐振的意义及作用 6、掌握电路板的焊接技术以及信号发生器、交流毫伏表等仪表 的使用 7、掌握Multisim软件中的Functionn Generator 、 Voltmeter 、Bode Plotter等仪表的使用以AC Analysis 等SPICE仿真分析方法 8、用Origin绘图软件绘图 二、实验原理 RLC串联电路如图2.6.1所示,改变电路参数L、C或电源频率时,都可以是电路发生谐振。 2.6.1 RLC谐振串联电路

1、谐振频率:f 0=LC π21 ,谐振频率仅与元件L 、C 的数值有关,而与电阻R 和激励电源的角频率w 无关 2、电路的品质因素Q 和通频带B 电路发生谐振是,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因素Q ,即C L R Q 1 = 定义回路电流下降到峰值在0.707时所对应的频率为截止频率,介于两截止频率间的频率范围为通带,即Q fo B = 3、谐振曲线 电路中电压与电流随频率变化的特性称频率特性,他们随频率变化的曲线称频率特性曲线,也称谐振曲线 4、实验仪器: (1) 计算机 (2) 通路电路板一块 (3) 低频信号发生器一台 (4) 交流毫伏表一台 (5) 双踪示波器一台 (6) 万用表一只 (7) 可变电阻 (8) 电阻、电感、电容若干(电阻100Ω,电感10mH 、4.7 mH ,电容100nF )

简谐运动位移公式推导

简谐运动位移公式推导 问题:质量为m的系于一端固定的轻弹簧(弹簧质量可不计)的自由端。如图(a)所示, 将物体略向右移,在弹簧力作用下,若接触面光滑,m物体将作往复运动,试求位移x与时间t的函数关系式。 图(a) 分析:m物体在弹力F的作用下运动,显然位移X与弹力F有关,进而由弹簧联想起胡克定律,但结果只有位移与时间,故要把弹力F替换成关于X与t的量,再求解该微分方程。 推导:取物体平衡位置O为坐标原点,物体运动轨迹为X轴,向右为正。设弹力为F, 由胡克定律F=?kX,K为劲度系数,负号表示力与位移方向相反。 根据牛顿第二定律,m物体加速度a=dv dt =d2X dt2 =F m =-k m x(1) 可令k m =ω2 代入(a),得 d2X dt2=?ω2X或d2X dt2 +ω2X=0 显然,想求出位移X与时间t的函数关系式,须解出此微分方程

求解:对于d2X dt 2+ω2X=0,即X ’’+ ω2X=0 (4) (4)式属可将阶的二阶微分方程, 若设X ’=u ,消去t,就要把把X ”转化为关于X 与t 的函数,那么 X ’’= dX "dt = du dx dx dt =u du dx , u du dx +ω2X=0, u du dx =?ω2X 下面分离变量再求解微分方程,然后两边积分,得 udu =?ω2 Xdx 得 12u 2=? 12ω2 x 2+C ,即u 2=? ω2 x 2+C1 (5) u=x ’,x ’= 2 x 2 =dx dt 再次分离变量, C1? ω2 x 2=dt (7) 两边积分,右边=t ,但左边较为复杂, 经过仔细思考,笔者给出一种求解方法: 运用三角代换,令X= C1ωcos z (7)式左边化为 d cos z ωsin z =?sin zdz ωsin z =-dz ω, 两边积分,得 -–z ω=t+C2 由此可得, X= C1ωcos(ωt+ωC2),

简谐运动的动力学条件和周期公式的推导

简谐运动的动力学条件和周期公式的推导 [摘要]:本文从简谐运动的概念出发, 用数学知识,推理出了简谐运动的动力学条件及弹簧振子的周期公式、单摆做小角度摆动的周期。从逻辑上对机械振动一章的知识有了一 个整体的认识。 [关键词]:简谐运动,动力学条件,周期公式,弹簧振子,单摆 [正文] 课程标准实验教科书《物理》3—4第十一章从运动学的角度对简谐运动进行了定义,恰好从数学课上学生也学到了关于导数的知识。这就为构造简谐运动的逻辑提供了条件,通过这样的一个逻辑构造,可以让学生体会数学在物理学中的应用。同时,也可以让学生充分体会物理学逻辑上的统一美。激发学生学习物理,从理论上探究物理问题的兴趣和决心。 如果质点的位移与时间的关系遵从正弦的规律,即它的振动图象( x —t 图象)是一条正弦,这样的运动叫做简谐运动。 由定义可知,质点的位移时间关系为t A x sin ………………(1)对时间求导数可得速度随时间变化的规律:t A dt dx v cos ………………(2)再次对埋单求导数可得加速度随时间变化的规律:t A dt dv a sin 2 (3) 由牛顿第二定律可知,质点受到的合力为: ma F ………………(4)由(3)(4)可知: t mA F sin 2 (5) 将(1)式代入(5)式可得: x m F 2..................(6)上式中,m 和都是常数,从而可以写成下面的形式kx F (7) 其中2m k ,至此得到了质点做简谐运动的动力学条件:质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置。 对于的弹簧振子来说,(7)式中的k 表示弹簧的劲度系数,对比(6)式可知k m 2,

高中物理第十一章机械振动第1节简谐运动案新人教版选修

第1节 简谐运动 1.了解什么是机械振动,认识自然界和生产、生活中的振动现象。 2.认识弹簧振子这一物理模型,理解振子的平衡位置和位移随时间变化的图象。 3.理解简谐运动的概念和特点,知道简谐运动的图象是一条正弦曲线。 4.能够利用简谐运动的图象判断位移和速度等信息。 一、弹簧振子 1.平衡位置:振子原来□01静止时的位置。 2.机械振动:振子在□ 02平衡位置附近的往复运动,简称振动。 3.弹簧振子:如图所示,小球套在光滑杆上,如果弹簧的质量与小球相比□03可以忽略,小球□04运动时空气阻力也可以忽略,把小球拉向右方,然后放开,它就在□05平衡位置附近运动起来。这种由□ 06小球和□07弹簧组成的系统称为弹簧振子,有时也简称为振子,弹簧振子是一种理想化模型。 二、弹簧振子的位移—时间图象 1.振动位移:可用从平衡位置指向振子所在位置的□ 01有向线段表示。 2.位移—时间图象:以小球的平衡位置为坐标原点,用横坐标表示振子□ 02振动的时间,纵坐标表示振子□ 03相对平衡位置的位移,建立坐标系,得到位移随时间变化的情况——振动图象。 3.物理意义:反映了振子的□ 04位移随□05时间的变化规律。 4.特点:弹簧振子的位移—时间图象是一条□ 06正(余)弦曲线。 三、简谐运动 1.定义:如果质点的位移与时间的关系遵从□ 01正弦函数的规律,即它的振动图象(x -t 图象)是一条□ 02正弦曲线,这样的振动叫做简谐运动。 2.特点:简谐运动是最简单、最基本的振动,其振动过程关于□ 03平衡位置对称,是一种□04往复运动。弹簧振子的运动就是□ 05简谐运动。

3.简谐运动的图象 (1)简谐运动的图象是振动物体的□06位移随时间的变化规律。 07正弦曲线。 (2)简谐运动的图象是□ 判一判 (1)竖直放于水面上的圆柱形玻璃瓶的上下运动是机械振动。( ) (2)物体的往复运动都是机械振动。( ) (3)弹簧振子的位移是从平衡位置指向振子所在位置的有向线段。( ) (4)简谐运动的图象表示质点振动的轨迹是正弦或余弦曲线。( ) (5)只要质点的位移随时间按正弦函数的规律变化,这个质点的运动就是简谐运动。( ) (6)简谐运动的平衡位置是速度为零时的位置。( ) 提示:(1)√(2)×(3)√(4)×(5)√(6)× 想一想 (1)弹簧振子是一种理想化模型,以前我们还学过哪些理想化模型? 提示:点电荷、质点。 (2)简谐运动与我们熟悉的匀速直线运动比较,速度有何不同的特点?如何判断一个物体的运动是不是简谐运动? 提示:简谐运动与匀速直线运动的区别在于其速度大小、方向都在不断变化。只要物体的位移随时间按正弦函数的规律变化,则这个物体的运动就是简谐运动。 课堂任务弹簧振子 1.机械振动的理解 (1)机械振动的特点 ①振动的轨迹:可能是直线,也可能是曲线(摆钟的摆动)。 ②平衡位置:质点原来静止时的位置。从受力角度看,应该是振动方向上合力为零的位置。 ③振动的特征:振动具有往复性。 (2)机械振动的条件

高中物理:《简谐运动》教学设计

高中物理-《简谐运动》教学设计 一、设计思路 人教版老教材从动力学特征的角度定义简谐运动,不符合学生用运动学特征对质点运动进行分类的认知习惯。人教版新教材把“位移与时间的关系遵从正弦函数规律的振动”称为简谐运动,尊重学生的认知规律,有利于简谐运动的教学。正因为如此,通过科学探究,让学生认识弹簧振子的振动图象是一条正弦曲线,是本节课教学的关键所在。 本节课的教学以“探究弹簧振子的振动图象”为线索而展开,将学生的认知过程和探究过程合理链接,实现了物理知识和科学方法、定性探究和定量探究、实验探究和理论探究的有机融合,让学生在学习物理知识的同时应用物理思想方法,体验科学探究的一般过程:“提出问题→制定方案→收集数据→处理数据→猜想结论→分析论证→得出结论→误差分析”。 本节课的实验探究和理论探究都是教师引导下的学生探究,主要引导方式:问题链。两个探究实验分别是水摆和模拟频闪照片。设计水摆实验的目的是:(1)定性验证学生对振动图像图样的猜想;(2)让学生理解振动图象“时间轴”的展开过程。设计模拟频闪照片实验的目的是:(1)让学生体验利用图象处理数据的方法;(2)让学生经历利用假设法定量论证振动图象函数性质的过程。水摆是用饮料瓶制作而成的,实验中利用毛笔书法水写布代替照相机的底片。模拟频闪照片的实验原理也很简单,就是利用视频播放软件获得弹簧振子振动视频的每一帧照片,根据照片记录不同时刻振子的位移并绘制振动图像。从实验结果上看,这两个实验都没有利用位移传感器精确,但这样做可以让学生建立一种观点:科学探究并不是遥不可及的,它不一定要借助很先进的工具和仪器,最简单易行的方法也是好方法。 二、教学目标 1.知识与技能 (1)知道弹簧振子理想模型和简谐运动的运动学定义; (2)知道弹簧振子的振动图象是一条正弦曲线,并理解振动图象的物理意义; (3)理解振动图象“时间轴”的展开过程,会将底片的位移转换成振动时间。2.过程与方法 (1)引导学生经历探究“弹簧振子振动图象”的过程,发展学生“猜想假设”、“设计实验”、“处理数据”、“分析论证”和“误差分析”的能力,培养学生思维的灵活性和

单摆作简谐运动的周期公式可以应用简谐运动周期公式推出

单摆作简谐运动的周期公式可以应用简谐运动周期公式 推出。 可以看出:单 摆的振动周期 跟摆长的平方 根成正比,跟 该处重力加速 度的平方根成 反比。 单摆的 这就是单摆的振动周期公式,是荷兰物理学家惠更斯最早确定的。这个公式只适用于单摆最大偏 角很小的情况。 当最大偏角增大时,振幅随之增大,单摆的周期也将增大。下表是单摆的偏角增大时实际周期与简谐振动周期的比值的变化情况。

显然,最大偏角越小, 应用公式计算的周期 值与实际周期越相 符。当最大偏角为5° 时,误差为万分之五, 10°时误差为万分 之十九,将近千分之 二,30°时误差就接 近百分之二了。 这说明单摆的摆角很 小时,它的实际周期 就近似等于简谐振动 周期 周期为2秒的单摆叫做秒摆。 由于重力加速度跟地球的纬度与距地心的高 度有关,所以世界各地秒摆都有些差异。 若重力加速度g取9.8m·s -2 则秒摆摆长为l=0.993m。 秒摆 重力加速度一、首先是与地球的因素有关,如: 1、物体处在地面的位置。 如,由于地球自转的原因,重力是地球对物体万有引力的一个分力,还有一个分力是供给物体绕地球自转所需要的向心力。 1)赤道处物体,随地球转动的线速度大,需要的向心力大,则分得的重力小,重力加速度就小。 2)向两极位置去时,物体的随地球转动的线速度变小,需要的向心力变小,则分得的重力重力变大,重力加速度就变大。 3)到极点时,物体的随地球转动的线速度最小,需要的向心力最小,则分得的重力最大,

重力加速度就最大。 2、物体离地面的高度,越高,重力加速度越小,因为重力是地球对物体万有引力的一个分力,而且这个万有引力的主要分量就是重力,万有引力的大小与距离的平方成反比,物体离地面越高,物体与地球中心的距离越大,万有引力越小,重力就越小,所以加速度越小; 3、如果是地面打的一个深洞,则越深,重力加速度越小,物体处于地球中心时,理论上说重力加速度是“0”这是根据理论力学的原理得到的。 二、与外来星体的吸引力有关,如太阳、月亮对地球的吸引,使得物体受的重力减小,使重力加速度变小。

简谐振动的研究·实验报告

简谐振动的研究·实验报告 【实验目的】 研究简谐振动的基本特征 【实验仪器】 气垫导轨、通用数字计时器、滑块、砝码、弹簧(5对)、约利氏秤 朱力氏秤 朱力氏秤的示意图如右图所示。一个可以升降的套杆1上刻有毫米分度,并附有读数游标2。将弹簧3挂在1顶部,下端挂一有水平刻线G 的小镜子4,小镜子外套一个带有水平刻线D 的玻璃管5,镜下再钩挂砝码盘6。添加砝码时,小镜子随弹簧伸长而下移。欲知弹簧伸长量需旋动标尺调节旋钮7将弹簧提升,直至镜上水平刻线G 与玻璃管上水平刻线D 及D 在镜中的像相互重合,实现所谓“三线重合”。测量时注意先用底座上螺丝调节弹簧铅直,此时小镜子应不会接触到玻璃管。 【实验原理】 简谐振动是振动中最简单、最基本的运动,对简谐振动的研究有着重要的意义。简谐振动的方程为 x x 2ω-= 其位移方程为 )sin(αω+=t A x 速度方程为 )sin(αωω+=t A v 其运动的周期为 ω π 2= T T 或ω由振动系统本身的特性决定,与初始运动无关。而A ,α是由初始条件决定的。 实验系统如图4-15-1所示。

两个弹性系数k 相同的弹簧分别挂在质量为m 的滑行器两侧,且处于拉伸的状态。在弹性恢复力的作用下,滑行器沿水平导轨作往复运动。当滑行器离开平衡位置0x 至坐标x 时,水平方向上受弹性恢复力)()(00x x k x x k --+-与的作用,有 x m x x k x x k =--+-)00()( 即 x m kx =-2 令k k 20=,有 x m k x x m x k 0 0-==- 或 上式形式与简谐振动方程相同,由此可知滑行器的运动为简谐振动。与简谐振动方程比较可得 m k 0 2= ω 即该简谐振动的角频率 m k 0 = ω 1、)sin(αω+=t A x 的验证 将光电门F 置于0x 处,光电门G 置于1x 处,滑行器1拉至A x 处(010x x x x A ->-)释放,由计时器测出滑行器从0x 运动至1x 的时间1t 。依次改变光电门G 的位置i x ,每次都从A x 释放滑行器,测出对应i x 的时间i t ,最后移开光电门G 。从滑行器通过0x 时开始计时,当它从最大位移返回到0x 时,终止计时,测出时间值为2 T t =,可求出达到最大位置的时间2 t t B = 。 从上面的操作中可以看出2 π α= =,A x A 。将测量的i x ,i t 值代入(4)式,看其是 否成立。ω可由(4)式求出,其中B t T 4=。 2、)cos(αωω+=t A v 的验证 使滑行器处于平衡位置,并使挡光板正对坐标原点,然后依次改变光电门的位置(x 取值与1中相同),每次仍均在A x 处释放滑行器,这样可由计时器给出的时间i t ?及滑行距离 s ?(挡光板两相应边距离)可求出i v ,将i v 及1测出的i t 对应代入(3)式时,看是否成

111简谐运动学生练习.doc

1. 下列运动中属于机械振动的有( ) C 、说话时声带的振动 D 、爆炸声引起的窗扇的运动 2. 如图所示的是某一质点做简谐运动的图彖,下列说法屮正确的是() A. 质点开始是从平衡位置沿x 轴正方向运动的 B. 2s 末速度沿x 轴的负方向 C. 3s 末位移最大,沿x 轴负方向 ? D. 质点在4s 内的路程是零 3. 如图的是一个质点做简谐运动的振动图彖,从图中可以知道() A. 在=0时,质点位移为零 B. 在匸4s 吋,质点的速度方向沿y 轴的负方向 C. 在t=3s 时,质点振幅为-5cm,周期为4s D. 无论何时,质点的振幅都是5cm,周期都是4s 4. 如图所示是用频闪照相的方法获得的弹簧振子的位移一时间图象, 说法不正 确的是() ? ? ? 7、如图所示,弹簧振了以0点为平衡位置作简谐运动, 向。点运动的过程屮,位移方向及大小的变化是( A 、向右,逐渐增大 B 、向右,逐渐减小 & 一质点做简谐运动,其振动图象如图所示,在0.2 s ?0.3 况是( ) A 、树枝在风的作用下的运动 B 、竖直向上抛出的物体的运动 A. 该图象的坐标原点是建立在弹簧振了小球的平衡位置 B. 从图象可以看出小球在振动过程中是沿横轴方向移动的 C. 为了显示小球在不同吋刻偏离平衡位置的位移,让底片沿 垂 直纵轴方向匀速运动 5、 ( 6、 D. 图象屮小球的疏密显示出相同时间内小球位置变化快慢不同 如图所示为一个质点做简谐运动的图线,在如力时刻这个质点的 )A.位移相同 B.位移不同 C.速度相同 D.速度不同 如图所示是质点做简谐运动的图彖,由此口J 知( A. B. C. D. 广=0时,质点位移、速度均为零 t=l s 时,质点位移最人,速度为零 1=2 s 时,质点的位移为零,速度负向最大 £=4 s 吋,质点停止运动 C 、向左,逐渐增大 D 、向左,逐渐减小 s 这段时间内质点的运动情 B y/cm

高中物理教案示例[简谐运动的图像].

教案示例 一、素质教育目标 (一)知识教学点 1、知道振动图像的物理含义。 2、知道简谐运动的图像是一条正弦或余弦曲线。 3、能根据图象知道振动的振幅、周期和频率。 (二)能力训练点 1、学会用图象法、列表法表示简谐运动位移随时间变化规律,提高运用工具解决物理问题的能力。 2、分析简谐运动图像所表示的位移,速度、加速度和回复力等物理量大小及方向变化的规律,培养抽象思维能力。 (三)德育渗透点 1、描绘简谐运动的图像,培养学生认真、严谨、实事求是的科学态度。 2、从图像了解简谐运动的规律,培养学生分析问题的能力,以及审美能力(逐步认识客观存在着简洁美、对称美等)。 二、重点、难点、疑点及解决办法 1、重点 (二)简谐运动图像的物理意义。 (2)简谐运动图像的特点。 2、难点 (1)用描点法画出简谐运动的图像。 (2)振动图像和振动轨迹的区别。 (3)由简谐运动图像比较各时刻的位移、速度、加速度和回复力的大小及方向。 3、疑点 能用正弦(或余弦)图像判定一个物体的振动是否是简谐运动。 4、解决办法 (1)通过对颗闪照相的分析,利用表格,通过作图比较,认识简谐运动的特点。 (2)复习数学中的正弦(或余弦)图像知识;比较几种典型运动(匀速直线运动,匀加速、匀减速直线运动)的图像与简谐运动图像的区别。

三、课时安排 1课时 四、教具、学具准备 自制幻灯片、幻灯机(或多媒体课件)、音叉(带共鸣箱)(附小槌、灵敏话筒、示波器)。 五、学生活动设计 1、学生观看多媒体课件,观察振子的简谐运动情况及其频闪照片、位移一时间变化表格。 2、学生根据表格画出s-t图 3、学生分组讨论,确定振子在各时刻的位移、速度、回复力和加速度的方向。 六、教学步骤 (一)明确目标 (略) (二)整体感知 理解简谐运动图像的物理意义是认识简谐运动规律的关键。 (三)重点、难点的学习与目标完成过程 [导入新课] 提问 1、在匀速直线运动中,设开始计时的那一时刻位移为零,则运动的位移图像是一条什么线? (是一条过原点的直线) 2、在匀变速直线运动中,设开始计时的那一时刻位移为零,则运动的位移图像是一条什么线? (根据s=at2,运动的位移图像是一条过原点的抛物线) 那么,简谐运动的位移图像是一条什么线? [新课教学] 多媒体课件(或幻灯)显示。观察气垫导轨上弹簧振子的振动情况,这是典型的简谐运动。 观察振子从离平衡位置最左侧20mm处向右运动的1/2周期内频闪照片,以及接

简谐运动周期公式的推导

简谐运动周期公式的推导 【摘要】:本文通过简谐运动与圆周运动的联系,用圆周运动的周期公式推导出了简谐运动周期公式。 【关键辞】:简谐运动、周期、匀速圆周运动、周期公式 【正文】: 考虑弹簧振子在平衡位置附近的简谐运动,如图2所示。它的运动及受力情况和图3所示的情况非常相似。在图3中,O 点是弹性绳(在这里我们设弹性绳的弹力是符合胡克定律的)的原长位置,此点正好位于光滑水平面上。把它在O 点的这一端系上一个小球,然后拉至A 位置由静止放手,小球就会在弹性绳的作用下在水平面上的A 、A ’间作简谐运动。如果我们不是由静止释放小球,而是给小球一个垂直于绳的恰当的初速度,使得小球恰好能在水平面内以O 点为圆心,以OA 长度为半径做匀速圆周运动。那么它在OA 方向的投影运动(即此方向的分运动)与图3中的简谐运动完全相同。证明如下: 首先,两个运动的初初速度均为零(图4中在OA 方向上的分速度为零)。 其次,在对应位置上的受力情况相同。 由上面的两个条件可知这两个运动是完全相同的。 在图4中小球绕O 点转一圈,对应的投影运动(简谐运动)恰好完成一个周期,这两个时间是相等的。因此我们可以通过求圆周运动周期的方法来求简谐运动的周期。 如图5作出图4的俯视图,并建以O 为坐标原点、OA 方向为x 轴正方向建直角坐标图2 图3 图4

系。 则由匀速圆周运动的周期公式可知: ωπ 2=T (1) 其中ω是匀速圆周运动的角速度。 小球圆周运动的向心力由弹性绳的弹力来提供,由牛顿第二定律可知: r m kr 2ω= (2) 式中的r 是小球圆周运动的半径,也是弹性绳的形变量;k 是弹性绳的劲度系数。 由(1)(2)式可得: k m T π 2= 二零一一年三月九日 图5

交流谐振电路实验报告

University of Science and Technology of China 96 Jinzhai Road, Hefei Anhui 230026,The People ’s Republic of China 交流谐振电路 李方勇 PB05210284 0510 第29组2号(周五下午) 2006.11.27 实验题目 交流谐振电路 实验目的 研究RLC 串联电路的交流谐振现象,学习测量谐振曲线的方法,学习并掌握电路品质因素Q 的测量方法及其物理意义。 实验仪器 电阻箱,电容器,电感,低频信号发生器以及双踪示波器。 实验原理 1. RLC 交流电路 由交流电源S ,电阻R ,电容C 和电感L 等组成 交流电物理量的三角函数表述和复数表述 ()() φ?φ?+=+=t j Ee t E e cos 式中的e 可以是电动势、电压、电流、阻抗等交流电物理量,?为圆频率,φ 为初始相角。电阻R 、电容C 和电感串联电路 电路中的电流与电阻两端的电压是同相位的,但超前于电容C 两端的电压2π ,落后于电感两端的电压2π 。 电阻阻抗的复数表达式为 R Z R = 模R Z = 电容阻抗的复数表达式为 C j e C Z j C ??π 112==- 模 C Z C ?1=

电感阻抗的复数表达式为 L j Le Z j L ??π==2 模 L Z L ?= 电路总阻抗为三者的矢量和。由图,电容阻抗与电路总阻抗方向相反,如果满足 L c ??=1 , 则电路总阻抗为R ,达到最小值。这时电流最大,形成所谓“电流谐振”。调节交流电源(函数发生器)的频率,用示波器观察电阻上的电压,当它达到最大时的频率即为谐振频率。电路如下图。 电路参数–电动势电压,电流,功率,频率 元件参数–电阻,电容,电感 实验内容 1. 观测RLC 串联谐振电路的特性 (1) 按照上图连接线路,注意保持信号源的电压峰峰值不变,蒋Vi 和Vr 接入双踪示波器的CH1和CH2(注 意共地) (2) 测量I -f 曲线,计算Q 值 (3) 对测得的实验数据,作如下分析处理: 1) 作谐振曲线I -f ,由曲线测出通频带宽 2) 由公式计算除fo 的理论值,并与测得的值进行比较,求出相对误差。 3) 用000 ,,C L L i i L V f V Q Q Q R R V V f ?= = ==+?三种公式计算Q 值,并进行比较。(注意R L 为电感的固有电阻值) 4) 改变R 的值的值,重复(2)(3-1,3-2,3-3)

高三物理简谐运动的公式描述.docx

简谐运动的公式描述教案 教学目标 1.知识与技能 (1)会用描点法画出简谐运动的运动图象. (2)知道振动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线. (3)了解替代法学习简谐运动的位移公式的意义. (4) 知道简谐运动的位移公式为x=A sin (ωt+),了解简谐运动位移公式中各量的物 理含义. (5) 了解位相、位相差的物理意义. (6) 能根据图象知道振动的振幅、周期和频率、位相. 2.过程与方法 (1) 通过“讨论与交流”匀速圆周运动在Ⅳ方向的投影与教材表1— 3— 1 中数据的 比较,并描出z— t 函数曲线,判断其结果,使学生获知匀速圆周运动在x 方向的投影和简谐运动的图象一样,是一条正弦或余弦曲线. (2)通过用参考圆替代法学习简谐运动的位移公式和位相,使学生懂得化难为易 以及应用已学的知识解决问题. (3)通过课堂讲解习题,可以巩固教学的知识点与清晰理解重点与难点. 3.情感、态度与价值观 (1)通过本节的学习,培养学生学会用已学的知识使难题化难为易、化繁为简, 科学地寻找解决问题的方法. (2)培养学生合作学习、探究自主学习的学习习惯. ●教学重点 ,难点 1.简谐运动位移公式x=Asin(ω t +)的推导 2.相位 , 相位差的物理意义 .. ●教学过程 教师讲授 简谐振动的旋转矢量法 。y 在平面上作一坐标轴 OX,由原点 O 作一长度等于振幅的矢量 A t=0 ,矢量与坐标轴的夹角等于初相 矢量 A 以角速度w 逆时针作匀速圆周运动, 研究端点M 在 x 轴上投影点的运动, 1.M 点在 x 轴上投影点的运动 x=Asin(ω t+)为简谐振动。 x 代表质点对于平衡位置的位移,t 代表时间,简谐运动的三角函数表示 回答下列问题 a:公式中的 A 代表什么 ? b:ω叫做什么 ?它和 f 之间有什么关系? c:公式中的相位用什么来表示? d:什么叫简谐振动的初相? M A t M 0 o x P x

人教课标版高中物理选修3-4:《简谐运动》教案-新版

《简谐运动》教学设计 【教材分析】 本节是人教版选修3-4第十一章《机械振动》第一节《简谐运动》。机械振动是较复杂的机械运动,振动的知识在实际生活中有很多应用(如心电图、核磁共振仪、地震仪、钟摆等),可以使学生联系实际,扩大知识面;同时,也是以后学习波动知识的基础。因此,学好此章内容,具有承上启下的作用。《简谐运动》是《机械振动》这一章中最基本而又最重要的一节,是全章的基础。 本节课首先通过学生身边和生活中实际的例子引出振动的概念;而后从简单到复杂、从特殊到一般的思路,从运动学的角度认识弹簧振子,通过手机拍摄频闪照片的方法得出弹簧振子的图象;再通过分析揭示出弹簧振子的位移-时间图象是正弦式曲线,然后从其运动学特征给出了简谐运动的定义,并进一步引导学生认识简谐运动是一种较前面所学的直线运动、曲线运动更复杂的机械运动;最后回归生活和应用举例,使学生知道机械振动是一种普遍的运动形式。 【学情分析】 现阶段高二的学生已具有运动学和动力学的基本知识,对高中物理的学习要求和方法已具有一定的认识,但在大小和方向都做周期性变化的力的作用下的物体运动还是第一次遇到,对这种运动模式的运动形式没有抽象认识;很难对较为复杂的运动有清晰的认识。为此,如何帮助他们建立合理的简谐运动情景是教学的关键。心理学研究表明,在学生的学习中调动眼、耳、口等各种感觉器官共同参与学习过程,则学习效率将得到极大的提高;而建构主义学习理论所要求的学习环境必须具备的基本要素是“情景创设”、“协商会话”和“信息资源提供”。为此在课堂教学上首先通过实验演示给学生以直观的感受,创设学习的良好情景;再引导学生观察、思考、讨论得出初步的简谐运动规律,然后再次通过观察、思考、讨论得出正确而科学的结论。由此培养学生的观察能力、空间想象能力、协同学习的能力和科学的思维能力,使学生的学习过程变得轻松而高效,并且同步培养学生自主学习的能力,为学生的可持续发展提供必要的训练。 【核心素养】 通过《简谐运动》的学习过程,让学生经历从生活实例到物理模型的过程,激发学生学习的积极性和主动性,引起应用物理解决实际问题的好奇与向往。

简谐运动周期公式的推导

简谐运动周期公式的推导 考虑弹簧振子在平衡位置附近的简谐运动,如图2所示。它的运动及受力情况和图3所示的情况非常相似。在图3中,O 点是弹性绳(在这里我们设弹性绳的弹力是符合胡克定律的)的原长位置,此点正好位于光滑水平面上。把它在O 点的这一端系上一个小球,然后拉至A 位置由静止放手,小球就会在弹性绳的作用下在水平面上的A 、A ’间作简谐运动。如果我们不是由静止释放小球,而是给小球一个垂直于绳的恰当的初速度,使得小球恰好能在水平面内以O 点为圆心,以OA 长度为半径做匀速圆周运动。那么它在OA 方向的投影运动(即此方向的分运动)与图3中的简谐运动完全相同。证明如下: 首先,两个运动的初初速度均为零(图4中在OA 方向上的分速度为零)。 其次,在对应位置上的受力情况相同。 由上面的两个条件可知这两个运动是完全相同的。 在图4中小球绕O 点转一圈,对应的投影运动(简谐运动)恰好完成一个周期,这两个时间是相等的。因此我们可以通过求圆周运动周期的方法来求简谐运动的周期。 如图5作出图4的俯视图,并建以O 为坐标原点、OA 方向为x 轴正方向建直角坐标 系。 图2 图 3 图4

则由匀速圆周运动的周期公式可知: ωπ 2=T (1) 其中ω是匀速圆周运动的角速度。 小球圆周运动的向心力由弹性绳的弹力来提供,由牛顿第二定律可知: r m kr 2ω= (2) 式中的r 是小球圆周运动的半径,也是弹性绳的形变量;k 是弹性绳的劲度系数。 由(1)(2)式可得: k m T π 2= (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注) 图5

实验八RLC串联电路的谐振实验

C 1L ω= ωfC 21πC 1ω实验八 R 、L 、C 串联电路的谐振实验 一、实验目的 1、研究交流串联电路发生谐振现象的条件。 2、研究交流串联电路发生谐振时电路的特征。 3、研究串联电路参数对谐振特性的影响。 二、实验原理 1、R L C 串联电压谐振 在具有电阻、 电感和电容元件的电路中,电路两端的电压与电路中的电流一般是不同相的。如果我们调节电路中电感和电容元件的参数或改变电源的频率就能够使得电路中的电流和电压出现了同相的情况。电路的这种情况即电路的这种状态称为谐振。R 、L 、C 串联谐振又称为电压谐振。 在由线性电阻R 、电感L 、电容c 组成的串联电路中,如图8-1所示。 图8-1 R L C 串联电路图 当感抗和容抗相等时,电路的电抗等于零即 X L = X C ; ; 2πf L = X = ? L - = 0 则 ? = arc tg = 0

LC 1LC 即电源电压u 与电路中电流i 同相,由于是在串联电路中出现的谐振故称为串联谐振。 谐振频率用f 0表示为 f = f 0 = 谐振时的角频率用? 0表示为 ? = ? 0 = 谐振时的周期用T 0表示为 T = T 0 = 2 ? 串联电路的谐振角频率ω 0频率f 0,周期T 0,完全是由电路本身的有关参数来决定的,它们是电路本身的固有性质,而且每一个R 、L 、C 串联电路,只有一个对应的谐振频f 0和 周期T 0。因而,对R 、L 、C 串联电路来说只有将外施电压的频率与电路的谐振频率相等时候,电路才会发生谐振。在实际应用中,往往采用两种方法使电路发生谐振。一种是当外施电压频率f 固定时,改变电路电感L 或电容C 参数的方法,使电路满足谐振条件。另一种是当电路电感L 或电容C 参数固定时,可用改变外施电压频率f 的方法,使电路在其谐振频率下达到谐振。总之,在R 、L 、C 串联电路中,f 、L 、C 三个量,无论改变哪一个量都可以达到谐振条件,使电路发生谐振。 2、R L C 串联电压谐振特征 串联谐振具有以下主要特征:

简谐运动-教学设计

简谐运动教学设计 一、设计思路 简谐运动是中学物理学习中一种重要的运动形式,也是最简单的一种机械振动的形式。在通常的教学过程中,采用的是实验引入分析的方法,演示弹簧振子的运动,定性分析它在运动过程中的受力、加速度的大小和方向、速度的大小和方向、位移大小和方向的变化,继而定量分析弹簧振子受力与位移的关系,从而得到简谐运动的特点和定义,在此基础上定义简谐运动的周期、振幅等物理量。我们认为这样的教学过程虽然从实验的角度将简谐运动进行了演示,并从中得到了一些结论,但是整个教学过程是在行为主义教学理论指导下进行的,强调的是教师的讲解和学生的接受,忽略了学生的主动发现过程。因此,我将教学过程和内容安排做了一些调整,引导和指导学生通过自己的努力去发现问题,并得到一些规律和概念性的知识。从对圆周运动的研究开始,利用几何画板描绘做匀速圆周运动的质点在Y轴上投影点的“位置—时间”关系图像,继而在虚拟实验软件上描绘出弹簧振子的“位置—时间”关系图像,通过比较,寻找二者的关系,最后利用真实的演示实验验证所得结论。至于描述简谐运动的物理量──周期和振幅,可以指导学生结合对匀速圆周运动的研究进行独立探究式学习。在整个教学过程中充分利用几何画板提供的平台支持演示、描述知识,温故“问”新,努力提高学生的思维水平。 二、教学过程 1.简谐运动特点 (1)研究匀速圆周运动。 演示做匀速圆周运动的质点在Y轴上的投影点运动轨迹,并描绘出该点位置随时间变化的关系图像(图1)。引导学生观察图像形式,并根据数学知识,初步猜测其对应的函数形式。 点评从匀速圆周运动开始本节课是一个很好的创意,对学生后面进行探究学习开了一个好头。但是如果这里一开始不显示“Y轴上的投影点运动位置与时间关系图像”,而是让学生想象讨论后给出答案,对学生的思维拓展及本节课后面学习会更有帮助。 (2)虚拟演示弹簧振子的运动。

相关文档
最新文档