岩性密度测井方法及应用

岩性密度测井方法及应用
岩性密度测井方法及应用

岩性密度测井方法及应用

摘要:岩性密度测井技术是当前主流的测井技术之一,本文首先介绍了岩性密度测井的物理原理,其次介绍了岩性密度测井的方法及其应用现状,并最终分析了岩性密度测井技术所存在的问题,对其发展提出建议。

关键词:测井岩性密度

前言

核测井技术是当前测井技术中极其重要的一种,其主要通过放射性射线与物质的相互作用所体现出来的差异进行各种不同地质的岩性和密度的判定,并根据所得到的测量数据分析岩石的成份及其含量。岩性密度测井方法主要采用的就是核测井技术,是当前公认的可以快速分析地质岩性和密度的有效方法之一。

一、岩性密度测井物理原理

岩性密度测井应用的主要原理是康普顿效应以及光电效应,其中岩性根据光电效应进行测量,密度根据康普顿效应进行测量。岩性密度测井主要是利用放射性射线与岩石层以及空隙流体物质的相互作用,使放射性射线的强度以及能量发生变化,以此来判定和分析地质参数。

1.岩性的测量——光电效应

对于一个原子来说,当有一个光子与其相撞时,光子会把其能量交给原子的一个核外电子,使电子脱离原子核的束缚而自由运动,所形成的粒子称为光电子。假设入射的光子为光子,则当光子的能量大于原子中电子的结合能时,相应电子层的电子在吸收了光子的能量后会脱离原子核的作用力为飞出、根据李氏经验公式,在射入原子的光子的能量大于原子核外电子结合能时,发生光电效应的概率

上式中,表示线性光电吸收系数,表征当光电子穿过1cm物质时,发生光电效应的概率大小。其中表示的是入射光子的波长;表示的是指数常数,其值视元素种类而定,当元素为N、C、O时,指数常数为3.05,当元素为钠、镁、铝到铁等元素时,指数常数为2.85。

一个原子的光电吸收截面与原子序数Z的关系如下:

在进行岩性密度测井的过程中,一般选用源,系数K基本保持不变。若用表示岩石的光电吸收截面指数,因每个原子拥有的电子数为Z个,则有

因为岩石中含有多种不同的化合物,因此其光电吸收截面应该表示的是组成分子的不同原子的光电吸收截面的和,若用表示岩石的光电吸收截面,即有:

测井曲线代码大全

测井曲线代码 RD、RS—深、浅侧向电阻率 RDC、RSC—环境校正后的深、浅侧向电阻率VRD、VRS—垂直校正后的深、浅侧向电阻率DEN—密度 DENC—环境校正后的密度 VDEN—垂直校正后的密度 CNL—补偿中子 CNC—环境校正后的补偿中子 VCNL—垂直校正后的补偿中子 GR—自然伽马 GRC—环境校正后的自然伽马 VGR—垂直校正后的自然伽马 AC—声波 V AC—垂直校正后声波 PE—有效光电吸收截面指数 VPE—垂直校正后的有效光电吸收截面指数SP—自然电位 VSP—垂直校正后的自然电位 CAL—井径 VCAL—垂直校正后井径 KTh—无铀伽马 GRSL—能谱自然伽马 U—铀 Th—钍 K—钾 WCCL—磁性定位 TGCN—套管中子 TGGR—套管伽马 R25—2.5米底部梯度电阻率 VR25—环境校正后的2.5米底部梯度电阻率DEV—井斜角 AZIM—井斜方位角 TEM—井温 RM—井筒钻井液电阻率 POR2—次生孔隙度 POR—孔隙度 PORW—含水孔隙度 PORF—冲洗带含水孔隙度 PORT—总孔隙度 PERM—渗透率 SW-含水饱和度 SXO—冲洗带含水饱和度

SH—泥质含量 CAL0—井径差值 HF—累计烃米数 PF—累计孔隙米数 DGA—视颗粒密度 SAND,LIME,DOLM,OTHR—分别为砂岩,石灰岩,白云岩,硬石膏含量 VPO2—垂直校正次生孔隙度 VPOR—垂直校正孔隙度 VPOW—垂直校正含水孔隙度 VPOF—垂直校正冲洗带含水孔隙度 VPOT—垂直校正总孔隙度 VPEM—垂直校正渗透率 VSW-垂直校正含水饱和度 VSXO—垂直校正冲洗带含水饱和度 VSH—垂直校正泥质含量 VCAO—垂直校正井径差值 VDGA—垂直校正视颗粒密度 VSAN,VLIM,VDOL,VOTH—分别为垂直校正砂岩,石灰岩,白云岩,硬石膏含量岩石力学参数 PFD1—破裂压力梯度 POFG—上覆压力梯度 PORG—地层压力梯度 POIS—泊松比 TOUR—固有剪切强度 UR—单轴抗压强度 YMOD—杨氏模量 SMOD—切变模量 BMOD—体积弹性模量 CB—体积压缩系数 BULK—出砂指数 MAC MAC—偶极子阵列声波 XMAC-Ⅱ—交叉偶极子阵列声波 DTC1—纵波时差 DTS1—横波时差 DTST1—斯通利波时差 DTSDTC-纵横波速度比 TFWV10-单极子全波列波形 TXXWV10-XX偶极子波形 TXYWV10- XY偶极子波形 TYXWV10- YX偶极子波形 TYYWV10- YY偶极子波形 WDST-计算各向异性开窗时间 WEND-计算各向异性关窗时间

测井曲线解释

主要测井曲线及其含义 主要测井曲线及其含义 一、自然电位测井: 测量在地层电化学作用下产生的电位。 自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。Rmf ≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。 自然电位测井 SP曲线的应用:①划分渗透性地层。②判断岩性,进行地层对比。③估计泥质含量。④确定地层水电阻率。 ⑤判断水淹层。⑥沉积相研究。 自然电位正异常 Rmf<Rw时,SP出现正异常。 淡水层Rw很大(浅部地层) 咸水泥浆(相对与地层水电阻率而言) 自然电位测井 自然电位曲线与自然伽马、微电极曲线具有较好的对应性。 自然电位曲线在水淹层出现基线偏移 二、普通视电阻率测井(R4、R2.5) 普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。 视电阻率曲线的应用:①划分岩性剖面。②求岩层的真电阻率。③求岩层孔隙度。④深度校正。⑤地层对比。 电极系测井 2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。 底部梯度电极系分层: 顶:低点; 底:高值。 三、微电极测井(ML) 微电极测井是一种微电阻率测井方法。其纵向分辨能力强,可直观地判断渗透层。 主要应用:①划分岩性剖面。②确定岩层界面。③确定含油砂岩的有效厚度。④确定大井径井段。⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。 微电极确定油层有效厚度 微电极测井 微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。 四、双感应测井 感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。 感应测井曲线的应用:①划分渗透层。②确定岩层真电阻率。③快速、直观地判断油、水层。 油层: RILD>RILM>RFOC

(完整word版)测井方法原理及应用分类

测井方法的主要分类 1. 电法测井,又分自然电位测井、普通电阻率测井、侧向(聚焦电阻率)测井、感应测井、介电测井、电磁波测井、地层微电阻率扫描测井、阵列感应测井、方位侧向测井、地层倾角测井、过套管电阻率测井等(频率:从直流0~1.1GHZ)。 2. 声波测井,又分声速测井、声幅测井、长源距声波全波列测井、水泥胶结评价测井、偶极(多极子)声波测井、反射式声波井壁成像测井、井下声波电视、噪声测井等(频率由高向低发展,20KHZ~1.5KHZ)。 3. 核测井,种类繁多,主要分三大类:伽马测井、中子测井和核磁共振测井,伽马测井具体如下:自然伽马测井、自然伽马能谱测井、密度测井、岩性密度测井、同位素示踪测井等。 中子测井具体包括:超热中子测井、热中子测井、中子寿命测井、中子伽马测井、C/O比测井、PND-S测井、中子活化测井等。 发展趋势:中子源-记录伽马谱类(非弹性散射、俘获伽马、活化伽马等不同时间测量)。 4. 生产测井,主要分为三大类:生产动态测井、工程测井、产层评价测井。 1

生产动态测井方法主要有:流量计、流体密度计、持水率计、温度计、压力计、井下终身监测器等。 工程测井方法主要有:声幅、变密度测井仪、水泥胶结评价测井仪、磁定位测井仪、多臂微井径仪、井下超声电视、温度计、放射性示踪等。 产层评价方法测井:硼中子寿命、C/O比测井、脉冲中子能谱(PNDS)、过套管电阻率、地层测试器、其它常规测井方法组合等。 5. 随钻测井,大部分实现原理与常规电缆测井相同,实现方式上有许多特殊性。 2

测井方法主要特征总结归类表 3

4

5

第8章 密度测井和岩性密度测井

第八章 密度测井和岩性密度测井 此两种测井方法是由伽马源向地层发射伽马射线,经与地层介质相互作用后,再由伽马探测器接收(即为伽马-伽马测井),地层不同,探测器记录的读数不同,从而被用来研究地层性质。 §1 密度测井、岩性密度测井的地质物理基础 一、岩石的体积密度b ρ(即真密度): V G b =ρ (单位体积岩石的质量) 对含水纯岩石: φρφρρρρφ ?+-=?+?=+=f ma f ma ma f ma b V V V V G G )1( 单位:(g/cm 3) 其中:V V V ma =+φ (1)组成岩石的骨架矿物不同,ρma 不同,如石英为2.65,方解石为2.71,白云石为2.87,对于相同孔隙度得到的体积密度也就不同,由此可判断岩性;另一方面,利用体积密度计算孔隙度时,必须得先确定岩性。 (2)孔隙性地层的密度小于致密地层,且随着φ的增加ρb 减小,由此可求φ。 且(盐水泥浆)(淡水泥浆)1.10 .1=f ρ 二、康普顿散射吸收系数∑ 中等能量γ射线与介质发生康普顿散射康普顿散射而使其强度减小的参数(康普顿减弱系数---由康普顿效应引起的伽马射线通过单位距离物质减弱程度): A N z b A e ρσ??=∑ 沉积岩中大多数核素A z 均接近于0.5(见表8-1, P 138),常见的砂岩、石灰岩、白云

岩的A z 的平均值也近似为0.5(见表8-2), 所以对于一定能量范围的伽马射线(e σ为常数),∑只与b ρ有关。 密度测井利用此关系,通过记录康普顿散射的γ射线的强度来测量岩石的密度。 三、岩石的光电吸收截面 1、线性光电吸收系数:当γ的能量大于原子核外电子的结合能时,发生光电效应的概率。 n A Z λρτ1.40089 .0= 2、岩石的光电吸收截面指数Pe 它是描述发生光电效应时物质对伽马光子吸收能力的一个参数,即伽马光子与岩石中一个电子发生光电效应的平均光电吸收截面,单位b/电子。而它与原子序数关系为: Pe=aZ 3.6 a 为常数,地层岩性不同,Pe 有不同的值,也就是说Pe 对岩性敏感,可以以来确定岩性,Pe 是岩性密度测井测量的一个参数。 3、体积光电吸收截面 体积光电吸收截面也是描述发生光电效应时物质对伽马光子吸收能力的一个参数,它是指每立方米物质的光电吸收截面,以U 来表示,单位b/cm 3。地层岩性不同,其体积光电吸收截面不同(表8-2,139页)。U 对岩性敏感,也是岩性密度测井所要确定的一个参数。岩石的体积光电吸收截面为: ∑==n i i i V U U 1 Ui 、Vi 分别为组成岩石各部分的光电吸收截面和相对体积。如孔隙度为φ的纯砂岩的光电吸收截面为: f ma U U U ??+-=)1( 体积光电吸收截面U 与光电吸收截面指数Pe 有近似关系: b U Pe ρ/≈ 故可由Pe 求得U 。 §2 地层密度测井

测井解释原理

测井解释原理 一: 储集层定义:具有连通孔隙,既能储存油气,又能使油气在一定压差下流动的岩层。 必须具备两个条件: (1)孔隙性(孔隙、洞穴、裂缝) 具有储存油气的孔隙、孔洞和裂缝等空间场所。 (2)渗透性(孔隙连通成渗滤通道) 孔隙、孔洞和裂缝之间必须相互连通,在一定压差下能够形成油气流动的通道。储集层是形成油气层的基本条件,因而储集层是应用测井资料进行地层评价和油气分析的基本对象。 储集层的分类 ?按岩性:–碎屑岩储集层、碳酸盐岩储集层、特殊岩性储集层。 ?按孔隙空间结构:–孔隙型储集层、裂缝型储集层和洞穴型储集层、裂缝-孔洞型储集层。 碎屑岩储集层 ?1、定义:–由砾岩、砂岩、粉砂岩和砂砾岩组成的储集层。 ?2、组成:–矿物碎屑(石英、长石、云母) –岩石碎屑(由母岩类型决定) –胶结物(泥质、钙质、硅质) ?3、特点:–孔隙空间主要是粒间孔隙,孔隙分布均匀,岩性和物性在横向上比较稳定。 ?4、有关的几个概念 –砂岩:骨架由硅石组成的岩石都称为砂岩。骨架成份主要为SiO 2 –泥岩(Shale):由粘土(Clay)和粉砂组成的岩石。 –砂泥岩剖面:由砂岩和泥岩构成的剖面。 碳酸盐岩储集层

?1、定义:–由碳酸盐岩石构成的储集层。 ?2、组成:–石灰岩(CaCO 3)、白云岩Ca Mg(CO 3)2)、泥灰岩 ?3、特点:–储集空间复杂 有原生孔隙:分布均匀(如晶间、粒间、鲕状孔隙等) 次生孔隙:形态不规则,分布不均匀(裂缝、溶洞等) –物性变化大:横向纵向都变化大 ?4 、分类 按孔隙结构: ?孔隙型:与碎屑岩储集层类似。 ?裂缝型:孔隙空间以裂缝为主。裂缝数量、形态及分布不均匀,孔隙度、渗透率变化大。 ?孔洞型:孔隙空间以溶蚀孔洞为主。孔隙度可能较大、但渗透率很小。 ?洞穴型:孔隙空间主要是由于溶蚀作用产生的洞穴。 ?裂缝-孔洞型:裂缝、孔洞同时存在。 碳酸盐岩储集空间的基本类型 砂泥岩储集层的孔隙空间是以沉积时就存在或产生的原生孔隙为主; 碳酸盐岩储集层则以沉积后在成岩后生及表生阶段的改造过程中形成的次生孔隙为主。 碳酸盐岩储集层孔隙空间的基本形态有三种:孔隙及吼道、裂缝和洞穴。 碳酸盐岩储集层孔隙结构类型有:孔隙型、裂缝型、裂缝- 孔隙型、及裂缝- 洞穴型 常规测井在孔隙型/裂缝型碳酸盐岩中的特征(简答): 孔隙型储集层:在曲线形状方面表现为圆滑的“U”字形,如电阻率呈“U”字形降低,这与裂缝发育段的尖刺状电阻率起伏形成强烈的反差;在测井值方面表现为二高两低,即时差、中子孔隙度增高,电阻率和岩石体积密度降低。特点:曲线光滑,单层明显是以小孔为主的储层的主要特征,分层明显,表面看较好。 裂缝型储集层: 电阻率测井响应:微电极测井曲线在裂缝发育段呈现明显的正幅度差,且常伴有显著的锯齿

测井曲线的识别及应用

第一讲测井曲线的识别及应用 钻井取芯、岩屑录井、地球物理测井是目前比较普及的三种认识了解地层的方法。钻井获取的岩芯资料直观、准确,但成本高、效率低。岩屑录井简便、及时,但干扰因素多,深度有误差,岩屑易失真。测井是一种间接的录井手段,它是应用地球物理方法,连续地测定岩石的物理参数,以不同的岩石存在着一定物性差别,在测井曲线上有不同的变化特征为基础,利用各种测井曲线显示的特征、变化规律来划分钻井地质剖面、认识研究储层的一种录井方法;具有经济实用、收获率高、易保存的优势,是目前我们认识地层的主要途径。 鄂尔多斯盆地常规测井系列分为综合测井和标准测井两种。 综合测井系列:重点反映目的层段钻井剖面的地层特征。测量井段由井底到直罗组底部,比例尺1:200。由感应、八侧向、四米电阻、微电极、声速、井径、自然电位、自然咖玛八种测井方法组成。探井、评价井为了提高储层物性解释精度,加测密度和补偿中子两条曲线。 标准测井系列:全面反映钻井剖面地层特征,测量井段由井底到井口(黄土层底部),比例尺1:500,多用于盆地宏观地质研究。过去标准测井系列较单一,仅有视电阻率、自然咖玛测井等两三条曲线。近几年完钻井的标准测井系列曲线较完善,只比综合测井系列少了微电极测井一项。 一、测井曲线的识别 微电极系测井、四米电阻测井、感应—八侧向测井、都是以测定岩石的电阻率为物理前提,但曲线的指向意义各异。微电极常用于判断砂岩渗透性和薄层划分。感应—八侧向测井用于判定砂岩的含油水层性能。四米电阻、声速、井径、自然电位、自然咖玛

用于砂泥岩性划分。它们各有特定含义,又互相印证,互为补充,所以,我们使用时必须综合考虑。 1、微电极测井 大家知道,油井完钻后由井眼向外围依次是:泥饼、冲洗带、侵入带、地层。泥饼是泥浆中的水分进入地层后,吸附、残留在砂岩壁上的泥浆颗粒物。冲洗带是紧靠井壁附近,地层中的流体几乎被钻井液全部赶走了的部分;其深入地层的范围一般约7—8 厘米。侵入带是钻井液与地层中流体的混合部分。 微电极测井是一种探测井壁周围泥饼和冲洗带电阻率的测井方法。由三个微电极系测得的微梯度和微电位两条曲线组成。微梯度探测范围(横向深度)4—5 厘米,显示的是泥饼的电阻值(泥饼的厚度一般在3—5 厘米之间,泥饼的电阻率通常为泥浆滤液电阻率的1—2 倍);微电位探测深度8—10 厘米,显示的是冲洗带的电阻值。当地层为非渗透性的泥岩、页岩时井壁无泥饼和冲洗带,梯度电阻值等于或接近电位电阻值,曲线重合或叠置;当地层为渗透性的砂岩时,梯度电阻值小于电位电阻值,两条曲线分离,出现差异,差异越大说明砂岩渗透性能越好。所以,主要用来判断储层的渗透性能。 微电极系由于电极距短,反应灵敏,极板紧贴井壁受泥浆影响小对层界面反映清晰,划分2?5米薄层时使用较多,曲线的拐点处为小层界面。 2、感应测井 感应测井是利用电磁感应的原理来测量地层的导电性能。双感应—八侧向综合井下仪器,测量的是地层深、中、浅三个不同位置上的电阻率值。深感应探测深度约为中感应的二倍(距井筒四米左右),反映的是原始地层的电阻率。中感应反映的是距井筒1?2 米范围内地层的电阻率。八侧向反映的是井壁附近的电阻率。这种由近到远的三组合比

测井资料交会图法在火山岩岩性识别中的应用

文章编号 1004Ο5589(2003)02Ο0136Ο05 测井资料交会图法在火山岩岩性识别中的应用 赵 建 高福红 吉林大学地球科学学院,长春130026 摘 要 在火山岩储层研究中,岩性识别显得越来越重要。在评述目前常用的岩性识别方法后,重点以测井资料交会图法为例,以松辽盆地徐家围子断陷升平气田深层白垩系营城组火山岩为对象,优选出密度测井、自然伽玛测井、声波测井、电阻率、钍铀等测井项目的数据进行交会,编制出测井曲线交会图版,并以此为依据识别出该区的火山岩主要岩性有:安山岩、玄武岩、流纹岩和凝灰岩等。识别结果与实际情况相吻合。 关键词 火山岩 岩性识别 交会图 中图分类号 P588.1 文献标识码 A 收稿日期 2002Ο11Ο04;改回日期 2003Ο03Ο20 作者简介 赵 建(1976-),男,河南周口人,硕士研究生,从事含油气盆地研究. 通讯作者简介 高福红(1962-),女,辽宁朝阳人,副教授,从事沉积学和含油气盆地研究. Application of Crossplots B ased on Well Log Data in Identifying Volcanic Lithology Jian Zhao ,Fuhong G ao College of Earth Sciences ,Jili n U niversity ,Changchun ,130061Chi na Abstract Lithologyical identification is becoming increasingly important in the study of volcanic rock reser https://www.360docs.net/doc/fc3351204.html,mon methods in identifying volcanic lithology are introduced briefly here.The volcanic rocks of Y ingcheng Formation in Shengping G as Field are used as examples and well log crossplots are compiled based on the following data :density log ,gamma 22ray log ,acoustic log ,resistivity log ,thorium and uranium log.By this means ,andesite ,basalt ,rhyolite and tuff are identified.The identification result is well coincident with the lithological fact in the area. K ey w ords volcanic rock ,lithology identification ,crossplot 1 概 述 火成岩油气藏目前已成为世界油气田勘探开发的一个新领域。在美国、前苏联、古巴和墨西哥等很多国家都有这类油气藏被发现[1]。我国大多数油田也相继发现有这类储层。例如在准噶尔盆地西北缘的石炭系和二叠系中发现了一批火山岩油藏,而且探明的地质储量相当可观;二连盆地白垩系地层中、黄骅凹陷北堡地区、苏北地区等相继发现了火山岩储层油气藏。目前,在松辽盆地北部营城组火山岩地层油气勘探也取得了较好的效果。所有这些都 展示了火山岩良好的勘探前景。对这类特殊的储层 进行研究时,要进行火山岩岩性识别。识别含油气盆地中的火山岩岩性最直接有效的方法是岩心分析,但是考虑到油田上的生产效益,深层钻井取心成本很高,因此不可能在每口井中都取心,加上过去的老井在钻探过程中,遇到火山岩层时常常又不够重视,所以取心更是很少。因此利用间接的方法进行岩性识别成了必然。 在不同的地区,由于喷发方式和所处的构造不同,火山岩的岩性具有很大差异,岩石类型多样化,结构、构造复杂化。比如在我国中部的石西地区火 世界地质 G lobal G eology ,2003,22(2):136~140

关于测井技术应用与发展探讨

关于测井技术应用与发展探讨 随着石油勘探开发的需要,测井技术发展已愈来愈迅速,高分辨阵列感应、三分量感应和正交偶极声波等新型成像测井仪为研究地层各向异性提供了强有力的手段;新的测井仪器,如电阻率、新型脉冲中子类测井仪、电缆地层测试及永久监测等现代测井技术可以在井中确定地层参数,精细描述油藏动态变化;随钻测井系列也不断增加。通过介绍测井技术的测量原理和部分仪器结构,寻求我国测井技术的差距和不足,这对于我国当前的科研和生产具有指导和借鉴作用。 标签:测井技术地质测试 根据地质和地球物理条件,合理地选用综合测井方法,可以详细研究钻孔地质剖面、探测有用矿产、详细提供计算储量所必需的数据,如油层的有效厚度、孔隙度、含油气饱和度和渗透率等,以及研究钻孔技术情况等任务。此外,井中磁测、井中激发激化、井中无线电波透视和重力测井等方法还可以发现和研究钻孔附近的盲矿体。测井方法在石油、煤、金属与非金属矿产及水文地质、工程地质的钻孔中,都得到广泛的应用。特别在油气田、煤田及水文地质勘探工作中,已成为不可缺少的勘探方法之一[1]。应用测井方法可以减少钻井取心工作量,提高勘探速度,降低勘探成本。在油田有时把测井称为矿场地球物理勘探、油矿地球物理或地球物理测井。按照传统的观点,测井技术在油气勘探与开发中,仅仅对油气层做些储层储集性能和含油气性能(孔隙度、渗透率、含油气饱和度和油水的可动性)定量或半定量的评价工作,这已远远跟不上油气工业迅猛发展的需要。而当今测井工作中评价油气藏的理论、方法技术有了长足的发展,解决地质问题的领域也在逐步扩大。 1电阻率测井技术 电阻率成像测井把由岩性、物性变化以及裂缝、孔洞、层理等引起的电阻率的变化转化为伪色度,直观看到地层的岩性及几何界面的变化,识别岩性、孔洞、裂缝等。电阻率成像有FMI、AIT及ARI等。斯伦贝谢的FMI有四个臂,每个臂上有一个主极板和一个折页极板,主极板与折页极板阵列电极间的垂直距离为5.7in,8个极板上共有192个传感器,都是由直径为0.16in的金属纽扣外加0.24in的绝缘环组成,有利于信号聚焦,使得钮扣电极的分辨率达0.2in,测量时极板被推靠在井壁岩石上,小电极主要反映井壁附近地层的微电阻率。斯伦贝谢或阿特拉斯的AIT是基于DOLL几何因子的电磁感应原理,通过对单一发射线圈供三种不同频率交流使其在周围的介质中产生电磁场,用共用一个发射线圈的8对接收线圈检测感应电流,从而可以求出介质的电导率。ARI是斯伦贝谢基于侧向测井技术推出的,可以有效的进行薄层、裂缝、储层饱和度等地层评价。长庆近年来均采用四米电阻率测井系。主要用于定性划分岩石类型和判定砂岩的含油、含水性能。 2声波测井技术

测井原理与应用

测井原理与应用 测井技术:应用物理方法研究油气田钻井地质剖面和井的技术状况,寻找并监测油气层开发的一门应用技术。Well drilling 测井:矿场地球物理物探:地面地球物理 地层地球物理特性:1、电化学特性2、导电特性3、介电特性4、声学特性5、核特性6、磁特性7、热特性 特性随岩层的岩性、物性及所含流体特性的不同而变化。 测井方法:物理方法:1、电法测井2、声波测井3、核测井4、生产测井 测井用途: 一、评价油气层;(1)定性分析,划分渗透层、裂缝带,地层对比 地层对比:在横向上进行地层追踪的过程 (2)定量计算参数,储集层是具有一定的孔隙度和渗透率的地层(3)确定油气层的有效厚度(4)预测产能(5)研究构造和沉积环境 二、油藏描述;研究油气藏的生储盖条件,储量计算; 三、油气田开发的问题;(1)剩余油的确定及分布预测(2)开发井网调整措施研究(3)水淹层识别及水淹级别的判别 四、油气井工程中的问题;(1)地层压力,岩石强度,井壁稳定,固井质量(2)评价压裂酸化和封堵效果(3)注采井的流体动态监测(4)随钻实现了地质导向,消除了以往的盲目钻井(5)检查套管损伤 五、其他作用 电法测井:以研究岩石及其孔隙流体的导电性,介电特性及电化学特性为基础的一大类测井方法。 电化学特性:自然电位测井(SP) 介电特性:电磁波传播测井(EPT) 导电特性:双侧向电阻率测井(DLL)=聚焦测井、微球开聚焦电阻率测井(MSFL)、感应测井(DIL)、阵列感应式成像测井(AIT)、随钻电阻率测井(LWD)、套管电阻率测井(CHFR)、方位电阻率测井(ARI)、地层倾角测井(SHDT)、地层微电阻率扫描测井(FMS)井径曲线(CAL)钻头直径(BITS) 自然电位:井中自然电场产生的电位

油田测井方法及应用研究

油田测井方法及应用研究 这是中国油气勘探早期使用的测井技术,这一时期主要分为半自动测井技术和全自动测 井技术两个阶段。最初的测井技术出现在上个世纪50年代末期,当时所使用的测井技术较 为落后,技术手段主要是采用电法测井,并具有一定的危险性。解放前,玉门油田应用半自动 测井技术勘探油气获得了成功,解放后,克拉玛依油田第1口油气发现井也是应用半自动测井 技术进行了测井作业,发现了油层和气层。从上世纪六十年代起,开始用全自动测井技术勘探 石油。大港油田油气发现井港3井、四川盆地石炭系气藏发现井相18井等都是采用全自动 测井技术勘探油气,并且获得了成功。因此,全自动测井技术在中国油气勘探史上贡献巨大。 1.2数字、数控测井时期 第二时期测井技术诞生于上个世纪60年代初期,也就是数字测井技术,其运作原理就 是运用计算机对采集到的数字信息进行分析与处理。数字测井技术实现了系列化、数字化和 标准化,提高了砂岩和泥质砂岩油气藏的勘探效益。数字测井技术中的仪器系列配套全,采集 的测井信息多,经过计算处理解释,能对砂岩和泥质砂岩油气层做出正确评价。数字测井技术 还开辟了在油田开发中应用的新领域,用数字测井技术探测水驱油田产层剩余油动态变化,评 价水淹层和原油采出程度,现已成为中国水驱油田动态监测技术的基本手段。中国使用数控测 井技术勘探石油始于80年代初期,数控测井技术中有先进的裂缝识别测井技术,对评估裂缝 性碳酸盐岩油藏储量有利,由于数控测井技术中的仪器系列全、精度高、并有测井质量控制 和处理解释功能,提高了勘探深层天然气的分辨率。 1.3高清成像测井时期 高清成像测井技术出现是在90年代末期,即将所需要的数据和信息进行处理后,以图 像的方式经过工作站并运用电缆进行数据传输,该项技术不但传输速度快,成像质量好,操 作上也更加便捷。美国首先推出成像测井技术,用于提高复杂油气藏的勘探效益,效果显著。 中国从美国引进成像测井技术,在大庆、胜利、新疆、四川、海上等油田应用,发现了许多勘 探难度极大的油田。成像测井技术开始成为中国非均质、复杂油田勘探的关键技术。辽河油 田应用成像测井技术和钻进式井壁取心技术探测非均质严重的裂缝性石灰岩油藏,获得成功。 成像测井技术能发现裂缝,但不能判断裂缝性地层流体性质;钻进式井壁取心技术能从裂缝性 石灰岩硬地层中取出岩心,岩心上有油迹显示,评价为裂缝性油层,经测试,获得了高产。这一成 功的实践经验,为今后勘探类似的非均质复杂油藏提供了范例。 2.测井新方法及应用分析 2.1声、电成像测井技术 利用声、电成像测井技术,对研究井下的岩性特性及物性参数提供依据,是寻找和评价 油田的井下测试技术措施。例如,在井下利用传感器的阵列扫描技术措施,也可以实施扫描 测量,采集井筒的数据信息资料,传输到地面后,经过成像处理,得到井壁的二维影像资料,或者井筒周围的三维影像资料,为地质分析提供测井信息。大庆油田汪902井进行了成像测井,主要解决识别低孔隙和低渗透致密气层难题。根据阵列感应和地层微电阻率扫描成像测井 图以及核孔隙度-岩性组合测井图,准确地提供了地层岩性、构造和沉积环境信息,在井深2937.6~3052.2m的侏罗系地层中,测井解释4层低孔隙孔隙度约为5%,经射孔和压裂后测试, 获天然气产量140000m3/d,不含水。这个范例为今后勘探类似的低孔隙和低渗透气藏提供了 实践经验。 2.2产出剖面测井技术 随着油田开发的深入和要求的逐步提高,各种新的技术问题不断出现,老式产出剖面测井 仪器难以适应新的应用需求,由此近些年来相继开发出以阻抗式仪器为代表的一些新型产出剖

测井方法及应用

测井方法及应用

什么是测井测井技术的发展 石油地球物理测井是一门应用性的边缘科学,是应用地球物 理学(包括重、磁、电、震、测井)的一个分支,它用物理 学的原理解决地质学的问题。 所谓测井,就是用一些专门的仪器设备放入井中对地层的某一 方面特性(电化学特性、导电特性、声学特性、放射性等) 进行测量,结合钻井资料、录井和地质等资料,分析、确定地层的 地质特性和各种地质参数,寻找地下的油气资源,解决油气田勘探、 开发过程中的具体问题,例如分析地层的岩性、沉积相、沉积环境、 地层的地质构造,以及油、气、水的分布规律,油气层水淹情况及 状态,储集层性能评价、油气藏描述、以及固井、试油等工程作业。 同时,测井资料也为固井、试油、开发方案编制及进一步的各种措 施提供依据。 可以说测井资料是一种重要的地质信息。

测井资料的主要应用测井技术的发展 在油气勘探开发中,测井资料的应用主要包括以下三个方面: 1、地层评价:主要内容有岩性分析、计算储层参数、储层综合评价、划分油、气、水层并评价产能。 2、油矿地质:编制钻井地质综合柱状图、岩芯归位、地层对比;研究地层、构造、断层及沉积相;研究油气藏和油气水分布规律,计算储量,制定开发方案。 3、钻井、采油工程: 在钻井工程中,测井斜方位和井径等几何形态的变化、估计地层孔隙流体压力和岩石的破裂压力梯度,确定下套管深度和水泥上返高度,计算平均井径,检查固井质量。 在采油工程中,测量生产剖面和吸水剖面,确定水淹层位、压力枯竭层位、出水层位、出砂层位、窜槽层位,检查射孔质量和酸化压裂效果。

测井技术的发展我国测井技术的发展现状 一、测井仪器的发展 60年代以来,我国测井仪器经历了五次更新换代,即:半自动 模拟测井仪、全自动模拟测井仪(60-70年代)、数字测井仪 (80年代初期)、数控测井仪(80年代中期)和成像测井仪(90 年代末期)。 通过测量仪器不断的更新换代,提高测量仪器的稳定性和一致 性,提高测量精度;通过提高采集数据量和计算机处理能力来获取 更多的地质信息。目前,测井技术正向着多学科相互渗透的综合评 价方向发展。

测井岩性识别方法研究_杨玲

2015年第2期(总第317期) NO.2.2015 ( Cumulativety NO.317 ) 1 概述 识别储层岩性最直接最有效的方法是岩心分析,但考虑到油田上的生产效益,深层钻井成本很高,因此不能在每口井中都取心,测井岩性识别方法作为一种简单而有效的技术方法,已经得到了广泛的应用。尤其是近年来岩性识别方法得到了迅猛的发展,2009年李祖兵利用M-N交会图对具有不同结构和构造的同类岩性进行了识别;2010年张伯新以准噶尔盆地六九区石炭系火山岩为研究对象,构建了测井相-岩性建模数据库,应用模糊数学方法建立了工区内火山岩岩性识别标准模型;2013年杨辉运用BP神经网络模型对研究区域复杂岩性进行识别,识别结果与岩心岩性和录井岩性较为相符,对该区域的储层识别和沉积相的研究具有一定的参考价值。2014年刘国全针对沧东凹陷孔二段源储互层型致密储层岩性识别的难点,利用散点图、交会图及ECS测井进行岩性的识别,形成了源储互层型致密油岩性识别的有效方法等。 测井岩性识别方法是根据已有的测井曲线资料来划分地下地层的岩性,传统岩性识别方法的方法为交会图法。测井曲线资料包含有丰富的岩性信息,地下的岩性主要包括岩石的物理组成、排列结构、孔隙度及孔隙流体的性质直接着影响测井曲线的测量结果,其中自然伽马(GR)、自然电位(SP)及泥质含量(Vsh)等测井曲线对地下岩性的变化反应最为灵敏。实际应用中,特定的岩性对应着特定的测井参数组合,因此,测井解释人员可以根据特定的测井参数组合来确定地下地层的岩性。 2 基础数据整理 测井曲线的质量直接影响整个研究工作的顺利开展。实际测量过程中一方面由于环境因素的影响会造成测井资料中出现一些不稳定的跳跃状态,需要对测井曲线进行滤波处理;另一方面由于仪器刻度的不精确性会引起刻度误差,需要进一步做标准化处理。 其中频率直方图是测井标准化处理的一种基础方法,首先选取一套岩性稳定、厚度大、分布范围广的地层作为标准层,然后对选定的标准层分别做自然伽马、补偿声波、补偿密度、补偿中子孔隙度等测井资料频率直方图,确定每项测井资料在每口井的主要分布范围和峰值,确定对应关键井相应的测井资料分布范围和峰值确定校正值并进行校正。 3 常规测井资料识别地层岩性 实际情况中,考虑成本及效率因素,绝大部分油田都采用常规的测井系列,常规的测井资料主要包括自然伽马(GR)、自然电位(SP)、声波时差(DT)、密度(DEN)、电阻率(Rt、Rxo)、放射性(CNL)等岩石物理参数,这些测井曲线包含了地下地层的岩性、物性和含油性信息,是一套比较全面而灵敏的测量组合系统。大量理论及实践资料表明,常规测井识别岩性是可靠并且有效的。 利用常规测井资料识别地层岩性运用最多的是交会图法。交汇图法是选用两种对岩性反应敏感的物理量进行交会来识别地层的岩性,主要是依据不同储层的岩性和流体类型异常在交会图平面上占有不同区域的特点,进行异常划分。常用的有中子-密度交会图、声波时差-密度交会图、中子-声波时差交会图等。交会图具有制作简单、使用方便和快捷的优点,是一种被广泛采用的岩性识别方法。但其缺点是对复杂岩性识别率低。 根据某工区18口井不同岩性测井响应的差别,针对泥岩、砂岩干层、油层、水层及盐岩等5种岩性建立的GR-波阻抗交会图样板,利用该样板可以直观有效地进 测井岩性识别方法研究 杨 玲1 李鹏飞2 (1.山西省煤炭地质114勘查院,山西长治 046011;2.长江大学,湖北武汉 430100) 摘要:地层的岩性是岩石颜色、成分、结构、构造等特征的总和,识别钻井剖面上地层的岩性,尤其是储层的岩性,是石油勘探和开发中的一项重要的基础性工作。其能有效进行测井储层识别,岩性识别是前提,因此,岩性识别方法在油气层识别中占有不可或缺的地位。 关键词:测井技术;岩性识别方法;储层;石油勘探;石油开发 文献标识码:A 中图分类号:P631 文章编号:1009-2374(2015)02-0176-02 DOI:10.13535/https://www.360docs.net/doc/fc3351204.html,ki.11-4406/n.2015.0184 - 176 -

测井解释方法及应用

72 1?测井解释方法 目前常用的地球物理测井方法主要有电阻率测井、自然电位测井、自然伽马测井、孔隙度测井等。 电阻率测井可分为普通电阻率测井、侧向测井以及微电阻率测井技术。普通电阻率电极包括一对供电电极A、B和一对测量电极M、N。可以用于划分高阻层;微电阻率测井也包括微电位和微梯度两种,可用于划分渗透性层位与非渗透率性层位[1] 。 自然电位曲线基本上可以算是“渗透性曲线”,可以将渗透层同非渗透性泥岩层区分开来,但不是渗透性强度曲线。用于区分比较厚的砂泥岩层系中的渗透性砂岩层与泥岩层比较理想;自然伽马曲线可以划分泥质和非泥质地层,估计地层中的泥质含量;密度测井可以估算孔隙度,而且在砂泥岩中特别有效;声速测井通过测量声波穿过岩层的走时来估算孔隙度[2-4]。 2?测井方法应用 利用电测资料可反映电性与沉积相的相互关系。本文以鄂尔多斯盆地K区为例,在研究区取心资料不多的情况下,通过电测资料分析其沉积相特征。研究区在总结前人对测井相研究的基础上,分析其建立的测井模式,依据不同区域电测资料的差别及对应沉积相的改变,结合研究区的实际电测资料,建立起研究区的测井相模式较好的识别研究区的三角洲体系的各个沉积微相。 电测识别沉积相的主要曲线为自然电位和自然伽马,由于两曲线对不同的沉积微相类型表现出来的形状差别较大,故通常根据二者形态来指示沉积微相。研究区长6储层主要的测井相模式可分为5种,具体的模式分析如下: 1)箱形、钟形测井相,该类测井相类型在研究区较为常见,多以中高幅出现,可作为分流河道、水下分流河道及河道侧翼沉积微相的典型代表,其中箱形模式是主河道的代表。箱形模式上下多为钟形模式,其上多为天然堤沉积,且厚度较大,表现出明显的正韵律,两箱形之间可见间湾沉积,其曲线幅度较小。 2)漏斗形测井相,该类测井相在研究区河道末端可见,多以中高幅形态出现,常出现在厚度较大,平面连通 性差的砂体中,是河口坝沉积微相的特有形态,部分区域与分流河道形态较难区分,但其具有一个明显的沉积特征即呈上粗下细的反韵律,幅度与分流河道相比稍微偏低一点。 3)指状测井相模式,该类测井相一般出现在区域为泥岩的沉积环境中,呈一个单独的小砂体,曲线幅度以中低幅形态,多以低幅度出现,呈指状,是远砂坝沉积微相和决口扇特有的形态特征,因二者曲线形态相似,故可根据其出现的位置及区域结合其它划分标识来共同判断属于哪类沉积微相。 4)齿形测井相模式,该类测井相模式多呈低幅度形态出现,可很好的指示水下天然堤及河道间沉积,常出现在两河道间或河道与河口坝之间,可根据其齿状出现的频率而判断砂体的厚薄,当砂体厚度较薄时,曲线幅度相对很小。 5)直线测井相模式,该类测井相模式曲线表现为两根平滑的直线,几乎无幅度起伏,自然电位曲线几乎与泥岩基线重合,是前三角洲沉积相的典型形态,区域无砂体或很薄,多以泥岩为主。 3?结束语 1)目前常用的地球物理测井方法主要有电阻率测井、自然电位测井、自然伽马测井、孔隙度测井等,不同测井方法可用于识别不同的储层特征,可综合利用各类测井方法掌握储层地质信息。 2)自然电位曲线和自然伽马曲线可用于识别沉积相特征,由于两曲线对不同的沉积微相类型表现出来的形状差别较大,故通常根据二者形态来指示沉积微相。本文利用自然电位曲线和自然伽马曲线分析了鄂尔多斯盆地K区沉积相特征。 参考文献 [1]谢灏辰,于炳松,曾秋楠,等. 鄂尔多斯盆地延长组页岩有机碳测井解释方法与应用[J]. 石油与天然气地质,2013(6):731-736. [2]唐海燕. 乌尔逊凹陷火山碎屑岩储层测井解释方法研究[D].吉林大学,2010. [3]李英. 川东飞仙关组地层压力测井解释方法研究[D].西南石油学院,2003. [4]李国平,石强,王树寅. 储盖组合测井解释方法研究[J]. 测井技术,1997(2):22-28. 测井解释方法及应用 刘二虎1,2 1. 西安石油大学 陕西 西安 7100652 .油气勘探公司 陕西 延安 716000 摘要:测井解释是综合利用地球物理学方法对储层岩性、物性以及含油气性等特征进行认识方法,是利用测井曲线认识地质信息的重要技术。本文对目前常用的地球物理测井技术进行了分析应用。 关键词:测井解释 地球物理测井 地质信息 Method?of?logging?interpretation?and?its?application Liu?Erhu 1,2 1. Xi ’an Shiyou University ,Xi'an 710065,China Abstract:Logging interpretation is a method to comprehensively apply geophysical methods to understand reservoir lithology,physical properties and oil-gas-bearing properties. Also,it is an important technique to understand geological information by logging curve. This paper mainly analyses commonly used geophysical logging technology. Keywords:logging interpretation; geophysical logging; geological information

测井曲线判断岩性

利用测井资料判断岩性及油气水层 一、普遍电阻率测井(双侧向、三侧向、2.5m、4.0m、七侧向、微电极) 1、基本原理:电阻率测井是由一个供电电极或多个供电电极供给低频或较低频电流I,当电流通过地层时,用另外的测量电极测量电位U,利用Ra=K U/I K:电极系数 Ra:视电阻率 U:电位 I:电流 2、应用 (1)求地层电阻率 利用微球形聚焦、微电极,求取冲洗带电阻率。 利用浅侧向、2.5m求取侵入带电阻率。 利用深侧向、4.0m求取原状地层电阻率。 (2)确定岩性界面: 利用微球形聚焦、微电极划分界面,界面划在曲线最陡或半幅点处。 利用侧向划分界面,界面可划在曲线半幅点处。 利用2.5m划分界面,顶界划在极小值,底界划在极大值。 (3)判断岩性 泥岩:低电阻,微球形聚焦、微电极、双侧向基本重合,2.5m、4.0m平直。 灰质岩:高阻,微球形聚焦,微电极、双侧向基本重合,2.5m、4.0m都高。 盐膏岩:电阻特别高,井径规则时深侧向>浅侧向>微球聚焦。4.0m>2.5m>微电极。 页岩、油页岩:高阻,井径规则时微球、双侧向基本重合,4.0m、2.5m、微电极基本重合。 (4)判断油气水层 ①油气层:高阻, A、Rmf>Rw ,增阻侵入,随探测深度增加电阻率降低。Rmf――泥浆滤液电阻率,Rw――地层水电阻率。 B、RmfRw,增阻侵入,R深<R浅。 B、Rmf

测井方法原理

测井方法原理 一名词解释 地层因素:F=孔隙中100%含水时的地层电阻率;地层水电阻率 视电阻率:电阻率值既不可能等于某一岩层的真电阻率,,也不是电极周围各部分介质电阻率的平均值,而是在离电极装置一定距离范围内各介质电阻率综合影响的结果。 岩石体积物理模型:根据测井方法的探测特性和储集层的组成,按其物理性质的差异,把实际岩石简化为对应的性质均匀的几个部分,研究每一部分对测量结果的贡献,并把测量结果看成是各部分贡献的总和。 绝对渗透率:岩石孔隙中只有一种流体时测量的渗透率。 有效渗透率:当两种或两种以上的流体同时通过岩石时,对其中某一流体测得的渗透率。相对渗透率:岩石的有效渗透率与绝对渗透率之比值称为相对渗透率。 周波跳跃:在正常情况下,第一接收器R1和第二接收器R2应该被弹性振动的同一个波峰的前沿所触发。由于某种原因,造成声波的能量发生严重衰减。当首波衰减到只能触发接收器R1而不能触发接收器R2时,接收器R2便可能被第二个或者后续波峰所触发,于是造成时波差值显著增大。由于每跳越一个波峰,在时间上造成的误差正好是一个周期。故称之为周波跳跃。 标准测井:在一个油田或一个区域内,为了研究岩性变化、构造形态和大段油层组的划分等工作,常使用几种测井方法在全地区的各口井中,用相同的深度比例(1:500)及相同的横向比例,对全井段进行测井,这种组合测井叫标准测井。 减速长度:由快中子减速成热中子所经过的直线距离的平均值。 扩散长度:从产生热中子起到其被俘获吸收为止,热中子移动的距离。 热中子寿命:从热中子生成开始到它被俘获吸收为止所经过的平均时间叫热中子寿命。 含氢指数:单位体积的任何岩石或矿物中氢核数与同样体积的淡水中氢核数的比值。 统计起伏(放射性涨落):由于地层中放射性元素的衰变是随机的,因此,在一定时间间隔内衰变的原子核数,即放射出的伽马射线数,不可能完全相同。但从统计的角度来看,它基本上围绕着一个平均值在一定的范围内波动。 二、填空 1.根据勘探目的不同,通常分为石油测井、煤田测井、金属和非金属测井、水文测井、工程测井等几大类。 2.测井技术发展根据采集系统特点大致可以分为模拟测井、数字测井、数控测井、成像测井。 3.测井包括岩性测井(自然电位SP、自然伽马GR、井径测井CAL);孔隙度测井(声波、密度DEN、中子测井CNL);电阻率测井(普通视电阻率测井Ra、微电极系列测井ML、侧向测井LL、感应测井IL)。 4.整个测井工作可以分为两个阶段:资料录取阶段和资料解释阶段。 5.井内自然电位产生的原因:①地层水和泥浆含盐浓度不同而引起的扩散电动势和吸附电动势。②地层压力与泥浆柱压力不同而引起的过滤电动势。 6.电极系可以分为梯度电极系和电位电极系。 7.深三侧向电阻率测井主要反映原地层电阻率;浅三侧向电阻率测井主要反映侵入带的电阻率。 8.主电极的长度决定电流层的厚度,即主电极长度决定了分层能力。电极系直径小,泥浆层

相关文档
最新文档