锚固钢筋抗拔力计算

锚固钢筋抗拔力计算
锚固钢筋抗拔力计算

摘要:锚固悬臂的护坡桩是一种新型的护坡桩,桩底与大开挖基坑底同深,利用桩底锚筋使桩身和岩石连成一体,桩岩协同工作。它适用于地质条件为岩质坚硬、岩层埋藏较浅的深基坑护坡和挡土。

关键词:护坡桩锚筋桩岩协同工作

1、概述

传统的悬臂式护坡桩设计,桩端都有一定的入土深度,并由该深度以下的桩后岩土提供的被动土压力使桩身保持平衡。但是,在特殊的施工条件和地质条件下,桩的入土(岩)深度受到限制,给护坡桩、挡土桩的设计和施工提出了新的课题。

悬臂式护坡桩实际上是一根竖起的悬臂梁,入土部分相当于悬臂梁的固定端。通常悬臂梁有如下两种最基本的受力形式。

当悬臂梁在外荷(p1)的作用下,第一种受力形式中的悬臂梁是利用外力(砖墙的压力)使梁获得平衡;第二种受力形式中的悬臂梁则是利用内力(钢筋的拉力)使梁获得平衡,它不需要外部反力也能使悬臂梁正常工作。传统的悬臂式护坡桩受力形式与第一种悬臂梁类似,桩入土(岩)部分的被动土压力相当于砖墙的反力。

从第二种受力形式的悬臂梁工作原理可知,只要受拉钢筋的锚固长度足够,悬臂梁便可正常工作,不必象第一种悬臂梁那样要有一定长度的入墙固定端。同理,只要悬臂桩的受拉钢筋有足够的锚固长度,悬臂桩便可正常工作,毋须桩端要有入岩深度。因此,在岩层埋藏较浅、岩质坚硬而又不允许爆破或冲孔的条件下,采用钻孔桩或人工挖

孔桩难于达到需要的深度时,锚固的悬臂护坡桩便应运而生。这种将悬臂桩同桩底岩石连成一体的方法,使桩岩协同工作。它包括①整体抗弯抗倾覆;②整体抗剪抗滑移。

2、桩岩协同工作的设计和施工实践(工程实例)

2.1工程概况

惠阳市教工之家高层住宅楼位于广东惠阳市承修路旁,25层,长52.7m,宽51.3m,采用箱形基础,以-6.3m处的微风化石灰岩作为持力层。北距该楼仅1.9m处有一栋七层教师宿舍楼,宿舍楼采用天然独立基础,柱基尺寸为3m×3m,埋置于-2.0m处的粉质粘土层上;南距该楼2.8m有一栋幼儿园的四层教学楼,天然浅基础;东距该楼4.6m有一栋圆形教学楼,亦为天然浅基础;西距该楼2.5m处有一根街道陶瓷下水管。石灰岩埋藏于-5.5~-6.5m之间,岩质脆硬。地下水不丰富。

2.2桩型的选择由于岩质坚硬,钻孔桩和人工挖孔桩入岩都十分困难,采用爆破或冲孔又容易造成邻近房屋开裂。故选用锚固于岩石的悬臂护坡桩作为支护结构。

2.3护坡桩的设计(以北面护坡桩为例)

(1)主动土压力的计算

(2)七层宿舍楼荷载所产生的主动土压力

其中,七层宿舍楼的重量折算成填土高度为7.36m.

(3)倾覆弯矩的计算每单位米长的土体对支护结构的根部产生

的弯矩为:M=EA1×h2+EA2×h3=98.9×2.1+350×1.4=698kN/m。

(4)护坡桩的配筋计算采用1000人工挖孔桩,混凝土等级为

C20,间距1.5m,则每根桩所承受的最大弯矩为:

护坡桩试配1625作为主筋

最后计算得:

M桩<M′桩,结构抗弯抗倾覆安全。

(5)锚筋数量和锚固长度的确定锚筋数量:经计算,主筋为1625,锚筋数量至少也需1625,利用主筋兼作锚筋,直接锚入岩石,水泥浆灌孔。

锚固长度的计算:锚固长度主要取决于三大因素:

①灌浆材料与钢筋之间的握裹力;②锚固体与岩石之间的极限侧阻力;③锚固体端部岩石破裂面的总抗拉力。分别计算,取三个锚固长度中的最大值。

由水泥浆与钢筋之间的握裹力所决定的锚固长度(L m),只要满足:T u≤πdL mu即可。其中,T u为单根锚筋的极限抗拔力,取T u=152039N;d为锚筋直径,d=25;u为水泥浆对钢筋的平均握裹力,取u=4.17N/mm2(水泥标准抗压强度的10%)。最后算出:L m=464.6mm.利用锚固体与岩石之间的极限侧阻力求锚固长度,只要满足:Tu≤πDτzL m即可。其中,D为钻孔孔径,τz为锚固段周边的抗剪强度,取τz=1.2N/mm2,取Tu=152039N(单根25钢筋抗拉力),钻孔孔径为30mm,代入数据,可算出Lm=1344mm,经与握裹锚固长度比较,后者起决定作用,取Lm=1500mm.验算1500mm深处岩石破裂面总的

抗拉能力是否满足。

破裂面圆台体表面积S=9420000mm2,取石灰岩抗拉强度为其抗压强度的六十分之一。取抗压强度为60,则抗拉强度为1,破裂面岩石总抗拉力为9420000N.全部锚筋(实际上只有受拉区锚筋)总拉力为:16×310×490=2430400N,小于破裂面岩石的总抗拉力,破裂面安全。1500mm锚固长度足够。

(6)桩岩接触面抗剪抗滑移验算如果忽略混凝土与岩石结合处的抗剪能力,则只能由锚筋的抗剪能力抵抗滑移和剪切。

桩底1625锚筋的总抗剪能力为:〔τ〕=100×7856=785600N,因桩的间距为1.5m,所以每桩承受的水平推力为:

F桩=1.5×(EA1+EA2)=673400N

〔τ〕>F桩,结构抗剪抗滑移安全。

(7)桩顶设置连系梁为使护坡桩整体协同工作,在桩顶设置连系梁一道,梁的截面为1000×400,上下各配516,箍筋采用双肢箍210*200。

3、施工措施

3.1人工挖孔按一般人工挖孔桩方法挖孔,挖至岩面时,用风镐凿石,为防止基坑大开挖后桩端露脚,使桩底面比基坑底面稍深100~200mm,将孔底凿成向土体方向倾斜10°~20°角,以增加桩岩接触处的抗滑移能力。

3.2钻孔锚筋按桩的纵筋数量和位置在孔底钻孔,采用30金刚

钻头,钻深1500mm.钻孔完毕后,用高压水清孔,再用虹吸管吸干孔内积水,然后用1∶5(白乳胶∶水泥)配成的水泥浆灌孔,灌满后插入桩的纵筋。插入纵筋时要反复抽插,直插入孔底为止,溢出的水泥浆用吸筒吸掉。在插筋的上端绑扎一个箍筋固定,待水泥浆硬化后再绑扎桩内箍筋。

4、设计和施工效果

该工程于1993年6月动工,7月底完成护坡桩施工。四周均设同类护坡桩,12月底完成土方大开挖。由于资金不到位,至今未进行基础施工,使原来的临时(当时设想基础施工约需3个月)护坡桩变成长期护坡桩,超出了设计能力。但经多次检测,四周建筑物及护坡桩均无异常,七层教师宿舍楼最大垂直偏差只有5mm,说明锚固的悬臂护坡桩设计和施工获得成功。与传统的悬臂式护坡桩相比,缩短工期20天(约四分之一),节约资金约三分之一。

实践证明,这是一种经济实用的桩型,适用于石灰岩或其它类似岩层。这类桩关键在于锚筋的施工,一定程度上运用锚杆技术,为增强锚固和抗剪效果,可在桩的中心附近增设一些短锚筋(作为构造措施,不参与计算)。以上经验,供各位同行参考,共同完善此类桩的设计和施工。

锚杆抗拔试验方法

锚杆抗拔试验方法(总3页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

锚杆抗拔实验方法 一)施工准备 1.材料 (1)预应力杆体材料宜选用钢绞线、高强度钢丝或高强螺纹钢筋。当预应力值较小或锚杆长度小于20m时,预应力筋也可采 用 II 级或 III 级钢筋。 (2)水泥浆体材料:水泥应普通硅酸盐水泥,必要时可采用抗硫酸盐水泥,不得使用高铝水泥。细骨料应选用粒径小于2mm的 中细砂。采用符合要求的水质,不得使用污水,不得使用PH值小于4的酸性水。 (3)塑料套管材料:应具有足够的强度,保证其在加工和安装过程中不致损坏,具有抗水性和化学稳定性,与水泥砂浆和防腐 剂接触无不良反应。 (4)隔离架应由钢、塑料或其它杆体无害的材料制作,不得使用木质隔离架。 (5)防腐材料:在锚杆服务年限内,应保持其耐久性,在规定的工作温度内或张拉过程中不开裂、变脆或成为流体,不得于相邻材料发生不良反应,应保持其化学稳定性和防水性,不得对锚杆自由段的变形产生任何限制。 2.作业条件 (1)在锚杆施工前,应根据设计要求、土层条件和环境条件,合理选择施工设备、器具和工艺方法。 (2)根据设计要求和机器设备的规格、型号,平整出保证安全和足够施工的场地。 (3)施工前,要认真检查原材料型号、品种、规格及锚杆各部件的质量,并检查原材料和主要技术性能是否符合设计要求。 (4)工程锚杆施工前,宜取两根锚杆进行钻孔、注浆、张拉与锁定的试验性作业,考核施工工艺和施工设备的适应性。 (二)操作工艺 1.钻孔 (1)钻孔前,根据设计要求和土层条件,定出孔位,做出标记。 (2)作业面场地要平坦、坚实、有排水沟,场地宽度大于4m。 (3)钻机就位后,应保持平稳,导杆或立轴与钻杆倾角一致,并在同一轴线上。 (4)

锚杆抗拔力

粘结型锚杆的抗拔力(粘结力) 1 计算方法和原理 1.1 基本原理 对于粘结型锚杆,其粘结力一般考虑3个部分: 1) 锚杆钢筋的屈服应力s R ; 2) 锚杆钢筋与周围灌浆料(砂浆锚固体)之间的粘结力b R ; 3) 孔道灌浆料(砂浆锚固体)与岩体之间的粘结力g R ; 取其中的小值作为锚杆承载力的设计值。 1.2 计算方法 1) 锚杆钢筋的屈服应力s R ; y s y s s f d n f nA R ????=??=22 24 ξπξ (5-1-1) 其中,n :钢筋、钢绞线的根数; s A 、s d :锚杆钢筋截面面积、直径; 2ξ:锚筋抗拉工作条件系数,永久性锚杆取为0.69,临时性锚杆取为0.92。 y f :锚筋抗拉强度设计值或标准值; 2) 锚杆钢筋与周围灌浆料(砂浆)之间的粘结力b R ; b b b s b L f d n R ?????=ξξπ3 (5-1-2) 其中,n :钢筋、钢绞线的根数; s d :锚杆钢筋或钢绞线的直径; 3ξ:工作条件系数,永久性锚杆取为0.60,临时性锚杆取为0.72。

b ξ:粘结强度折减系数,两根钢筋点焊成束时,取0.85,三根钢筋点焊 成束时,取0.70。 b L :锚杆钢筋、钢绞线与砂浆锚固体间的锚固长度; b f :锚筋或钢绞线与砂浆锚固体间的粘结强度特征值,可参考下表: 表5-1-1 锚杆与砂浆锚固体间的粘结强度特征值(KPa ) 3) 孔道灌浆料(砂浆锚固体)与岩体之间的粘结力g R ; g rb g L f D R ????=1ξπ (5-1-3) 其中,D :锚固体的直径,可取为孔道的内径; 1ξ:工作条件系数,永久性锚杆取为1.00,临时性锚杆取为1.33。 g L :锚杆砂浆锚固体与地层间的锚固长度; rb f :砂浆锚固体与地层间的粘结强度特征值,可参考表5-1-2、5-1-3: 表5-1-2 岩石与锚固体间的粘结强度特征值(KPa ),M30砂浆 表5-1-3 土体与锚固体间的粘结强度特征值(KPa ),M30砂浆

锚杆抗拔力检测管理规定

锚杆抗拔力检测管理规定 一、锚杆抗拔力检测总体要求 1、根据GB50086-2001《锚杆喷射混凝土支护技术规范》,锚杆支护必须进行强度检测,一般采取锚杆抗拔力试验。 2、锚杆抗拔力试验的目的是判定巷道围岩的可锚性、评价锚杆、树脂、围岩锚固系统的性能和锚杆的锚固力。 3、试验必须在现场进行,使用的材料和设备与巷道正常支护相同。检测结果必须如实填写,严禁弄虚作假。 二、锚杆抗拔力检测试验要求 1、操作人员必须认真学习安全规程、作业规程的有关内容,熟悉锚杆支护施工工艺,具有一定的现场施工经验。 2、锚杆抗拔力试验操作人员应了解拉力计的结构性能,熟练掌握其使用方法。 3、锚杆抗拔力检测机具采用LDZ-400型锚杆拉力计。 4、巷道掘进每安装300根(含300根以下)锚杆必须进行一组(3根)锚固力检测,设计变更或材料变更时另作一组抗拔力测试。做锚杆抗拔力试验时由工程科、监理、施工单位参加,区队技术员现场指挥,参加检测人员不少于3人,一人操作,一人监视、一人记录。 5、锚杆必须随机进行抽检,每组抽检不得少于3棵,顶板一棵,两帮各一棵;同时不得抽检连续相邻的多棵锚杆,以免造成顶帮支护

削弱及锚杆大面积失效。 6、所测的锚固力不小于120kN(21MPa, 1MPa=5.8kN),同组锚杆锚固力或拉拔力的平均值,应大于或等于设计值。同组单根锚杆的锚固力或抗拔力,不得低于设计值的90% 7、锚杆抗拨力达到规定要求,如无特殊需要,不得进行破坏性试验,拉拔到设计拉力即停止加载。 LDZ-400型锚杆拉力计技术参数三、速度:双速泵,排量21ml/次 重量:无需承压套筒,重15kg 复位:弹簧作用自动复位 行程:>80mm 油泵:额定压力:40MPa ,质量:5kg 排油量:21ml/次 15kg 质量:,406kN 千斤顶:拉力: 拉出锚杆最大距离80mm 管路:两根二层钢丝编织液压支架胶管 四、拉拔试验操作步骤 1、检查油量 逆时针方向打开拉力计手压泵的卸荷阀,使千斤顶中的液压油回到手压泵的油筒中,拧开油筒端的堵头,抽出油标检查。如油量不足,应加注20#机械油或20#液压油,直到油位符合要求。

锚杆拉拔力试验标准

K P a、K N、吨之间关系换算 P=F/S F=Mg 牛是力的单位 吨是质量单位 帕是压强单位 他们之间必须定义一个单位面积(比如一平方米)才可以换算,否则无法换算 牛这个单位通常为质量乘重力常数,即千克乘9.8(地球重力常数)获得的值。即F=Mg 吨就是质量单位,他是一个物体体积与密度乘积得到的,M=V*密度 帕,就是一个压力作用于某一单位面积上得到的比值, P=F/S 兆帕是M P a,而K P a是千帕,两者相差1000倍。 另外注意大小写,帕的P必须大写,a必须小写,前面的前缀单位如果是正位,也就是倍数为正10倍整数的,那么用大写,比如M[兆(一百万倍)]K[千(一千倍)] 而如果是负10的倍数的,则用小写,比如d[分(10份之一)]c[厘(百份之一)] 吨是个质量单位1吨就是1000千克,帕是个压力单位(原来叫压强),即单位面积的压力,1M P a既10的6次方牛在1平方米上的压力,一千牛等于0.1吨在1平方米上的压力!

你说1MP=10的6次方牛在1平方米上的压力, 那么请问1MP=???? 公式:1Pa=1N/平方米 压强的定义:单位面积上所受到的力. 力-重力---千克力-k g f(非法定计量单位)牛顿-N(法定计量单位), 1kgf=9.81N 压力 - 压强 ----1kgf/cm2=9.80665*10 的 4 次方 Pa. N--- 力的单位 t--- 重量单位 Pa-- 压力单位 杨家寨煤矿锚杆抗拔力检测管理规定

为了能够及时掌握锚杆支护巷道锚杆锚固力的情况,根据锚 杆支护巷道安全质量标准化的要求,特制定此规定: 一、锚杆抗拔力检测总体要求 1 、根据 GB50086-2001 《锚杆喷射混凝土支护技术规范》 ,锚 杆支护必须进行强度检测,一般采取锚杆抗拔力试验。 2 、锚杆抗拔力试验的目的是判定巷道围岩的可锚性、评价锚 杆、树脂、围岩锚固系统的性能和锚杆的锚固力。 3 、试验必须在现场进行,使用的材料和设备与巷道正常支护 相同。检测结果必须如实填写,严禁弄虚作假。 二、锚杆抗拔力检测试验要求 1 、操作人员必须认真学习安全规程、作业规程的有关内容, 熟悉锚杆支护施工工艺,具有一定的现场施工经验。 2

(植筋)后锚固抗拔承载力现场检测作业指导书

(植筋)后锚固抗拔承载力现场检测 作业指导书 文件编号: 受控编号: 编制: 审核: 批准:

(植筋)后锚固抗拔承载力现场检测作业指导书 1 范围 本作业指导书适用于被连接件以普通混凝土为基材的后锚固连接的设计、施工及验收。 2 具体要求 2.1业务委托 业务员应指导委托方按要求认真填写现场检验委托合同单,并要求客户提供有关项目信息。如需委托方提供配合,应及时告知委托方。 其内容可包括:榔头、钢筋钳、人员、安全防护、环境设施等。 2.2 业务流转 流转卡信息由业务人员将流转卡复核无误后与委托单一并交给监察室负责人,由检测室负责人安排检测人员进行检测。 2.3 准备工作 2.3.1 检测人员 1、现场检测工作的检测人员必须为两人。 2、检测人员必须着工作服,佩戴安全帽,检测人员进行现场检测,进入现场后检测人员禁止吸烟。 3、检测人员携带好用于记录数据的笔、原始记录单。 4、检测人员在离开单位之前必须检查核对仪器设备,检查仪器设备状态并填写仪器设备使用记录。

2.3.2 所需仪器设备 HC-5型或者HC-20型或HC-50型锚杆拉拔仪、夹具、机械秒表。 2.3.2 仪器设备检查内容 1、是否在有效检定周期内,超出检定周期的仪器设备不允许用于检测工作。 2、打开电源开关,检查电池电量及显示屏是否正常显示数值。 3、打开储油筒的油盖,检查油量,如油不满,可加注N32号耐磨液压油。 4、各类型号夹具是否齐全。 2.33 上述准备工作结束后如设备没有出现异常情况,检测人员应如实填写现场检测设备使用记录,可以将设备带出。如果有异常情况存在,应检查异常发生的原因,将异常情况如实记录在现场检测设备使用记录中,同时告知科室负责人,可以选择其他设备。 现在检测的仪器设备在运输途中,要尽量做好防雨,防晒、防震措施。 2.4 检测方法 2.4.1 检测人员进入施工现场,在进行检测之前应就所检项目对委托方进行工程概况的询问,同时提醒委托方通知见证人到场。 2.4.2 检测人员还应在检测前告知委托方及见证人所检项目的检

锚杆抗拔力试验方案

锚杆抗拔试验作业方案 编制: 审批: 深圳市铁科岩土工程有限公司 2012年11月

根据施工现场实际情况及业主方要求,本工程锚杆抗拔检测由我单位负责进行,并在业主及监理方的见证、监督下进行。特编制本方案。 一、工程概况 施工单位:深圳市铁科岩土工程有限公司 监理单位:北京康迪建设监理咨询有限公司 建设单位:王家峪煤业有限公司 本工程场地位于山西武乡县东南部王家峪村北侧,行政区划属武乡县韩北乡管辖。场地系山西王家峪煤业有限公司的120万吨矿井开采场区。 根据施工图设计将本场地边坡采用锚杆加坡面挂网喷砼进行防护,场地内主要为第四系黄土。锚杆采用Φ25钢筋制作,锚杆成孔直径为80mm,采用干法成孔。锚杆注浆材料为P.O 42.5普通硅酸盐水泥净浆。设计抗拔力为60KN。 二、适用范围 根据现场实际情况,本工程的锚杆抗拔检测现场抽检,在业主及监理方共同见证下进行拉拔,检测锚杆抗拔力是否达到设计要求。 三、目的 编制张拉作业方案的目的就是为了更好的指导现场作业,使现场作业人员能够规范的进行张拉作业。 四、编制依据 《建筑边坡工程技术规范》GB50330-2002 《王家峪新井工业广场边坡支护工程施工图设计》(中国铁道科学研究院深圳研究设计院2012-06) 五、张拉机具设备

1.1 千斤顶 1.1.1 千斤顶的技术参数 选用柳州雷姆预应力机械有限公司生产的YCW60B200型穿心 1.1.2 千斤顶的数值计算 公式p=F/S(压强=压力÷受力面积) 其中:p—压强(单位:帕斯卡,符号:Pa) F—压力(单位:牛顿,符号:N) S—受力面积(单位:平方米,符号:㎡) 根据施工图设计可知锚杆设计抗拔力为:60KN,按设计值的1.1倍计算,荷载力为60*1.1=66KN。 即:F=66*1000=66000N; 从上表的千斤顶参数可知:S为张拉活塞面积。 即:S=1.15×10-2=0.0115m2 由以上可知:p=66000N/0.0115m2=5739130.434Pa

抗浮锚杆计算书.

结构计算书 项目名称: 设计代号: 设计阶段: 审核: 校对: 计算: 第 1 册共1 册 中广电广播电影电视设计研究院 2015年04月07日

综合楼锚杆布置计算 一、 工程概况 (1)综合楼地下1层(含1夹层),地上2~4层,±0.00相对于绝对标高7.50m ,室内外高差-0.300m ,地下室夹层高 2.18m ,地下室高 5.30m ,地下室建筑地面标高-7.480m ,建筑地面垫层厚150mm ,结构地下室底板顶标高-7.630m 。基础形式筏板,抗浮水位标高 6.500m (绝对标高)。建筑地下室底板顶标高- 7.630m (绝对标高-0.130m ),底板厚400mm 。 (2)综合楼抗浮采用抗浮锚杆。 二、抗拔锚杆抗拔承载力计算 依据《岩土锚杆(索)技术规程》(以下简称《岩土规程》)计算。 锚杆基本条件: 锚杆直径D=150mm 锚杆长度L=7.5m 锚杆入岩(强风化花岗岩)长度:>2.5m 锚杆拉力标准值Nk=250KN 锚杆拉力设计值Nt=1.3Nk=325KN 钢筋:3 ?25三级钢: A s =1470mm 2, f=360 N/mm 2 , f yk =400 N/mm 2 依据《岩土锚杆(索)技术规程》(以下简称《岩土规程》)计算。 根据****院提供的《***勘察报告》,岩石(或土体)与锚固体的极限粘结强度标准值(f rbk ),见第2页所附表1。 1、 根据锚杆与土层粘结强度所计算的锚杆竖向抗拔承载力设计值Nt 依据《岩土规程》第7.5.1条公式(7.5.2-1)计算 K f DL N mg a t /ψπ= 勘探点1Q-K15岩层深,较为不利,计算该点抗拔承载力

岩石锚杆抗拔承载力实施细则

岩石锚杆抗拔承载力实施细则 一、编制依据 本细则依据《建筑地基基础设计规范》(GB5007-2002)和《建筑边坡工程技术规范》(GB50330-2002)编制。 二、编制目的 为正确使用ZY-30型锚杆拉力计检验岩石锚杆抗拔承载力,保证检测精度,制定本细则。 三、适用范围 本细则适用于使用ZY-30型锚杆拉力计对岩石锚杆抗拔承载力的检验。 四、检验设备 1、设备名称 1.1锚杆拉力计型号-ZY-10 出厂编号-W030209 1.2锚杆拉力计型号-ZY-30 出厂编号-W070743 2、锚杆拉力计应每年检定一次。发现异常时应随时维修、检定。 五、检测技术 1、检测植筋抗拔承载力时,应了解下列资料: (1)工程名称及设计单位、施工单位和建设单位名称; (2)结构或构件名称、基材混凝土强度等级; (3)锚固材料及特性、施工方案及施工日期; (4)检测原因(基本试验或验收试验)。 2、基本试验检测方案 2.1 锚杆试验适用于岩土层中锚杆试验。软土层中锚杆试验应符合现行有关

标准的规定。 2.2 加载装置(千斤顶、油泵)和计量仪表(压力表、传感器和违约计等)应在试验前进行计量检定合格,且应满足测试精度要求。 2.3 锚固体灌浆强度达到设计强度的90%后,可进行锚杆试验。 2.4 反力装置的承载力和刚度应满足最大试验荷载要求。 2.5 锚杆基本试验的地基条件、锚杆材料和施工工艺等应与工程锚杆一致。 2.6 基本试验时最大的试验荷载不宜超过锚杆杆体承载力标准值的0.9倍。 2.7 基本试验主要目的是确定锚杆体与岩土层间粘结强度特征值、锚杆设计参数和施工工艺。试验锚杆的锚固长度和锚杆根数应符合下列规定:1)当进行确定锚杆体与岩土层间粘结强度特征值、验证岩体与砂浆间粘结强度设计值的试验时,为使锚杆体与地层间首先破坏,可采取增加锚杆钢筋用量(锚固段长度取设计锚固长度)或减短锚固长度(锚固长度取设计锚固长度的0.4~0.6倍,硬质岩取小值)的措施; 2)当进行确定锚固段变形参数和应力分布的试验时,锚固段长度应取设计锚固长度; 3)每种试验锚杆数量不应少于3根。 2.8锚杆基本试验应采用循环加、卸荷法,并应符合下列规定: 1)每级荷载施加或卸除完毕后,应立即测读变形量; 2)在每次加、卸荷时间内测读锚头位移二次,连续二次测读的变形量:岩石锚杆均小于0.01mm,砂质土、硬粘性土中锚杆小于0.1mm时,可施加下一级荷载。 2.9 锚杆试验中出现下列情况之一时可视为破坏,终止加载:

某基坑支护锚杆抗拔检测方案

*******基坑支护 锚杆抗拔试验检测方案 工程名称: 建设单位: 施工单位: 检测单位: 申报时间: 工程检测方案备案前,检测单位不得进行检测。以下检测方案在质监站委派的监督工程师具体监督下实施,监督工程师未到位的检测报告质监站不予认可。 (本表一式四份:备案后施工、监理、检测、质监站各留一份)

基坑支护锚杆抗拔试验检测方案责任主体审查表

***********基坑支护 锚杆抗拔试验检测方案 一、工程概况 拟建场地位于*************,东临*****路,南临拟建*******,西临**********。 基坑为一层地下车库,大致为矩形,周长约1386m(一基坑底边线)。该基坑范围建筑正负零绝对标高为33.90m,地下室底板顶标高基坑一部分27.00m,基坑二部分25.00m,基坑三部分为24.00m,考虑地下室底板及垫层厚度0.70m,则基坑开挖底标高基坑一为26.30m,基坑二为24.30m,基坑三为23.30m。目前基坑场地周边地面标高在29.5-31.0m 之间,基坑开挖前设计整平标高为30.00-31.00m,则基坑开挖深度在3.70-6.70m之间。基坑范围包括的建筑物有13层的1#、2#、3#病房楼及VIP病房楼,2层的儿科门诊楼和3-18层的行政科研办公楼,5层门诊楼。基础形式均为机械成孔桩基础。 基坑北侧和动测拟建临时施工道路和灌溉水渠,南侧只拟建灌溉水渠,紧靠用地红线布置,水渠宽3.0m,深约1.5m,道路宽5.5m。 基坑为临时支护,基坑使用年限为两年。 为了确保基坑安全,常德湘雅医院委托我公司进行锚杆抗拔验收试验检测。 二、检测依据 (1)《建筑基坑支护技术规范》(JGJ120-2012); (2)****设计院《*********基坑支护工程施工图》图纸; (3)*****建设、监理单位确认的基坑支护抗拔试验统计表。 三、检测目的 主要目的是检验锚杆、土钉的抗拔承载力是否满足设计要求。 四、工程地质概况 场地原始地貌为沅江北岸Ⅰ级阶地,大部分为耕地、农田,局部有水塘,场地地势平缓,场地抗震设防烈度为8度。场地内对基坑开挖支护有影响的地层从上往下依次主要为: 1、耕土:黄褐色,稍密,稍湿。以粘性土为主,可见植物根系,未完成自重固结。整个场地均有分布。 2、粉质粘土:黄褐色,硬塑。含铁锰质结核,夹高岭土条带,强度及韧性中等,摇振反

锚杆计算书

从几种规范来探讨全长粘结岩石锚杆承载力的计算 关键词:全长粘结岩石锚杆;承载力;计算 摘要:全长粘结岩石锚杆是岩土工程中常采用的工程措施。各行业的设计规范对全长粘结岩石锚杆的设计计算均有相关规定。由于出发点的差异,各种规范对全长粘结岩石锚杆计算的内容和要求也不尽相同。本文试从现行各规范对全长粘结岩石锚杆计算的规定出发,对比分析各行业对全长粘结岩石锚杆承载力验算的一般要求,总结和探讨全长粘结岩石锚杆承载力验算的一般方法。 1、引言 锚杆是岩土工程中常见的工程处理措施,在建筑、水利、公路、铁道、港口等岩土工程中经常使用,其中全长粘结岩石锚杆是常见的一种锚杆形式。为规范锚杆工程的设计,建筑、公路、铁道、水利等行业的设计规范对锚杆的设计计算作了相关的规定。但由于各规范的出发点不同,对锚杆计算的内容和要求也不尽相同。本文试从现行各规范对全长粘结岩石锚杆计算的规定出发,对比分析各行业对全长粘结岩石锚杆承载力验算的要求,总结全长粘结岩石锚杆承载力验算的一般规定,并进一步探讨全长粘结岩石锚杆承载力验算的一般方法。 2、各种规范对全长粘结岩石锚杆承载力计算的规定: 对全长粘结岩石锚杆承载力计算在很多规范中均有规定,笔者摘录如下: (1)、《建筑地基基础设计规范》(GB50007—2002)8.6.3条: 对设计等级为甲级的建筑物,单根锚筋承载力特征值t R 应通过现场实验确定;对于其它建筑物可按下式计算: lf d R t 18.0π≤……………(8.6.3) 式中: f —砂浆与岩石间的粘结强度特征值; 1d —锚杆孔直径; l —锚杆的有效锚固长度; (2)、《建筑边坡工程技术规范》(GB50330—2002)7.2.2条~7.2.3条: 锚杆钢筋截面面积应满足下式的要求: y a s f N A 20ξγ≥ ……………(7.2.2)

抗拔锚杆计算

抗拔锚杆MG-1计算书 一、锚杆竖向抗拔承载力特征值(以试验为准): 锚杆竖向抗拔承载力特征值: R t≤0.8πd1l? 锚杆锚固段注浆体直径:D=150 mm 锚杆锚固段有效锚固长度:La=5 m ?——砂浆与岩石间的粘结强度特征值(kPa),按规范表6.8.6并考虑一定的可靠度选用0.1MPa=100 kpa R t≤0.8πd1l?=0.8*3.14*0.15*100=188.4KN 锚杆竖向抗拔承载力特征值:Rra=uC2f rs h r= =3.14x0.15x0.05*(15000*0.8)*4.5=1272 KN 以上两者比较取小值,锚杆竖向抗拔承载力特征值实际取值为: R =188.4KN 二、抗拔锚杆钢筋横截面面积 抗拔锚杆钢筋横截面面积:A≥Ntd/(ζ2fy) 荷载效应基本组合下的锚杆轴向拉力设计值: N =1.35 R 锚杆竖向上拔力:R=600/4=150KN 钢筋的抗拉强度设计值:f =360 N/mm 钢筋抗拉工作条件系数:ζ =0.69

A≥1.35x150x1000/(0.69x360)=815.2 mm 选用3Φ36 (A=1018 mm ) 三、锚杆钢筋与砂浆之间的锚固长度: 锚杆钢筋与砂浆之间的锚固长度: t ≥Ntd/(ζ3 nsπDfb) 钢筋根数:n =1根 单根钢筋的直径:D=36 mm 钢筋与锚固注浆体间的粘结强度设计值:f =2.4 Mpa 钢筋与砂浆粘结强度工作条件系数:ζ3 =0.6 t≥ Ntd/(ζ3nsπDfb)=(1.35x150x1000)/(0.60x3.14x36x(2.4x0.7))=1777 mm < 5000mm

岩石锚杆抗拔承载力现场检验方法

附录D 岩石锚杆抗拔承载力现场检验方法 D. 1 一般规定 D.1.1岩石锚杆的最大试验荷载不宜超过锚杆杆体极限承载力的0.8倍。 D.1.2试验用的计量仪表(压力表、测力计、位移计)应满足测试要求的精度。 D.1.3 试验用的加荷装置(千斤顶、油泵)的额定压力必须大于试验压力。D.1.4荷载分散型锚杆的试验宜采用等荷载法;也可以根据具体工程情况制定相应的试验规则和验收标准。可参考《岩土(索)技术规程》(CECS:22)。 D. 2 试样选取 D.2.1锚杆抗拔承载力基本试验按试验要求执行,验收试验可采用随机抽样办法取样。 D.2.2 基本试验时,岩石锚杆极限抗拔试验采用的地层条件、杆体材料、锚杆参数和施工工艺必须与工程锚杆相同,且试验数量不应少于3根。 D.2.3 验收试验时,同规格、同型号、基本相同部位的锚杆组成一个检验批。每个检验批抽取数量不得少于一组,每组不少于3根。对于有特殊要求的工程,可按设计要求增加验收锚杆的数量。 D. 3 仪器设备要求 D.3.1 现场检验用的仪器、设备,如拉拔仪、x-y记录仪、电子荷载位移测量仪等,应在标定有效期内。 D.3.2加荷设备应能按规定的速度加荷,测力系统整机误差不应超过全量程的±2%。 D.3.3加荷设备应能保证所施加的拉伸荷载始终与锚杆的轴线一致。 D.3.4位移测量记录仪宜能连续记录。当不能连续记录荷载位移曲线时,可分阶段记录,在到达荷载峰值前,记录点应在10点以上。位移测量误差不应超过0.05mm。

D.3.5位移仪应保证能够测量出锚杆相对于岩石表面的垂直位移,直至锚固破坏。 D. 4 基本试验 D.4.1岩石锚杆施工前应进行抗拔承载力的基本试验。岩石锚杆极限抗拔试验应采用分级循环加载,加荷等级和位移观测时间应符合表D.4.1的规定。 表D.4.1岩石锚杆极限抗拔试验的加荷等级和观测时间 注:1 第五循环前加载速率为100kN/min,第六循环的加载速率为50kN/min; 2 在每级加荷等级观测时间内,测读位移不应少于3次; 3 在每级加荷等级观测时间内,锚头位移增量小于0.1mm时,可施加下一级荷载,否 则应延长观测时间,直至锚头位移增量在2h内小于2.0mm,方可施加下一级荷载。 D.4.2岩石锚杆极限抗拔试验出现下列情况之一时,可判定锚杆破坏: 1 后一级荷载产生的锚头位移增量达到或超过前一级荷载产生位移增量的2倍; 2 锚头位移持续增长; 3 锚杆杆体破坏。 D.4.3岩石锚杆极限抗拔试验结果宜按荷载与对应的锚头位移列表整理,并绘制锚杆荷载-位移(P-S)曲线、锚杆荷载-弹性位移(P-S e)曲线和锚杆荷载-塑性位移(P-S p),具体可参考《岩土(索)技术规程》(CECS:22)。 D.4.4岩石锚杆极限承载力应取破坏荷载的前一级荷载。在最大试验荷载下未

囊式扩体锚杆抗拔承载力计算

囊式扩体锚杆方案 单锚极限抗拔承载力计算 依据《高压喷射扩大头锚杆技术规程》(JGJ/T 282—2012),单根高压喷射扩大头锚杆抗拉力设计值T 计算如下: K T T uk = ()4/L D L D T 21222mg D 21mg d 1uk D P D D f f -++=πππ 式中: K ——锚杆抗拔安全系数,按规范选取,本处选取2; uk T ——锚杆抗拔力极限值(kN ); 1D ——锚杆钻孔直径; 2D ——扩大头直径(m ); d L ——锚杆普通锚固段的计算长度(m ); D L ——扩大头长度(m ); 1 mg f ——锚杆普通锚固段注浆体与土层间的摩阻强度标准值(kPa ),通过试验确定;无试验资料时,可按规范取值; 2mg f ——扩大头注浆体与土层间的摩阻强度标准值(kPa ),通过试验确定;无试验资料时,可按规范取值; D P ——扩大头前端面土体对扩大头的抗力强度值(kPa ), 对于竖直锚杆,有 D p P = 式中: γ——扩大头上覆土体的重度(kN/m3); h ——扩大头上覆土体的厚度(m );

2 )245(tan 2? -= a K 0K ——扩大头端前土体的静止土压力系数,可由试验确定;无试验资料时可按式计算:'sin 10?-=K '?——扩大头端前土体的有效内摩擦角,取??='; p K ——扩大头端前土体的被动土压力系数: ?——扩大头端前土体的内摩擦角(°); C ——扩大头端前土体的粘聚力(kN/m2); ξ——扩大头向前位移时反映土的挤密效应的侧压力系数,可按经验公式计算:a 90.0K =ξ a K ——扩大头端前土体的主动土压力系: )245(tan 2? += p K

锚杆抗拔力

3 :工作条件系数,永久性锚杆取为 0.60,临时性锚杆取为0.72 粘结型锚杆的抗拔力(粘结力) 1计算方法和原理 1.1基本原理 对于粘结型锚杆,其粘结力一般考虑 3个部分: 1) 锚杆钢筋的屈服应力R s ; 2) 锚杆钢筋与周围灌浆料(砂浆锚固体)之间的粘结力 R b ; 3) 孔道灌浆料(砂浆锚固体)与岩体之间的粘结力 R g ; 取其中的小值作为锚杆承载力的设计值。 1.2计算方法 1)锚杆钢筋的屈服应力R s ; R s nA s 2 f y 其中,n :钢筋、钢绞线的根数; A s 、d s :锚杆钢筋截面面积、直径; 2 :锚筋抗拉工作条件系数,永久性锚杆取为 f y :锚筋抗拉强度设计值或标准值; 2)锚杆钢筋与周围灌浆料(砂浆)之间的粘结力 R ,; R b n d s 3 b f b L b 其中,n :钢筋、钢绞线的根数; d s :锚杆钢筋或钢绞线的直径; d s 2 (5-1-1) 0.69,临时性锚杆取为 0.92 (5-1-2)

b :粘结强度折减系数,两根钢筋点焊成束时,取0.85,三根钢筋点焊 成束时,取0.70。 L b:锚杆钢筋、钢绞线与砂浆锚固体间的锚固长度; f b :锚筋或钢绞线与砂浆锚固体间的粘结强度特征值,可参考下表: 3)孔道灌浆料(砂浆锚固体)与岩体之间的粘结力R g ; R g D 1 f rb L g (5-1-3)其中,D :锚固体的直径,可取为孔道的内径; 。 1:工作条件系数,永久性锚杆取为 1.00,临时性锚杆取为1.33 L g:锚杆砂浆锚固体与地层间的锚固长度; f rb :砂浆锚固体与地层间的粘结强度特征值,可参考表5-1-2、5-1-3 :

扩底抗拔桩承载力计算

扩底抗拔桩抗拔承载力计算 丁浩珉 摘要:随着我国城市化进程的迅速发展,地下结构的建设呈现迅猛发展的势头。地下结构的抗浮问题日益受到国内外学者的重视。抗拔桩是当前应用的最为广泛的抗浮基础类型。然而抗拔桩的理论研究远远落后于工程实践。本文对扩底抗拔桩进行概述,并分析其破坏形态及作用机理。最后总结一些扩底抗拔桩承载力计算方法。 关键词:扩底抗拔桩承载力计算破坏机理 Calculation of the Up-lift Resistance Bearing Capacity of Bored Cast-in-place Pile with Enlarged Bottom Abstract :With the development of municipal engineering,lots of underground structures are built.More and more researchers are aware of the importance of resisting the uplift load.Tension piles are widely used to resist the uplift load,but theories about tension piles are far behind of engineering practice. This paper give an overview of tension piles with enlarge bottom,and analyze the failure modes and resisting mechanism.Finally,the paper will summarize some of the calculation of the up-lift resistance bearing capacity of bored cast-in-place pile with enlarged bottom. Keywords: tension piles with enlarge bottom calculation of bearing capacity failture mode 1 引言 近年来,随着城市建设的高速发展,城市建设用地越来越少,地下空间的开发和利用成为发展的必然趋势。大量带有地下车库的高程建筑,以及地下管廊,下沉式广场的兴建,使地下结构抗浮问题变得非常突出。目前,扩底抗拔桩因其单桩抗拔承载力大,质量易于保证,施工速度快,无噪音,无振动,在保证一定抗拔力的情况下,可缩短桩长,减少桩数,避免穿过某些复杂的地层,改善施工条件,省工省料省时,节约投资等特点,在工程中经常用来解决抗浮问题。但扩底桩的设计,试验资料甚少,扩底抗拔桩的理论尚未完善。一般在设计抗拔桩时,通常是参照规范规定的抗压桩的侧摩阻力,再乘以单一的经验折减系数,以此作为抗拔桩的侧摩阻力,再乘以单一的经验折减系数,以此作为抗拔桩的侧摩阻力来计算其抗拔力。扩底抗拔桩由于在桩底形成扩大头,增大桩端承载面积,从而提高单桩抗拔承载力,如何合理考虑桩底抗拔力成为设计计算的难点。本文对于各种扩底抗拔桩承载力计算方法进行总结,同同时对比等截面抗拔桩分析扩底抗拔桩的受力特点和扩底抗拔桩的受力机理,从而对扩底抗拔桩有个深入的认识。 2 扩底桩概述 扩底桩作为抗拔桩,其最大的优点是:可以用增加不多的材料来获取增加桩基抗拔承载力的效果。随着扩孔技术的不断发展,扩底桩的应用越来越广泛,设计理论也随之发展。 通常,桩基承载力中的桩侧摩阻力部分随着上拔荷载的增加开始也逐渐增大,但是一般在桩—土界面上相对位移达到4—10mm时,相应的侧壁摩阻力就会达到其峰值,其后将逐渐下降。但扩底桩与等截面桩不同。在基础上拔的过程中,扩大头上移挤压土体,土对它的反作用力(即上拔阻力)一般也是随着上拔位移的增加而增大的。并且,即使当桩侧摩阻

抗浮锚杆设计计算书

yk t t s f N K A ≥ ψ πmg t a Df KN L >ψ πεms t a df n KN L >抗浮锚杆计算书 根据建设单位提供抗浮锚杆设计要求: 1、 单根锚杆抗拔力标准值为215Kn ,锚杆设计长度6~12m 。 2、 锚杆设计参数建议值:锚杆杆体抗拉安全系数K t 取1.6,锚杆锚固体抗拔安全系数K 取2.2;锚固段注浆体与地层间的粘结强度标准值f mg =145kPa 。 3、根据以上参数,按照《北京市地区建筑地基基础勘察设计规范》(DBJ11-501-2009)中抗浮设计和《岩石锚杆(索)技术规范》(CECS 22:2005)中永久锚杆设计内容进行设计计算。 (1)锚杆杆体的截面面积计算 公式7.4.1 式中: t K ——锚杆杆体的抗拉安全系数,本次锚杆杆体采用1φ28 PSB785精轧螺纹钢,按照《岩石锚杆(索)技术规范》(CECS 22:2005)表7.3.2取1.8; t N ——锚杆的轴向拉力设计值(kN ),为215kN ; yk f ——钢筋的抗拉强度标准值(kPa ),杆体选用1φ28 PSB785精轧螺纹钢,抗拉强度标准值为785kPa 。 将以上参数代入求得: 杆杆体截面面积23 493785 102158.1mm f N K A yk t t s =??== 所需杆件直径d=sqrt (493×4/3.14)=25.06mm 故选用1φ28 PSB785精轧螺纹钢能够满足要求。 (2)锚杆锚固长度 锚杆锚固长度按下式估算,并取其中较大者: 公式7.5.1-1 公式7.5.1-2 式中:

K ——锚杆锚固体的抗拔安全系数,按照《岩石锚杆(索)技术规范》(CECS 22:2005)表7.3.1取2.2; t N ——锚杆的轴向拉力设计值(kN ) ,取215kN 。 a L ——锚杆锚固段长度(m ); mg f ——锚固段注浆体与地层间的粘结强度标准值(kPa ),根据地勘报告并结合经验,可取120kPa ; ms f ——锚固段注浆体与筋体间的粘结强度标准值(kPa ),注浆材料为素水泥浆,浆体强度M30,查表7.5.1-3插值法取2.4MPa ; D ——锚杆锚固段的钻孔直径(m ),取0.20m ; d ——钢筋的直径,取0.28(m ); ε——采用2根以上钢筋时,界面的粘结强度降低系数,取0.6~0.85; ψ——锚固长度对粘结强度的影响系数,按表7.5.2取1.0; n ——钢筋根数。 将以上 参数代入公式7.5.1-1及7.5.1-2中,可得 m Df KN L mg t a 28.60 .112020.014.32152.2=????==ψπ m df n KN L ms t a 2.20.12400028.014.32152.2=????== ψεπ 因此,锚杆锚固段长度为6.5m 。 (3)锚杆自由段长度 本次抗浮锚杆不设置自由段。 (4)各分区锚杆间距计算 根据建设单位提供的各分区浮力标准值(已扣恒载),计算各分区锚杆数量如下: 浮力标准值①区为51kN/m 2,②区为56kN/m 2,③区为65 kN/m 2,④区为58 kN/m 2,⑤区为47 kN/m 2,⑥区为24 kN/m 2,⑦为15 kN/m 2。 锚杆间距计算如下: ①区:d=sqrt(215/51)=2.05,取整得出锚杆间距2.0m ,正方形布置,共计布设8543根。

抗拔桩承载力计算书

单桩承载力计算书 一、设计资料 1.单桩设计参数 桩类型编号1 桩型及成桩工艺:泥浆护壁灌注桩 桩身直径d = 0.500m 桩身长度l = 13.00m 桩顶标高81.00m 2.土层性能 层号岩土名称 抗拔系数极限侧阻力标准值 q sik(kPa) 极限端阻力标准值 q pk(kPa) 6粉质粘土60 7淤泥质土38 8粗砂65 9粉质粘土68 3.勘探孔 天然地面标高96.00m 地下水位标高92.00m 层号岩土名称层厚(m)层底标高(m)层底埋深(m) 6粉质粘土 7淤泥质土 8粗砂 9粉质粘土 注:标高均指绝对标高。 4.设计依据 《建筑桩基技术规范》JGJ 94-2008 二、竖向抗压承载力 单桩极限承载力标准值: Q uk = u q sik l i + q pk A p = × (60 × + 38 × + 65 × + 0 × = 1138kN 单桩竖向承载力特征值R a = Q uk / 2 = 569kN 三、竖向抗拔承载力 基桩抗拔极限承载力标准值: T uk = i q sik u i l i = × 60 × × + × 38 × × + × 65 × × = 714kN 四、基桩抗拔力特征值 R tu=T uk/2+G p=714/2+

桩身强度计算书 一、设计资料 1.基本设计参数 桩身受力形式:轴心抗拔桩 轴向拉力设计值:N' = KN 轴向力准永久值:N q = KN 不考虑地震作用效应 主筋:HRB400 f y = 360 N/mm 2 E s = ×105 N/mm 2 箍筋:HRB400 钢筋类别:带肋钢筋 桩身截面直径:D = 500.00 mm 纵筋合力点至近边距离:a s = 35.00 mm 混凝土:C30 f tk = N/mm 2 最大裂缝宽度限值:lim = 0.3000 mm 2.设计依据 《建筑桩基技术规范》JGJ 94-2008 《混凝土结构设计规范》GB 50010--2010 二、计算结果 1.计算主筋截面面积 根据《混凝土结构设计规范》式(6.2.22) N' ≤ f y A s + f py A py 因为不考虑预应力,所以式中f py 及A py 均为0 A s = 错误! 2.主筋配置 根据《建筑桩基技术规范》第4.1.1条第1款 取最小配筋率 min = % 验算配筋率时,取 = 错误! 根据《混凝土结构设计规范》第9.3.1条第1款 取最大配筋率 max = % 因为 min ≤ ≤ max 所以,主筋配筋率满足要求 实配主筋:1220,A s = 3769.91 mm 2 3.箍筋配置 按构造配置箍筋 实配箍筋:8@300, A sv s = mm 2 /mm 4.计算te A ts = A s = 3769.91 mm 2 A te = pD 24 = p×4 =196349.54 mm 2 根据《混凝土结构设计规范》式(7.1.2-4)

锚杆抗拔力

粘结型锚杆的抗拔力(粘结力) 1 计算方法与原理 1.1 基本原理 对于粘结型锚杆,其粘结力一般考虑3个部分: 1) 锚杆钢筋的屈服应力s R ; 2) 锚杆钢筋与周围灌浆料(砂浆锚固体)之间的粘结力b R ; 3) 孔道灌浆料(砂浆锚固体)与岩体之间的粘结力g R ; 取其中的小值作为锚杆承载力的设计值。 1.2 计算方法 1) 锚杆钢筋的屈服应力s R ; y s y s s f d n f nA R ????=??=22 24 ξπξ (5-1-1) 其中,n :钢筋、钢绞线的根数; s A 、s d :锚杆钢筋截面面积、直径; 2ξ:锚筋抗拉工作条件系数,永久性锚杆取为0、69,临时性锚杆取为0、92。 y f :锚筋抗拉强度设计值或标准值; 2) 锚杆钢筋与周围灌浆料(砂浆)之间的粘结力b R ; b b b s b L f d n R ?????=ξξπ3 (5-1-2) 其中,n :钢筋、钢绞线的根数; s d :锚杆钢筋或钢绞线的直径; 3ξ:工作条件系数,永久性锚杆取为0、60,临时性锚杆取为0、72。

b ξ:粘结强度折减系数,两根钢筋点焊成束时,取0、85,三根钢筋点焊成 束时,取0、70。 b L :锚杆钢筋、钢绞线与砂浆锚固体间的锚固长度; b f :锚筋或钢绞线与砂浆锚固体间的粘结强度特征值,可参考下表: 表5-1-1 锚杆与砂浆锚固体间的粘结强度特征值(KPa) 3) 孔道灌浆料(砂浆锚固体)与岩体之间的粘结力g R ; g rb g L f D R ????=1ξπ (5-1-3) 其中,D :锚固体的直径,可取为孔道的内径; 1ξ:工作条件系数,永久性锚杆取为1、00,临时性锚杆取为1、33。 g L :锚杆砂浆锚固体与地层间的锚固长度; rb f :砂浆锚固体与地层间的粘结强度特征值,可参考表5-1-2、5-1-3: 表5-1-2 岩石与锚固体间的粘结强度特征值(KPa),M30砂浆 表5-1-3 土体与锚固体间的粘结强度特征值(KPa),M30砂浆

提高预应力锚杆抗拔承载力施工工法探析

提高预应力锚杆抗拔承载力施工工法探析摘要:本文结合工程实例,分析了在不大幅度增加成本的前提下,通过改进抗浮锚杆的施工工艺,加强各专业工序协调配合,将抗拔锚杆的抗拔承载力提高到一个新的水平,解决地下水位较高情况下锚杆处基础节点防水施工难题。 关键词: 抗浮锚杆; 抗拔承载力; 防水; 施工工法;改进措施abstract: combining with the project example, the article has analyzed in not significantly increase the cost of the premise, through improving the construction process of the fe asibility, strengthen the professional coordination process, will fight the resistance of the bearing capacity bamao stem pull up to a new level, solve the underground water level under high in the basic node waterproof construction problems. keywords: fe asibility rock bolt; resistance to pull out bearing capacity; waterproof; construction methods; improvement measures 中图分类号:tu394文献标识码:a 文章编号: 1 工程概况 湖南某商业广场总建筑面积63 314. 39m2,其中地上47 868. 66m2,地下15 445. 73m2。主体建筑4 层,地下1层。地下室设有仓库等重要场所,防水等级为 i 级,采用 4mm 厚聚氨酯防水涂

相关文档
最新文档