抗拔桩承载力计算书

抗拔桩承载力计算书
抗拔桩承载力计算书

单桩承载力计算书

一、设计资料

1.单桩设计参数

桩类型编号1

桩型及成桩工艺:泥浆护壁灌注桩

桩身直径d = 0.500m

桩身长度l = 13.00m

桩顶标高81.00m

2.土层性能

层号岩土名称

抗拔系数极限侧阻力标准值

q sik(kPa)

极限端阻力标准值

q pk(kPa)

6粉质粘土60

7淤泥质土38

8粗砂65

9粉质粘土68

3.勘探孔

天然地面标高96.00m 地下水位标高92.00m

层号岩土名称层厚(m)层底标高(m)层底埋深(m) 6粉质粘土

7淤泥质土

8粗砂

9粉质粘土

注:标高均指绝对标高。

4.设计依据

《建筑桩基技术规范》JGJ 94-2008

二、竖向抗压承载力

单桩极限承载力标准值:

Q uk = uq sik l i + q pk A p

= × (60 × + 38 × + 65 × + 0 ×

= 1138kN

单桩竖向承载力特征值R a = Q uk / 2 = 569kN

三、竖向抗拔承载力

基桩抗拔极限承载力标准值:

T uk = i q sik u i l i

= × 60 × × + × 38 × × + × 65 × ×

= 714kN

四、基桩抗拔力特征值

R tu=T uk/2+G p=714/2+

桩身强度计算书

一、设计资料

1.基本设计参数

桩身受力形式:轴心抗拔桩 轴向拉力设计值:N' = KN 轴向力准永久值:N q = KN 不考虑地震作用效应 主筋:HRB400

f y = 360 N/mm 2

E s = ×105 N/mm 2 箍筋:HRB400

钢筋类别:带肋钢筋

桩身截面直径:D = 500.00 mm

纵筋合力点至近边距离:a s = 35.00 mm 混凝土:C30

f tk = N/mm 2

最大裂缝宽度限值:lim = 0.3000 mm 2.设计依据

《建筑桩基技术规范》JGJ 94-2008

《混凝土结构设计规范》GB 50010--2010

二、计算结果

1.计算主筋截面面积

根据《混凝土结构设计规范》式(6.2.22) N' ≤ f y A s + f py A py

因为不考虑预应力,所以式中f py 及A py 均为0 A s = 错误! 2.主筋配置

根据《建筑桩基技术规范》第4.1.1条第1款 取最小配筋率 min = %

验算配筋率时,取 = 错误!

根据《混凝土结构设计规范》第9.3.1条第1款 取最大配筋率 max = % 因为 min ≤ ≤ max

所以,主筋配筋率满足要求

实配主筋:1220,A s = 3769.91 mm 2

3.箍筋配置 按构造配置箍筋 实配箍筋:8@300,

A sv s

= mm 2

/mm 4.计算te

A ts = A s = 3769.91 mm 2

A te = pD 24 = p×4

=196349.54 mm 2

根据《混凝土结构设计规范》式(7.1.2-4)

te = 错误! 5.计算sq

根据《混凝土结构设计规范》式(7.1.4-1) sq = 错误! 7.计算max

根据《混凝土结构设计规范》第7.1.2条 cr = = -

f tk

r te s sq

错误!

c = a s -

d 2 = - 20

2

= mm

根据《混凝土结构设计规范》式(7.1.2-3) d eq = 错误!

根据《混凝土结构设计规范》式(7.1.2-1)

max

= cr s sq E s +

d eq

r te

) = 错误!

= 0.1684 mm ≤ lim = 0.3000 mm

最大裂缝宽度满足要求。

抗浮力按70kN/m2,桩间距按均匀布置

单桩水平承载力设计值计算D500

单桩水平承载力设计值计算项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、构件编号: D500 二、依据规范: 《建筑桩基技术规范》(JGJ 94-2008) 三、计算信息 1.桩类型: 桩身配筋率≥0.65%灌注桩 2.桩顶约束情况: 铰接、自由 3.截面类型: 圆形截面 4.桩身直径: d=500mm 5.材料信息: 1)混凝土强度等级: C25 ft=1.27N/mm2Ec=2.80*104N/mm2 2)钢筋种类: HRB335 Es=2.0*105N/mm2 3)钢筋面积: As=1539mm2 4)净保护层厚度: c=50mm 6.其他信息: 1)桩入土深度: h=13.000m 2)桩侧土水平抗力系数的比例系数: m=10.000MN/m4 3)桩顶容许水平位移: χoa=10mm 四、计算过程: 1.计算桩身配筋率ρg: ρg=As/(π*d*d/4) =1539.000/(π*500.000*500.000/4)=0.784% 2.计算桩身换算截面受拉边缘的表面模量Wo: 扣除保护层的桩直径do=d-2*c=500-2*50=400mm 钢筋弹性模量Es与混凝土弹性模量Ec的比值 αE=Es/Ec=(2.0*105)/(2.80*104)=7.143 Wo=π*d/32*[d*d+2*(αE-1)*ρg*do*do] =π*0.500/32*[0.500*0.500+2*(7.143-1)*0.784%*0.400*0.400] =0.013m3 3.计算桩身抗弯刚度EI: 桩身换算截面惯性矩Io=Wo*d/2=0.013*0.500/2=0.003m4 EI=0.85*Ec*Io=0.85*2.80*104*1000*0.003=78540.000kN*m2 4.确定桩的水平变形系数α: 对于圆形桩,当直径d≤1m时: bo=0.9*(1.5*d+0.5)=0.9*(1.5*0.500+0.5)=1.125m α=(m*bo/EI)(1/5)【5.7.5】 =(10000.000*1.125/78540.000)(1/5)=0.678 (1/m) 5.计算桩顶水平位移系数νx: 桩的换算埋深αh=0.678*13.000=8.814m 查桩基规范表5.7.2得: νX=2.441 6.单桩水平承载力设计值Rh:

单桩竖向承载力计算书

主楼单桩承载力计算书 1、土层分布情况: 层号 土层名称 土层厚度(m ) 侧阻q sik (Kpa ) 端阻q pk (Kpa ) ○1 杂填土 2.0 0 / ○2 粉质粘土 1.0 50 / ○3 含碎石粉质粘土 7.5 90 / ○4 粉质粘土 4.5 85 / ○5 含碎石粉质粘土 13 100 2700 2、单桩极限承载力标准值计算: 长螺旋钻孔灌压桩直径取Ф600,试取ZKZ1桩长为16.0 米,ZKZ2桩长为28.0 米进入○ 5层含碎石粉质粘土层 根据《建筑桩基技术规范规范》(JGJ 94-2008): 单桩竖向极限承载力特征值计算公式: ∑+=i p p l u A q Q sik k uk q 式中:uk Q ---单桩竖向极限承载力特征值; q pk ,q sik ---桩端端阻力,桩侧阻力标准值; A p ---桩底端横截面面积; u---桩身周边长度; l i ---第i 层岩土层的厚度。 经计算:uk Q =0.2826×2700+1.884×(50×1.0+90×7.5+85×4.5+100× 3.0)=3400KN 。 ZKZ1单桩竖向承载力特征值R a =1/2uk Q 取R a =1600KN

经计算:uk Q =0.2826×2700+1.884×(50×1.0+90×7.5+85×4.5+100× 15.0)=5675KN 。 ZKZ2单桩竖向承载力特征值R a =1/2uk Q 取R a =2850KN 3、 桩身混凝土强度(即抗压验算): 本基础桩基砼拟选用混凝土为C30。 根据《建筑桩基技术规范》(JGJ 94-2008)第5.8.2条公式: s P c c A f N ψ≤+0.9f y As 根据《建筑桩基技术规范》(JGJ 94-2008)第5.8.2条公式: s P c c A f N ψ≤ 式中:f c --混凝土轴心抗压强度设计值;按现行《混凝土结构设计规范》 取值,该工程选用C30砼,f c =14.3N/m 2; N--荷载效应基本组合下的桩顶轴向压力设计值; A ps --桩身横截面积,该式A ps =0.2826m 2; ψc ---基桩成桩工艺系数,本工程为长螺旋钻孔灌注桩,取0.8。 带入相关数据: 对于ZKZ2: A ps f c Ψc =0.2826×106×14.3×0.8=3232KN 3232KN/1.35=2395KN>R a 对于ZKZ1: A ps f c Ψc +0.9f y As =0.2826×106×14.3×0.8+0.9×360×924= 3532KN 3232KN/1.35=2395KN>R a 4、 桩基抗震承载力验算:

桩基承载力计算公式(老规范)

一、嵌岩桩单桩轴向受压容许承载力计算公式 采用嵌岩的钻(挖)孔桩基础,基础入持力层1~3倍桩径,但不宜小于1.00m,其单桩轴向受压容许承载力[P]建议按《公路桥涵地基与基础设计规范》JTJ024—85第4.3.4条推荐的公式计算。 公式为:[P]=(c1A+c2Uh)Ra 公式中,[P]—单桩轴向受压容许承载力(KN); Ra—天然湿度的岩石单轴极限抗压强度(KPa),按表4.2 查取,粉砂质泥岩:Ra =14460KPa;砂岩:Ra =21200KPa h—桩嵌入持力层深度(m); U—桩嵌入持力层的横截面周长(m); A—桩底横截面面积(m2); c1、c2—根据清孔情况、岩石破碎程度等因素而定的系数。挖孔桩取c1=0.5,c2=0.04;钻孔桩取c1=0.4,c2=0.03。 二、钻(挖)孔桩单桩轴向受压容许承载力计算公式 采用钻(挖)孔桩基础,其单桩轴向受压容许承载力[P]建议按《公路桥涵地基与基础设计规范》JTJ024—85第4.3.2条推荐的公式计算。 公式为:[]()R p A Ul Pσ τ+ = 2 1 公式中,[P] —单桩轴向受压容许承载力(KN); U —桩的周长(m); l—桩在局部冲刷线以下的有效长度(m); A —桩底横截面面积(m2),用设计直径(取1.2m)计算;

p τ— 桩壁土的平均极限摩阻力(kPa),可按下式计算: ∑==n i i i p l l 11ττ n — 土层的层数; i l — 承台底面或局部冲刷线以下个土层的厚度(m); i τ— 与i l 对应各土层与桩壁的极限摩阻力(kPa),按表 3.1查取; R σ— 桩尖处土的极限承载力(kPa),可按下式计算: {[]()}322200-+=h k m R γσλσ []0σ— 桩尖处土的容许承载力(kPa),按表3.1查取; h — 桩尖的埋置深度(m); 2k — 地面土容许承载力随深度的修正系数,据规范表 2.1.4取为0.0; 2γ— 桩尖以上土的容重(kN/m 3); λ— 修正系数,据规范表4.3.2-2,取为0.65; 0m — 清底系数,据规范表4.3.2-3,钻孔灌注桩取为 0.80,人工挖孔桩取为1.00。

抗拔桩抗浮计算

抗拔桩抗浮计算书 一、工程概况: 本工程±0.00相对标高为100.55m,依据地质勘查报告,抗浮设计水位为98.00m,即±0.00以下2.55m。 本工程主楼为地上16层,地下两层,抗浮满足要求,不需要进行抗浮计算; 本工程副楼为地上三层,地下两层,对于纯地下两层地下室,由于上部无建筑物,无覆土,现进行抗浮计算如下: 二、浮力计算 基础底板顶标高为:-(4.5+5.4+0.4)=-10.30m 基础底板垫层底标高为:-(4.5+5.4+0.4+0.6+0.15)=-11.05m 浮力为F浮=rh=10x(11.05-2.55)=85KN/m2 1.主楼地上16层,能满足抗浮要求,不做计算; 2.副楼抗浮计算:(副楼立面示意如下图) 副楼地上3层部分,面积为401m2 故上部三层q 1 =(486+550+550)x9.8/401=38.76KN/ m2 地下一层面荷载为:q 2 =16 KN/ m2 地下二层面荷载为:q 3 =14 KN/ m2 基础回填土垫层:q 4 =15x0.4=6 KN/ m2 基础底板:q 5 =25x0.6=15 KN/ m2 则F抗= q=38.76+16+14+6+15=89.76KN/ m2 F抗/F浮=89.76/85=1.056>1.05 故副楼有地上3层部分不需要设置抗拔桩 副楼立面示意 3.对地上无上部结构的纯地下车库(下图阴影所示): F抗=16+14+6+15=51 KN/ m2 F1=F浮-F抗=85-51=34 KN/ m2 既不满足抗浮要求,需要设计抗拔桩进行抗浮 三、抗拔桩计算 依据《建筑桩基技术规范》第5.4.5条 N k≤2 T uk+G p 抗拔桩桩型采用钻孔灌注桩,桩经采用d=600mm 桩顶标高为筏板底标高:89.50m,桩长L=15m。 依据《建筑桩基技术规范》,地质报告,抗拔系数λ=0.5 1)群桩呈非整体破坏时,基桩的抗拔极限承载力标准值 - 1 -

扩底抗拔桩承载力计算

扩底抗拔桩抗拔承载力计算 丁浩珉 摘要:随着我国城市化进程的迅速发展,地下结构的建设呈现迅猛发展的势头。地下结构的抗浮问题日益受到国内外学者的重视。抗拔桩是当前应用的最为广泛的抗浮基础类型。然而抗拔桩的理论研究远远落后于工程实践。本文对扩底抗拔桩进行概述,并分析其破坏形态及作用机理。最后总结一些扩底抗拔桩承载力计算方法。 关键词:扩底抗拔桩承载力计算破坏机理 Calculation of the Up-lift Resistance Bearing Capacity of Bored Cast-in-place Pile with Enlarged Bottom Abstract :With the development of municipal engineering,lots of underground structures are built.More and more researchers are aware of the importance of resisting the uplift load.Tension piles are widely used to resist the uplift load,but theories about tension piles are far behind of engineering practice. This paper give an overview of tension piles with enlarge bottom,and analyze the failure modes and resisting mechanism.Finally,the paper will summarize some of the calculation of the up-lift resistance bearing capacity of bored cast-in-place pile with enlarged bottom. Keywords: tension piles with enlarge bottom calculation of bearing capacity failture mode 1 引言 近年来,随着城市建设的高速发展,城市建设用地越来越少,地下空间的开发和利用成为发展的必然趋势。大量带有地下车库的高程建筑,以及地下管廊,下沉式广场的兴建,使地下结构抗浮问题变得非常突出。目前,扩底抗拔桩因其单桩抗拔承载力大,质量易于保证,施工速度快,无噪音,无振动,在保证一定抗拔力的情况下,可缩短桩长,减少桩数,避免穿过某些复杂的地层,改善施工条件,省工省料省时,节约投资等特点,在工程中经常用来解决抗浮问题。但扩底桩的设计,试验资料甚少,扩底抗拔桩的理论尚未完善。一般在设计抗拔桩时,通常是参照规范规定的抗压桩的侧摩阻力,再乘以单一的经验折减系数,以此作为抗拔桩的侧摩阻力,再乘以单一的经验折减系数,以此作为抗拔桩的侧摩阻力来计算其抗拔力。扩底抗拔桩由于在桩底形成扩大头,增大桩端承载面积,从而提高单桩抗拔承载力,如何合理考虑桩底抗拔力成为设计计算的难点。本文对于各种扩底抗拔桩承载力计算方法进行总结,同同时对比等截面抗拔桩分析扩底抗拔桩的受力特点和扩底抗拔桩的受力机理,从而对扩底抗拔桩有个深入的认识。 2 扩底桩概述 扩底桩作为抗拔桩,其最大的优点是:可以用增加不多的材料来获取增加桩基抗拔承载力的效果。随着扩孔技术的不断发展,扩底桩的应用越来越广泛,设计理论也随之发展。 通常,桩基承载力中的桩侧摩阻力部分随着上拔荷载的增加开始也逐渐增大,但是一般在桩—土界面上相对位移达到4—10mm时,相应的侧壁摩阻力就会达到其峰值,其后将逐渐下降。但扩底桩与等截面桩不同。在基础上拔的过程中,扩大头上移挤压土体,土对它的反作用力(即上拔阻力)一般也是随着上拔位移的增加而增大的。并且,即使当桩侧摩阻

单桩竖向极限承载力和抗拔承载力计算书

塔吊基础计算书 一、计算参数如下: 非工作状态工作状态 基础所受的水平力H:66.2KN 22.5KN 基础所受的竖向力P:434KN 513KN 基础所受的倾覆力矩M:1683KN.m 1211KN.m 基础所受的扭矩Mk:0 67KN.m 取塔吊基础的最大荷载进行计算,即 F =513KN M =1683KN.m 二、钻孔灌注桩单桩承受荷载: 根据公式: (注:n为桩根数,a为塔身宽) 带入数据得 单桩最大压力: Qik压=872.04KN 单桩最大拔力:Qik拔=-615.54KN 三、钻孔灌注桩承载力计算 1、土层分布情况: 层号 土层名称 土层厚度(m) 侧阻qsia(Kpa) 端阻qpa(Kpa) 抗拔系数λi 4 粉质粘土 0.95 22 / 0.75 5 粉质粘土 4.6 13 / 0.75 7 粉质粘土 5.6 16 /

0.75 8-1 砾砂 7.3 38 1000 0.6 8-2 粉质粘土 8.9 25 500 0.75 8-3 粗砂 4.68 30 600 0.6 8-4a 粉质粘土 4.05 32 750 0.75 桩顶标高取至基坑底标高,取至场地下10m处,从4号土层开始。 2、单桩极限承载力标准值计算: 钻孔灌注桩直径取Ф800,试取桩长为30.0 米,进入8-3层 根据《建筑地基基础设计规范》(GB50007-2002)8.5.5条: 单桩竖向承载力特征值计算公式: 式中:Ra---单桩竖向承载力特征值; qpa,qsia---桩端端阻力,桩侧阻力特征值; Ap---桩底端横截面面积; up---桩身周边长度; li---第i层岩土层的厚度。 经计算:Ra=0.5024×600+2.512×(22×0.95+13×4.6+16×5.6+38×7.3+25×8.9+30×2.65)=2184.69KN>872.04KN满足要求。 单桩竖向抗拔承载力特征值计算公式: 式中:Ra,---单桩竖向承载力特征值; λi---桩周i层土抗拔承载力系数; Gpk ---单桩自重标准值(扣除地下水浮力) 经计算:Ra,=2.512×(22×0.95×0.75+13×4.6×0.75+16×5.6×0.75+38×7.3×0.6+25

抗拔桩设计原理及运用

抗拔桩设计原理及运用 摘要:桩已广泛地用于各类工业与民用建筑物、构筑物的基础工程中,对于地下建筑物、自重比较轻而水平荷载又比较大的高耸构筑物、高宽比较大的高层建筑地下室承受巨大的水浮力作用而自重或压重不够时,桩就需要承受一个上拔荷载作用,桩的设计就涉及到一个“抗拔”问题。 关键词:桩;设计;承载力 Abstract: the pile is widely used in all kinds of industrial and civil buildings, structures foundation engineering, for the underground building, dead weight is light and horizontal load of the big and tall buildings, high wide of the big high-rise building basement bear huge water buoyancy effect and self-respect or pressure heavy enough, the pile would need to bear a pull on the load, the design of pile is involved a “resistance to pull out” problem. Keywords: pile; Design; Bearing capacity 与普通抗压桩相比,抗拔桩在设计要求(满足承载能力极限状态要求和正常使用极限状态要求)、设计方法(用分项系数表达的以概率理论为基础的极限状态设计方法、施工工艺(静压、振动、锤击、钻孔、人工挖孔、夯扩)等方面基本相同,但在受力特点、破坏机理、桩体设计和构造、单桩承载力的确定和测试、基础承台的设计和构造等方面却存在着较大的差异。本文主要从设计的角度出发,结合工程实践,对采用钢筋混凝土抗拔桩的基础设计需要考虑的一些问题进行综述,以供同行参考。 1 受力特点和破坏机理 对于一般工程桩来说抗拔力主要由桩侧摩阻力提供。当竖向拉力施加于桩顶时,上部桩身首先受到拉伸产生相对于土体的向上位移趋势,于是桩周土在桩侧界面上产生一个向下的摩阻力;荷载沿桩身向下传递过程就是不断克服这种摩阻力并通过它向土中扩散的过程,上部的位移总是大于下部,因此上部的摩阻总是先于下部发挥出来。当桩侧总摩阻力达到极限时,桩便发生急剧的、不停滞的上拔而破坏。当承台下桩数较少、桩距较大时,抗拔桩的破坏形式常呈现非整体性-单桩拔出破坏;但当承台下桩数较多桩距较小时,桩和土常作为一个整体上拔而破坏-群桩整体破坏。 2 选型与设计 桩型选择:原则上讲能够承受轴向拉力的桩,都可以作为抗拔桩。但预制桩尤其是预应力混凝土管桩由于桩顶与承台之间连接、桩段之间连接的抗拉力得不到有效保证,致使不少工程事故发生,因此工程中抗拔桩多选用灌注桩,同时只要条件允许,桩端一般嵌入坚硬而埋深较浅的基岩中,如果基岩上覆土较厚,常在桩端设置扩大头或采用挤扩支盘桩等形式以提高抗拔力。

塔吊桩基承载力计算书(最终版)

塔吊桩基承载力计算书(附件一) 湖畔美居工程施工期间,用2台塔式起重机,型号:TC5613,安装位置见施工平面图。 一、 TC5613附着式塔机在附着之前对基础的荷载值,见右图。 1、竖向力F=820KN 2、倾覆力矩Mx=3200KN ·m 3、扭力矩Mk=480KN ·m 4、水平力H=65KN 5、塔吊基础(桩承台)重G =424KN 说明:TC5613塔吊起重力矩为800KN 〃m ,但是在使用说明书上未提供荷载值。上述荷载值是采用的1250KN 〃m 塔吊的荷载值。此荷载值比800KN 〃m 塔吊的荷载值大许多,能保证安全使用。 二、 TC5613塔吊基础桩承受的荷载值: 塔机使用说明书规定,地耐力为210Kpa 、150Kpa 、110Kpa 。而本工程的地面土层承载力仅40-80KPa ,不能作为塔基持力层。又因为场地所限,安不下6m ×6m 的塔吊基础。所以改为桩基。 每台塔基下设n=4根人工挖孔桩,直径d=1.2m 。桩平面布置见图二(附后)。砼护壁厚度150mm ,护壁外径1500mm 。 因为塔吊工作时按360°旋转,偏心力矩总是随同塔吊的吊臂旋转而改变力矩方位。计算基桩荷载时,可取两个典型的力矩方向,对比之后,取最大的荷载值作为基桩顶面的荷载设计值N i K 塔吊荷载图

(一)、按图a 方向: N i =(F+G )/n ±(M x Y i )/∑Y i 2 =(820+424)/4 ± (3200×1.5)/[4×(1.5)2] =311±533=844KN (抗压桩) =-222KN (抗拔桩) (二)、按图b 方向: N i =(F+G )/n ±(M x Y i )/∑Y i 2 =(820+424)/4 ± (3200×2.121)/[2×(2.121)2] =311±754=1065KN (抗压桩) =-443KN (抗拔桩) 结论:上述两式对比,第(二)种情况桩顶荷载设计值最大,所以,当基桩受压时,荷载设计值N i =1065KN 。当基桩受拉时,(上拔)荷载设计值N i = 图a X 图b

抗浮桩计算

抗浮桩计算 +有实列----难得啊! 一般抗浮计算: (局部抗浮) 1."05F浮力- 0."9G自重<0即可 (整体抗浮) 1."2F浮力- 0."9G自重<0即可 如果抗浮计算不满足的话,地下室底板外挑比较经济 同意以上朋友的观点,一般增大底版自重及底板外挑比抗拔桩要经济很多 【】抗浮锚杆设计总结 抗浮锚杆设计总结 1适用的规范 抗浮锚杆的设计并无相应的规范条文,《建筑地基基础设计规范GB50007---2002》中“岩石锚杆基础”部分以及《建筑边坡工程技术规范GB50330-2002》有关锚杆的部分可以参考使用,不过最好只用于估算,锚杆抗拔承载力特征值应通过现场试验确定,有一些锚杆构造做法可以参考。对于锚杆估算,推荐使用《建筑边坡工程技术规范GB50330-2002》,对于岩土的分类较细,能查到一些必要的参数。 2锚杆需要验算的内容 1)锚杆钢筋截面面积;

2)锚杆锚固体与土层的锚固长度; 3)锚杆钢筋与锚固砂浆间的锚固长度; 4)土体或者岩体的强度验算; 3锚杆的布置方式与优缺点 1)集中点状布置,一般布置在柱下;优点: 可以充分利用上部结构传来的竖向力来平衡掉一部分水浮力;由于锚杆布置集中,对于地下室底板下的外防水施工也比较方便;对于个别锚杆承载力不足的情况,由于有较多的锚杆分担,有很强的抵抗力。缺点: 要求锚固于坚硬岩体中,不适用于软岩与土体,破坏往往是锚固岩体的破坏;由于局部锚杆较密,锚杆施工不方便;地下室底板梁板配筋较大。 2)集中线状布置,一般布置于地下室底板梁下;优点: 由于锚杆布置相对集中,对于地下室底板下的外防水施工也比较方便;对于个别锚杆承载力不足的情况,由于有较多的锚杆分担,有较强的抵抗力。缺点: 不能充分利用上部结构传来的竖向力来平衡掉一部分水浮力(个人认为考虑的话偏于不安全,对于跨高比小于6的底板梁,可以适当考虑上部结构传来的竖向力来平衡掉一部分水浮力),要求锚固于较硬岩体中,不适用于软岩与土体;地下室底板板配筋较大。 3)面状均匀布置,在地下室底板下均匀布置;优点: 适用于所有土体和岩体;地下室底板梁板配筋较小。缺点: 不能充分利用上部结构传来的竖向力来平衡掉一部分水浮力(个人认为考虑的话偏于不安全);对于个别锚杆承载力不足的情况,由于能分担的锚杆较少,此情况抵抗力差;由于锚杆布置相对分散,对于地下室底板下的外防水施工比较麻烦。

抗拔桩设计

抗拔桩设计

水池抗浮设计方案的分析与比较 毕雅明 (同济大学建筑设计研究院环境工程设计分院,上海200092) 提要对目前在水池抗浮设计中常用的各种方案进行了较为深入的分析,并针对各种抗浮措施在其适用条件及经济性、可行性上进行比较。有利于在工程设计中采用更为经济、合理的抗浮方案。 关键词水池抗浮,抗浮设计,抗浮措施 Analysis and comparison about Anti-floating on concrete water pool design Abstract In-depth analysis about various anti-floating design projects of commonly used on concrete water pool design, and measures against various anti-floating in its application conditions and the economy, feasibility. Be benefit to chose a more economical and reasonable anti-floating program in design works. Keywords anti-floating of water pool, anti-floating design, Anti-floating measures 1 概述 在市政、环境、水利和工业项目建设中,有大量的埋地式水池构筑物。对于建设在地下水位较高地区的埋地式水池,其抗浮措施是设计中必需解决的重要问题之一。 目前在抗浮设计中常用的方

抗拔桩设计计算

抗拔桩设计计算 1、设计依据 中华人名共与国行业标准:《建筑桩基技术规范》JGJ 94-94 2、计算条件 图纸给出筏板面积:2180、86m2,每平米浮力:10t/m2。 则筏板所受总浮力为:21808、6t。 2、计算给定地层单桩抗拔极限承载力标准值 (5、2、18-1) Uk――基桩抗拔极限承载力标准值; ui――破坏表面周长,对于等直径桩取u=πd; q sik――桩侧表面第i层土得抗压极限侧阻力标准值,本次计算根据勘察报告取值为45KPa; λi――抗拔系数,按照表5、2、18-2取值。本次计算λi=0、75。 l i――第i土层厚度,本次计算仅涉及粘质粉土⑥层,厚度10m。 2、1 桩径d=0、6m情况得单桩抗拔极限承载力标准值 U k=0、75×45×0、6π×10 = 636、17(KN)=63、6t 2、2桩径d=0、4m情况得单桩抗拔极限承载力标准值 Uk=0、75×45×0、4π×10 = 424、12(KN)=42、4t 3、根据群桩基础抗拔承载力计算所需要抗拔桩总数 (5、2、17-2) 其中: γ0――建筑桩基重要性系数,按照表3、3、3确定安全等级,本次计算按照一级(重要得工业与民用建筑物)取值为1、1; N――基桩上拔力设计值21808、6t; Gp――基桩自重设计值. γs――桩侧阻抗力分项系数,按照表5、2、2取值1、67。

3、1 对d=0、6m桩总桩数 1、1×21808、6≦63、6/1、67×n+ 0、25×π×0、62×10 (根) 计算置换率为 桩间距(m) 3、2 对d=0、4m桩总桩数 1、1×21808、6≦42、4/1、67× n + 0、25×π×0、42×10(根) 计算置换率为 桩间距(m) 4、对上述抗拔设计进行抗压验算 4、1 单桩竖向承载力设计值 (5、2、2—3) 其中: Q sk、Q pk――分别为单桩总极限侧阻力与总极限端阻力标准值; Q ck――相应于任一复合基桩得承台底地基土总极限阻力标准值,可表示为 qck――承台底1/2承台宽度深度范围内(≦5m)内地基土极限阻力标准值; Ac――承台底地基土净面积; ηs、ηp、ηc――分别为桩侧阻群桩效应系数、桩端阻群桩效应系数、承台底土阻力群桩效应系数,按表5、2、3—1取用; (5、2、3) A ic、A e c――承台内区(外围桩边包络区)、外区得净面积,A c= A i c+Ae c ηi c、ηe c――承台内、外区土阻力群桩效应系数,按表5、2、3取用;

桩基础设计计算书

基础工程桩基础设计资料 ⑴上部结构资料某教学实验楼,上部结构为十层框架,其框架主梁、次梁、楼板均为现浇整体式,混凝土强度等级为C30,上部结构传至柱底的相应于荷载效应标准组合的荷载如下︰ 竖向力:4800 kN , 弯距:70 kN·m, 水平力:40 kN 拟采用预制桩基础,预制桩截面尺寸为 350mm * 350mm。 ⑵建筑物场地资料拟建建筑物场地位于市区内,地势平坦,建筑物场地位于非地震地区,不考虑地震影响.场地地下水类型为潜水,地下水位离地表 2.1 米,根据已有资料,该场地地下水对混凝土没有腐蚀性。建筑地基的土层分布情况及各土层物理,力学指标见下表: 表1 地基各土层物理、力学指标

基础工程桩基础设计计算 1. 选择桩端持力层 、承台埋深 ⑴.选择桩型 由资料给出,拟采用预制桩基础。 还根据资料知,建筑物拟建场地位于市区内,为避免对周围产生噪声污染和扰动地层,宜采用静压法沉桩,这样不仅可以不影响周围环境,还能较好地保证桩身质量和沉桩精度。 ⑵.确定桩的长度、埋深以及承台埋深 依据地基土的分布,第3层是粘土,压缩性较高,承载力中等,且比较厚,而第4层是粉土夹粉质粘土,不仅压缩性低,承载力也高,所以第4层是比较适合的桩端持力层。桩端全断面进入持力层1.0m (>2d ),工程桩入土深度为h ,h=1.5+8.3+12+1=22.8m 。 由于第1层厚1.5m ,地下水位离地表2.1m ,为使地下水对承台没有影响,所以选择承台底进入第2层土0.3m ,即承台埋深为1.8m 。 桩基的有效桩长即为22.8-1.8=21m 。 桩截面尺寸由资料已给出,取350mm ×350mm ,预制桩在工厂制作,桩分两节,每节长11m ,(不包括桩尖长度在内),实际桩长比有效桩长长1m ,是考虑持力层可能有一定起伏及桩需要嵌入承台一定长度而留有的余地。 桩基以及土层分布示意图如图1。 2.确定单桩竖向承载力标准值 按经验参数法确定单桩竖向极限承载力特征值公式为: uk sk pk sik i pk p Q Q Q u q l q A =+=+∑ 按照土层物理指标,查桩基规范JGJ94-2008表5.3.5-1和表5.3.5-2估算的极限桩侧,桩端阻力特征值列于下表:

抗拔桩承载力计算书

单桩承载力计算书 、设计资料 1. 单桩设计参数 桩类型编号1 桩型及成桩工艺:泥浆护壁灌注桩 桩身直径d = 0.500m 桩身长度I = 13.00m 桩顶标高81.00m 2?土层性能 3.勘探孔 天然地面标高96.00m 地下水位标高92.00m 注:标高均指绝对标高。 4.设计依据 《建筑桩基技术规范》JGJ 94-2008 二、竖向抗压承载力 单桩极限承载力标准值: Q uk = u」q sik|i + q pk A p =1.57 x(60 X2.50 + 38 X4.00 + 65 X6.50) + 0 X0.20

=1138kN 三、竖向抗拔承载力 基桩抗拔极限承载力标准值: T uk = :Fq sik U i l i =0.75 X60 X1.57 X2.50 + 0.72 X38 X1.57 X4.00 + 0.55 X65 X1.57 X6.50 =714kN 四、基桩抗拔力特征值 R tu=T uk/2+G p=714/2+0.5x0.5x3.14x13x25x1.35=612Kn

桩身强度计算书 、设计资料 1. 基本设计参数 桩身受力形式:轴心抗拔桩 轴向拉力设计值:N' = 750.00 KN 轴向力准永久值:N q = 560.00 KN 不考虑地震作用效应 主筋:HRB400 f y = 360 N/mm 2E s = 2.0 X105 N/mm 2 箍筋:HRB400 钢筋类别:带肋钢筋 桩身截面直径:D = 500.00 mm 纵筋合力点至近边距离:a s = 35.00 mm 混凝土: C30 f tk = 2.01 N/mm 2 最大裂缝宽度限值:-iim = 0.3000 mm 2. 设计依据 《建筑桩基技术规范》JGJ 94-2008 《混凝土结构设计规范》GB 50010--2010 、计算结果 1. 计算主筋截面面积 根据《混凝土结构设计规范》式( 6.2.22 ) N' W f y A s + f py A py 因为不考虑预应力,所以式中f py及A py均为0 N' 750.000 X103 A s = ' = = 2083.33 mm 2 f y 360 2. 主筋配置 根据《建筑桩基技术规范》第 4.1.1条第1款 取最小配筋率-min = 0.597%

抗拔桩计算书

雨水收集池抗浮计算书 一、条件 1、地面标高:0.000m ,底板标高:-4.500m ,设水位标高:-0.500m 。 2、雨水收集池长度A=40000mm ,宽度B=40000mm ,,底板厚度d1=300mm ,池壁厚度d2=300,底板垫层厚d3=100mm 。 3、增加网格2.5米一个桩100mm 抗拔桩,共计N =225个(400mm ×400mm ),深入钢筋混凝土底板,新增200mm 厚钢筋混凝土底板抗浮及修补底板漏水。 4、素混凝土22-24KN/每立方米;钢筋混凝土24-25KN/每立方米(建筑结构荷载规范GB50009-2001,第38页) 5、1kg =9.8N ,即1 KN =0.102吨 F=mg 二、计算 1、水池自重: (1)、垫层自重:G1=41.2×41.2×0.1×23×0.102=398.22吨 (2)、底板自重:G2=41×41×0.7×24.5×0.102=2940.57吨 (3)、池壁自重:G3=40×4×0.3×4.7×24.5×0.102=563.77吨 水池总重Gs =∑(G1+G2+G3) =∑ (398.22+2940.57+563.77) =3902.66吨 2、相关参数: (1)、抗浮安全系数:K =1.05~1.10 (2)、水容重:r =1000 kg/立方米 (3)、水池底板面积:F =1697.44平方米 (4)、地下水顶面至底板地面距离:H 2=4.6米 3、整体抗浮验算 K =2r G H F =(Gs+N )/(4.6×1697.44)≥1.1,故抗浮计算满足需增加抗拔承载力N =4686.39吨 4、计算单桩抗拔极限承载力标准值 ∑==m i i i sik i k l u q U 1 λ

抗拔管桩的结构构造

4. 抗拔管桩的结构构造 主要应注意下列3个问题:桩身结构;接头;桩顶(头)与承台的连接问题。 管桩与承台连接时,桩顶嵌入承台深度宜取100mm;另一条是:对于抗拔桩,应将桩的纵向钢筋全部直接锚入承台内。锚固长度不得小于50倍纵向钢筋直径且不小于500mm。 预应力受拉钢筋的锚固长度表5是计算结果: 表中d为预应力钢筋直径。常用的承台混凝土强度等级为C30,则C30混凝土中的预应力锚固长度为113d,当钢筋直径为9.0mm时,则锚固长度为102cm;当钢筋直径为10.7mm时,则锚固长度为120cm。 4.1 桩身结构问题 4.1.1 桩身的配筋。 4.1.2 端板的质量。目前端板质量存在二大问题:端板的材质和端板的厚度。(1)端板的材质大部分不符合规定;(2)端板的厚度普遍较薄。新广东规程不是按管桩直径来规定端板厚度,而是根据预应力钢筋的粗细来规定端板的最小厚度参见表6: 端板的材质、板厚、坡口尺寸等要严格按有关规范的要求设置 可由地勘资料推算。侧摩阻由土质不同取0.6~0.8的系数,求出的极限承载力的一半来和浮力标准值比较。 如果采用机械连接接桩,桩全长皆可参与抵抗浮力;如没采用机械连接,浮力计算只能考虑最上面的一截桩 能,但不能接桩,否则接头处无法保证抗拉 前一段时间我也做了一地下车库,预应力管桩做抗拔桩,有效桩长24米,承担抗拔力为170~200KN 接桩处我也做了防腐处理,但现场都没做,现在担心接头处的质量 不知楼主在桩和承台交接出怎么处理的? 是可以做,只是接头不太好处理,接头抗拉强度无法处理 。 1.预应力管桩中的PTC桩不宜用作抗拔桩,PC桩可用作抗拔桩,单桩抗拔承载力特征值由 桩周土摩擦力和桩身承载力两者中的较小值确定,其中桩身承载力又由预压应力及焊缝强度等两者之小值确定。 2.抗拔桩桩顶的填芯混凝土的灌注深度不应小于 3.0m,且应在填芯混凝土中掺入微膨 胀剂,混凝土强度等级应比承台提高一级,且不应低于C30,注意震捣密实。 3.抗拔桩与承台连接的钢筋应沿桩周围均匀布置,其数量由计算确定,钢筋伸入桩内的 长度应同填芯混凝土深度,锚入承台长度不小于40d。 4.抗拔桩计算时若考虑两节以上管桩的桩周摩擦力时,应在图上注明“抗拔桩制作时应 采用端部锚固筋”(详管桩图集)。 5.抗拔桩计算时若考虑两节以上管桩的桩周摩擦力时,管桩接桩处金属表面须刷沥青 两遍防腐;抗拔桩焊缝高度不应小于12mm。 预应力管桩不适宜用做抗拨桩。其原因如下: 1、管桩与承台的连接受拉并不可靠。如是抗拨桩,容易造成二者脱离。 2、管桩可能不是单节。如果是多节,则存在着焊接节点。对于这种焊接节点,由于是现场施工,质量并不过关,再者这些焊缝多为淬冷。因此节点焊缝并不可靠。基于此原因,对于

抗拔桩设计

某工程抗拔桩设计 杨意德 (福州市建筑设计院350001) 〔提要〕本文介绍某工程抗拔桩设计,并对抗拔桩设计的若干问题作了探讨。 〔关键词〕抗拔桩,抗拔承载能力 The Design of Uplift Piles for a Basement Abstract: In this paper, the design of uplift piles is introduced and several issues about design of uplift pile are commented Key words : uplift pile , uplift bearing capacity 1工程概况 某工程位于福州湖东路东段,北临五四河、南朝湖东路,建筑面积65000m2,室内±0.00相当于罗零标高7.50m,室外地面标高为-0.15m。主楼分南、北两楼,南楼地下一层、地上二十九层,北楼地下二层、地上三十三层,南、北两楼地下室与四周大面积二层纯地下车库连成一体。主楼基础采用Φ800冲孔灌注桩加桩底压桨。北楼裙房地下室和室外二层地下车库部分由于没有足够的荷载重量,抗浮稳定不满足要求,需要设置抗拔桩。经分析采用Φ600和Φ700两种桩径冲孔灌注桩作为抗拔桩,能解决地下室抗浮问题。 2地质概况和地下室抗浮设防水位确定 根据钻探,场地土层自上而下分布详表1。 表1 场地土层分布 地下水按埋藏条件可分为上层滞水和承压水两种。上层滞水主要埋藏于杂填土中,受大气降水和地表水补给,并与五四河有水力联系。勘探期间场地平均标高约6.0m(罗零,下同),钻孔混合水稳定水位为4.25-5.18m,近几年地下水最高水位 5.7m。下部承压水埋藏于⑹、⑻、⑾等层。承压水虽和上层滞水有水力联系,但由于含水层埋藏深度超过20m,不直接影响地下室的上浮稳定。 地下室抗浮设防水位应是建筑物设计使用年限内可能产生的最高地下水位。由于福州地区缺少长期地下水观测资料,要准确确定抗浮设防水位还比较困难,目前只能根据近期地下水调查资料和周围地下水补给、排泄条件预测可能出现的最高水位。本场地近年地下水高水位为 5.7m,由于现行城市排水设计标准低于抗浮设防标准,暴雨时虽因室外地面(标高7.35m)高于湖东路面和五四河岸约 1.4m,地面雨水可经湖东路和五四河排泄,地面不会积水,但周围的湖东路面和五四河岸(标高 5.95m),可能短时间积水、抬高地下水位,影响地下室上浮稳定。经分析选择6.30m作为地下室抗浮设防水位。 3桩的抗拔承载力验算 桩的抗拔极限承载力标准值一般按经验公式⑴计算并应满足⑵式要求(2)。 ∑ = i i ski k l u q Uλ------------------------ (1) p s k G U N+ ≤γ/-------------------------⑵ 式中符号物理意义详规范(2) q sik 为桩的极限侧阻力标准值,由于经验数值的局限性,为了比较可靠地确定它的数值,在3根不同直径

单桩承载力如何计算

单桩承载力如何计算 一、设计资料 1. 基桩设计参数成桩工艺:混 凝土预制桩 承载力设计参数取值:根据建筑桩基规范查表 孔口标高0.00m 桩顶标高0.50m 桩身设计直 径:d=0.80m 桩身长度:l=18.00m 2. 岩土设计参数层号土层名称层厚 (m)层底埋深(m)岩土物理力学指标极限侧阻力 3. qsik(kPa)极限端阻力 qpk(kPa) 层号土层名称层厚层底埋深岩土物理力学指标极限侧阻力极限端阻力 1 填土 3.003.00N=5.0017- 2 红粘土 3.006.00 a w=0.70 , IL=0.5026- 3 红粘土 3.009.00 a w=0.70 , IL=0.5029- 4 红粘土 3.0012.00 a w=0.70 , 5 红粘土 3.0015.00 a w=0.70 , 6 红粘土 3.0018.00 a w=0.70 , 《建筑桩基技术规范》(JGJ94-94)以下简称桩基规范 《建筑地基基础设计规范》 (GB50007-2002)以下简称基础规范 、单桩竖向抗压承载力估算 1. 计算参数表 土层计算厚度li(m)极限侧阻力qsik(kPa)极限端阻力qpk(kPa) 13.00 仃0 -------------------------------------------------------------------------------- 23.00260 33.00290 43.00320 53.00330 62.50342700 2. 桩身周长u 、桩端面积Ap 计算 u=x 0.80=2.51m Ap=x 0.802/4=0.50m23.单桩竖向抗压承 载力估算 根据桩基规范5.2.8按下式计算 Quk=Qsk+Qpk 土的总极限侧阻力标准 值为: IL=0.5032- IL=0.5033- IL=0.50342700 7 红粘土 3.0021.00 8 红粘土 3.0024.00 4. 设计依据 a w=0.70, IL=0.5032- a w=0.70, IL=0.5032-

抗拔桩单桩基桩拔力计算

抗拔桩单桩基桩拔力计算 经在桩周高压旋喷咬合注浆后,仅考虑消除“泥皮”,填充空洞和涌包不考虑改良桩周土体,提高摩擦系数的情况下,按《建筑桩基技术规范》JGJ94-2008第46页5.4.5可知,抗拔桩非群桩设计,抗拔力可仅按单桩或(群桩非整体破 坏)考虑的情况下,桩基的基桩拔力N k ≤T uk /2+G p 式中N k —按合在效应标准组合计算的基桩拔力; T uk —群桩呈非整体破坏时基桩的抗拔极限承载力标准值,按该规范第5.4.6条确定; G p —桩体自重,地下水位以下取浮重度; 此外,T uk =∑λ i q sik u i l i 式中T uk —基桩抗拔极限承载力标准值; u i —桩身周长,对于等直径桩取u=πd; q sik —桩侧表面第i层土的抗压极限侧阻力标准值,可按该规范表 5.3.5-1取值;λ i —抗拔系数,可按该规范表5.4.6-2取值; l i —自桩底起算的长度 因此,按最不利状态下,梧桐山南站7#抗拔桩的基桩拔力T uk /2=(∑λ i q sik u i l i ) /2=(0.7×160×3.142×1.4×5.42+0.7×160×3.142×1.4×2.58) /2=1970.66KN 注:其中取值均按最不利值考虑:λ i 按黏性土、粉土考虑,取值范围为0.7~ 0.8;q sik 按砂土状强风化硬岩考虑,取值范围为160~240. 即便在不考虑结构自重、荷载、桩体自重的情况下,N k ≤1970.66KN , 取值仍 大于设计值1850KN。 四、后注浆灌注桩竖向增强段的总极限侧阻力标准值计算 7#抗变为后注浆灌注桩,故可按《建筑桩基技术规范》JGJ94-2008第40页Ⅶ后注浆灌注桩计算该桩的单桩极限承载力。 按最不利状态考虑,不考虑桩体自重、结构荷载等,仅考虑桩身与土体之间 的竖向负摩擦力,其计算公式为:Q gsk =u∑β si q sik l gi 式中:Q gsk —为后注浆竖向增强段的总极限侧压力标准值; u—桩身周长;

相关文档
最新文档