数学解题思维策略

数学解题思维策略
数学解题思维策略

第一讲数学解题思维策略

——高考数学代数推理题

一、数学解题的思维过程

数学解题的思维过程是指从理解问题开始,从经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动.

在高考试卷中,有一类问题常以高中代数的主体内容——函数、方程、不等式、数列及其综合部分为知识背景,并与高等数学知识及思想方法接轨,这就是代数推理题.这类问题立意新颖,抽象程度高,是数学问题的典型代表.具体说来,其思维过程一般分为三步:首先要领会题意(审题)——弄清题目的条件是什么?结论是什么?如果条件和结论是用文字表达的,则把它翻译成数学语言;其次要明确方向——在审题的基础上,运用所学知识和数学思想方法,明确解题目标与方向;最后要规范表述——采用适当的步骤,合乎逻辑地进行推理和运算,并正确地表述.

在这里,第一步是关键,这就是我们通常说的审题.

二、如何审题?

1、理清题意

审题,就是明确题目的已知和未知,是解题的第一步,这一步不要怕慢.从近年高考命题的特点来看,试卷容量有减少的趋向,目的也就是要突出对考生的能力检查,增加思考量,倡导多给考生一点思考和探索的时间.

其实,题目本身就是“怎样解这道题”的信息源,所以审题一定要逐字逐句看清楚,可以从语法结构、逻辑关系和数学含义三方面来理清题意.

2、条件启发解题手段,结论诱导解题方向

解题实践表明,条件往往预示可知并启发解题手段,结论则预告需知并诱导解题方向.可以按照条件列出所有的解题手段表解,根据结论写出可能的解题方向,并寻找出它们之间的联系,这样做的另一个好处是,可以将题目进行分解,避免失分.

3、挖掘隐蔽条件

对于条件,一定要用足用够.解题过程中的关键之处,往往是题目未明显写出的,即隐蔽给予的.一方面,解题时如果遇到“盲点”,可以回过头来分析是否用足用够条件;另一方面,也只有细致的审题才能从题目本身获得尽可能多的信息,这也说明,审题一定不要怕慢.

〖例1〗(2005年成都一诊22题)对于函数f (x ),若存在0x ∈R ,使00()f x x =成立,则称0x 为函数f (x )的不动点.已知2()(1)1(0)f x ax b x b a =+++-≠.

⑴若对b ∈R ,f (x )恒有两个相异的不动点,求实数a 的取值范围;

⑵在⑴的条件下,若y =f (x )的图像上A 、B 两点的横坐标是函数f (x )的不动点,且A 、B 两点关于直线2(44)y kx a a =+-+对称,求b 的最小值.

〔条件分析〕条件呈包含关系,子条件在结论二中列出.

前提条件→解题手段:信息迁移(数学含义)→三个“二次”结合(数形结合); 子条件→解题手段:①隐蔽条件;②对称性(数形结合)→垂直、中点(点差法). 〔结论分析〕两个结论. 结论一→解题方向:不等关系; 结论二→解题方向:利用单调性求最值. 练习:

1、设b x a x x f ++=1log 2)(log 2)(222,已知2

1

=x 时,f (x )的最小值是8-. ⑴求b a -;

⑵求在⑴的条件下,f (x )>0的解集A ;

⑶设集合},2

1

|||{R x t x x B ∈≤-=,且?=?B A ,求实数t 的取值范围.

答案:⑴4a b -=;⑵x x A <=0|{ }281>

3

8521≤≤-≤t t 或.

2、定义在R 上的函数f (x )满足:如果对于任意12,x x ∈R ,都有

12121

(

)[()()]22

x x f f x f x +≤+,则称函数f (x )是R 上的凹函数.已知二次函数2()(,0)f x ax x a a =+∈≠R .

⑴求证:当0a >时,函数f (x )是凹函数;

⑵如果[0,1],|()|1x f x ∈≤,试求实数a 的取值范围. 答案:⑴略;⑵实数a 的取值范围为[2,0)-. 三、若干具体的解题策略

为了使解题的目标和方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些具体的解题策略.一切解题的策略的基本出发点在于变换,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的.基于这样的认识,常用的解题策略有熟悉化、简单化、直观化、特殊化、一般化和间接化等策略.

1、熟悉化策略

熟悉化策略,就是将陌生的题目变为曾经解过的比较熟悉的题目,进而利用已有的知识、经验或解题模式,顺利地解出原题.可以在分清题目条件和结论的基础上,通过变换题目的条件、结论及其联系上下功夫.

⑴联想回忆基本知识和题型

通过联想回忆,找出现有问题和熟悉问题之间的相似之处和相同的知识点,充分利用相似问题中的方式、方法和结论,从而解决现有问题.

⑵全方位、多角度分析题意

全方位分析题意,即把题目的所有条件都要分析透,并找到各条件间以及条件和结论间的联系,从中找出熟悉的解题手段;多角度分析题意,就是要善于从不同的侧面、不同的角度去认识,根据自己的知识和经验,适时调整分析问题的视角,找到自己熟悉的解题方向.

⑶恰当构造辅助元素

通过构造辅助元素,如构造数列、构造图形或几何量、构造等价性命题等,改变题目的形式,变陌生题为熟悉题.

〖例2〗(2003年成都一诊20题)已知数列{a n }的前n 项和为S n ,p 为非零常数,满足条件:

①a 1=1;②S n =4a n +S n – 1– pa n – 1(2≥n );③2

3

lim =

→n n S . ⑴求证:数列{a n }是等比数列; ⑵求数列{a n }的通项公式;

⑶若b n =na n ,求数列{b n }的前n 项和n n b b b T +++= 21. 〔条件分析〕条件呈包含关系,子条件分项列出. 子条件①、②→联想回忆:a n =S n – S n – 1(2≥n );

子条件③→联想回忆:等比数列前n 项和的极限值存在,则公比q 的绝对值小于1. 〔结论分析〕三个结论. 结论一→根据定义证明; 结论二→求出公比;

结论三→联想回忆:数列{b n }的通项是等差、等比数列的通项积,可用错位相减法求前n 项和.

〔解题评析〕⑴证明:∵ S n =4a n +S n – 1– pa n – 1(2≥n ), ∴ a n =S n – S n – 1=4a n – pa n – 1, (点评:应用a n =S n – S n – 1(2≥n ).) 3a n =pa n – 1.

∵ 0≠p 且a 1=1, ∴ )2(01≥≠-n a n , ∴

)(31常数p a a n n =-,故数列{a n }是首项a 1=1,公比3

p

q =的等比数列. (点评:应说明)2(01≥≠-n a n .)

⑵解:∵ 2

3

lim =∞→n n S ,

∴ 23

3

11|3|01=-<

(点评:应用无穷递缩等比数列前n 项和的极限.)

∴ p =1,3

1

=q .

∴ 数列{a n }的通项为1)3

1

(-=n n a .

⑶解:13

-==n n n n

na b ,

∴ 12213

33321-++++=+++=n n n n

b b b T ……①

n n n n

n T 33133323131132+-++++=- ……②

① – ②,得

n n n )31

()31(21231?-?-=-.

(点评:使用错位相减法求数列前n 项和.) ∴ n n n n T )31

(23)31(43491--=-.

练习:

1、数列{a n }的前n 项和记作为S n ,已知n n n S a )2

1

(1+=-.

⑴写出{a n }的通项公式,并证明; ⑵对于给出的正整数k ,当n >k 时,A S a k

n k

n n =--+∞→1lim ,且)001.0,1.0(--∈A ,求k 值.

答案:⑴)1(2

1≥=

+n n

a n n ;⑵k =2, 3, 4. 2、一计算装置有一数据入口A 和一个运算结果的出口B .将自然数列{}(1)n n ≥中的各数依次输入A 口,从B 口得到数列{}n a .结果表明:①从A 口输入n =1时,从B 口得

到11

3

a =;②当2n ≥时,从A 口输入n ,从B 口得到的结果n a 是将前一结果1n a -先乘以

自然数列{}(1)n n ≥中的第1n -个奇数,再除以自然数列{}(1)n n ≥中的第n +1个奇数.

⑴从A 口分别输入2和3时,从B 口分别得到什么数?

⑵猜测并证明当入口A 输入自然数列{}(1)n n ≥时,从B 口得到的数列{}n a 的通项公式;

⑶为满足计算需要,工程师对装置进行了改造,使B 口出来的数据n a 依次进入C 口进行调整,结果为一列数据{}n b .若1

()n n

b pn q a =+,则非零常数p 、q 满足什么关系式,

才能使C 口所得数列{}n b 为等差数列?

答案:⑴

115和1

35

;⑵1(21)(21)n a n n =-+;⑶2p q =±.

3、一个正三棱锥,其侧棱长为1,且三条侧棱两两垂直,求该三棱锥的外接球的表面积.

答案:π3. 2、简单化策略

简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法将其转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题.

简单化是熟悉化的补充和发挥.一般说来,我们对于简单问题往往比较熟悉或容易熟悉.因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已.解题中,实施简单化策略的途径是多方面的,常用的有:寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等.

⑴寻求中间环节,挖掘隐含条件

就多数结构复杂的题目的生成背景而论,大多是由一些简单题目经适当组合并抽去中间环节而构成的.因此,应尽可能从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,以实现复杂问题简单化.

⑵分类考察讨论

某些题目,其解题的复杂性在于它的条件、结论(或问题)包含多种不易识别的可能情形.对于这类问题,选择恰当的分类标准,把原题分解成一组并列的简单题,有助于实现复杂问题简单化.

⑶简化已知条件,恰当分解结论

如果解题的复杂性来自于条件或结论的抽象概括,可以考虑将条件进行简单化处理,或尝试把结论分解为几个简单的部分,以便各个击破,解出原题.

〖例3〗已知等比数列}{n x 的各项为不等于1的正数,数列}{n y 满足

)10(2l o g ≠>=?a a a y n x n 且,设183=y ,126=y .

⑴求数列}{n y 的前多少项和最大,最大值为多少?

⑵试判断是否存在自然数M ,使当n >M 时,1>n x 恒成立?若存在,求出相应的M ,若不存在,请说明理由;

⑶令),13(log 1N n n x a n x n n ∈>=+,试判断数列}{n a 的增减性. 〔条件分析〕三个条件.

第一个条件→解题手段:等比数列;

第二个条件→解题手段:两个数列间的关系→等比数列的对数; 第三个条件→解题手段:第二个数列具体化. 〔结论分析〕三个结论,皆属探索性命题. 结论一→最值探索; 结论二→有界性探索; 结论三→单调性探索.

〔解题关键〕数列是定义在正整数集上的函数. 〔解题评析〕(I )设等比数列}{n x 的公比为)1(≠q q ,则

n a x n x a

y n log 2log 2

==

∵ q x x x x y y a n

n a n a n a n n log 2log 2)log (log 21

11==-=-+++, ∴ 数列}{n y 为等差数列,设公差为d .

(点评:挖掘隐含条件——数列}{n y 为等差数列.) ∵ 183=y ,126=y ,

∴ 23

3

6-=-=y y d ,

n n y y n 224)2()3(3-=-?-+=.

设数列}{n y 前k 项和最大,则??

?≤≤?≤≥+121100

1k y y k k , ∴ 前11项和及前12项和为最大,其和为132. (II )N n a x n n ∈=-,12. 若1>n x ,即112>-n a ,

当a >1时,n <12,不等式不成立; 当012,不等式成立. (点评:分类考察讨论.)

∴ 存在 ,14,13,12=M ,当n >M 时,1>n x 恒成立. (III )12

11

log log log log 12)1(12)

1(12112--====-+-+-+-n n a a a x a n

a n a n a n x n n n . ∵ )13(0)

12)(11(1

121111101><---=-----=

-+n n n n n n n a a n n , ∴ n >13时,数列}{n a 为递减数列. 练习:

1、若函数)2

0(2385cos sin 2π

≤≤-++=x a x a x y 的最大值为1,求a 的值.

答案:2

3

=a .

2、已知0c >.设P :函数x y c =在R 上单调递减;Q :不等式|2|1x x c +->的解集为R .如果P 和Q 有且仅有一个正确,试求c 的取值范围.

答案:1

(0,][1,)2

c ∈?+∞.

3、设函数2()f x ax bx c =++,对一切[1,1]x ∈-,都有|()|1f x ≤,求证:对一切

[1,1]x ∈-,都有|2|4ax b +≤.

3、直观化策略

直观化策略,就是当我们面临的是一道内容抽象、不易捉摸的题目时,要设法把它转化为形象鲜明、直观具体的问题,以便凭借事物的形象把握题中所涉及的各对象之间的联系,从而找到原题的解题思路.

⑴图表直观

有些数学题,内容抽象,关系复杂,给理解题意增添了因难,常常会由于题目的抽象性和复杂性,使正常的思维难以进行到底. 对于这类题目,借助图表直观,利用示意图或表格分析题意,将有助于抽象内容形象化,复杂关系条理化,使思维有相对具体的依托,便于深入思考,发现解题线索.

⑵图形直观

对某些涉及数量关系的题目,用代数方法求解,计算量偏大.这时,不妨借助图形直观,给题中有关数量以恰当的几何分析,以拓宽解题思路,找到简捷、合理的解题途径.

⑶图象直观

不少涉及数量关系的题目,都与函数的图象密切相关.如果灵活运用函数图象的直观性,常常可以以简驭繁,获得简便、巧妙的解法.

〖例4〗某摩托车生产企业,上半年生产摩托车的投入成本1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆,本年度为适应市场需求,计划提高产品档次,适度投入成本,若每辆车投入成本增加的比例为x (0

⑴写出本年度预计的年利润y 与投入成本增加比例x 的关系式;

⑵为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内?

〔试题分析〕列表如下:

〔解题评析〕⑴依题意和上表数据有

)10()6.01(1000)]1(1)75.01(2.1[<<+?+?-+?=x x x x y ,

整理得 )10(200

20602<<++-=x x x y .

(点评:布列关系式时,不仅要紧扣题意,还要注意自变量x 的取值范围,特别是应用题的定义域必须同时满足解析式有意义和实际问题有意义,只有准确写出定义域方可避免解答过程的失误或答案的失误.)

⑵要保证本年度的利润比上年度有所增加,当且仅当

将y 的关系式代入,解不等式组得3

1

0<

答:为保证本年度的利润比上年度有所增加,投入成本增加的比例x 应满足0

〖例5〗设|z |=1,且)23,2(arg ππ∈z ,求i

z i

z +-arg 的值.

〔试题分析〕利用复平面,将复数与点及向量对应,以便展开几何上的定形分析. 〔解题评析〕

设z 、i 、– i 在复平面上对应的点分别为P 、A 、B .

∵ )23,2(arg π

π∈z ,

∴ P 点在左半单位圆上,如图,→

--AP 、→

--BP 分别表示对应复数z – i 、z +i .

由复数除法的几何意义知,i

z i

z +-arg 表示→--BP 逆时针方向旋转

到→

--AP 方向的最小正角,

又∵ AB 是圆的直径,故2

arg

π

=+-i z i z . (点评:本题可利用复数z 的三角形式或共轭复数的性质求解,但如果调整思维视角,由“数”的方向转到“形”的角度去观察,就可简捷地解答此题.)

〖例6〗方程x +lg x =3和x +10x =3的两实根分别为x 1、x 2,则x 1+x 2=________. 〔解题评析〕 3 .

由 x +lg x =3,得lg x =3 – x .由x +10x =3,得10x =3 – x . 分别作出y =lg x ,y =10x 及y =3 – x 的图象,并注意y =lg x 与y =10x 互为反函数,直线y =x 与y =3 – x 互相垂直,可

x 1+x 2=2x M ,如图.

由???-==,3,x y x y 得)23,23(M ,

∴ x 1+x 2=2x M =3.

(点评:看似无法求解的问题通过图象分析找到了巧妙的解法.) 4、特殊化策略

特殊化策略,就是当我们面临的是一道难以入手的一般性题目时,要注意从一般退到特殊,可以考虑是否满足一些特殊的条件,或考察包含在一般情形里的某些比较简单的特殊问题,以从特殊问题的研究中,发现解答原题的方向或途径.

〖例7〗设二次函数),()(2R c b c bx x x f ∈++=,对任意实数α、β,恒有

0)(s i n ≥αf ,且0)cos 2(≤+βf .

⑴求证1-=+c b ; ⑵求证3≥c ;

⑶若)(sin αf 的最大值为8,求b 、c 的值.

〔试题分析〕注意到1sin 1≤≤-α及3cos 21≤+≤β,实施特殊化策略(赋值法)可解.

〔解题评析〕⑴∵ 1sin 1≤≤-α,且0)(sin ≥αf , ∴ 0)1(≥f .

又∵ 3cos 21≤+≤β,且0)cos 2(≤+βf , ∴ 0)1(≤f .

(点评:特殊化策略.) ∴ 0)1(=f ,即 1+b +c =0. (点评:赋值法.)

∴ 1-=+c b .

⑵∵ 0)3(≤f ,即 039≤++c b , 由(I ),1-=+c b , ∴ 3≥c .

(点评:注意利用⑴的结论.)

⑶c c f +--+=αααsin )1(sin )(sin 2

2

2)2

1()21(s i n c c c +-++-=α.

∵ 3≥c ,221≥+c

,)(sin αf 的最大值为8,

∴ 当1sin -=α时,8)(sin =αf ,即81=+-c b . (点评:配方定轴看单调.)

解方程组???-=+=+-.1,

81c b c b

得4-=b ,c =3. 练习:

1、设函数f (x )是定义在R 上的增函数,f (1)=a (a >0),且R m mx f x f m ∈=),()]([,求f (x )并证明a >1.

答案:x a x f =)(.

2、已知函数定义域为R ,对于任意实数12,x x 都满足1212()()()f x x f x f x +=+,当0x >时,()0f x >.

⑴判断f (x )的奇偶性和单调性;

⑵当[0,]2π

θ∈时,(cos 23)(42cos )0f f m m θθ-+->对所有的θ均成立,求实数m

的取值范围.

答案:⑴略;⑵(4)θ∈-+∞.

3、在ABC ?中,若222c a b =+,则ABC ?为直角三角形,且C 为直角. 现在请你研究:若(2,)n n n c a b n n =+>∈N ,则ABC ?为何种形状的三角形? 答案:锐角三角形. 5、一般化策略

一般化策略,就是当我们面临的是一道计算比较复杂或内在联系不甚明显的特殊问题时,应设法把特殊问题一般化,从而找出一个能够揭示事物本质属性的一般情形的方法、技巧或结果,以顺利解出原题.

〖例8〗(2002理)已知函数2

21)(x x x f +=,那么1

(1)(2)()(3)2

f f f f ++++

11

()(4)()34

f f f ++=________. 练习:

1、已知函数23123(),n n f x a x a x a x a x n +=+++

+∈N ,且12,,

,n a a a 构成一个数列

{}n a ,满足2(1)f n =.

⑴求数列{}n a 的通项公式,并求1

lim

n

n n a a →∞+之值;

⑵证明1

0()13

f <<.

答案:⑴21n a n =-,1

lim

1n

n n a a →∞+=;⑵略.

2、已知椭圆2

2

2(0)2

y x a a +=>和点(1,1)A -,(2,4)B .若线段AB 与椭圆没有公共点,求实数a 的取值范围.

答案:(0,

))2

a ∈?+∞. 6、简接化策略

间接化策略,就是当我们面临的是一道从正面入手复杂繁难,或在特定场合甚至找不到解题依据的题目时,就需要改变思维视角,从结论(或问题)的反面进行思考,以便化难为易解出原题. 所谓正难则反,说的也就是这个意思.

〖例9〗函数bx a x f 2

11

)(?+=的定义域为R ,且)(0)(lim N n n f n ∈=-∞→. ⑴求证:a >0,b <0;

⑵若54)1(=f 且21)0(=f ,求证:)(21

21)()2()1(1N n n n f f f n ∈-+>++++ .

〔解题评析〕⑴∵ f (x )的定义域为R , ∴ 021≠?+bx a ,即bx a --≠2, 由R x ∈,有0≥a . (点评:定义域优先.)

若a =0,则f (x )=1,与0)(lim =-∞

→n f n 矛盾.

(点评:正难则反.)

∴ a >0, ∴ ?

????>=+<<=?+=-----∞→∞

→)12(0

)12(11

)120(1211

lim

)(lim b b b bn

n n a a n f (点评:分类讨论.) ∴ 12>-b ,即b <0. 故a >0,b <0. ⑵∵ 2

1

11)0(=+=a f , ∴ a =1.

又54

211)1(=

+=

b f , ∴ 4

1

2=b ,2-=b .

(点评:待定系数法.)

∴ x

x x x x f 4

11

1414211)(2+-=+=+=-. 当N k ∈时,k

k k f 2

21

14111)(?->+-

=, (点评:一般化策略.)

∴ )221

221221(

)()2()1(2n n n f f f ?++?+?->+++ 21212

11)

211(411-+=---=+n n n n . 练习:

1、若二次函数22()42(2)21f x x p x p p =----+在区间[1,1]-上至少存在一点m ,使

()0f m >,求实数p 的取值范围.

答案:3

(3,)2

p ∈-.

2

、某正态总体的概率密度函数是偶函数,而且该函数的最大值为

,求总体落入区间(1.2,0.2)-之间的概率(参考数据:(0.2)0.5793φ=,(1.2)0.8849φ=).

答案:0.4642.

3、盒子里装有若干个球,每个球都记有从1开始的一个号码,设号码为n 的球重

2

5153

n n -+(克).假设盒子的容量最多可装35个球,而且符合条件的球无一例外的都被装入盒中,这些球以等可能性(不受重量、号码的影响)从盒子里取出.

⑴如果任意取出一球,试求其重量大于号码数的概率; ⑵如果同时任意取出2球,试求它们重量相同的概率.

答案:⑴2835;⑵4

595.

四、寻根查祖,提高数学解题能力 可以通过以下探索途径来提高解题能力:

1、研究问题的条件时,在需要与可能的情况下,可画出相应图形或思路图帮助思考.因为这意味着你对题的整个情境有了清晰的具体的了解.

2、清晰地理解情境中的各个元素;一定要弄清楚其中哪些元素是给定了的,即已知的,哪些是所求的,即未知的.

3、深入地分析并思考习题叙述中的每一个符号、术语的含义,从中找出习题的重要元素,要在图中标出(用直观符号)已知元素和未知元素,并试着改变一下题目中(或图中)各元素的位置,看看能否有重要发现.

4、尽可能从整体上理解题目的条件,找出它的特点,联想以前是否遇到过类似题目.

5、仔细考虑题意是否有其他不同理解.题目的条件有无多余的、互相矛盾的内容?是否还缺少条件?

6、认真研究题目提出的目标.通过目标找出哪些定理、法则、公式同题目或其他元素有联系.

7、如果在解题中发现有你熟悉的一般数学方法,就尽可能用这种方法的语言表示题的元素,以利于解题思路的展开.

以上途径特别有利于开始解题者能迅速“登堂入室”,找到解题的起步点.在制定计划寻求解法阶段,可以利用下面这套探索方法:

1、设法将题目与你会解的某一类题联系起来.或者尽可能找出你熟悉的、最符合已知条件的解题方法.

2、记住:题的目标是寻求解答的主要方向.在仔细分析目标时即可尝试能否用你熟悉的方法去解题.

3、解了几步后可将所得的局部结果与问题的条件、结论作比较.用这种办法检查解题途径是否合理,以便及时进行修正或调整.

4、尝试能否局部地改变题目,换种方法叙述条件,故意简化题的条件(也就是编拟

条件简化了的同类题)再求其解.再试试能否扩大题目条件(编一个更一般的题目),并将与题有关的概念用它的定义加以替代.

5、分解条件,尽可能将分成部分重新组合,扩大对条件的理解.

6、尝试将题分解成一串辅助问题,依次解答这些辅助问题即可构成所给题目的解.

7、研究题的某些部分的极限情况,考察这样会对基本目标产生什么影响.

8、改变题的一部分,看对其他部分有何影响;依据上面的“影响”改变题的某些部分所出现的结果,尝试能否对题的目标作出一个“展望” .

9、万一用尽方法还是解不出来,你就从课本中或参考书中找一个同类题,研究分析其现成答案,从中找出解题的有益启示.

〖例1〗(2005年成都一诊19题)已知函数f (x )的图像与函数321

()23

h x x x =++的

图像关于点(0,1)A 对称.

⑴求f (x )的解析式;

⑵若()()g x f x ax =+,且()g x 在(,)-∞+∞上为增函数,求实数a 的取值范围. 〔条件分析〕条件呈包含关系,子条件在结论二中列出. 前提条件→解题手段:对称性(数形结合)→中点坐标;

子条件→解题手段:①三次函数;②单调性→导数(二次函数)→手段一:分离系数(大于最大的,小于最小的);手段二:三个“二次”结合(数形结合).

〔结论分析〕两个结论.

结论一→解题方向:求轨迹方程的一般方法; 结论二→解题方向:不等关系.

〔解题评析〕⑴设(,)P x y 为()f x 图像上任一点,则点P 关于点A 的对称点为

(,2)Q x y --,由已知条件知点Q 在h (x )的图像上.

∴ 3212()()23y x x -=-+-+,即321

3y x x =-.

∴ 321

()3

f x x x =-.

(点评:函数与方程的关系.)

⑵∵ 321

()()3

g x f x ax x x ax =+=-+,

∴ 2

()2g x x x a '=-+. ∵ ()g x 在R 上为增函数, ∴ 220x x a -+≥在R 上恒成立.

只需22a x x ≥-+恒成立,即只需2max (2)1a x x ≥-+=即可.

∴a的取值范围是[1,)

数学思维

二、《解密数学思维的内核》 数学解题的思维过程 数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。 对于数学解题思维过程,G . 波利亚提出了四个阶段*(见附录),即弄清问题、拟定计划、实现计划和回顾。这四个阶段思维过程的实质,可以用下列八个字加以概括:理解、转换、实施、反思。 第一阶段:理解问题是解题思维活动的开始。 第二阶段:转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。 第三阶段:计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。 第四阶段:反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。 数学解题的技巧 为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。 一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。 基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。 一、熟悉化策略 所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。 一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。 常用的途径有: (一)、充分联想回忆基本知识和题型: 按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。 (二)、全方位、多角度分析题意: 对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己

高中数学模型解题法

高中数学模型解题法 高中数学模型解题理念 数学模型解题首先需要明确以下六大理念(原则): 理念之一——理论化原则。解题必须有理论指导,才能由解题的必然王国走进解题的自由王国,因为思维永远高于方法,伟大的导师恩格斯在100多年前就指出:一个名族要屹立于世界名族之林,就一刻也不能没有理论思维!思维策略永远比解题方法重要,因为具体解题方法可以千变万化,而如何想即怎样分析思考这一问题才是我们最想也是最有价 值的!优秀的解题方法的获得有赖于优化的思维策略的指导,没有好的想法,要想获得好的解法,是不可能的! 理论之二——个性化原则。倡导解题的个性张扬,即要学会具体问题具体分析,致力于追求解决问题的求优求简意识,但是繁复之中亦显基础与个性——通性通法不可丢,要练扎实基本功!具有扎实的双基恰恰是我们的优势,因为万变不离其宗,只有基础打得牢了才可以盖得起知识与思维的坚固大厦。因此要求同学们,在具体的解题过程中,要学会辩证地使用解题模型,突出其灵活性,并不断地体验反思解题模型的有效性,以便于形成自己独特的解题个性风格与特色。 理论之三——能力化原则。只有敢于发散(进行充分地联想和想象,即放得开),才能有效地聚合,不会发散,则无力

聚合!因此,充分训练我们的发散思维能力,尽情地展开我们联想与想象的翅膀,才能在创新的天空自由地翱翔! 理论之四——示范化原则。任何材料都是给我们学生自学方法的示范,因此面对任何有利于增长我们的知识与智慧的机会,我们要应不失时机地抓住,并从不同的角度、不同的层次、甚至通过不同的训练途径、用不同时间段来认识、理解,并不断深化,以达到由表知里、透过现象把握问题本质与规律的目的。关于学思维方法,我们应当经过两个层次:一是:学会如何解题;二是:学会如何想题。 理论之五——形式化原则。哲学上讲内容与形式的辩证形式,内容决定形式,形式反映内容,充实寓于完美的形式之中,简洁完美的形式是充实而有意义的内容的有效载体,一个好的解题设想或者灵感,必然要通过解题的过程来体现,将解题策略设计及优化的解题过程程序化,形成可供我们在解题时遵循的统一形式,就是解题模型。 理论之六——习惯性原则。关于数学的解题,有三个层次:第一个层次,正常的解题,就是按照已知、求解、作答等等。这是我们大多数同学的解题情况,解出来,高兴得不得了,也不再做深层次的追求与思考,解不出来,就一头露水,而且很郁闷,不知其所以然。第二个层次,有思考的解题,主要就是发散和聚合,简单点说就是一题多解和对于解题“统一”模型的思考。第三个层次,主动的解题,就是对题

例说数学解题的思维过程

例说数学解题的思维过程 陕西师范大学数学系 罗增儒 在数学教学中暴露思维过程早就引起了人们的关注。暴露概念的形成过程,暴露命题的 发现过程,暴露证明的探究过程等,包括暴露这些过程中犯错误的真实活动,但是,这种暴 露大多停留在可见事实的陈述上,而内在思维性质的细致揭示不多,也常常进行到思路初步 打通、结论初步得出时就停了下来。本文想从解题分析的角度提供一个简单例子,展示内在 的思维过程,并在证明得出之后仍继续进行下去。先给出题目: 两直线被第三条直线所截,外错角相等,则两直线平行。 1.浮现数学表象 通过认真阅读,我们接收到题目所提供的信息,首先在脑子里出现了一个图形(几何型 表象),与这个图形相伴随的是一个问题(代数型表象):由数量关系去确定位置关系。 在问题的牵引下,思维的齿轮开始启动,有3 个展开的起点。 (1)由图形表象,我们回想起“三线八角”基本图形,回想起与此图形有关的命题,如 两直线被第三条直线所截,有: 1)同位角相等?两直线平行; 2)内错角相等?两直线平行。 …… 这些命题的附图,在我们脑海里逐幅浮现出来。 (2)由条件∠1= ∠2(数量关系)所唤起的问题有: 1)由角的相等关系能得出什么? 2)图1 中有与∠1 相等的角吗?

3) 图1 中有与∠2 相等的角吗? …… 一开始,“由条件能推出什么”是一道开放性问题,我们不知道该往哪些地方推进,但 随着对结论思考的深化,会慢慢明朗起来。 (3) 由结论AB∥CD(位置关系)所唤起的问题有:得出直线平行需要什么条件?题目提供 了这样的条件没有?如果不是直接提供,那么间接提供没有? …… 由此激活了记忆储存中的相关知识,并又激活更多的记忆储存(扩散): 1) 同位角(内错角)相等,则两直线平行;进而问 2) 什么是同位角(内错角)?图1 中有同位角(内错角)吗?有相等的同位角(内错角)吗? 3) 己知条件的相等角能导出“同位角(内错角)相等”吗? …… 这是表象的一个有序深化的过程。 2.产生数学直感 上述三方面的思考,促使我们更专注于图形,图中有3 条直线,8 个角,8 条射线,1 条 线段,其中哪些信息对于我们解题是有用的,哪些是多余的呢?(这相当于一道条件过剩、 结论发散的开放题)当然,一开始我们并不清楚,但是目标意识驱使我们去考虑角的关系, 因为课本中两条直线平行的判定均与角有关,而已知条件又给出了等角。所以,我们的思考 逐渐集中到:从图形中找同位角(或内错角),找相等的角,找相等的同位角(或内错角)。 这时,伴随着问题的需要,图1 被分解出一系列的部分图形(图2 中实线图),并凸现在 我们的眼前: 图2

高中数学解题八个思维模式和十个思维策略

高中数学解题八种思维模式 和十种思维策略 引言 “数学是思维的体操” “数学教学是数学(思维)活动的教学。” 学习数学应该看成是学习数学思维过程以及数学思维结果这二者的综合,因而可以说数学思维是动的数学,而数学知识本身是静的数学,这二者是辩证的统一。作为思维载体的数学语言简练准确和数学形式具有符号化、抽象化、结构化倾向。 高中数学思维中的重要向题 它可以包括: 高中数学思维的基本形式 高中数学思维的一般方法 高中数学中的重要思维模式 高中数学解题常用的数学思维策略 高中数学非逻辑思维(包括形象思维、直觉思维)问题研究; 高中数学思维的指向性(如定向思维、逆向思维、集中思维和发散思维等)研究; 高中数学思维能力评估:广阔性、深刻性、灵活性、敏捷性、批判性、创造性 高中数学思维的基本形式 从思维科学的角度分析,作为理性认识的人的个体思维题可以分成三种:逻辑思维、形象思维、直觉思维 一数学逻辑思维的基本形式1、概念是逻辑思维的最基本的思维形式,数学概念间的逻辑关系,a同一关系b从属关系c交叉关系以及d对立关系e矛盾关系12、判断是逻辑思维在概念基础上的发展,它表现为对概念的性质或关系有所肯定或否定,是认识概念间联系的思维形式。3、推理是从一个或几个已知判断推出另一个新判断的思维形式,是对判断间的逻辑关系的认识。 二数学形象思维的基本形式1图形表象是与外部几何图形的形状相一致的脑中示意图,2图式表象是与外部数学式子的结初关系相一致的模式形象。3形象识别直感是用数学表象这个类象(普遍形象)的特征去比较数学对象的个象,根据形象特征整合的相似性来判别个象是否与类象同质的思维形式。4模式补形直感是利用主体已在头脑中建构的数学表象模式1,对具有部分特征相同的数学对象进行表象补形,实施整合的思维形式。5形象相似直感是以形象识别直感和模式补形直感为基础基础的复合直感。6 象质转换直感是利用数学表象的变化或差异来判别数学在对象的质变或质异的形象特征判断。7图形

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

高考数学解题思维能力是怎样练成的.doc

高考数学解题思维能力是怎样练成的 纵观近几年高考数学试题,可以看出高考数学试题加强了对知识点灵活应用的考察。这就对考生的思维能力要求大大加强,下面是我给大家带来的,希望对你有帮助。 高考数学解题思维能力怎样练成的 第一,从求解(证)入手——寻找解题途径的基本方法遇到有一定难度的考题我们会发现出题者设置了种种障碍。从已知出发,岔路众多,顺推下去越做越复杂,难得到答案,如果从问题入手,寻找要想获得所求,必须要做什么,找到"需知"后,将"需知"作为新的问题,直到与"已知"所能获得的"可知"相沟通,将问题解决。事实上,在不等式证明中采用的"分析法"就是这种思维的充分体现,我们将这种思维称为"逆向思维"——必要性思维。 第二,数学式子变形——完成解题过程的关键解答高考数学试题遇到的第二障碍就是数学式子变形。一道数学综合题,要想完成从已知到结论的过程,必须经过大量的数学式子变形,而这些变形仅靠大量的做题过程是无法真正完全掌握的,很多考生都有这样的经历,在解一道复杂的考题时,做不下去了,而回过头来再看一看答案,才恍然大悟,解法这么简单,后悔莫及,埋怨自己怎么糊涂到没有把式子再这么变一下呢? 其实数学解题的每一步推理和运算,实质都是转换(变形).但是,转换(变形)的目的是更好更快的解题,所以变形的方向必定是化繁为简,化抽象为具体,化未知为已知,也就是创造条件向有利于解题的方向转化.还

必须注意的是,一切转换必须是等价的,否则解答将出现错误。 解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的 桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。寻找差异是变形依赖的原则,变形中一些规律性的东西需要总结。在后面的几章中我们列举的一些思维定势,就是在数学思想指导下总结出来的。在解答高考题中时刻都在进行数学变形由复杂到简单,这也就是转化,数学式子变形的思维方式:时刻关注所求与已知的差异。 第三、回归课本---夯实基础。 1)揭示规律----掌握解题方法高考试题再难也逃不了课本揭示的思维 方法及规律。我们说回归课本,不是简单的梳理知识点。课本中定理,公式推证的过程就蕴含着重要的方法,而很多考生没有充分暴露思维过程,没有发觉其内在思维的规律就去解题,而希望通过题海战术去"悟"出某些道理,结果是题海没少泡,却总也不见成效,最终只能留在理解的肤浅,仅会机械的模仿,思维水平低的地方。因此我们要侧重基本概念,基本理论的剖析,达到以不变应万变。 2)构建网络----融会贯通在课本函数这章里,有很多重要结论,许多学生由于理解不深入,只靠死记硬背,最后造成记忆不牢,考试时失分。 例如: 若f(x+a)=f(b-x)则f(x)关于对称。如何理解?我们令x1=a+x,x2=b-x,则f(x1)=f(x2),x1+x2=a+b,=常数,即两自变量之和是定值,它们对应的函数值相等,这样就理解了对称的本质。结合解析几何中的中点坐标的横坐标为定值,或用特殊函数,二次函数的图像,记忆这个结论就很简单了,

数学解题的思维过程

数学解题的思维过程 数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。 对于数学解题思维过程,即弄清问题、拟定计划、实现计划和回顾。这四个阶段思维过程的实质,可以用下列八个字加以概括:理解、转换、实施、反思。 第一阶段 理解问题是解题思维活动的开始 第二阶段 转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。 第三阶段 计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。 第四阶段 反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。 数学解题的技巧 为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。 一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。 基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。 一、熟悉化策略 所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。 一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。 常用的途径有: (一)充分联想回忆基本知识和题型: 按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。 (二)全方位、多角度分析题意: 对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。(三)恰当构造辅助元素: 数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。 数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命

高中数学八种思维方法如何训练数学思维

高中数学八种思维方法如何训练数学思维 在数学学习中,比运算更重要的是思维方式。下面介绍几种适合大家的数学学习思维 方法以及如何训练数学思维,欢迎阅读。 如何学好高中数学高中数学解题方法与技巧怎样学好高中数学高中数学怎么学成绩提 高快 一、转化方法: 转化思维,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到 障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻 求最佳方法,使问题变得更简单、更清晰。 二、逻辑方法: 逻辑是一切思考的基础。逻辑思维,是人们在认识过程中借助于概念、判断、推理等 思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。逻 辑思维,在解决逻辑推理问题时使用广泛。 三、逆向方法: 逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的 一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深 入地进行探索,树立新思想,创立新形象。 四、对应方法: 对应思维是在数量关系之间(包括量差、量倍、量率)建立一种直接联系的思维方法。比较常见的是一般对应(如两个量或多个量的和差倍之间的对应关系)和量率对应。 五、创新方法: 创新思维是指以新颖独创的方法解决问题的思维过程,通过这种思维能突破常规思维 的界限,以超常规甚至反常规的方法、视角去思考问题,提得出与众不同的解决方案。可 分为差异性、探索式、优化式及否定性四种。 点击查看:学好数学的核心概念与思维方法 六、系统方法: 系统思维也叫整体思维,系统思维法是指在解题时对具体题目所涉及到的知识点有一 个系统的认识,即拿到题目先分析、判断属于什么知识点,然后回忆这类问题分为哪几种 类型,以及对应的解决方法。

高中数学解题的思想方法

高中数学解题的思想方法(经典) 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ① 常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ② 数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③ 数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和演绎等; ④ 常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助大家掌握解题的金钥匙,掌握解题的思想方法,咱们就先介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题。 在每一个方法,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。 一、配方法 从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。

数学高中数学解题思维与思想

《高中数学解题思维与思想》 导读 数学家G . 波利亚在《怎样解题》中说过:数学教学的目的在于培养学生的思维能力,培养良好思维品质的途径,是进行有效的训练,本策 略结合数学教学的实际情况,从以下四个方面进行讲解: 一、数学思维的变通性 根据题设的相关知识,提出灵活设想和解题方案 二、数学思维的反思性 提出独特见解,检查思维过程,不盲从、不轻信。 三、数学思维的严密性 考察问题严格、准确,运算和推理精确无误。 四、数学思维的开拓性 对一个问题从多方面考虑、对一个对象从多种角度观察、对一个题目运用多种不同的解法。 什么”转变,从而培养他们的思维能力。 《思维与思想》的即时性、针对性、实用性,已在教学实践中得到了 全面验证。

一、高中数学解题思维策略 第一讲 数学思维的变通性 一、概念 数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的,必须具有思维的变通性——善于根据题设的相关知识,提出灵活的设想和解题方案。根据数学思维变通性的主要体现,本讲将着重进行以下几个方面的训练: (1)善于观察 心理学告诉我们:感觉和知觉是认识事物的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、比较持久的知觉。观察是认识事物最基本的途径,它是了解问题、发现问题和解决问题的前提。 任何一道数学题,都包含一定的数学条件和关系。要想解决它,就必须依据题目的具体特征,对题目进行深入的、细致的、透彻的观察,然后认真思考,透过表面现象看其本质,这样才能确定解题思路,找到解题方法。 例如,求和) 1(1431321211+++?+?+?n n . 这些分数相加,通分很困难,但每项都是两相邻自然数的积的倒数,且111)1(1+-=+n n n n ,因此,原式等于1 111113121211+-=+-++-+-n n n 问题很快就解决了。 (2)善于联想

高中最全数学解题的思维策略资料全

一、《高中数学解题的思维策略》
很抱歉这么晚才来给大家讲课,因为今年暑假刚去安徽写生画图,
昨天下午坐了 24 个小时的火车过来,误了 4 天的课程,最后咱们
下午物理上完之后再给大家补课,再给大家补 5 天的课程,
去年高考难,很多学生数学考得也很不错,,很多人可能会问补课
有用吗。给大家举个例子,那几年留学很流行,大家可能会说,留
学很贵,实际上很多海归回来后一年的工资就把多花的挣回来了,
补课也是,讲到的某些知识点能被大家用到高考中,增加分数,高
考中分数的重要性,,我姐是个老师,我姐经常说孩子们考好了,
家长就说,,考不好,家长就说老师和郭师哥教的不好,实际上主
体还是我们学生,次要的才是老师,家长,环境,据去年那批学生
反映最后对我们 3 个教的还不错,
我先讲一下我补课大概基本要讲的内容,把大家数学必修的知识点
基本过一遍,再做相应的习题,中间穿插还有很多我个人感觉很多
好题;很多我归纳的知识和一些数学技巧;在最后 2 天我要给大家
讲一下数学解题策略,如果最后还有时间的话,还会给大家讲一下
一些英语,语文和其他科目的技巧。


数学教学的目的在于培养学生的思维能力,培养良好思维品质的途径,是进行有效
的训练,本策略结合数学教学的实际情况,从以下四个方面进行讲解:
一、数学思维的变通性(举例子过几天再给他们讲,考试的时候有些难题大家容易钻
牛角尖,这个变通不只是说思维,也可以说是大家对数学卷子的一种变通,高考 120 分
钟,12 道选择,4 道填空,基本用时不超过 50 分钟,选这题一般最后 2 个比较难,填
空题一般最后一个比较难,大家很容易被这卡主,流汗,紧张,看到你旁边的人第 2 道

高中数学解题四大思想方法(数学)

思想方法一、函数与方程思想 方法1 构造函数关系,利用函数性质解题 根据题设条件把所求的问题转化为对某一函数性质的讨论,从而使问题得到解决,称为构造函数解题。通过构造函数,利用函数的单调性解题,在解方程和证明不等式中最为广泛,解题思路简洁明快。 例1 (10安徽)设232555322(),(),(),555 a b c ===则,,a b c 的大小关系是( ) ....A a c b B a b c C c a b D b c a >>>>>>>> 例2 已知函数21()(1)ln , 1.2 f x x ax a x a =-+-> (1) 讨论函数()f x 的单调性; (2) 证明:若5,a <则对任意12121212 ()(),(0,),, 1.f x f x x x x x x x -∈+∞≠>--有 方法2 选择主从变量,揭示函数关系 含有多个变量的数学问题中,对变量的理解要选择更加合适的角度,先选定合适的主变量,从而揭示其中的函数关系,再利用函数性质解题。 例3 对于满足04p ≤≤的实数p ,使243x px x p +>+-恒成立的x 的取值范围是 . 方法3 变函数为方程,求解函数性质 实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式,我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题一般是通过方程来实现的……函数与方程是密切相关的。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。 例4 函数()2)f x x π=≤≤的值域是( ) 11111122.,.,.,.,44332233A B C D ????????----?????????? ??????

数学问题解决的思维过程

数学问题解决的思维过程 摘要: 数学问题是指不能用现成的数学经验和方法解决的一种情景状态。这里所指的“问题”不是指那些与课本例题同类型的常规习题,而是指那些非常规性的或者条件不充分、结论不确定的开放性、探究性问题。这些问题不能直接套用现成公式获得解决,而要调动所学知识系统,运用一定的思维策略,通过一定的思维过程逐步指向问题目标,使问题在探究中获解。 关键词:缕析问题;求解方案;问题解答;解题过程 数学问题的解决是一个复杂而连续的心理活动过程,其一般思维过程是:缕析问题信息→确定求解方案→实施问题解答→反思解题过程,下面以实例加以分析。 一、缕析问题信息 1.理清数学问题信息。数学问题作为一种有待加工的信息系统,它主要由条件信息、目标信息和运算信息三部分构成。理解和感知数学问题中的信息元素是解决问题的第一步。这一步主要是要求实施者明确问题所提供的条件信息和目标信息。 对数学问题基本信息的感知要做到全面而完整,特别是对那些综合性强、关系复杂的问题,要注意发现问题中的隐性信息,充分挖掘有用的信息,这对问题解决的顺利实施具有重要的意义。例如,在问题“大数和小数的差是80.1,小数的小数点向右移一位,刚好与大数相等。大数和小数各是多少”中,大数和小数之间的倍数关系这一重要条件信息没给出,而隐藏在“小数点向右移”一句话中,需要学生自己去发现。 二、确定求解方案 在第一步理解分析条件信息、目标信息的前提下,在头脑中已初步形成了数学问题的初始状态,及要解决的问题的目标状态。这时,解决者的思维就要进一步深入,提炼数学问题中存在的显性的或隐性的有用信息,链接各信息间的运算信息,选择解题方法,制定合理的求解计划,这是实现问题解决的最关键一步。这一过程由一组复杂的心理活动组成,一般要连续完成以下几方面的任务。 1.类化问题信息。一切数学问题的解决过程总是将未知的新问题不断地转化成已知的问题的过程,这是解决数学问题的基本策略。在这一环节就是把数学问题中呈现的主要信息同解决者原有认知结构中的相关知识和方法连接起来,并以这些已认知的知识和方法作为解决新问题的依据和基础,重新组合演化成解决新问题所需的新策略。 2.寻找解题起点。解决问题的切入点往往有所不同,具有因人而异的相对灵活性。如在解决例1时,学生一般都会想到从求科技书入手,求出前后科技书本数之差即可;另外,学生想到

初中数学解题思维与思想

《初中数学解题思维与思想》 中数学解题思维与思想》 导 读
数学家 G . 波利亚在《怎样解题》中说过:数学 教学的目的在于培养学生的思维能力,培养良好思维 品质的途径,是进行有效的训练,本策略结合数学教 学的实际情况,从以下四个方面进行讲解: 一、数学思维的变通性 根据题设的相关知识,提出灵活设想和解题方案 二、数学思维的反思性 提出独特见解,检查思维过程,不盲从、不轻信。 三、数学思维的严密性 考察问题严格、准确,运算和推理精确无误。 四、数学思维的开拓性 对一个问题从多方面考虑、 对一个对象从多种角度 观察、对一个题目运用多种不同的解法。 什么”转变,从而培养他们的思维能力。 《思维与思想》的即时性、针对性、实用性,已在 教学实践中得到了全面验证。

二、《解密数学思维的内核》 、《解密数学思维的内核》 解密数学思维的内核 数学解题的思维过程 数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至 解决问题,进行回顾的全过程的思维活动。 对于数学解题思维过程,G . 波利亚提出了四个阶段*(见附录),即弄清 问题、拟定计划、实现计划和回顾。这四个阶段思维过程的实质,可以用下列八 个字加以概括:理解、转换、实施、反思。 第一阶段:理解问题是解题思维活动的开始。 第二阶段:转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝 试发现过程,是思维策略的选择和调整过程。 第三阶段:计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技 能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。 第四阶段: 反思问题往往容易为人们所忽视, 它是发展数学思维的一个重要方面, 是一个思维活动过程的结束包含另一个新的思维活动过程的开始。 数学解题的技巧 为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索 的成效,我们必须掌握一些解题的策略。 一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道 或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到 解决原题的目的。 基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、 一般化、整体化、间接化等。 一、 熟悉化策略 所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时, 要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验 或解题模式,顺利地解出原题。 一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从 结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此, 要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的 联系方式上多下功夫。 常用的途径有: )、充分联想回忆基本知识和题型 充分联想回忆基本知识和题型: (一)、充分联想回忆基本知识和题型 按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题 相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论, 从而解决现有的问题。 全方位、 (二)、全方位、多角度分析题意 全方位 多角度分析题意: 对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己 的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟 悉的解题方向。 恰当构造辅助元素: (三)恰当构造辅助元素 数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或 问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题 目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉

《高中最全数学解题的思维策略》

一、 《高中数学解题的思维策略》
很抱歉这么晚才来给大家讲课,因为今年暑假刚去安徽写生画图, 昨天下午坐了 24 个小时的火车过来,误了 4 天的课程,最后咱们 下午物理上完之后再给大家补课,再给大家补 5 天的课程, 去年高考难,很多学生数学考得也很不错, ,很多人可能会问补课 有用吗。给大家举个例子,那几年留学很流行,大家可能会说,留 学很贵,实际上很多海归回来后一年的工资就把多花的挣回来了, 补课也是,讲到的某些知识点能被大家用到高考中,增加分数,高 考中分数的重要性, ,我姐是个老师,我姐经常说孩子们考好了, 家长就说, ,考不好,家长就说老师和郭师哥教的不好,实际上主 体还是我们学生,次要的才是老师,家长,环境,据去年那批学生 反映最后对我们 3 个教的还不错, 我先讲一下我补课大概基本要讲的内容, 把大家数学必修的知识点 基本过一遍,再做相应的习题,中间穿插还有很多我个人感觉很多 好题;很多我归纳的知识和一些数学技巧;在最后 2 天我要给大家 讲一下数学解题策略,如果最后还有时间的话,还会给大家讲一下 一些英语,语文和其他科目的技巧。 导 读
数学教学的目的在于培养学生的思维能力,培养良好思维品质的途径,是进行有效 的训练,本策略结合数学教学的实际情况,从以下四个方面进行讲解: 一、数学思维的变通性(举例子过几天再给他们讲,考试的时候有些难题大家容易钻 牛角尖,这个变通不只是说思维,也可以说是大家对数学卷子的一种变通,高考 120 分 钟,12 道选择,4 道填空,基本用时不超过 50 分钟,选这题一般最后 2 个比较难,填空 题一般最后一个比较难,大家很容易被这卡主,流汗,紧张,看到你旁边的人第 2 道大 题都快做完了,这下就慌了,心想肯定完了,最后整个卷子全部慌了,后面计算正确率 也不高了,整个考试最后也可想而知。应该怎么办呀,先做会的,把整个卷子会做的做 完了,再去做会做的,即使有些题不会做也没关系,大题都是按步骤给分,步骤对了,

高中数学解题思想方法大全

目录 前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案……………………………………

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳 和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思 想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

相关文档
最新文档