蛋白质一级结构与高级结构关系.

蛋白质一级结构与高级结构关系.
蛋白质一级结构与高级结构关系.

蛋白质一级结构与高级结构关系

蛋白质分子是由氨基酸首尾相连而成的共价多肽链,天然蛋白质分子有自己特有的空间结构,称为蛋白质构象。

蛋白质结构的不同组织层次:一级结构指多肽链的氨基酸序列。二级结构是指多肽链借助氢键排列成特有的α螺旋和β折叠片段。三级结构是指多肽链借助各种非共价键弯曲、折叠成具有特定走向的紧密球状构象。球状构象给出最低的表面积和体积之比,因而使蛋白质与周围环境的相互作用降到最小。四级结构是指寡居蛋白质中各亚基之间在空间上的相互关系和结合方式。二、三、四级结构为蛋白质的高级结构。蛋白质的天然折叠结构决定于3个因素:1。与溶剂分子(一般是水)的相互作用。2。溶剂的PH值和离子组成。3。蛋白质的氨基酸序列。后一个是最重要的因素。

(一)蛋白质折叠的热力学假说

蛋白质的高级结构由其一级结构决定的学说最初由Christian B. Anfinsen于1954年提出。在1950年之前,Anfinsen一直从事蛋白质结构方面的研究。在进入美国国立卫生研究所(NIH)以后,继续从事这方面的研究。Anfinsen和两个博士后Michael Sela、 Fred White在研究中发现,使用高浓度的巯基试剂——β- 巯基乙醇(β- mercaptoethanol)可将二硫键还原成自由的巯基,如果再加入尿素,进一步破坏已被还原的核糖核酸酶分子内部的次级键,则该酶将去折叠转变成无任何活性的无规卷曲。对还原的核糖核酸酶的物理性质进行分析的结果清楚地表明了它的确采取的是无规卷曲的形状。

在成功得到一种去折叠的核糖核酸酶以后,Anfinsen 着手开始研究它的重折叠过程。考虑到被还原的核糖核酸酶要在已被还原的8个Cys残基上重建4对二硫键共有105 种不同的组合,但只有一种是正确的形式,如果决定蛋白质构象的信息一直存在于氨基酸序列之中,那么,最后重折叠得到的总是那种正确的形式。否则,重折叠将是随机的,最后只能得到少量的正确形式。Anfinsen 的重折叠实验还是比较顺利的,他通过透析的方法除去了导致酶去折叠的尿素和巯基乙醇,再将没有活性的酶转移到其生理缓冲溶液之中,在有氧气的情况下于室温放置,以使巯基能重新氧化成二硫键。经过一段时间以后,发现核糖核酸酶活性得以恢复,这意味着它原来的构象恢复了。由于上述过程没有细胞内任何其他成分的参与,完全是一种自发的过程,因此,有理由相信此蛋白质正确折叠所需要的所有信息全部存在于它的一级结构之中。在此基础上,Anfinsen提出了蛋白质折叠的热力学假说(thermodynamic hypothesis)。根据此假说,一个蛋白质的天然三维构象对应于在生理条件下其所处的热力学最稳定的状态。热力学稳定性由组成的氨基酸残基之间的相互作用决定,于是蛋白质的三维构象直接由它的一级结构决定。

(二)蛋白质高级结构对高级结构形成的影响

1.二级结构

蛋白质的二级结构由氢键维持。包括α螺旋、β折叠、β转角和无规卷等。α螺旋是一种重复性结构,螺旋中每个α-碳的Φ和Ψ分别为-57o和-47o附近。每圈螺旋占3.6个氨基酸残基,沿螺旋轴方向上升0.54nm。每个残基绕轴旋转100o,沿轴上升0.15nm。残基的侧链伸向外侧。相邻螺圈之间形成氢键,氢键的取向几乎与螺旋轴平行。从N-末端出发,氢键是由每个肽基的氧与其前面第三个肽基的N-H形成的。

氨基酸组成和序列影响α螺旋的形成。

(1)R基的电荷性质影响α螺旋形成。多聚赖氨酸在PH为7的水中不能形成α螺旋。因为PH为7时R基具有正电荷,彼此间由于静电排斥,不能形成链内氢键。在PH为12时,多聚赖氨酸能自发形成氢键。

(2)R基大小影响α螺旋形成。多聚异亮氨酸由于R基较大,造成空间阻碍,不能形成α螺旋。

(3)脯氨酸为α亚氨基酸,不含自由的α-氨基,不能形成链内氢键。因此,多肽链中存在连续脯氨酸时,α螺旋中断。

(4)甘氨酸由于R基为氢,可形成的酰胺平面与α-碳原子的二面角可取范围较大,不易形成α螺旋。

(5)R基小,且不带电荷的氨基酸利于α螺旋的形成。多聚丙氨酸在PH为7的水中自发形成α螺旋。

β折叠:

β-折叠片由两条或多条伸展的多肽链(或一条多肽链的若干肽段)侧向聚集,通过相邻肽链主链上的N-H与C=O之间有规则的氢键,形成锯齿状片层结构。所有的肽链都参于链间氢键的形成,氢键与肽链的长轴接近垂直。多肽主链呈锯齿状折叠构象,侧链R基交替地分布在片层平面的两侧。β-折叠片中,相邻多肽链平行或反平行。从能量上看,反平行β折叠比平行的更稳定,氢键NH---O 几乎在一条直线上,此时氢键最强。

特征:

⑴主链骨架本身以大约180°回折

⑵回折部分通常由四个氨基酸残基构成

⑶构象依靠第一残基的-CO基与第四残基的- NH基之间形成氢键来维系。

转角结构通常负责各种二级结构单元之间的连接作用,它对于确定肽链的走向起着决定性的作用。

脯氨酸和甘氨酸是频繁出现在β-转角中的残基。

无规卷曲。无规卷曲繁殖那些不能被归入明确的二级结构的多肽片段。无规卷曲也像其他二级结构一样是明确而稳定的结构,受侧链相互作用的影响很大。球状蛋白中含量较高,对外界理化因子敏感,与生物活性有关,对外界理化因子极为敏感。

蛋白质二级结构的形成由氨基酸序列决定。稳定蛋白质二级结构主要为氢

键。氨基酸R基的大小及带电荷状况对二级结构的形成影响也很大。特定的氨基酸残基有利于形成特定的二级结构。

2.三级结构

一个蛋白质的三级结构是指由二级结构元件构建成的总三维结构,包括一级结构中相距远的肽段之间的几何相互关系和侧链在三维空间中彼此间的相互关系。多肽链借助氢键形成二级结构,在一级序列上相邻的二级结构往往在三维折叠中彼此靠近并相互作用形成超二级结构。由超二级结构进一步装配成相对独立的球状实体——结构域或三级结构。蛋白质折叠形成三级结构的驱动力是形成可能的最稳定结构。有两种力在起作用,一是肽链必须满足自身结构固有的限制,包括折叠中α-碳的二面角的限制以及手性效应;二是肽链必须折叠以便埋藏疏水侧链,是之与溶剂水的接触降到最小程度。疏水相互作用是形成特定三级结构的主要动力。

多肽链的二级结构决定于短程序列,三维结构主要决定于长程序列。

二硫桥在稳定蛋白质构象中的作用。蛋白质复性实验证明,二硫桥对肽链的正确折叠并不是必要的,但它对稳定折叠太结构做出贡献。含二硫桥的分子有较小的熵变化,因此稳定。

归根结底,蛋白质的三维结构是由一级结构决定的。也就是说三维结构是多肽链上的各个单键旋转自由度受到各种限制的总结果。这些限制包括肽键的刚性平面性质、肽链中疏水基和亲水基的数目和位置、带正电荷和负电荷的R基的数目和位置以及溶剂和其他溶质等。在这些限制因素下通过R基团的彼此相互作用以及R基团与溶剂和其他溶质相互作用,最后达到平衡,形成了在一定条件下热力学上最稳定的空间结构。即复杂生物大分子“自我装配”原则。

3.四级结构

自然界中很多蛋白质以独立折叠的球状蛋白质的聚集体形式存在。这些球状蛋白质通过非共价键彼此缔合在一起。缔合形成具集体的方式构成蛋白质的四级结构。稳定司机结构的作用力与稳定三级结构的没有本质区别。亚吉蒂特的驱动力主要是疏水作用,亚基缔合的专一性则由相互作用的表面上的极性基团之间的氢键和离子键提供。

蛋白质四级结构是建立在三级结构基础上的,单体蛋白质甚至不存在四级结构。因此蛋白质四级结构的形成仍然由一级结构决定。

(三)测定蛋白质一级结构的应用

推测蛋白质高级结构。蛋白质的一级结构可通过多种方法测定。由于二十种氨基酸在几种二级结构中出现的频率是不同的.进而求出每一种氨基敌的构象参数,可以由此预测蛋白质的二级结构。我们进一步从肽键的统计分析出发,指出二肤和三肤的关联频率和二级结构间的相关性,利用二肽和三肽构象参数进行预测,正确率可达90%。但是蛋白质折叠是相当复杂的。且肽链在体外折叠与比在生物体内折叠慢。到现在为止,我们仍然不能根据一个蛋白质的一级结构推断出它的三维结构。

推测蛋白质功能。蛋白质分子中关键活性部位氨基酸残基的改变,会影响其生理功能,甚至造成分子病。例如镰状细胞贫血,就是由于血红蛋白分子中两个β亚基第6位正常的谷氨酸变异成了缬氨酸,从酸性氨基酸换成了中性支链氨基酸,降低了血红蛋白在红细胞中的溶解度,使它在红细胞中随血流至氧分压低的外周毛细血管时,容易凝聚并沉淀析出,从而造成红细胞破裂溶血和运氧功能的低下。另实验证明,若切除了促肾上腺皮质激素或胰岛素A链N端的部分氨基酸,它们的生物活性也会降低或丧失,可见关键部分氨基酸残基对蛋白质和多肽功能的重要作用。另一方面,在蛋白质结构和功能关系中,一些非关键部位氨基酸残基的改变或缺失,则不会影响蛋白质的生物活性。例如人、猪、牛、羊等哺乳动物胰岛素分子A链中8、9、10位和B链30位的氨基酸残基各不相同,有种族差异,但这并不影响它们都具有降低生物体血糖浓度的共同生理功能。又如在人群的不同个体之间,同一种蛋白质有时也会有氨基酸残基的不同或差异,个体之间,同一种蛋白质中有时会存在一级结构的微小差异,但这也并不影响不同个体中它们担负相同的生理功能。但差异的氨基酸,若是在氨基酸分类中从脂肪族换成芳香族氨基酸等,即蛋白质之间的免疫原性就会差异较大,由这些蛋白质组成人体组织、器官,在临床上进行移植时,就可产生排异反应。

研究生物进化。不同生物体的同源蛋白质一级结构在氨基酸组成和顺序上不同,存在种属差异。同源蛋白质一级结构的差异可反映种属间的亲缘关系,但不影响其生物学功能

参考文献:

(1)《生物化学》,第三版上册高等教育出版社

(2)生命的三维动态胡小倩黄山学院学报2004-12

(3)蛋白质卷曲研究进展,石颖、许根俊、鲁子贤,生物化学与生物物理进展1993 (4)分子序列告诉我们什么——构象功能和进化,罗辽复,内蒙古大学学报1988- 1. 糖除了供能外,还有何功用?

糖类不只是能量的来源,它也是组织细胞的重要组成成分,如,核酸,蛋白聚糖,糖蛋白,糖脂等。

2. 葡萄糖是如何在缺氧条件下转变为乳酸?有什么意义?

葡萄糖在糖酵解途径中产生的还原当量(NADH+H+)要重新氧化为NAD+,酵解才能继续进行。因为细胞中NAD+含量甚微。因此,缺氧条件下,丙酮酸可以作为氢受体,接受氢后转变为乳酸从而再生NAD+。这样以来,糖酵解才可以继续进行下去。

在剧烈运动中,肌肉供氧不足,酵解作用是重要的产能手段,而积累在肌肉中的乳酸可由血液运至肝中变为葡萄糖。无氧酵解虽然仅利用葡萄糖所储存能量的一小部分。但这种释能方式很迅速,对肌肉收缩很重要,此外,像视网膜,红细胞及脑等细胞组织,即使在有氧情况下也要产生一些乳酸,其中红细胞因无线粒体则更依赖于酵解供能。

3. 试述丙酮酸脱氢酶复合体的组成和催化作用?受什么因素调节?P129

丙酮酸脱氢酶复合体由3个不同的酶组成(丙酮酸脱氢酶、二氢硫辛酰胺转乙酰酶、二氢硫辛酰胺脱氢酶)。有TPP,FAD,硫辛酸和NAD+和CoA参加。这个酶催化的是不可逆反应。也是调节酶,受别位效应物和化学修饰调控。

4. TAC中有几个调节酶?他们分别受什么物质调节?他们催化哪些反应?

TAC中有四个调节酶,丙酮酸脱氢酶复合体(不属于TAC中的,是丙酮酸向乙酰CoA转化的一个步骤),柠檬酸合酶,异柠檬酸脱氢酶和α酮戊二酸脱氢酶复合体是关键的调节酶。丙酮酸脱氢酶复合体(催化丙酮酸到乙酰CoA的转化)受其催化产物ATP,乙酰CoA和NADH,脂肪酸的有力抑制;受AMP,NAD+,CoA,Ca2+的激活。

柠檬酸合酶(催化乙酰CoA到柠檬酸的转化):受NADH,琥珀酰CoA,柠檬酸和ATP的抑制,受ADP激活。

异柠檬酸脱氢酶(催化异柠檬酸到α酮戊二酸的转化):受ATP,NADH抑制,受Ca2+和ADP激活。α酮戊二酸(催化α酮戊二酸向琥珀酰CoA的转化):受琥珀酰CoA,NADH 的抑制;受Ca2+的激活。

5. 何谓磷酸戊糖途径?如何反应?有何生理意义?

葡萄糖的主要代谢途径是糖酵解,还有其他的代谢方式,例如磷酸戊糖途径,这途径产生磷酸戊糖和NADPH。

6-磷酸葡萄糖+NADP+ ====6磷酸葡萄糖酸内酯+NADPH+H+

6-磷酸葡萄糖酸内酯+H2O ====6-磷酸葡萄糖酸

6-磷酸葡萄糖酸+NADP+ ====5-磷酸核酮糖+CO2+NADPH+H+

5-磷酸核酮糖----5-磷酸核糖

在一些组织中,磷酸戊糖途径就止于此处,总的结果是:

6-磷酸葡萄糖+2 NADP++H2O ====5-磷酸核糖+CO2+2 NADPH+ 2H+

生理意义:戊糖途径产生的磷酸戊糖核、NADPH都可供核酸和其它物质的合成。

6. 试述肝如何合成糖原,又如何分解糖原?受什么因素调节?

糖原是动物储存糖的形式,肝脏和肌肉是储存糖原的主要地方,肝储存糖原主要是用于维持血糖浓度,供应全身利用,而肌糖原是供予肌肉本身产生ATP作收缩用。

糖原的分解:

糖原+ Pi2- ====1-磷酸葡萄糖+ 糖原(降解了一个G) 糖原磷酸化酶催化α[1-4]糖苷键的磷酸解。

1-磷酸葡萄糖====6-磷酸葡萄糖

6-磷酸葡萄糖+H2O====葡萄糖+Pi2-

糖原的合成:

葡萄糖+ATP====6-磷酸葡萄糖+ADP

6-磷酸葡萄糖====1-磷酸葡萄糖

1-磷酸葡萄糖+ UTP====UDP-G + PPi

UDP-G+ 葡萄糖n====(葡萄糖)n+1 + UDP

分支链的形成:当糖原合酶以α1====4糖苷键延伸直到长度达11个葡萄糖基后,分支酶可将约7个葡萄糖残基的一段链转移到邻近糖链上以α1====6糖苷键连接。

糖原的合成合代谢的调节:

糖原分解代谢途径的糖原磷酸化酶和糖原合成途径中的糖原合酶都是催化不平衡的反应。这两个酶是各自代谢途径的调节酶。

1,糖原磷酸化酶受别构效应物和共价修饰调节。

2,糖原合酶别构调节和共价修饰调节。

cAMP(由腺苷酸环化酶催化ATP而来)是调节糖原磷酸化酶和糖原合酶的重要细胞内信号。细胞内cAMP的增高通过两种不同的机制激活糖原磷酸化酶,也同样通过这两种机理抑制糖原合酶。

7. 非糖物质如何转变为糖?有哪些酶最值得注意?

从非糖物质形成葡萄糖成为糖异生作用。所利用的非糖物质包括各种氨基酸/乳酸,丙酮酸,

丙酸和甘油。这些物质的碳成为葡萄糖的碳。对于那些首先以葡萄糖为代谢供能的细胞和组织,如脑,红细胞,肾髓质,眼球晶状体等血糖浓度的维持,在空腹期间,就要依赖于糖异生。肝是糖异生的重要器官,担当维持血糖浓度的重任。(糖异生是采用的不同的酶绕过酵

解中的不可逆反应途径。)从乳酸开始的糖异生见如下:线粒体中:

乳酸(脱氢)+乳酸脱氢酶====丙酮酸+NADH(乳酸脱氢酶,胞液中)

丙酮酸+ATP4-+HCO3-====草酰乙酸+ADP3-+Pi2-+H+(丙酮酸羧化酶)

草酰乙酸+GTP4-====磷酸烯醇式丙酮酸(PEP)(磷酸烯醇式丙酮酸羧化激酶)

磷酸烯醇式丙酮酸转移至胞液(胞液中糖异生)

下列是在胞液中:

PEP==2-磷酸甘油酸==3-磷酸甘油酸====1,3二磷酸甘油酸====3-磷酸甘油醛====1,6-二磷酸果糖

1,6-二磷酸果糖+H2O====6-磷酸果糖+Pi2-

6-磷酸果糖====6-磷酸葡萄糖

6-磷酸葡萄糖+ H2O====葡萄糖+ Pi2-

糖异生有几个调节位置,即调节参与不可逆反应的4个酶:丙酮酸羧化酶,磷酸烯醇式丙酮酸羧激酶,果糖二磷酸酶和葡萄糖磷酸酶(去磷酸化)。

8. 试述ATP,AMP,NAD+,如何影响糖的代谢的?

糖代谢产生ATP,NADH,这些物质的产生是抑制糖酵解的。

一般来说,对糖异生途径调节酶起激活作用的别构效应物,对酵解途径的调节酶就是抑制作用的。

ATP增高伴随AMP下降就有利于糖异生;缺氧,缺乏脂肪酸氧化以及氧化磷酸化作用受到抑制或解偶联时,ATP浓度下降,AMP活性升高,糖异生关闭,酵解打开。NAD+的增高有利于糖酵解的进行,反之,就益于糖异生。

激素调节糖异生作用对维持机体的稳恒状态十分重要,激素对糖异生的调节实际上是调节异生和酵解这两个途径的调节酶以及调节供应给肝的脂肪酸。胰高血糖素促进脂肪组织分解脂肪,增加血浆脂肪酸,也就促进糖异生;insulin的作用正好相反。胰高血糖素和胰岛素

都可以通过影响肝内酶的磷酸化修饰状态而调节糖异生作用。胰高血糖素通过cAMP促进双供能酶(6磷酸果糖激酶2和果糖-2,6-二磷酸酶)的磷酸化。

9. 血糖有哪些来源?哪些去路?有哪些激素在维持血糖浓度上有重要影响?他们是如何调节血糖浓度的?

血糖(正常情况下700~1100mg/l)来源:

1、餐后从小肠吸收葡萄糖多了,血糖浓度升高;

2、肝糖原分解;

3、非糖物质糖异生。

血糖去路:

1、糖原合成:饱食后,机体将血液中多余的葡萄糖以糖原的形式储存起来;

2、葡萄糖供机体(大脑等组织)作能量消耗用,氧化为CO2和水;

3、磷酸戊糖途径中葡萄糖转变为5-磷酸核糖和NADPH;

4、葡萄糖酵解产生的乙酰CoA可转化为脂肪和氨基酸,在机体中储存起来。

在血糖浓度维持上有这样一些激素:胰岛素,胰高糖素,肾上腺素,肾上腺皮质醇。下面分别介绍一下这些激素是如何调节血糖浓度的。

A 胰岛素胰腺β细胞分泌。它的分泌受血糖的控制。血糖升高立即引起它的分泌,血糖降低的的话insulin也随之降低。insulin是体内唯一降血糖的激素。1,促进肌肉,脂肪细胞载体转运葡萄糖入内,2,糖原磷酸化酶活性降低(通过对蛋白激酶A的抑制);糖原合酶的活性升高(激活糖原合酶脱磷酸酶),加速肝,肌肉糖原的合成,3,通过第二信使间接激活丙酮酸脱氢酶(丙酮酸从胞液到乙酰CoA的反应,部位是线粒体),加速丙酮酸氧化脱羧成为乙酰CoA,4,抑制磷酸烯醇式丙酮酸羧激酶活性,促进氨基酸进入肌肉合成蛋白质,从而降低糖异生。降低血糖。5,减少脂肪组织动员脂肪酸,促进糖有氧氧化。

B 胰高血糖素胰腺α细胞分泌的。升高血糖,与胰岛素的作用相反,insulin和胰高血

糖素相反。

C 肾上腺素迅速而有力的升高血糖的激素。它是通过与肝和肌肉细胞膜受体结合而激活磷

酸化酶,产生级联效应,加快糖原分解,肝释放出葡萄糖,肌肉输出乳酸供肝异生。这在应激时起作用。

D 肾上腺皮质醇促进肌肉蛋白分解,运送至肝进行糖异生(饥饿时),抑制肝外组织摄取葡

萄糖,从而使血糖升高。

蛋白质结构与功能的关系

蛋白质结构与功能的关系 蛋白质的结构包括一级结构、二级结构、三级结构、四级结构。 一级结构是蛋白质的一级结构指在蛋白质分子从N-端至C-端的氨基酸排列顺序。一级结构是蛋白质空间构象和特异生物学功能的基础,但不是决定蛋白质空间构象的唯一因素。 蛋白质的二级结构是指多肽链的主链骨架本身在空间上有规律的折叠和盘绕,它是由氨基酸残基非侧链基团之间的氢键决定的。常见的二级结构有α螺旋、三股螺旋、β折叠、β转角、β凸起和无规卷曲。α螺旋中肽链骨架围绕一个轴以螺旋的方式伸展,它可能是极性的、疏水的或两亲的。β折叠是肽链的一种相当伸展的结构,有平行和反平行两种。如果β股交替出现极性残基和非极性残基,那么就可以形成两亲的β折叠。β转角指伸展的肽链形成180°的U形回折结构而改变了肽链的方向。β凸起是由于β折叠股中额外插入一个氨基酸残基而形成的,它也能改变多肽链的走向。无规卷曲是在蛋白质分子中的一些极不规则的二级结构的总称。无规卷曲无固定走向,有时以环的形式存在,但不是任意变动的。从结构的稳定性上看,右手α螺旋>β折叠> U型回折>无规卷曲,但在功能上,酶与蛋白质的活性中心通常由无规卷曲充当,α右手螺旋和β折叠一般只起支持作用。 蛋白质的三级结构是指多肽链在二级结构的基础上,进一步盘绕、卷曲和折叠,形成主要通过氨基酸侧链以次级键以及二硫键维系的完整的三维结构。三级结构通常由模体和结构域组成。稳定三级结构的化学键包括氢键、疏水键、离子键、范德华力、金属配位键和二硫键。模体可用在一级结构上,特指具有特殊生化功能的序列模体,也可被用于功能模体或结构模体,相当于超二级结构。结构模体是结构域的组分,基本形式有αα、βαβ和βββ等。常见的模体包括:左手超螺旋、右手超螺旋、卷曲螺旋、螺旋束、α螺旋-环-α螺旋、Rossmann卷曲和希腊钥匙模体。结构域是在一个蛋白质分子内的相对独立的球状结构和/或功能模块,由若干个结构模体组成的相对独立的球形结构单位,它们通常是独自折叠形成的,与蛋白质的功能直接相关。一个结构域通常由一段连续的氨基酸序列组成。根据其占优势的二级结构元件的类型,结构域可分为五大类:α结构域、β结构域、α/β结构域、α+β 结构域、交联结构域。以上每一类结构域的二级结构元件可能有不同的组织方式,每一种组织就是一种结构模体。这些结构域都有疏水的核心,疏水核心是结构域稳定所必需的。 具有两条和两条以上多肽链的寡聚蛋白质或多聚蛋白质才会有四级结构。组成寡聚蛋白质或多聚蛋白质的每一个亚基都有自己的三级结构。蛋白质的四级结构内容包括亚基的种类、数目、空间排布以及亚基之间的相互作用。驱动四级结构形成或稳定四级结构的作用力包括

蛋白质结构与功能的关系94592

蛋白质结构与功能的关系 (The relationship between protein structure and function) 摘要蛋白质特定的功能都是由其特定的构象所决定的,各种蛋白质特定的构象又与其一级结构密切相关。天然蛋白质的构象一旦发生变化,必然会影响到它的生物活性。由于蛋白质的构象的变化引起蛋白质功能变化,可能导致蛋白质构象紊乱症,当然也能引起生物体对环境的适应性增强!现而今关于蛋白质功能研究还有待发展,一门新兴学科正在发展,血清蛋白组学,生物信息学等!本文仅就蛋白质结构与其功能关系进行粗略阐述。 关键词:蛋白质结构;折叠/功能关系;蛋白质构象紊乱症;分子伴侣 Keywords:protein structure;fold/function relationship;protein conformational disorder;molecular chaperons 虽然蛋白质结构与生物功能的关系比序列与功能的关系更加紧密,但结构与功能的这种关联亦若隐若现,并不能排除折叠差别悬殊的蛋白质执行相似的功能,折叠相似的蛋白质执行差别悬殊功能的现象的存在。无奈,该领域仍不得不将100多年前Fisher提出的“锁一钥匙”模型(“lock—key”model)和50多年前Koshand提出的诱导契合模型(induce fitmodel)作为蛋白质实现功能的理论基础。这2个略显粗糙的模型只是认为蛋白质执行功能的部位局限在结构中的一个或几个小区域内,此类区域通常是蛋白质表面上的凹洞或裂隙。这种凹洞或裂隙被称为“活性部位(active site)”或“别构部位(fallosteric site)”,凹陷部位与配体分子在空间形状和静电上互补。此外,在酶的活性部位中还存在着几个作为催化基团(catalyticgroup)的氨基酸残基。对蛋白质未来的研究应从实验基本数据的归纳和统计入手,从原始的水平上发现蛋白质的潜藏机制【1】。 蛋白质结构与功能关系的研究主要是以力求刻画蛋白质的3D结构的几何学为基础的。蛋白质结构既非规则的几何形,又非完全的无规线团(randomcoil),而是有序(α一螺旋和β一折叠)与无序(线团或环域loop)的混合体。理解蛋白质3D结构的技巧是将结构简化,只保留某种几何特征或拓扑模式,并将其数字化。探求数字中所蕴含的规律,且根据这一规律将蛋白质进行分类,再将分类的结构与蛋白质的功能进行比较,以检验蛋白质抽象结构的合理性。如果一种对蛋白质结构的简化、比较和分类能与蛋自质的功能有较好地对应关系,那么这就是一种对蛋白质结构的有价值的理解。蛋白质结构中,多种弱力(氢键、范德华力、静电相互作用、疏水相互作用、堆积力等)和可逆的二硫键使多肽链折叠成特定的构象。从某种意义上说,共价键维系了蛋白质的一级结构;主链上的氢键维系了蛋白质的二级结构;而氨基酸侧链的相互作用和二硫桥维系着蛋白质的三级结构。亚基(subunit)内部的侧链相互作用是构象稳定的基础,蛋白质链之间的侧链的相互作用是亚基组装(四级结构)的基础,而蛋白质中侧链与配体基团问的相互作用是蛋白质行使功能的基础。 牛胰核糖核酸酶(RNase)变性和复性的实验是蛋白质结构与功能关系的很好例证。蛋白质空间结构遭到破坏;,可导致蛋白质的理比性质和生物学性质的变化,这就是蛋白质变性。变性的蛋白质,只要其一级结构仍然完好,可在一定条件下恢复其空间结构,随之理化性质和生物学性质也可重现,这被称为复性。RNase是由124个氨基酸残基组成的一条肽链,分子中8个半胱氨酸的巯基构成4对二硫键,进而形成具有一定空间构象的活性蛋白质。天然RNase遇尿素和β巯基乙醇时发生变性,其分子中的氢键和4个二硫键解开,严密的空间结构遭破坏,丧失了生物学活性,但一级结构完整无损。若去除尿素和β巯基乙醇,RNase又可恢复其原有构象和生物学活性。RNase分子中的8个巯基若随机排列成二硫键可有105种方式。有活性的RNase只是其中的一种,复性时之所以选择了自

蛋白质一级结构与高级结构关系

蛋白质一级结构与高级结构关系 蛋白质分子是由氨基酸首尾相连而成的共价多肽链,天然蛋白质分子有自己特有的空间结构,称为蛋白质构象。 蛋白质结构的不同组织层次:一级结构指多肽链的氨基酸序列。二级结构是指多肽链借助氢键排列成特有的α螺旋和β折叠片段。三级结构是指多肽链借助各种非共价键弯曲、折叠成具有特定走向的紧密球状构象。球状构象给出最低的表面积和体积之比,因而使蛋白质与周围环境的相互作用降到最小。四级结构是指寡居蛋白质中各亚基之间在空间上的相互关系和结合方式。二、三、四级结构为蛋白质的高级结构。蛋白质的天然折叠结构决定于3个因素:1。与溶剂分子(一般是水)的相互作用。2。溶剂的PH值和离子组成。3。蛋白质的氨基酸序列。后一个是最重要的因素。 (一)蛋白质折叠的热力学假说 蛋白质的高级结构由其一级结构决定的学说最初由Christian B. Anfinsen于1954年提出。在1950年之前,Anfinsen一直从事蛋白质结构方面的研究。在进入美国国立卫生研究所(NIH)以后,继续从事这方面的研究。Anfinsen和两个博士后Michael Sela、 Fred White在研究中发现,使用高浓度的巯基试剂——β- 巯基乙醇(β- mercaptoethanol)可将二硫键还原成自由的巯基,如果再加入尿素,进一步破坏已被还原的核糖核酸酶分子内部的次级键,则该酶将去折叠转变成无任何活性的无规卷曲。对还原的核糖核酸酶的物理性质进行分析的结果清楚地表明了它的确采取的是无规卷曲的形状。 在成功得到一种去折叠的核糖核酸酶以后,Anfinsen 着手开始研究它的重折叠过程。考虑到被还原的核糖核酸酶要在已被还原的8个Cys残基上重建4对二硫键共有105 种不同的组合,但只有一种是正确的形式,如果决定蛋白质构象的信息一直存在于氨基酸序列之中,那么,最后重折叠得到的总是那种正确的形式。否则,重折叠将是随机的,最后只能得到少量的正确形式。Anfinsen 的重折叠实验还是比较顺利的,他通过透析的方法除去了导致酶去折叠的尿素和巯基乙醇,再将没有活性的酶转移到其生理缓冲溶液之中,在有氧气的情况下于室温放置,以使巯基能重新氧化成二硫键。经过一段时间以后,发现核糖核酸酶活性得以恢复,这意味着它原来的构象恢复了。由于上述过程没有细胞内任何其他成分的参与,完全是一种自发的过程,因此,有理由相信此蛋白质正确折叠所需要的所有信息全部存在于它的一级结构之中。在此基础上,Anfinsen提出了蛋白质折叠的热力学假说(thermodynamic hypothesis)。根据此假说,一个蛋白质的天然三维构象对应于在生理条件下其所处的热力学最稳定的状态。热力学稳定性由组成的氨基酸残基之间的相互作用决定,于是蛋白质的三维构象直接由它的一级结构决定。 (二)蛋白质高级结构对高级结构形成的影响

蛋白质的一级结构(共价结构)

1.蛋白质的一级结构(共价结构) 蛋白质的一级结构也称共价结构、主链结构。 1.蛋白质结构层次 一级结构(氨基酸顺序、共价结构、主链结构) ↓是指蛋白质分子中氨基酸残基的排列顺序 二级结构 ↓ 超二级结构 ↓ 构象(高级结构)结构域 ↓ 三级结构(球状结构) ↓ 四级结构(多亚基聚集体) 1.一级结构的要点 . 1.蛋白质测序的一般步骤 祥见 P116 (1)测定蛋白质分子中多肽链的数目。 (2)拆分蛋白质分子中的多肽链。 (3)测定多肽链的氨基酸组成。 (4)断裂链内二硫键。 (5)分析多肽链的N末端和C末端。 (6)多肽链部分裂解成肽段。 (7)测定各个肽段的氨基酸顺序 (8)确定肽段在多肽链中的顺序。 (9)确定多肽链中二硫键的位置。 1.蛋白质测序的基本策略 对于一个纯蛋白质,理想方法是从N端直接测至C端,但目前只能测60个N端氨基酸。 1.直接法(测蛋白质的序列) 两种以上特异性裂解法 N C A 法裂解 A1 A2 A3 A4 B 法裂解 B1 B2 B3 B4 用两种不同的裂解方法,产生两组切点不同的肽段,分离纯化每一个肽段,分离测定两个肽段的氨基酸序列,拼接成一条完整的肽链。

1. 间接法(测核酸序列推断氨基酸序列) 核酸测序,一次可测600-800bp 1. 测序前的准备工作 1. 蛋白质的纯度鉴定 纯度要求,97%以上,且均一,纯度鉴定方法。(两种以上才可靠) ⑴聚丙烯酰胺凝胶电泳(PAGE)要求一条带 ⑵DNS —cl (二甲氨基萘磺酰氯)法测N 端氨基酸 1. 测定分子量 用于估算氨基酸残基n= 方法:凝胶过滤法、沉降系数法 1. 确定亚基种类及数目 多亚基蛋白的亚基间有两种结合方式: ⑴非共价键结合 8mol/L 尿素,SDS SDS-PAGE 测分子量 ⑵二硫键结合 过甲酸氧化: —S —S —+HCOOOH → SO 3H β巯基乙醇还原: 举例:: 血红蛋白 (α2β2) (注意,人的血红蛋白α和β的N 端相同。) 分子量: M 拆亚基: M 1 、M 2 两条带 拆二硫键: M 1 、M 2 两条带 分子量关系: M = 2M 1 + 2M 2 1. 测定氨基酸组成 主要是酸水解,同时辅以碱水解。氨基酸分析仪自动进行。 确定肽链中各种a.a 出现的频率,便于选择裂解方法及试剂。 ①Trp 测定 对二甲基氨基苯甲醛 590nm 。 ②Cys 测定 5、5/一二硫代双(—2—硝基苯甲酸)DTNB ,412nm 1. 端基分析 ①N 端分析 DNS-cl 法:最常用,黄色荧光,灵敏度极高,DNS-多肽水解后的DNS-氨基酸不需要提取。 DNFB 法:Sanger 试剂,DNP-多肽,酸水解,黄色DNP-氨基酸,有机溶剂(乙酸乙酯) 抽提分离,纸层析、薄层层析、液相等 PITC 法:Edman 法,逐步切下。无色PTH-氨基酸,有机溶剂抽提,层析。 ②C 端分析 110mw

1蛋白质高级结构作用力

§2.4 蛋白质的结构和功能(续) §2.5 维持蛋白质高级结构的作用力
1, Complementary Interactions between Proteins and Ligands:
The Immune System and Immunoglobulins
2, Forces to stabilize the protein 3-D structure 3, protein structure prediction

1, Complementary Interactions between Proteins and Ligands: The Immune System and Immunoglobulins “Structural Immunology”

When a foreign substance - a virus, a bacterium, or even a foreign protein-invades the tissues of a higher vertebrate(脊椎动物) (like a human), the organism defends itself by what is called the immune response (免疫应答,免疫反应). The immune response is a first line of defense against infection and probably against cancer cells as well.

以多种蛋白为例阐述蛋白质结构与功能的关系

举例说明蛋白质结构和功能的关系 答: 1.蛋白质的一级结构与功能的关系 蛋白质的一级机构指:肽链中氨基酸残基(包括二硫键的位置)的排列顺序。一级结构是蛋白质空间机构的基础,包含分子所有的信息,且决定蛋白质高级结构与功能。 ①一级结构的变异与分子病 蛋白质一级结构是空间结构的基础,与蛋白质的功能密切相关,一级机构的改变,往往引起蛋白质功能的改变。 例如:镰刀形细胞贫血病 镰刀形细胞贫血病的血红蛋白(HbS)与正常人的血红蛋白(HbA)相比,发现,两种血红蛋白的差异仅仅来源于一个肽段的位置发生了变化,这个差异肽段是位于β链N端的一个八肽。在这个八肽中,β链N端第6位氨基酸发生了置换,HbA中的带电荷的谷氨酸残基在HbS中被置换成了非极性缬氨酸残基,即蛋白质的一级机构发生了变化。 ②序列的同源性 不同生物中执行相同或相似功能的蛋白质称为同源蛋白质,同源蛋白质的一级机构具有相似性,称为序列的同源性。最为典型的例子, 例如:细胞色素C(Cyt c) Cyt c是古老的蛋白质,是线粒体电子传递链中的组分,存在于从细菌到人的所有需氧生物中。通过比较Cyt c的序列可以反映不同种属生物的进化关系。亲缘越近的物种,Cyt c中氨基酸残基的差异越小。如人与黑猩猩的Cyt c完全一致,人与绵羊的Cyt c有10个残基不同,与植物之间相差更多。蛋白质的进化反映了生物的进化。 2.蛋白质空间结构与功能的关系 天然状态下,蛋白质的多肽链紧密折叠形成蛋白质特定的空间结构,称为蛋白质的天然构象或三维构象。三维构象与蛋白质的功能密切相关。 ①一级结构与高级结构的关系: 一级结构决定高级机构,当特定构象存在时,蛋白质表现出生物功能;当特定构象被破坏时,即使一级构象没有发生改变,蛋白质的生物学活性丧失。例如:牛胰核糖核苷酸酶A(RNase A)的变性与复性 当RNase A处于天然构象是,具有催化活性; 当RNase A处于去折叠状态时,二硫键被还原不具有催化活性;当RNase A恢复天然构象时,二硫键重新形成,活性恢复。 ②变构效应 变构效应:是寡聚蛋白质分子中亚基之间存在相互作用,这种相互作用通过亚基构象的改变来实现。蛋白质在执行功能是时,构象发生一定变化。 例如:肌红蛋白、血红蛋白与氧的结合 两种蛋白质有很多相同之处,结构相似表现出相似功能。这两钟蛋白质都含有血红素 辅基,都能与氧进行可逆结合,因此存在着氧合与脱氧的两种结构形式。但是肌红蛋白几乎在任何氧分压情况下都保持对氧分子的高亲和性。血红蛋白则不同,在氧分压较高时,血红蛋白几乎被氧完全饱和;而在氧分压较低时,血红蛋白与氧的亲和力降低,释放出携带的氧并转移给肌红蛋白。

蛋白质一级结构与高级结构关系

蛋白质分子是由氨基酸首尾相连而成的共价多肽链,天然蛋白质分子有自己特有的空间结构,称为蛋白质构象。 蛋白质结构的不同组织层次:一级结构指多肽链的氨基酸序列。二级结构是指多肽链借助氢键排列成特有的α螺旋和β折叠片段。三级结构是指多肽链借助各种非共价键弯曲、折叠成具有特定走向的紧密球状构象。球状构象给出最低的表面积和体积之比,因而使蛋白质与周围环境的相互作用降到最小。四级结构是指寡居蛋白质中各亚基之间在空间上的相互关系和结合方式。二、三、四级结构为蛋白质的高级结构。蛋白质的天然折叠结构决定于3个因素:1。与溶剂分子(一般是水)的相互作用。2。溶剂的PH值和离子组成。3。蛋白质的氨基酸序列。后一个是最重要的因素。 (一)蛋白质折叠的热力学假说 蛋白质的高级结构由其一级结构决定的学说最初由Christian B. Anfinsen于1954年提出。在1950年之前,Anfinsen一直从事蛋白质结构方面的研究。在进入美国国立卫生研究所(NIH)以后,继续从事这方面的研究。Anfinsen和两个博士后Michael Sela、 Fred White在研究中发现,使用高浓度的巯基试剂——β- 巯基乙醇(β- mercaptoethanol)可将二硫键还原成自由的巯基,如果再加入尿素,进一步破坏已被还原的核糖核酸酶分子内部的次级键,则该酶将去折叠转变成无任何活性的无规卷曲。对还原的核糖核酸酶的物理性质进行分析的结果清楚地表明了它的确采取的是无规卷曲的形状。 在成功得到一种去折叠的核糖核酸酶以后,Anfinsen 着手开始研究它的重折叠过程。考虑到被还原的核糖核酸酶要在已被还原的8个Cys残基上重建4对二硫键共有105 种不同的组合,但只有一种是正确的形式,如果决定蛋白质构象的信息一直存在于氨基酸序列之中,那么,最后重折叠得到的总是那种正确的形式。否则,重折叠将是随机的,最后只能得到少量的正确形式。Anfinsen 的重折叠实验还是比较顺利的,他通过透析的方法除去了导致酶去折叠的尿素和巯基乙醇,再将没有活性的酶转移到其生理缓冲溶液之中,在有氧气的情况下于室温放置,以使巯基能重新氧化成二硫键。经过一段时间以后,发现核糖核酸酶活性得以恢复,这意味着它原来的构象恢复了。由于上述过程没有细胞内任何其他成分的参与,完全是一种自发的过程,因此,有理由相信此蛋白质正确折叠所需要的所有信息全部存在于它的一级结构之中。在此基础上,Anfinsen提出了蛋白质折叠的热力学假说(thermodynamic hypothesis)。根据此假说,一个蛋白质的天然三维构象对应于在生理条件下其所处的热力学最稳定的状态。热力学稳定性由组成的氨基酸残基之间的相互作用决定,于是蛋白质的三维构象直接由它的一级结构决定。 (二)蛋白质高级结构对高级结构形成的影响 1.二级结构 蛋白质的二级结构由氢键维持。包括α螺旋、β折叠、β转角和无规卷等。α螺旋是一种重复性结构,螺旋中每个α-碳的Φ和Ψ分别为-57o和-47o附近。

蛋白质的结构和功能的关系

蛋白质结构与功能的关系 摘要:蛋白质特定的功能都是由其特定的构象所决定的,各种蛋白质特定的构象又与其一级结构密切相关。天然蛋白质的构象一旦发生变化,必然会影响到它的生物活性。由于蛋白质的构象的变化引起蛋白质功能变化,可能导致蛋白质构象紊乱症,当然也能引起生物体对环境的适应性增强!现而今关于蛋白质功能研究还有待发展,一门新兴学科正在发展,血清蛋白组学,生物信息学等!本文仅就蛋白质结构与其功能关系进行粗略阐述。 关键词:蛋白质分子一级结构、空间结构、折叠/功能关系、蛋白质构象紊乱症;分子伴侣正文: 1、蛋白质分子一级结构和功能的关系 蛋白质分子中关键活性部位氨基酸残基的改变,会影响其生理功能,甚至造成分子病(molecular disease)。例如镰状细胞贫血,就是由于血红蛋白分子中两个β亚基第6位正常的谷氨酸变异成了缬氨酸,从酸性氨基酸换成了中性支链氨基酸,降低了血红蛋白在红细胞中的溶解度,使它在红细胞中随血流至氧分压低的外周毛细血管时,容易凝聚并沉淀析出,从而造成红细胞破裂溶血和运氧功能的低下。 另一方面,在蛋白质结构和功能关系中,一些非关键部位氨基酸残基的改变或缺失,则不会影响蛋白质的生物活性。例如人、猪、牛、羊等哺乳动物胰岛素分子A链中8、9、10位和B链30位的氨基酸残基各不相同,有种族差异,但这并不影响它们都具有降低生物体血糖浓度的共同生理功能。 蛋白质一级结构与功能间的关系十分复杂。不同生物中具有相似生理功能的蛋白质或同一种生物体内具有相似功能的蛋白质,其一级结构往往相似,但也有时可相差很大。如催化DNA 复制的DNA聚合酶,细菌的和小鼠的就相差很大,具有明显的种族差异,可见生命现象十分复杂多样。 2、蛋白质分子空间结构和功能的关系 蛋白质分子空间结构和其性质及生理功能的关系也十分密切。不同的蛋白质,正因为具有不同的空间结构,因此具有不同的理化性质和生理功能。如指甲和毛发中的角蛋白,分子中含有大量的α-螺旋二级结构,因此性质稳定坚韧又富有弹性,这是和角蛋白的保护功能分不开的;而胶原蛋白的三股π螺旋平行再几股拧成缆绳样胶原微纤维结构,使其性质稳定而具有强大的抗张力作用 又如细胞质膜上一些蛋白质是离子通道,就是因为在其多肽链中的一些α-螺旋或β-折叠二级结构中,一侧多由亲水性氨基酸组成,而另一侧却多由疏水性氨基酸组成,因此是具有“两亲性”(amphipathic)的特点,几段α-螺旋或β-折叠的亲水侧之间就构成了离子通道,而其疏水侧,即通过疏水键将离子通道蛋白质固定在细胞质膜上。载脂蛋白也具有两亲性,既能与血浆中脂类结合,又使之溶解在血液中进行脂类的运输。 3、折叠/功能关系 体内各种蛋白质都有特殊的生理功能,这与空间构象有着密切的关系。肌红蛋门和血红蛋白是阐述空间结构与功能关系的典型例子。肌红蛋门(Mb))和血红蛋白(Hb)都是含血红素辅基的结合蛋白质。Mb有一条肽链,经盘曲折折叠形成三级结构,整条肽链由A~H8段α螺旋盘曲折叠成为球状,疏水氨基酸侧链在分子内部,亲水氨基酸侧链在分子外部,形成亲水的球状蛋白,血红素辅基位于Mb分子内部的袋状空穴中。Hb有四条肽链,两条β链也有与Mb 相似的A~H8段α螺旋,有两条α链只有7段α螺旋。Hb与Mb的折叠方式相似,也都能与氧进行可逆的结合。Hb的一个亚基与氧结合后可引起构象变化,是另一个亚基更易于与氧结合,这种带氧的亚基协助不带氧的亚基去结合氧的现象称为协同效应。氧与Hb结合后可

蛋白质结构预测在线软件

蛋白质预测分析网址集锦? 物理性质预测:? Compute PI/MW?? ?? SAPS?? 基于组成的蛋白质识别预测? AACompIdent???PROPSEARCH?? 二级结构和折叠类预测? nnpredict?? Predictprotein??? SSPRED?? 特殊结构或结构预测? COILS?? MacStripe?? 与核酸序列一样,蛋白质序列的检索往往是进行相关分析的第一步,由于数据库和网络技校术的发展,蛋白序列的检索是十分方便,将蛋白质序列数据库下载到本地检索和通过国际互联网进行检索均是可行的。? 由NCBI检索蛋白质序列? 可联网到:“”进行检索。? 利用SRS系统从EMBL检索蛋白质序列? 联网到:”,可利用EMBL的SRS系统进行蛋白质序列的检索。? 通过EMAIL进行序列检索?

当网络不是很畅通时或并不急于得到较多数量的蛋白质序列时,可采用EMAIL方式进行序列检索。? 蛋白质基本性质分析? 蛋白质序列的基本性质分析是蛋白质序列分析的基本方面,一般包括蛋白质的氨基酸组成,分子质量,等电点,亲水性,和疏水性、信号肽,跨膜区及结构功能域的分析等到。蛋白质的很多功能特征可直接由分析其序列而获得。例如,疏水性图谱可通知来预测跨膜螺旋。同时,也有很多短片段被细胞用来将目的蛋白质向特定细胞器进行转移的靶标(其中最典型的例子是在羧基端含有KDEL序列特征的蛋白质将被引向内质网。WEB中有很多此类资源用于帮助预测蛋白质的功能。? 疏水性分析? 位于ExPASy的ProtScale程序(?)可被用来计算蛋白质的疏水性图谱。该网站充许用户计算蛋白质的50余种不同属性,并为每一种氨基酸输出相应的分值。输入的数据可为蛋白质序列或SWISSPROT数据库的序列接受号。需要调整的只是计算窗口的大小(n)该参数用于估计每种氨基酸残基的平均显示尺度。? 进行蛋白质的亲/疏水性分析时,也可用一些windows下的软件如,bioedit,dnamana等。? 跨膜区分析? 有多种预测跨膜螺旋的方法,最简单的是直接,观察以20个氨基酸为单位的疏水性氨基酸残基的分布区域,但同时还有多种更加复杂的、精确的算法能够预测跨膜螺旋的具体位置和它们的膜向性。这些技术主要是基于对已知

第1章 蛋白质结构与功能习题

第二章蛋白质的结构与功能 复习测试 (一)名词解释 1. 肽键 2. 结构域 3. 蛋白质的等电点 4. 蛋白质的沉淀 5. 蛋白质的凝固 (二)选择题 A型题: 1. 天然蛋白质中不存在的氨基酸是: A. 胱氨酸 B. 谷氨酸 C. 瓜氨酸 D. 蛋氨酸 E. 丝氨酸 2. 下列哪种氨基酸为非编码氨基酸: A. 半胱氨酸 B. 组氨酸 C. 鸟氨酸 D. 丝氨酸 E. 亮氨酸 3. 下列氨基酸中哪种氨基酸无 L型与D型氨基酸之分: A. 丙氨酸 B. 甘氨酸 C. 亮氨酸 D. 丝氨酸 E. 缬氨酸 4. 天然蛋白质中有遗传密码的氨基酸有: A. 8种 B. 61种 C. 12种 D. 20种 E. 64种 5. 测定100克生物样品中氮含量是2克,该样品中蛋白质含量大约为: A. 6.25% B. 12.5% C. 1% D. 2% E. 20% 6. 蛋白质分子中的肽键: A. 是一个氨基酸的α-氨基和另一个氨基酸的α-羧基形成的 B. 是由谷氨酸的γ-羧基与另一个氨基酸的α-氨基形成的 C. 氨基酸的各种氨基和各种羧基均可形成肽键 D. 是由赖氨酸的ε-氨基与另一分子氨基酸的α-羧基形成的 E. 以上都不是 7. 多肽链中主链骨架的组成是 A. –CNCCNCNCCNCNCCNC- B. –CCHNOCCHNOCCHNOC- C. –CCONHCCONHCCONHC- D. -CCNOHCCNOHCCNOHC- E. -CCHNOCCHNOCCHNOC- 8. 蛋白质的一级结构是指下面的哪一种情况: A. 氨基酸种类的数量 B. 分子中的各种化学键 C. 多肽链的形态和大小 D. 氨基酸残基的排列顺序 E. 分子中的共价键 9. 维持蛋白质分子一级结构的主要化学键是: A. 盐键 B. 氢键 C. 疏水键 D. 二硫键 E. 肽键 10. 蛋白质分子中α-螺旋构象的特点是: A. 肽键平面充分伸展 B. 靠盐键维持稳定 C. 螺旋方向与长轴垂直 D. 多为左手螺旋 E. 以上都不是 11. 下列哪种结构不属于蛋白质二级结构: A. α-螺旋 B. 双螺旋 C. β-片层 D. β-转角 E. 不规则卷曲

蛋白质结构与功能关系

举例说明蛋白质的结构于其功能之间的关系。 1、蛋白质一级结构决定高级结构,高级结构决定生物功能。 2、在不同种属之间,有些 aa 发生变化,不影响他的生物功能,例如,胰岛素的种属差异十分明显,但不同种属间分离得到的胰岛素具有相同的将血糖作用,不同种属间胰分离得到的胰岛素具有相同的将血糖作用,不同种属间胰岛素的一级结构稍有不同,但功能相同,主要是不同种属间具有20个不变aa残基构成的保守区决定的。此外,还包括细胞色素c,肌红蛋白,血红蛋白等一级结构稍有不同,功能相似。 3、在不同种属之间,由于基因突变,有些 aa 发生微观变化就引起功能的明显变化。例如,人的镰刀状红细胞贫血病和地中海贫血病。人的血红蛋白 b 链中第 6 位 glu 被 val 代替,由一个 aa 的变化,导致红细胞呈镰刀状, 降低运氧能力一起细胞形态和功能的变化。力起细胞形态和功能的变化 4、总之,蛋白质一级结构中各 aa 贡献不同,不变残基在蛋白质高级结构和功能上起重要作用,可变残基发生改变,不引起功能变化。不变残基在功能上起作用,可变残基在蛋白质进化上起重要作用。 5、蛋白质高级结构与功能的高度统一,结构决定功能。如血红蛋白的变构效应。血红蛋白由 4 个亚基组成, 2 个 a 亚基 ,2 个 b 亚基,分子中的 a 亚基对氧的亲和力比 b 亚基大,能首先与第一个氧结合,导致 a 亚基构象发生变化,进而引起相邻的b 亚基的构象也发生变化进而引起相邻的 b 亚基的构象也发生变化,增强 b 亚基对氧的亲和力。由于导致整个血红蛋白分子构象发生改变,与氧的结合能力大大加强,在肺部充分利用氧,使氧分压不致过高,在血液流经组织内时,当第一个氧放出后,其余三个氧很快放出,供组织利用氧。

蛋白质的结构和功能

第二讲蛋白质的结构与功能(第二部份) Lecture 2 Structure and Function of Protein (Part II) (续) 2.5 升降β-筒(Up and Down β-barrel) 相邻及平行的β-链间以发卡连接形成升降形式的筒形结构。β-链间连接的β-转角常是底物结合位点(图34~35)。 图34 大豆胰蛋白酶抑制剂中的升降β-筒 Fig 34 The Up and Down β-barrel in Soybean Trypsin Inhibitor 图35 视黄醇结合蛋白中的升降β-筒 Fig 35 The Up and Down β-barrel in Retinol Binding Protein 2.6 β-三叶草折叠(β Trefoil Folds) “β-三叶草折叠”是β-折叠链盘绕形成近似的具有三重对称轴的“三叶草”样结构(图36)。 图36 刺酮胰蛋白酶抑制剂中的β-三叶草折叠 Fig 36 The β Trefoil Fold in Erythrina Trypsin Inhibitor 2.7 β-螺旋(β Helix) 由β-折叠链盘绕形成“螺旋”样结构,比较少见(图37)。

图37 果胶酸脂裂解酶C中的β-螺旋 Fig 37 The β Helix in Pectate Lyase C 3. 全α拓扑结构(All α Topologies) 此类拓扑结构全部由α-螺旋构成。α-螺旋常呈反平行排列或垂直连接。前述“EF手型模体”、“螺旋-转角-螺旋模体”、“同源结构域模体”以及“亮氨酸拉链模体”均属于此类拓扑结构。 3.1 升降螺旋束(Up and Down Helix Bundle) 相邻反向排列的αα模体首尾相连,每个螺旋向左倾斜18°,形成左手扭曲的筒形螺旋束。最常见的是4螺旋束,形成两层结合(图38~41)。 图38 细胞色素b562中的升降螺旋束 Fig 38 The Up and Down Helix Bundle in Cytochrome b562 图39 铁蛋白中的升降螺旋束 Fig 39 The Up and Down Helix Bundle in Ferritin

蛋白质功能-结构-相互作用预测网站工具合集

蛋白质组学 蛋白质是生物体的重要组成部分,参与几乎所有生理和细胞代谢过程。此外,与基因组学和转录组学比较,对一个细胞或组织中表达的所有蛋白质,及其修饰和相互作用的大规模研究称为蛋白质组学。 蛋白质组学通常被认为是在基因组学和转录组学之后,生物系统研究的下一步。然而,蛋白质组的研究远比基因组学复杂,这是由于蛋白质内在的复杂特点,如蛋白质各种各样的翻译后修饰所决定的。并且,研究基因组学的技术要比研究蛋白质组学的技术强得多,虽然在蛋白质组学研究中,质谱技术的研究已取得了一些进展。 尽管存在方法上的挑战,蛋白质组学正在迅速发展,并且对癌症的临床诊断和疾病治疗做出了重要贡献。几项研究鉴定出了一些蛋白质在乳腺癌、卵巢癌、前列腺癌和食道癌中表达变化。例如,通过蛋白质组学技术,人们可以在患者血液中明确鉴定出肿瘤标志物。表1列出了更多的蛋白质组学技术用于研究癌症的例子。 另外,高尔基体功能复杂。最新研究表明,它除了参与蛋白加工外,还能参与细胞分化及细胞间信号传导的过程,并在凋亡中扮演重要角色,其功能障碍也许和肿瘤的发生、发展有某种联系。根据人类基因组研究,约1000多种人类高尔基体蛋白质中仅有500~600种得到了鉴定,建立一条关于高尔基体蛋白质组成的技术路线将有助于其功能的深入研究。 蛋白质组学是一种有效的研究方法,特别是随着亚细胞器蛋白质组学技术的迅猛发展,使高尔基体的全面研究变为可能。因此研究人员希望能以胃癌细胞中的高尔基体为研究对象,通过亚细胞器蛋白质组学方法,建立胃癌细胞中高尔基体的蛋白质组方法学。 研究人员采用蔗糖密度梯度的超速离心方法分离纯化高尔基体,双向凝胶电泳(2-DE)分离高尔基体蛋白质,用ImageMaster 2D软件分析所得图谱,基质辅助激光解吸离子化飞行时间质谱(MALDI-TOF MS)鉴定蛋白质点等一系列亚细胞器蛋白质组学方法建立了胃癌细胞内高尔基体的蛋白图谱。 最后,人们根据分离出的纯度较高的高尔基体建立了分辨率和重复性均较好的双向电泳图谱,运用质谱技术鉴定出12个蛋白质,包括蛋白合成相关蛋白、膜融合蛋白、调节蛋白、凋亡相关蛋白、运输蛋白和细胞增殖分化相关蛋白。通过亚细胞器分离纯化、双向电泳的蛋白分离及MALDI-TOF MS蛋白鉴定分析,研究人员首次成功建立了胃癌细胞SGC7901中高尔基体的蛋白质组学技术路线。 3.1 蛋白质功能预测工具 也许生物信息学方法在癌症研究中最常用的就是基因功能预测方法,但是这些数据库只存储了基因组的大约一半基因的功能。为了在微阵列资料基础上完成功能性的富集分析,基因簇的功能注解是非常重要的。近几年生物学家研发了一些基因功能预测的方法,这些方法旨在超越传统的BLAST搜索来预测基因的功能。基因功能预测可以以氨基酸序列、三级结构、与之相互作用的配体、相互作用过程或基因的表达方式为基础。其中最重要的是基于氨基酸序列的分析,因为这种方法适合于微阵列分析的全部基因。 在表3中,前三项列举了三种同源搜索方法。FASTA方法虽然应用还不太广泛,但它要优于BLAST,或者至少相当。FASTA程序是第一个使用的数据库相似性搜索程序。为了达到较高的敏感程度,程序引用取代矩阵实行局部比对以获得最佳搜索。美国弗吉尼亚大学可以提供这项程序的地方版本,当然数据库搜索结果依赖于要搜索的数据库序列。如果最近的序列数据库版本在弗吉尼亚大学不能获得,那么就最好试一下京都大学(Kyoto University)的KEGG站点。PSI-BLAST(位点特异性反复BLAST)是BLAST的转化版本,PSI-BLAST的特色是每次用profile 搜索数据库后再利用搜索的结果重新构建profile,然后用新的profile再次搜索数据库,如此反复直至没有新的结果产生为止。PSI-BLAST先用带空位的BLAST搜索数据库,将获得的序列通过多序列比对来构建第一个profile。PSI-BLAST自然地拓展了BLAST方法,能寻找蛋白质序列中的隐含模式,有研究表明这种方法可以有效地找到很多序列差异较大而结构功能相似的相关蛋白,所以它比BLAST和FASTA有更好的敏感性。PSI-BLAST服务可以

蛋白质的结构和功能

第二章蛋白质的结构和功能 蛋白质(protein)在生物体内具有广泛和重要的生理功能,它不仅是各器官、组织的主要化学组成,且生命活动中各种生理功能的完成大多是通过蛋白质来实现的,而且蛋白质在其中还起着关键的作用,所以蛋白质是生物化学学科中传统、基础的内容,在分子生物学学科中又是发展最快、最重要的部分之一,protein一词就是来自1938年Jons J Berzelius创造的希腊单词protios,意为第一或最重要的意思。 第一节蛋白质在生命活动中的重要功能 蛋白质是生命的物质基础,一切生命活动离不开蛋白质。 蛋白质普遍存在于生物界,从病毒、细菌到动、植物都含有蛋白质,病毒除核酸外几乎都由蛋白质组成,甚至朊病毒(prion)就只含蛋白质而不含核酸。蛋白质也是各种生物体内含量最多的有机物质(表2-1)。人体内蛋白质含量就约占其干重的45%左右。 体内一些蛋白质的重要生理功能: (一)催化功能 (二)调节功能 (三)保护和支持功能 (四)运输功能 (五)储存和营养功能 (六)收缩和运动功能 (七)防御功能 (八)识别功能 (九)信息传递功能 (十)基因表达调控功能 (十一)凝血功能 (十二)蛋白质的其他众多生理功能 1

2 第二节 蛋白质的分子组成 一、 蛋白质的元素组成和分子量 蛋白质是大分子化合物,相对分子质量(Mr )一般上万,结构十分复杂,但都是由 C 、H 、O 、N 、S 等基本元素组成,有些蛋白质分子中还含有少量Fe 、P 、Zn 、Mn 、Cu 、I 等元素,而其中氮的含量相对恒定,占13%~19%,平均为16%,因此通过样品中含氮量的测定,乘以6.25,即可推算出其中蛋白质的含量。 二、 蛋白质的氨基酸组成 大分子蛋白质的基本组成单位或构件分子(building-block molecule )是氨基酸(amino acid ,AA )(表2-2)。在种类上,虽然自然界中存在着300多种氨基酸,但构成蛋白质的只有20种氨基酸,且都是L,α-氨基酸,在蛋白质生物合成时它们受遗传密码控制。另外,组成蛋白质的氨基酸,不存在种族差异和个体差异。 在20种氨基酸中,除甘氨酸不具有不对称碳原子和脯氨酰是亚氨基酸外,其余 均为L,α-氨基酸。氨基酸分子的结构通式为:R H | C | COOH N H 2-- (一) 氨基酸的分类 20种氨基酸按其侧链R 结构的不同,在化学中可分为脂肪族、芳香族和杂环氨基酸三大类,分别含15种、2种和3种氨基酸。在脂肪族氨基酸中,3种是支链氨基酸,而大多是直链氨基酸。在20种氨基酸中,有2种是含硫氨基酸和3种是含羟基的氨基酸。在生物化学中,氨基酸是根据其酸性基团(羧基)和碱性基团(氨基、胍基、咪唑基)的多寡而分为酸性氨基酸、碱性氨基酸和中性氨基酸三类,其中酸性氨基酸含2个羧基和1个氨基,碱性氨基酸含2个或2个以上碱性基团和一个羧基,都属于含有可解离基团的极性氨基酸,而中性氨基酸只含有1个羧基和1个氨基,在形成蛋白质分子时都被

蛋白质结构与功能的生物信息学研究

实验名称:蛋白质结构与功能的生物信息学研究 实验目的:1.掌握运用BLAST工具对指定蛋白质的氨基酸序列同源性搜索的方法。 2.掌握用不同的工具分析蛋白质的氨基酸序列的基本性质 3掌握蛋白质的氨基酸序列进行三维结构的分析 4.熟悉对蛋白质的氨基酸序列所代表蛋白的修饰情况、所参与的 代谢途径、相互作用的蛋白,以及与疾病的相关性的分析。实验方法和流程: 一、同源性搜索 同源性从分子水平讲则是指两个核酸分子的核苷酸序列或两个蛋白质分子的氨基酸序列间的相似程度。BLAST工具能对生物不同蛋白质的氨基酸序列或不同的基因的DNA序列极性比对,并从相应数据库中找到相同或相似序列。对指定的蛋白质的氨基酸序列进行同源性搜索步骤如下: ↓ 登录网址https://www.360docs.net/doc/fc3680605.html,/blast/ ↓ 输入序列后,运行blast工具 ↓ 序列比对的图形结果显示

序列比对的图形结果:用相似性区段(Hit)覆盖输入序列的范围判断两个序列 的相似性。如果图形中包含低得分的颜色(主要是红色) 区段,表明两序列的并非完全匹配。 ↓ 匹配序列列表及得分

各序列得分 可选择不同的比对工具 备注: Clustal是一款用来对()的软件。可以用来发现特征序列,进行蛋白分类,证明序列间的同源性,帮助预测新序列二级结构与三级结构,确定PCR引物,以及 在分子进化分析方面均有很大帮助。Clustal包括Clustalx和Clustalw(前者是 图形化界面版本后者是命令界面),是生物信息学常用的多序列比对工具。 该序列的比对结果有100条,按得分降序排列,其中最大得分2373,最小得分 分为1195. ↓ 详细的比对序列的排列情况 第一个匹配 序列 第一个序列的匹配率为100% Score表示打分矩阵计算出来的值,由搜索算法决定的,值越大说明匹配程度

蛋白质一级结构与高级结构关系

蛋白质一级结构与高级结构关系 蛋白质分子就是由氨基酸首尾相连而成得共价多肽链,天然蛋白质分子有自己特有得空间结构,称为蛋白质构象。 蛋白质结构得不同组织层次:一级结构指多肽链得氨基酸序列。二级结构就是指多肽链借助氢键排列成特有得α螺旋与β折叠片段。三级结构就是指多肽链借助各种非共价键弯曲、折叠成具有特定走向得紧密球状构象。球状构象给出最低得表面积与体积之比,因而使蛋白质与周围环境得相互作用降到最小。四级结构就是指寡居蛋白质中各亚基之间在空间上得相互关系与结合方式。二、三、四级结构为蛋白质得高级结构。蛋白质得天然折叠结构决定于3个因素:1。与溶剂分子(一般就是水)得相互作用。2。溶剂得PH值与离子组成。3。蛋白质得氨基酸序列。后一个就是最重要得因素。 (一)蛋白质折叠得热力学假说 蛋白质得高级结构由其一级结构决定得学说最初由Christian B、 Anfinsen于1954年提出。在1950年之前,Anfinsen一直从事蛋白质结构方面得研究。在进入美国国立卫生研究所(NIH)以后,继续从事这方面得研究。Anfinsen与两个博士后Michael Sela、 Fred White在研究中发现,使用高浓度得巯基试剂——β- 巯基乙醇(β- mercaptoethanol)可将二硫键还原成自由得巯基,如果再加入尿素,进一步破坏已被还原得核糖核酸酶分子内部得次级键,则该酶将去折叠转变成无任何活性得无规卷曲。对还原得核糖核酸酶得物理性质进行分析得结果清楚地表明了它得确采取得就是无规卷曲得形状。 在成功得到一种去折叠得核糖核酸酶以后,Anfinsen 着手开始研究它得重折叠过程。考虑到被还原得核糖核酸酶要在已被还原得8个Cys残基上重建4对二硫键共有105 种不同得组合,但只有一种就是正确得形式,如果决定蛋白质构象得信息一直存在于氨基酸序列之中,那么,最后重折叠得到得总就是那种正确得形式。否则,重折叠将就是随机得,最后只能得到少量得正确形式。Anfinsen 得重折叠实验还就是比较顺利得,她通过透析得方法除去了导致酶去折叠得尿素与巯基乙醇,再将没有活性得酶转移到其生理缓冲溶液之中,在有氧气得情况下于室温放置,以使巯基能重新氧化成二硫键。经过一段时间以后,发现核糖核酸酶活性得以恢复,这意味着它原来得构象恢复了。由于上述过程没有细胞内任何其她成分得参与,完全就是一种自发得过程,因此,有理由相信此蛋白质正确折叠所需要得所有信息全部存在于它得一级结构之中。在此基础上,Anfinsen提出了蛋白质折叠得热力学假说(thermodynamic hypothesis)。根据此假说,一个蛋白质得天然三维构象对应于在生理条件下其所处得热力学最稳定得状态。热力学稳定性由组成得氨基酸残基之间得相互作用决定,于就是蛋白质得三维构象直接由它得一级结构决定。 (二)蛋白质高级结构对高级结构形成得影响

相关文档
最新文档