数值分析法求正弦余弦积分函数

数值分析法求正弦余弦积分函数
数值分析法求正弦余弦积分函数

天津职业技术师范大学

课程设计任务书

理学院数学1403 班学生张群课程设计课题:

用数值积分法计算正弦积分函数和余弦积分函数

一、课程设计工作日自2016 年7 月 4 日至2016 年

7 月5日

二、同组学生:无

三、课程设计任务要求(包括课题来源、类型、目的和意义、基本要求、完成时

间、主要参考资料等):

课题来源:教师自拟

类型:理论研究

目的和意义:培养学生对数值分析中主要算法的应用能力,探索相关算法之间的内在联系。

基本要求:根据数值分析课程所学的知识,应用Matlab软件编写程序,完成对算法及其内在原理的实验研究。

完成时间:

参考资料:《数值分析》李庆扬等清华大学出版社

指导教师签字:教研室主任签字:

一、问题叙述

用数值积分法计算正弦积分函数和余弦积分函数

提示:正弦积分,余弦0sin ()x

t si x dt t =?函数cos ()x

t ci x dt t

-∞=?

要求:(1)编写函数,对任意给定的x ,可求出值。

(2)使用尽可能少的正余弦函数的调用,计算更精确的值。(用多种方法,创新方法)

二、问题分析

1 、数值积分基本原理:用数值分析求解积分的数值方法有很多,如简单的梯形法、矩形法、辛普森(Simpson )法、牛顿-科斯特(Newton-Cotes )法等都是常用的方法。它们的基本思想都是将整个积分区间[a ,b]分成n 个子区间[x i ,x i+1],i=1,2,…,n ,其中x 1=a ,x n+1=b 。这样求定积分问题就分解为求和问题。

2、本题要求用数值积分法计算正弦积分函数和余弦函数积分,那么应该从编写函数的入手,建立function 的m 文件,通过对函数的调用,对任意跟定的x 值,求出积分函数的值。 三、数值积分法求解问题 1、 梯形公式、矩形公式

首先,积分中值定理告诉我们,在积分区间[a ,b]内存在一点ξ,成立?b

a x f )(dx=(b-a )f (ζ),就是说,底为b-a 而高为f (ζ)的矩形面积恰等于所求区边梯形的面积。如果我们用两端点“高度”f (a )与f (

b )的算术平均值作为平均高度f (ξ)的近似值,这样导

出的求积公式 b

a

x

f)

(dx≈

2

a-b[f(a)+f(b)]便是我们熟悉的梯形公

式。将积分区间[a,b]n等分,每个小区间宽度均为h=

n a-b)

(,h称为积布步长。记a=x0<x1<…<x k…<x o=b,在小区间上用小矩形面积近似小曲边梯形的面积,若分别取左端点和右端点的函数值为小矩形的高,则分别得到两个曲边梯形面积的近似计算公式。具体程序如下:

clear

x=linspace(0,pi);

dx=x(2);

y=sin(x);

s1=sum(y)*dx

s2=trapz(y)*dx

sc1=cumsum(y)*dx;

sc2=cumtrapz(y)*dx;

plot(x,-cos(x)+1,x,sc1,'.',x,sc2,'o')

hold on

由图可知这种方法精度太低,应选择其他方法。

2、quad函数、quan1函数

正弦:function y=si(t)

a=1e-8; %函数在0点无界,去掉0点

y=quad('sin(x)./x',a,t)

y=quadl('sin(x)./x',a,t)

余弦:function y=ci(t)

a=-1e1; %函数在0点无界,去掉0点

y=quad('cos(x)./x',a,t)

y=quadl('cos(x)./x',a,t)

图像:

x=1:100; for i=1:100 y2(i)=si(x(i)); end plot(x,y2,'r') title('辛普森')

10

20

30

40

50

60

70

80

90

100

0.911.11.21.31.41.51.61.71.8

1.9辛普森

x=1:100; for i=1:100 y2(i)=ci(x(i)); end plot(x,y2,'b')

title('辛普森')

0102030405060708090100

-400

-200020040060080010001200

1400辛普森

给定任意x 值,均可计算出对应的正弦、余弦函数积分。但从结果可以看出精度不是很高。 3、复合求积公式

由于牛顿-科特斯公式在n ≥8时不具有稳定性,故不可能通过提高阶的方法来提高求积精度。为了提高精度通常可把积分区间分成若干子区间(通常是等分),再在每个子区间上用低级求积公式。这种方法为复合求积法。

3.3.1 复合梯形公式

将区间[]b a ,划分为n 等分,分点,,,1,0,,n k n

a

b h kh a x k =-=

+=在每个子区间[](),1,,1,0,1-=+n k x x k k 上采用梯形公式,则得

[])

()()(2)()(11

1

1f R x f x f h dx x f dx x f I n k n k k b

a

n k x x k k

++===+-=-=∑?∑?

+

()[()]()[()()]∑∑-=+-=++=+=1

1

110222n k b k k n k k n x f x f a f h

x f x f h T ,

称为复合梯形公式。 复合梯形公式的余项

()()()

11

0''3,12+-=∈??

?

???-=-=∑k k k n k k n n x x f h T I f R ηη

由于[],,)(2b a C x f ∈ 且

()(),max 1min 1010

'

''

'10-≤≤-=-≤≤≤≤∑n k k n k k n k f n f ηη 所以()b a ,∈?η使 ()()k n k f n f ηη∑-==10

'

''

'1

于是复合梯形公式的余项为

()()η'

'212

f h a b f R n --

=

事实上只要设()[]b a C x f ,∈,则可得收敛性,只要把n T 改写成为

()()]∑∑=-=-+???-=n

k k n k k n x f n a b x f n a b T 1

1021 程序如下: 正弦:

function T_n=fhtxs(a,b,n)

h=(b-a)/n;

for k=0:n

x(k+1)=a+k*h;

if x(k+1)==0

x(k+1)=10^(-10);

end

end

T_1=h/2*(SS(x(1))+SS(x(n+1))); for i=2:n

F(i)=h*SS(x(i));

end

T_2=sum(F);

T_n=T_1+T_2;

余弦:

function T_n=fhtxc(a,b,n)

h=(b-a)/n;

for k=0:n

x(k+1)=a+k*h;

if x(k+1)==0

x(k+1)=10^(-10);

end

end

T_1=h/2*(CC(x(1))+CC(x(n+1))); for i=2:n

F(i)=h*CC(x(i)); end T_2=sum(F); T_n=T_1+T_2;

图像:

正弦 余弦

010********

复化梯形

20406080100

10

3.3.2 复合新普斯求积公式

将区间],[b a 划分为n 等分,在每个子区间[]1,+k k x x 上采用辛普森公式,若记

,2

1

21h x x k k +

=+则得 ∑?

-===

1

)()(n k b

a

dx x f dx x f I

).()]()(4)([61

21f R x f x f x f h n n k k k k +++=∑-=+ 称为复合辛普森求积公式。 程序如下:

正弦

function S_n=fhxpss(a,b,n) h=(b-a)/n; for k=0:n x(k+1)=a+k*h; x_k(k+1)=x(k+1)+1/2*h; if (x(k+1)==0)||(x_k(k+1)==0) x(k+1)=10^(-10); x_k(k+1)=10^(-10); end end

S_1=h/6*(SS(x(1))+SS(x(n+1))); for i=2:n

F_1(i)=h/3*SS(x(i)); end for j=1:n

F_2(j)=2*h/3*SS(x_k(j)); end

S_2=sum(F_1)+sum(F_2);

S_n=S_1+S_2;

余弦:

function S_n=fhxpsc(a,b,n)

h=(b-a)/n;

for k=0:n

x(k+1)=a+k*h;

x_k(k+1)=x(k+1)+1/2*h;

if(x(k+1)==0)||(x_k(k+1)==0)

x(k+1)=10^(-10);

x_k(k+1)=10^(-10);

end

end

S_1=h/6*(CC(x(1))+CC(x(n+1))); for i=2:n

F_1(i)=h/3*CC(x(i));

end

for j=1:n

F_2(j)=2*h/3*CC(x_k(j)); end

S_2=sum(F_1)+sum(F_2);

S_n=S_1+S_2;

图像与复合梯形所得图像基本相同,深入分析两只复合函数的优劣,

对于积分函数

0sin

()x t

si x dt

t

=?假设x=1,则将区间[0,1]划分为8等份,应用复合梯形求得

T8=0.9456909

而如果将[0,1]分为4等份,应用复合辛普森有

S4=0.9460832

通过参考数值分析(李庆阳)的结论,发现无论是复合梯形公式还是复合辛普森公式,最终结果都会随着h值的减小而更加精确。对复合梯形公式和复合辛普森公式计算出的结果进行比较,发现复合梯形法的结果T8只有两位有效数字,而复合辛普森的结果却有六位有效数字,所以复合辛普森公式计算出的结果更加的精确。

4、插值型的求积公式

clc, clear

x0=0:0.5:5;

y0=[ Inf 1.7552 0.5403 0.0472 -0.2081 -0.3205 -0.3300 -0.2676 -0.1634 -0.0468 0.0567

];%所求积分函数的数值

pp=csape(x0,y0) ; %默认的边界条件,Lagrange边界条件

format long g

chazhi=pp.coefs %显示每个区间上三次多项式的系数

s=quadl(@(t)ppval(pp,t),0,5) %求积分

format %恢复短小数的显示格式

x=0:0.1:5;

y=cos(x)/x;

y1=spline(x0,y0,x);

z=0*x;

hold on

plot(x,z,x,y,'k--',x,y1,'r')

plot(x0,y0,'*')

hold off

clear

x0=0:0.5:5;

y0=[ Inf 1.7552 0.5403 0.0472 -0.2081 -0.3205 -0.3300 -0.2676 -0.1634 -0.0468 0.0567

]; %所求积分函数的数值

pp=csape(x0,y0) ; %默认的边界条件,Lagrange边界条件format long g

chazhi=pp.coefs %显示每个区间上三次多项式的系数

s=quadl(@(t)ppval(pp,t),0,5) %求积分

format %恢复短小数的显示格式

x=0:0.1:5;

y=cos(x)/x;

y1=spline(x0,y0,x);

z=0*x;

hold on

plot(x,z,x,y,'k--',x,y1,'r') plot(x0,y0,'*')

hold off

如图所示:

5、高斯求积公式

function [ql,Ak,xk]=gsqj(fun,a,b,n,tol)

if nargin==1

a=-1;b=1;n=7;tol=1e-8;

elseif nargin==3

n=7;tol=1e-8;

elseif nargin==4

tol=1e-8;

elseif nargin==2||nargin>5

error('The Number of Input Arguments Is Wrong!'); end

% 计算求积节点

syms x

p=sym2poly(diff((x^2-1)^(n+1),n+1))/(2^n*factorial(n)); tk=roots(p); % 求积节点

% 计算求积系数

Ak=zeros(n+1,1);

for i=1:n+1

xkt=tk;

xkt(i)=[];

pn=poly(xkt);

fp=@(x)polyval(pn,x)/polyval(pn,tk(i));

Ak(i)=quadl(fp,-1,1,tol); % 求积系数end

% 积分变量代换,将[a,b]变换到[-1,1]

xk=(b-a)/2*tk+(b+a)/2;

% 检验积分函数fun有效性

fun=fcnchk(fun,'vectorize');

% 计算变量代换之后积分函数的值

SS=fun(xk)*(b-a)/2;

% 计算积分值

ql=sum(Ak.*SS);

计划表

关于正弦函数和余弦函数的计算公式

同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα

cot(π-α)=-cotα sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanα sin(2π-α)=-sinαcos(2π-α)=cosα tan(2π-α)=-tanαcot(2π-α)=-cotα sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)

11知识讲解_正弦函数、余弦函数的性质_基础

正弦函数、余弦函数的性质 【学习目标】 1.了解周期函数、周期、最小正周期的定义; 2.理解正弦函数、余弦函数在区间]2,0[π上的性质(如单调性、周期性、最大值和最小值以及与x 轴的交点等). 【要点梳理】 要点一:周期函数的定义 函数)(x f y =,定义域为I ,当I x ∈时,都有)()(x f T x f =+,其中T 是一个非零的常数,则)(x f y =是周期函数,T 是它的一个周期. 要点诠释: 1.定义是对I 中的每一个x 值来说的,只有个别的x 值满足)()(x f T x f =+或只差个别的x 值不满足 )()(x f T x f =+都不能说T 是)(x f y =的一个周期. 2.对于周期函数来说,如果所有的周期中存在一个最小的正数,就称它为最小正周期,三角函数中的周期一般都指最小正周期. 要点二:正弦函数、余弦函数的图象和性质 (1)正弦函数、余弦函数的值域为[]1,1-,是指整个正弦函数、余弦函数或一个周期内的正弦曲线、余弦曲线,如果定义域不是全体实数,那么正弦函数、余弦函数的值域就可能不是[]1,1-,因而求正弦函数、余弦函数的值域时,要特别注意其定义域. (2)求正弦函数的单调区间时,易错点有二:一是单调区间容易求反,要注意增减区间的求法,如求

sin()y x =-的单调递增区间时, 应先将sin()y x =-变换为sin y x =-再求解,相当于求sin y x =的单调递减区间;二是根据单调性的定义,所求的单调区间必须在函数的定义域内,因此求单调区间时,必须先 求定义域. 要点三:正弦型函数sin()y A x ω?=+和余弦型函数cos()(,0)y A x A ω?ω=+>的性质. 函数sin()y A x ω?=+与函数cos()y A x ω?=+可看作是由正弦函数sin y x =,余弦函数cos y x =复合而成的复合函数,因此它们的性质可由正弦函数sin y x =,余弦函数cos y x =类似地得到: (1)定义域:R (2)值域:[],A A - (3)单调区间:求形如sin()y A x ω?=+与函数cos()(,0)y A x A ω?ω=+>的函数的单调区间可以通过解不等式的方法去解答,即把x ω?+视为一个“整体”,分别与正弦函数sin y x =,余弦函数cos y x =的单调递增(减)区间对应解出x ,即为所求的单调递增(减)区间.比如:由 )(2 22 2Z k k x k ∈+ ≤+≤- π π?ωπ π解出x 的范围所得区间即为增区间,由 )(2 3222Z k k x k ∈+≤+≤+ππ?ωππ解出x 的范围,所得区间即为减区间. (4)奇偶性:正弦型函数sin()y A x ω?=+和余弦型函数cos()(,0)y A x A ω?ω=+>不一定具备奇偶性.对于函数sin()y A x ω?=+,当()k k z ?π=∈时为奇函数,当()2 k k z π ?π=±∈时为偶函数; 对于函数cos()y A x ω?=+,当()k k z ?π=∈时为偶函数,当()2 k k z π ?π=±∈时为奇函数. 要点诠释: 判断函数sin()y A x ω?=+,cos()y A x ω?=+的奇偶性除利用定义和有关结论外,也可以通过图象直观判断,但不能忽视“定义域关于原点对称”这一前提条件. (5)周期:函数sin()y A x ω?=+及函数cos()y A x ω?=+的周期与解析式中自变量x 的系数有关,其周期为2T π ω = . (6)对称轴和对称中心 与正弦函数sin y x =比较可知,当()2 x k k z π ω?π+=± ∈时,函数sin()y A x ω?=+取得最大值(或 最小值),因此函数sin()y A x ω?=+的对称轴由()2 x k k z π ω?π+=± ∈解出,其对称中心的横坐标 ()x k k z ω?π+=∈,即对称中心为,0()k k z π?ω-?? ∈ ??? .同理,cos()y A x ω?=+的对称轴由

正弦函数余弦函数的图像(附答案)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象? 答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线.

正弦函数余弦函数的性质

正弦函数余弦函数的性质 教学目标 1.掌握y=sin x(x∈R),y=cos x(x∈R)的周期性、奇偶性、单调性和最值.(重点) 2.会用正弦函数、余弦函数的性质解决一些简单的三角函数问题.(难点) 3.了解周期函数、周期、最小正周期的含义.(易混点) [基础·初探] 教材整理1函数的周期性 阅读教材P34~P35“例2”以上部分,完成下列问题. 1.函数的周期性 (1)对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期. (2)如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 2.两种特殊的周期函数 (1)正弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π. (2)余弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π. 函数y=2cos x+5的最小正周期是________.

解:函数y =2cos x +5的最小正周期为T =2π. 【答案】 2π 教材整理2 正、余弦函数的奇偶性 阅读教材P 37“思考”以下至P 37第14行以上内容,完成下列问题. 1.对于y =sin x ,x ∈R 恒有sin(-x )=-sin x ,所以正弦函数y =sin x 是奇函数,正弦曲线关于原点对称. 2.对于y =cos x ,x ∈R 恒有cos(-x )=cos x ,所以余弦函数y =cos x 是偶函数,余弦曲线关于y 轴对称. 判断函数f (x )=sin ? ?? ?? 2x + 3π2的奇偶性. 解:因为f (x )=sin ? ???? 2x +3π2=-cos 2x . 且f (-x )=-cos(-2x )=-cos 2x =f (x ),所以f (x )为偶函数. 教材整理3 正、余弦函数的图象和性质 阅读教材P 37~P 38“例3”以上内容,完成下列问题.

正弦余弦函数的性质定义值域

正弦函数、余弦函数的性质 ——定义域与值域 目的:要求学生掌握正、余弦函数的定义域与值域,尤其能灵活运用有界性 求函数的最值和值域。 过程: 一、复习:正弦和余弦函数图象的作法 二、研究性质: 1.定义域:y=sinx, y=cosx 的定义域为R 2.值域: 1?引导回忆单位圆中的三角函数线,结论:|sinx|≤1, |cosx|≤1 (有界性) 再看正弦函数线(图象)验证上述结论 ∴y=sinx, y=cosx 的值域为[-1,1] 2?对于y=sinx 当且仅当x=2k π+ 2 π k ∈Z 时 y max =1 当且仅当时x=2k π-2 π k ∈Z 时 y min =-1 对于y=cosx 当且仅当x=2k π k ∈Z 时 y max =1 当且仅当x=2k π+π k ∈Z 时 y min =-1 3.观察R 上的y=sinx,和y=cosx 的图象可知 当2k π0 当(2k-1)π0 当2k π+ 2π

【B402】正弦函数与余弦函数的定义

高一同步之每日一题【B402】 正弦函数与余弦函数的定义 B4021.若点(P -在角α的终边上,则角α的最小正值为______. 解:由点在(P -在第二象限可知角α的终边在第二象限. 由于||4OP ==,因此21cos cos12042 α-==-=?. 所以,角α的最小正值为120?. B4022.已知角θ的终边经过点(,3)P x ,其中0x ≠,且cos x θ=,求sin θ与cos θ的值. 解:由||OP = cos 10 x θ==. 解得1x =-,或1x =. 当1x =-时,sin 10θ==,cos θ=; 当1x =时,sin θ= =,cos θ= B4023.已知角θ的终边上的点均在直线3y x =上,点(,)P m n 在角θ的 终边上,且||OP =,求sin θ与cos θ的值. 解:由题意可知3n m =,且||OP == 解得m n ==-或m n = = 当m n ==-, sin 10θ= =-cos 10θ==-; 当m n ==, sin 10θ==,cos 10 θ==.

B4024.若角α的终边上一点的坐标为(sin135,cos135)P ??,则角α的最小正值为______. 解:由于点(sin135,cos135)P ??即为点P , 因为角α的终边在第四象限的角平分线上. 所以角α的最小正值为315?. B4025.若角α的终边上一点的坐标为22(cos ,sin )33P ππ-,则角α的最小正值为______. 解:由于点22(cos ,sin )33 P ππ-即为点1(,22P --, 因为角α的终边在第三象限,且1cos240,sin 2402?=- ?=所以角α的最小正值为240?. B4026.若角α的终边上一点的坐标为22(cos ,sin )55P ππ-,则角α的最小正值为______. 解:因为22cos cos(2)55πππ=-,22sin sin(2)55 πππ-=-, 且2802255 ππππ<-=<. 所以角α的最小正值为85 π. B4027.若角α的终边上一点的坐标为22(sin ,cos )55P ππ,则角α的最小正值为______. 解:因为22sin cos()525πππ=-,22cos sin()525 πππ=-, 且2022510 ππππ<-=<. 所以角α的最小正值为10 π.

正弦函数和余弦函数图像与性质

6、1正弦函数与余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T 、 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α= ===; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角与它的正弦值(或余弦值)之间就是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值; 步骤2:描点——平移定点,即描点()x x sin ,; 步骤3:连线——用光滑的曲线顺次连结各个点 小结:几何描点法作图精确,但过程比较繁。 【方案2】——五点法 步骤1:列表——列出对图象形状起关键作用的五点坐标;

第二节 正弦函数和余弦函数的定义及诱导公式

第二节 正弦函数和余弦函数的定义及诱导公式 A 组 1.若cos α=-35,α∈(π2 ,π),则tan α=________. 解析:cos α=-35,α∈(π2,π),所以sin α=45,∴tan α=sinαcosα=-43 . 答案:-43 2.(2009年高考北京卷)若sin θ=-45 ,tan θ>0,则cos θ=________. 解析:由sin θ=-45<0,tan θ>0知,θ是第三象限角,故cos θ=-35 . 答案:-35 3.若sin(π6+α)=35,则cos(π3 -α)=________. 解析:cos(π3-α)=cos[π2-(π6+α)]=sin(π6+α)=35.答案:35 4.(2010年合肥质检)已知sin x =2cos x ,则5sinx -cosx 2sinx +cosx =______. 解析:∵sin x =2cos x ,∴tan x =2,∴5sinx -cosx 2sinx +cosx =5tanx -12tanx +1=95 . 答案:95 5.(原创题)若cos2θ+cos θ=0,则sin2θ+sin θ=________. 解析:由cos2θ+cos θ=0,得2cos 2θ-1+cos θ=0,所以cos θ=-1或cos θ=12 ,当cos θ=-1时,有sin θ=0,当cos θ=12时,有sin θ=±32 .于是sin2θ+sin θ=sin θ(2cos θ+1)=0或3或- 3.答案:0或3或- 3 6.已知sin(π-α)cos(-8π-α)=60169,且α∈(π4,π2 ),求cos α,sin α的值. 解:由题意,得2sin αcos α=120169 .①又∵sin 2α+cos 2α=1,② ①+②得:(sin α+cos α)2=289169,②-①得:(sin α-cos α)2=49169 . 又∵α∈(π4,π2 ),∴sin α>cos α>0,即sin α+cos α>0,sin α-cos α>0, ∴sin α+cos α=1713.③sin α-cos α=713 ,④ ③+④得:sin α=1213.③-④得:cos α=513 . B 组 1.已知sin x =2cos x ,则sin 2x +1=________. 解析:由已知,得tan x =2,所以sin 2x +1=2sin 2x +cos 2x =2sin2x +cos2x sin2x +cos2x =2tan2x +1tan2x +1=95 .答案:95 2.(2010年南京调研)cos 10π3 =________. 解析:cos 10π3=cos 4π3=-cos π3=-12.答案:-12 3.(2010年西安调研)已知sin α=35,且α∈(π2,π),那么sin2αcos2α 的值等于________.

正弦函数和余弦函数的图像与性质

6.1正弦函数和余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T . 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α====; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角和它的正弦值(或余弦值)之间是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值;

正弦余弦函数的定义教学反思

《任意角正弦、余弦函数的定义》公开课后的教学反思2017年4月12日,在数学组备课组长、教研组长及所有组内同事的共同指导与帮助下,我有幸在高一1605班上了一节《任意角正弦、余弦函数的定义》的公开课。本节内容是北师大版高一数学必修四第一章第三节的内容,该节内容是对推广后任意角的正弦、余弦函数的重新定义,理论性较强,虽然学生在初中有学习过相应的函数知识,但由于任意角的推广,学生对于任意角的正弦、余弦函数就不那么容易理解了。整节课讲授之后,我才发现学生的学习情况并没有自己想象中的那么理想与完美,因此,对于这节课,我做出以下几点教学反思: 1.对“数学概念”的反思——学会数学的思考 对一名高中数学教师而言教学反思首先是对数学概念的反思。 对于学生来说,学习数学的一个重要目的是要学会数学的思想,用数学的眼光去看世界去了解世界:用数学的精神来学习。而对于数学教师来说,他还要从“教”的角度去看数学去挖掘数学,他不仅要能“做”、“会理解”,还应当能够教会别人去“做”、去“理解”,去挖掘、发现新的问题,解决新的问题。因此教师对教学概念的反思应当从逻辑的、历史的、关系、辨证等方面去展开。 2.对“备学生”的反思---学会课前多“备学生” 教师在教学生是不能把他们看着“空的容器”,按照自己的意思往这些“空的容器”里“灌输数学”这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。要想多“制造”一些供课后反思的数学学习素材,一个比较有效的方式就是在教学过程中尽可能多的把学生头脑中问题“挤”出来,使他们解决问题的思维过程暴露出来,这样我们才能更充分了解学生的思想,掌握他们的学习情况。因此,课前充分去“备学生”—--备学生的思想,备学生的差异,备学生的基础都是很有必要的。 3.对“备教材”的反思----学会课前多听课 由于我是今年开学初才接任的高中数学科教学任务,教学时间短,经验不是很足,因此,在备教材的时候,感觉自己也有点力不从心。整节课的内容,虽然我花了很长的时间去备课,但到了真正的课堂,在和学生一起探究正弦、余弦函数定义的环节时,我发现自己仍存在一定的问题,比如:如何引导学生通过构造

正弦函数余弦函数的图像(附)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象?

答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线. 根据诱导公式sin ????x +π2=cos x ,x ∈R .只需把正弦函数y =sin x ,x ∈R 的图象向左平移π2个单位长度即可得到余弦函数图象(如图). 要画出y =cos x ,x ∈[0,2π]的图象,可以通过描出(0,1),????π2,0,(π,-1),????3 2π,0,(2π,1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数y =cos x ,x ∈[0,2π]的图象. 思考 在下面所给的坐标系中如何画出y =cos x ,x ∈[0,2π]的图象? 答案

1.4.1《任意角的正弦函数、余弦函数的定义》教学设计

1.4.1《任意角的正弦函数、余弦函数的定义》教学设计

1.4.1《任意角的正弦函数、余弦函数的定义》 江西省铜鼓县铜鼓中学漆赣湘(336200) 教材:北师大版高一数学必修四第一章第四节第一小节 一、教学目标 1.知识与技能目标 (1)了解任意角的正弦函数、余弦函数定义产生的背景和应用; (2)掌握任意角的正弦函数与余弦函数的定义,正确理解三角函数是以实数为自变量的函数,并能应用. 2.过程与方法目标 (1)通过参与知识的“发现”与“形成”的过程,培养合理猜测的能力,体会函数模型思想,数形结合思想. (2)培养观察、分析、探索、归纳、类比及解决问题的能力.3.情感、态度、价值观目标 在学习中感悟数学概念的合理性、严谨性、科学性.感悟数学的本质,培养追求真理的精神.通过本节的学习,使同学们对正弦函数与余弦函数有了一个全新的认识,通过对定义的应用,提高学生分析、解决问题的能力. 二、教学重难点 教学重点: 任意角的正弦函数与余弦函数的定义(包括定义域和函数值在各象限的符号)及其应用. 难点: 任意角的正弦函数与余弦函数的定义及其构建过程的理解. 三、教学方法与教学手段 问题教学法、合作学习法结合多媒体课件 四、教学过程

(一)问题引入【投影展示】 问题1:初中我们学过锐角α的正弦函数与余弦函数,同学们还记得它是怎样表示的吗? 借助右图直角三角形,复习回顾. sin s r α α==的对边 斜边 , cos h r α== α的邻边 斜边 . 问题2:锐角三角函数就是以锐角为自变量,以比值为函数值的 函数,那么该比值会随着三角形的大小而改变吗?为什么?(根据相似三角形的知识可知该比值不会发生改变) (二)新知探究 我们所学角的范围已经扩充到任意角,如果角α为任意角,显然初中正弦函数与余弦函数的定义已经不能满足我们的需求,我们必须重新定义正弦函数、余弦函数.今天,我们将在直角坐标系中,对此作深入探讨. 【投影展示】问题3:如图,在直角坐标系中,我们作出一个以原点为圆心,以单位长度为半径的圆,该圆称为单位圆.设锐角α的顶点与原点O重合,始边与x轴的正半轴重合,终边与单位圆交于点(,) P u v,你能求出sinα与cosα的值吗?该值与点P的坐标有什么关系呢? 由学生自己探究,得出结论,sin v v r α==, cos u u r α==. 归纳总结:一般地,在直角坐标系中,给定 α r x y (,) P u v O α M

6.1.1 正弦函数和余弦函数的图像与性质(含答案)

【课堂例题】 例1.试画出正弦函数在区间[0,2]π上的图像. 例2.试画出余弦函数在区间[0,2]π上的图像. 课堂练习 1.作函数sin y x =-与sin 1y x =+在区间[0,2]π上的大致图像. 2.指出1.中各图像与正弦函数图像的位置关系. 3.作函数cos ,[,]y x x ππ=∈-的大致图像. 4.利用3.解不等式:cos sin ,[,]x x x ππ≥∈-

【知识再现】 正弦函数:y = ,x ∈ ; 余弦函数:y = ,x ∈ . 正弦函数和余弦函数在[0,2]π上的大致图像: 【基础训练】 1.(1)若MP 和OM 分别是角 76 π 的正弦线和余弦线,则( ) A.0MP OM <<;B.0OM MP >>; C.0OM MP <<;D.0MP OM >>. (2)正弦函数与余弦函数在区间[,]ππ-内的公共点的个数是( ) A.1; B.2; C.3; D.4. 2.我们学过的诱导公式中, (1)说明余弦函数cos ,y x x R =∈的图像关于y 轴对称的是 ; (2)说明正弦函数sin ,y x x R =∈的图像关于直线2 x π = 对称的是 . 3.(1)函数cos 3,y x x R =+∈的值域是 ; (2)函数24sin 2,(0,)y x x π=-∈的值域是 . 4.函数cos ,[0,2]y x x π=∈和1y =的图像围成的封闭的平面图形的面积为 . 5.利用“五点法”,画出下列函数的大致图像:(步骤:列表、描点、联线) (1)1sin ,[,]y x x ππ=+∈-; (2)cos ,[0,2]y x x π=-∈. O y x

正弦函数和余弦函数的图象

1.4.1 正弦函数和余弦函数的图象 编写人: 杨朝书 审核人:王维芳 时间 2010-3-22 一、学习目标 1、 了解如何利用正弦线画出正弦函数的图象,并在此基础上由诱导公式画出余弦函数的图象。 2、 会用“五点法”画出正弦函数、余弦函数的简图。 二、重点难点 重点:正弦函数、余弦函数的图象。 难点:将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数和余弦函数图象间的关系。 三、知识链接 1、sin(2)k απ+=_____________,cos(2)k απ+=____________,tan(2)k απ+=__________ (其中k Z ∈) 2、三角函数的几何表示,即___________,作出角 23 π 的正弦线、余弦线和正切线。 3、诱导公式:sin()2πα-= sin()2 πα+= cos()πα-= cos()πα+= 4、函数的定义__________________________________________________________________ 四、学习过程 [知识探究]正弦函数、余弦函数的图象 阅读课本30p 第一段:正弦函数、余弦函数的定义是:__________________________________. 问题1、用描点法作出正弦函数sin y x =的图象(试填写下表并描点,作出图象) 阅读课本31p 完成问题2、用几何法作出正弦函数sin y x =的图象。 1、利用几何法作正弦函数的图象可分为两步:一是画出______________的图象;二是把这一图象向_____________________________连续平移(每次2π个单位长度) 2、“五点法”作图的一般步骤是①_________;②_____________;③________________ 3、“五点法”作正弦函数图象的五个点是_______________________________;“五点法”作余弦函数图象的五个点是 _______________________________ 4、函数cos y x =(x R ∈)的图象可以通过sin ()y x x R =∈的图象向_______平移_____个单位长度得到。 5、通过图象能说出正弦曲线和余弦曲线是否是轴对称图象和中心对称图形?若是对称轴是什么?对称中心是什么? [典型例题] 例题 画出下列函数的简图: ⑴1sin y x =+,[0,2]x π∈;⑵cos ,[0,2]y x x π=-∈;⑶1sin(2)26 y x π= + 变式:你能否从函数图象变换的角度出发,利用函数sin y x =,[0,2]x π∈的图象来得到1sin y x =+, [0,2]x π∈的图象?同样的,能否从函数cos ,[0,2]y x x π=∈的图象得到函数cos ,[0,2] y x x π=-∈的图象?

1.4.1任意角的正弦函数、余弦函数的定义

4.1 任意角的正弦函数、余弦函数的定义 使用说明:认真阅读课本13~15页,并完成下列预习案内容。 【学习目标】 1. 借助单位圆认识和理解正弦函数、余弦函数的概念; 2.熟练记忆正弦、余弦函数值在各象限的符号。 【重点难点】 重点:任意角的正弦函数、余弦函数的定义及函数值在各象限的符号; 难点:正弦函数、余弦函数的定义理解。 一、知识链接 在Rt △ABC 中,∠C =90°,分别写出∠A 的三角函数关系式:sinA =_____,cosA=_____,sinB =_____,cosB=_____, 二、教材助读 1.在直角坐标中,以_____为圆心,以_______为半径的圆叫做单位圆。 2.正弦函数、余弦函数定义:一般地,在直角坐标系中,对任意角α,使角α的顶点与原 点重合,始边与x 轴正半轴重合,终边与单位圆交于点P (u ,v ),那么点P 的纵坐标v ,叫作角α的正弦函数,记作v =αsin 。点P 的纵坐标u ,叫作角α的余弦函数,记作u =αcos . 通常,我们用x ,y 分别表示自变量与因变量,将正、余弦函数分别表示为y =sinx ,y =cosx. 定义域:_________________, 值域:___________________. 3.在直角坐标系中,设α是一个任意角,它的终边上任意一点P(x,y),那么: ⑴ 正弦 αsin = __________。 ⑵ 余弦αcos = __________ 。 4.当角α的终边分别在第一、二、三、四象限时,正弦函数值、余弦函数值的正负号: 象限 三角函数 第一象限 第二象限 第三象限 第四象限 αsin α cos 三、预习自测 1.在直角坐标系的单位圆中,α=4 -π (1)画出角α; (2)求出角α的终边与单位圆的交点坐标; (3)求出角α的正弦函数值、余弦函数值; 2.确定下列各三角函数值的符号: ⑴ cos250°; ⑵ sin(-π/4); ⑶ sin(-672°); ⑷ cos3π; 3.已知角α的终边经过点P(-2,-3),求角α的正弦、余弦值. 预习案

正弦函数和余弦函数的图像与性质教案

6.1课题:正弦函数和余弦函数的图像与性质(2)教案 教学目的:1、理解正、余弦函数的值域、最值、周期性、奇偶性的意义; 2、会求简单函数的值域、最小正周期和单调区间; 3、掌握正弦函数y =A sin(ωx +φ)的周期及求法。 教学重点:正、余弦函数的性质。 教学过程: (一)、引入 回顾三角函数的图像: 函数y=sinx ,x ∈[0,2π]和y=cosx ,x ∈[0,2π]的图象, (二)、新课 1.定义域: 正弦函数、余弦函数的定义域都是实数集R [或(-∞,+∞)], 分别记作: y =sin x ,x ∈R y =cos x ,x ∈R 2.值域 因为正弦线、余弦线的长度小于或等于单位圆的半径的长度,所以|sin x |≤1, |cos x |≤1,即-1≤sin x ≤1,-1≤cos x ≤1 也就是说,正弦函数、余弦函数的值域都是[-1,1] 其中正弦函数y =sin x ,x ∈R ①当且仅当x = 2 π+2k π,k ∈Z 时, 取得最大值1 ②当且仅当x =-2π+2k π,k ∈Z 时,取得最小值-1 而余弦函数y =cos x ,x ∈R ①当且仅当x =2k π,k ∈Z 时,取得最大值1 ②当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-1 3.周期性 由sin(x +2k π)=sin x ,cos(x +2k π)=cosx (k ∈Z )知:

正弦函数值、余弦函数值是按照一定规律不断重复地取得的。 一般地,对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期。 由此可知,2π,4π,……,-2π,-4π,……2k π(k ∈Z 且k ≠0)都是这两个函数的周期 对于一个周期函数f (x ),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期。 注意: (1)周期函数x ∈定义域M ,则必有x+T ∈M, 且若T>0则定义域无上界;T<0则定义域无 下界; (2)“每一个值”只要有一个反例,则f (x )就不为周期函数(如f (x 0+t)≠f (x 0)) (3)T 往往是多值的(如y=sinx ,2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数 叫做f (x )的最小正周期(有些周期函数没有最小正周期) 根据上述定义,可知:正弦函数、余弦函数都是周期函数,2k π(k ∈Z 且k ≠0)都是它的周期,最小正周期是2π。 4.奇偶性 由sin(-x)=-sinx , cos(-x)=cosx 可知:y =sinx 为奇函数, y =cosx 为偶函数 ∴正弦曲线关于原点O 对称,余弦曲线关于y 轴对称 5.单调性 从y =sin x ,x ∈[- 23,2ππ]的图象上可看出: 当x ∈[-2π,2 π]时,曲线逐渐上升,sin x 的值由-1增大到1 当x ∈[2 π,23π]时,曲线逐渐下降,sin x 的值由1减小到-1结合上述周期性可知: 正弦函数在每一个闭区间[- 2π+2k π,2 π+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k ∈Z )上都是减函数,其值从1减小到-1。 余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1 (三)典型例题(3个,基础的或中等难度) 例1:求使下列函数取得最大值的自变量x 的集合,并说出最大值是什么。 (1)y =cosx +1,x ∈R ; (2)y =sin2x ,x ∈R 解:(1)使函数y =cos x +1,x ∈R 取得最大值的x 的集合,就是使函数y =cos x ,x ∈R 取 得最大值的x 的集合{x |x =2k π,k ∈Z }。 ∴函数y =cos x +1,x ∈R 的最大值是1+1=2。

任意角三角函数 正弦函数和余弦函数的定义与诱导公式

正弦函数和余弦函数的定义与诱导公式 尝试回忆 1、1弧度的角; 2、角度制与弧度制的互化; 3、弧长公式及扇形面积公式; 4、用弧度制表示第一象限内的角的集合和x 轴上的角的集合。 2、特别注意:角度与弧度不要混用。如0 90,k k Z π+∈,应写成0 18090,k k Z ?+∈或,2 k k Z π π+ ∈ 3、初中所学的锐角的正、余弦函数是如何定义的? 探究新知 1、单位圆 在直角坐标系中,以原点为圆心,以单位长为半径的圆,称为单位圆。 单位长:可以是1cm 、1m 、1km 、1光年等。单位圆可根据需要移到其它地方。 2、任意角的正、余弦函数定义 在直角坐标系中,给定单位圆,对于任意角α,使角α的顶点与原点重合,始边与x 轴正半轴重合,终边与单位圆交于点P(u,v),则交点P 的纵坐标v 叫作角α的正弦函数,记作v=sin α; 点P 的横坐标u 叫作角α的余弦函数,记作u=cos α. 通常,用x 表示自变量,用x 表示角的大小,用y 定义任意角的三角函数y=sinx 和y=cosx,定义域为R ,值域为设点P (a,b )是角α终边上除原点之外的任意一点,记r =则定义sin ,cos .b a r r αα= =更具有一般性。 3、三角函数值的符号 根据定义,三角函数值的符号仅与点P 的纵、横坐标的符号有关。sinα在一、二象限为正,三、四象限为负;cos α在一、四象限为正,二、三象限为负.轴线角的正余弦函数值也有符号。 例1功能:会求任意角的三角函数值。其步骤(1)画角;(2)求交点坐标。可联立方 程221,. x y y x ?+=?=-?解得;(3)求值。 4、单位圆与周期性 在单位圆中找到角 ,2,46 6 6 α α α ππ+ + 等与单位圆的交点,说明:(1)终边没变;(2) 交点没变;(3)交点的纵、横坐标没变。从而说明正弦函数值没变,余弦函数值没变。即 从而说明终边相同的角的正弦函数值相等,终边相同的角的余弦函数值相等。即 sin(2)sin ,.cos(2)cos ,.k x x k Z k x x k Z ππ+=∈+=∈ 说明:对于任意一个角x ,每增加2π的整数倍,其正弦函数值、余弦函数值均不变。所以,正弦函数值、余弦函数值均是随角的变化呈周期性变化的。这种随自变量的变化函数值呈周期性变化的函数叫做周期函数。特别指出,周期性不是三角函数特有的,一般函数也有周期性。周期函数的自变量不一定是角。2π是sin ,y x x R =∈的周期,则

正弦函数和余弦函数的计算公式

关于正弦函数和余弦函数的计算公式 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα

相关文档
最新文档