物理极值问题的求法

物理极值问题的求法
物理极值问题的求法

物理极值问题的求法

运用数学工具处理物理问题的能力是高考重点考查的五种能力之一,其中极值的计算在教学中频繁出现。因为极值问题范围广、习题多,会考、高考又经常考查,应该得到足够重视。另外物理极值,实质是针对某一物理现象的动态范围、发展变化趋势及其极限,这是由物理条件所制约的物理极值,经常表现为物理约束条件下的最大或最小值,这与数学极值有本质的区别。就思维表现看,求极值过程是归纳和演绎综合运用的过程。在错综复杂的变化条件中,要归纳出一般的状态表现,又要在此基础上经演绎推理,寻求特殊的极端模型,这也是建立理想化模型,也要理想化。显然,解极值过程是综合运用几种常规的思维方法的高层次的思维过程。下面重点对数学方法求解物理极值问题作些说明。

1利用三角函数求极值

如果所求物理量表达式中含有三角函数,可利用三角函数的极值求解。若所求物理量表达式可化为“y=Asinacosa”的形式,则y=Asin2a,在a=45°时,y有极值。

例1:如图1所示。一辆四分之一圆弧小车停在不光滑水平地面上,质量为m的小球从静止开始由车顶无摩擦滑下,且小车始终保持静止状态,试分析:当小球运动到什么位置时,地面对小车的摩擦力最大?最大值是多少?

解析:设圆弧半径为R,当小球运动到重力mg与半径夹角为θ时,速度为V,根据机械能守恒定律和牛顿第二定律有:=mV2=mgRcosθ,N-mgcosθ=m,解得小球对小车的压力为:N=3mgcosθ,其水平分量为:Nx=3mgsinθcosθ=mgsin2θ,根据平衡条件,地面对小车的静摩擦力水平向右,大小为:f=Nx=mgsin2θ可以看出:当sin2θ=1,即θ=45°时,地面对小车的静摩擦力最大,其值为:fmax=mg 。

2用图象法求极值

通过分析物理过程遵循的物理规律,找到变量之间的函数关系,作出其图象,由图象可求得极值。

例2:甲、乙两物体同时、同地、同向由静止出发,甲做匀加速直线运动,加速度为4米/秒2,4秒后改为匀速直线运动;乙做匀加速直线运动,加速度为2米/秒2,10秒后改为匀速直线运动,求乙追上甲之前它们之间的最大距离。

解析:运用物理规律和图形相结合求极值,是常用的一种比较直观的方法。由题意可知,4秒后甲做匀速直线运动的速度为:V甲=a甲t甲=4×4=16(m /s)。乙10秒后做匀速运动的速度为:V乙=a乙t乙=2×10=20(m/s)。可画出v-t如上图4所示。图线在A(8,16)点相交,这表明在t=8秒时,两物体的速度相等,因此,在t=8秒时,两者间的距离最大。此时两图线所围观积

高中物理常见临界问题

高中物理常见临界问题(极值问题)分析处理训练 一问题概述: 当物体由一种运动形式(物理过程与物理状态)变为另一种运动形式(物理过程与物理状态)时,可能存在一个过渡的转折点,即分界限的现象。这时物体所处的状态通常称为临界状态,与之相关的物理条件则称为临界条件。这是量变质变规律在物理中的生动表现。如:力学中的刚好滑动;正常行驶;宇宙速度,共振;电学中电源最大输出功率;光学中的临界角;光电效应中的极限频率等 解决临界问题,通常以定理、定律为依据,分析所研究问题的一般规律和一般解的形式及其变化情况,然后找出临界状态,临界条件,从而通过临界条件求出临界值,再根据变化情况,直接写出条件。 所谓极值问题,一般而言,就是在一定条件下求最值结果。求解极值问题的方法从大的角度可分为物理方法和数学方法。物理方法即用临界条件求极值。数学方法包括(1)利用矢量图求极值(2)用三角函数关系求极值;(3)用二次方程的判别式求极值;(4)用不等式的性质求极值。(5)导数法求解。一般而言,用物理方法求极值直观、形象,对构建模型及动态分析等方面的能力要求较高,而用数学方法求极值思路严谨,对数学能力要求较高.若将二者予以融合,则将相得亦彰,对增强解题能力大有裨益。极值问题与临界问题从本质上说是有区别的,但高考中极值问题通常都可用物理临界法求解。 解答临界问题的关键是找临界条件。许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词语对临界状态给出了明确的暗示,审题时,一定要抓住这些特定的词语发掘其内含规律,找出临界条件。 有时,有些临界问题中并不显含上述常见的“临界术语”,具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,耐心讨论状态的变化,可用极限法(把物理问题或过程推向极端,从而将临界状态及临界条件显露出来)假设法(即假设出现某种临界状态,物体的受力情况及运动状态与题设是否相符,最后再根据实际情况进行处理。)数学函数极值法等方法找出临界状态。然后抓住临界状态的特征,找到正确的解题方向。 ※为了提高解题速度,可以理解记住一些重要的临界条件及状态: 物体自由地沿斜面刚好匀速下滑则μ=tgα。 物体刚好滑动静摩擦力达到最大。 两个物体沿同一直线运动,在速度相等时距离最大或最小。 两物体刚好相对静止必速度相等、加速度相等。 两个物体距离最近(远),相对速度相等。 速度达到最值——沿速度方向的合外力为零(曲线运动时则切向合外力为零) 两个一同运动的物体刚好(不)脱离时,两物体间的弹力刚好为零,速度、加速度相等。 刚好到达某点——速度为零(速度不一定为零) 物体刚好(不)滑出——物体到达末端时二者等速。 在竖直面内做圆周运动,绳端物体刚好到达最高点——绳拉力为零,重力是向心力, 杆端物体刚好到达最高点——物体速度等于零。 两个物体刚好(不)分离——两物接触且弹力为零,速度加速度(垂直接触面方向)相等。绳刚好拉直——绳直且拉力为零,绳刚好拉断——张力等于绳所能承受最大拉力。 刚好不相撞——两物体间距为零时等速。 碰撞过程碰后相对速度为零时,损失的动能最大 粒子刚好(不)飞出两极板间匀强电场或匀强磁场——轨迹与板边缘相切,粒子刚好(不)飞出磁场区——轨迹与磁场边界相切。

高中物理中的临界与极值问题

高中物理中的临界与极值问题 宝鸡文理学院附中何治博 一、临界与极值概念所谓物理临界问题是指各种物理变化过程中,随着条件的逐渐变化,数量积累达到一定程度就会引起某种物理现象的发生,即从一种状态变化为另一种状态发生质的变化(如全反射、光电效应、超导现象、线端小球在竖直面内的圆周运动临界速度等),这种物理现象恰好发生(或恰好不发生)的过度转折点即是物理中的临界状态。与之相关的临界状态恰好发生(或恰好不发生)的条件即是临界条件,有关此类条件与结果研究的问题称为临界问题,它是哲学中所讲的量变与质变规律在物理学中的具体反映。极值问题则是指物理变化过程中,随着条件数量连续渐变越过临界位置时或条件数量连续渐变取边界值(也称端点值)时,会使得某物理量达到最大(或最小)的现象,有关此类物理现象及其发生条件研究的问题称为极值问题。临界与极值问题虽是两类不同的问题,但往往互为条件,即临界状态时物理量往往取得极值,反之某物理量取极值时恰好就是物理现象发生转折的临界状态,除非该极值是单调函数的边界值。因此从某种意义上讲,这两类问题的界线又显得非常的模糊,并非泾渭分明。 高中物理中的临界与极值问题,虽然没有在教学大纲或考试说明中明确提出,但近年高考试题中却频频出现。从以往的试题形式来看,有些直接在题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等

词语对临界状态给出了明确的暗示,审题时,要抓住这些特定的词语发掘其内含的物理规律,找出相应的临界条件。也有一些临界问题中并不显含上述常见的“临界术语”,具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,周密讨论状态的变化。可用极限法把物理问题或物理过程推向极端,从而将临界状态及临界条件显性化;或用假设的方法,假设出现某种临界状态,分析物体的受力情况及运动状态与题设是否相符,最后再根据实际情况进行处理;也可用数学函数极值法找出临界状态,然后抓住临界状态的特征,找到正确的解题方向。从以往试题的内容来看,对于物理临界问题的考查主要集中在力和运动的关系部分,对于极值问题的考查则主要集中在力学或电学等权重较大的部分。 二、常见临界状态及极值条件解答临界与极值问题的关键是寻找相关条件,为了提高解题速度,可以理解并记住一些常见的重要临界状态及极值条件: 1.雨水从水平长度一定的光滑斜面形屋顶流淌时间最短——屋面倾角 为0 45 2.从长斜面上某点平抛出的物体距离斜面最远——速度与斜面平行时 刻 3.物体以初速度沿固定斜面恰好能匀速下滑(物体冲上固定斜面时恰 好不再滑下)—μ=tgθ。 4.物体刚好滑动——静摩擦力达到最大值。

高中物理必修一常考题型+例题及答案讲课稿

高中物理必修一常考题型 一、直线运动 1、xt图像与vt图像 2、纸带问题 3、追及与相遇问题 4、水滴下落问题(自由落体) 二、力 1、滑动摩擦力的判断 2、利用正交分解法求解 3、动态和极值问题 三、牛顿定律 1、力、速度、加速度的关系; 2、整体法与隔离法 3、瞬时加速度问题 4、绳活结问题 5、超重失重 6、临界、极值问题 7、与牛顿定律结合的追及问题 8、传送带问题 9、牛二的推广 10、板块问题 11、竖直弹簧模型

一、直线运动 1、xt图像与vt图像 2014生全国(2) 14.甲乙两汽车在一平直公路上同向行驶。在t=0到t=t1的时间内,它们的v-t图像如图所示。 在这段时间内 A.汽车甲的平均速度比乙大 B.汽车乙的平均速度等于 22 1v v C.甲乙两汽车的位移相同 D.汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大 2016全国(1) 21.甲、乙两车在平直公路上同向行驶,其v-t图像如图所示。已知两车在t=3s时并排行驶,则 A.在t=1s时,甲车在乙车后 B.在t=0时,甲车在乙车前7.5m C.两车另一次并排行驶的时刻是t=2s D.甲、乙两车两次并排行驶的位置之间沿公路方向的距离 为40m 2、纸带问题 【2012年广州调研】34.(18分)(1) 用如图a所示的装置“验证机械能守恒定律”①下列物理量需要测量的是__________、通过计算得到的是_____________(填写代号)A.重锤质量B.重力加速度 C.重锤下落的高度 D.与下落高度对应的重锤的瞬时速度②设重锤质量为m、打点计时器的打点周期为T、重力加速度为g.图b是实验得到的一条纸带,A、B、C、D、E为相邻的连续点.根据测得的s1、s2、s3、s4写出重物由B点到D点势能减少量的表达式__________,动能增量的表达式__________.由于重锤下落时要克服阻力做功,所以该实验的动能增量总是__________(填“大于”、“等于”或“小于”)重力势能的减小量

关于初中物理极值题的分析

初中物理关于极值题的分析 育才学校陈玺 现在初中物理考试题中有关极值计算和分析题正在出现,许多学生和教师面对此类题会感到困难、或束手无策;因极值问题必用数学工具,而有些数学工具需高中才学到,若无高中数学知识基础,如何用初中的数学知识来解决呢?则需掌握一些初中数学推导技巧,才能在遇到极值问题时,较好地解决这类问题。现以九年级统考试题出现的极值题为例来讲。 (2019年遵义市第一学期九年级学业水平监测理科综合试题卷)第37.如图 所示电路中,电源电压一定,R 1,R 2 为定值电阻,R为滑动变阻器,已知R 2 =7Ω. 当S、S 2闭合,S 1 断开,滑动变阻器滑片P在b端时,电流表示数为0.4A;当S、 S 1闭合,S 2 断开,滑片P在b端时,电流表示数为0.6A;当S、S 1 闭合,S 2 断开, 滑片P在中点时,电流表的示数为1.0A. (1)当S、S 2闭合,S 1 断开,滑动变阻器滑片P在端时,求电阻R 2 通电1min产 生的热量; (2)求电源电压; (3)在S 1、S 2 不同时闭合的前提下,开关分别于何种状态、滑动变阻器接入电 路的阻值多大时,滑动变阻器消耗的功率最大?此时滑动变阻器消耗的功率是多少? 解:(1)当S、S 2闭合,S 1 断开,滑动变阻器滑片P在b端时, 电流表示数为0.4A,R 2 与串联, Q=I 12R 2 t=(0.4A)2×7Ω×60s= 67.2J (2)当S、S 2 闭合,S1断开,滑动变阻器滑片P在b端时, R 2与串联,I 1 =0.4A 总 Ω·······( 1 ) 当S、S 1闭合,S 2 断开,滑片P在滑动变阻器b端时, R 1与串联,I 2 =0.6A 总 (2) 当S、S 1闭合,S 2 断开,滑片P在中点时R 1 与串联, I 3 =1.0A 总 (3) 解①②③方程组可得 R 1=2Ω, R ab =8Ω, U 总 =6V (3)R 1与串联对比R 2 与串联,当R1与串联时,通过的电流大, 其两端的电压也大,功率也大;滑动变阻器消耗的功率为

高中物理中的极值问题

物理中的极值问题 武穴育才高中 刘敬 随着高考新课程改革的深入及素质教育的全面推广,物理极值问题成为中学物理教学的一个重要内容,作为对理解、推理及运算能力都有很高要求的物理学科,如何提高提高学生思维水平,运用数学知识解决物理问题的能力,加强各学科之间的联系,本文筛选出典型范例剖析,从中进行归纳总结。 极值问题常出现如至少、最大、最短、最长等关键词,通常涉及到数学知识有:二次函数配方法,判别式法,不等式法,三角函数法,求导法,几何作图法如点到直线的垂线距离最短,圆的知识等等。 1.配方法:a b ac a b x a c bx ax 44)2(2 22 -++=++ 当a >0时,当2b x a =-时,y min =a b a c 442- 当a <0时当2b x a =-时,y max =a b a c 442- 2.判别式法:二次函数令0≥?,方程有解求极值. 3.利用均值不等式法:ab 2b a ≥+ a=b 时, y min =2ab 4.三角函数法:θθcos sin b a y +==)sin(22θ?++b a 当090=+θ?,22max b a y += 此时,b a arctan =θ 也可用求导法:b a b a y arctan 0sin cos ==-='θθθ,得令 5.求导法:对于数学中的连续函数,我们可以通过求导数的方式求函数的最大值或最小值.由二阶导数判断极值的方法.某点一阶导数为0,二阶导数大于0,说明一阶导数为增函数,判断为最小值;反之,某点一阶导数为0,二阶导数小于0,说明一阶导数为单调减函数,判断此点为最大值. 6.用图象法求极值 通过分析物理过程所遵循的物理规律,找到变量之间的函数关系,作出其图象,由图象求极值。 7.几何作图法 研究复合场中的运动,可将重力和电场力合成后,建立直角坐标系,按等效重力场处理问题。 研究力和运动合成和分解中,可选择合适参考系,将速度及加速度合成,结合矢量三角形处理问题。 例1.木块以速度v 0=12m /s 沿光滑曲面滑行,上升到顶部水平的跳板后飞出,求跳板高度h 多大时, 木块飞行的水平距离s 最大?最大水平距离s 是多少?(g=10 m /s 2)。 解:2202121mv mgh mv =+, vt s =得:22022020)4()4(22)2(g v h g v g h gh v s --=-=

高中物理:极值法知识点

高中物理:极值法知识点 数学的极值问题,主要是解决数学函数关系及其定义域的问题,这是由数学条件所制约的。 但是物理极值与数学极值有明显的区别。物理极值,实质是针对某一物理现象的动态范围、发展变化趋势及其极限,这是由物理条件所制约的。物理极值,经常表现为物理约束条件下的最大或最小值,这与数学极值有本质的区别。 就思维表现看,求极值过程是归纳和演绎综合运用过程。在错综复杂的变化条件中,要归纳出一般的状态表现,又要在此基础上,经演绎推理,寻求特殊的极端模型。这也是建立理想化模型,也要理想化。 显然,解极值过程是综合运用几种常规的思维方法的高层次的思维过程。另一方面,解极值过程,需要借助一些初等数学手段,靠扎实的数学基础。从所应用的数学手段来看,求极值可与为下列几种方法: (一)利用分式的性质求极值 [例1] 物体A放在水平面上,作用在A上的推力F与水平方向成30o角,如图示。使A作匀速直线运动。试问,当物体A与水平面之间的摩擦系数μ为多大时,不管F增大到多大,都可以使A在水平面上,作匀速直线运动? 解:A受力如图所示,由已知,A处于平衡状态,有:Fcosα=fFcos30o=μ(G+Fsin30o), 得F=由已知当公式的分母为零,即F→∞的匀速运动时sin30o-μcos30o=0时得μ=tg30o=0.58,则F→∞,此时都可以使A在水平面上作匀速直线运动。

(二)利用一元二次方程求根公式求极值 有些问题,通过分析列关系式,最后整理出关于一个未知量的一元二次方程。它的根就可能是要求的极值。这种方法应用是很普遍的。 (三)利用一元二次方程判别式△=b2-4ac≥O求极值 [例2] 一个质量为M的圆环,用细线悬挂着。将两个质量为m的有孔的小珠套在环上,且可沿环无摩擦滑动,如图(a)所示。今将两小珠从环的顶端由静止开始释放。证明,当m> M时,圆环能升起。 证明:取小球为研究对象,受力如图(a)。由牛顿第二定律,得所mgcosθ+N=由机械能守恒定律,得mgR(1-cosθ)=由此二式得N=2mg-3mgcosθ (1)上式中,N>0,即cosθ<以环为研究对象,受力图如(b),在竖直方向,由牛顿第二定律,有T+2N’cosθ—Mg=Ma当环恰好能上升时,a=0,可得2N’cosθ=Mg (3) 将(1)代入(3)式中,其中N’为(a)图中N的反作用力。有 2(2mg-3mgcosθ)cosθ=Mg即6mcos2θ-4mcosθ+M=0 (4)(4)式是关于cosθ的一元二次方程。cosθ为实数,则△≥0,即(4m)2-4

高中物理 动力学中的临界问题

动力学中的临界问题 1.当物体的运动从一种状态转变为另一种状态时必然有一个转折点,这个转折点所对应的状态叫做临界状态;在临界状态时必须满足的条件叫做临界条件。用变化的观点正确分析物体的受力情况、运动状态变化情况,同时抓住满足临界值的条件是求解此类问题的关键。 2.临界或极值条件的标志 (1)有些题目中有“刚好”、“恰好”、“正好”等字眼,表明题述的过程存在着临界点; (2)若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就是临界状态; (3)若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点; (4)若题目要求“最终加速度”、“稳定加速度”等,即是要求收尾加速度或收尾速度。 3.产生临界问题的条件 (1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力F N =0。 (2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值。 (3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是F T =0。 (4)加速度最大与速度最大的临界条件:当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度。当出现速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的速度便会出现最大值或最小值。 例1:如图所示,质量均为m 的A 、B 两物体叠放在竖直弹簧上并保持静止,用大小等于mg 的恒力F 向上拉B ,运动距离h 时,B 与A 分离,下列说法正确的是( ) A . B 和A 刚分离时,弹簧长度等于原长 B .B 和A 刚分离时,它们的加速度为g C .弹簧的劲度系数等于mg h D .在B 和A 分离前,它们做匀加速直线运动

极值法解决物理问题(优.选)

正确使用极值法解决物理问题 在平时的教学中,常遇到“极值”问题,但多数教师都是通过数学方法进行分析.不仅要求学生具有较好的物理基础,更需具有较高的数学应用能力,如果教师能教给学生灵活运用物理的思想和方法去解决问题,这对提升学生的物理思维和物理素养不无裨益. 一、中考原题 如图1 所示,两个完全相同的量筒里分别盛有质量 相等的水和酒精,A 、B 两点到量筒底部的距离相等,则A 、B 两点受到液体的压强A p 和B p 的大小关系是( ). A. A B p p > B. A B p p < C. A B p p = D.无法比较 学生1(常规法):假设液体的总重力都为G ,液体密度分别为A 和B ,且A B >,量筒的横截面积均为S ,A 、B 两点距量筒底的距离都为h ,图2中,A 、B 两点以上液体的重力,即阴影部分液体的重力分别为A G 和B G ,则 A A A A A A G G F G G gSh G p gh S S S S S ρρ--=====-下① B B B B B G G F G G gSh G p gh S S S S S ρρ--=====-B 下 ② 由①②两式及A B ρρ>得A B p p <. 学生2(极值法): A 、B 两点距底部的距离相同,具有随意性,可假设A 、B 两点在甲容器的液面高度上(如图3),此时0,A p =0B p >,所以A B p p <. 从以上两种方法可以看出,在解决物理问题时,当一个物理量或物理过程发生变化时,运用“极值法”对其变量作合理的延伸,把问题推向极端,往往会使问题化难为易,达到“事

半功倍”的效果.那么如何正确使用极值法呢? 二、极值法正确使用过程分析 如图4所示,甲、乙两个质量相等的均匀实心正方体放在水平地面上,已知铜的密度大于铁的密度,若沿水平方向分别截去体积相等的部分,则剩余部分对水平面的压强p 甲和p 乙的大小关系是( ) A. p p >乙甲 B. p p <乙甲 C. p p =乙甲 D.都有可能 极值法:假设将甲全部消去,则剩余部分对水平面的压强p 甲=0和0p >乙,因此,该题选择B.事实果真如此吗? 假设G G G ==乙甲,边长分别为a 和b ,且a a b <,密度分别为甲和乙,且ρρ>乙甲截去的体积均为V ,则剩余部分对水平面的压强222G gV g G p V a a a ρρ-==-甲甲甲③, 222G gV g G p V b b b ρρ-==-乙乙乙④,由22G G a b >,22g g a b ρρ>乙甲,画出③④两式的压强一截去体积图像如图6所示. 由图6来看,当截去一定的体积时,剩余部分对水平面的压强p 甲和p 乙有可能相同(M 点),即由③④两式相等2222g g G G V V a a b b ρρ-=-乙甲,解得2222 ()G b a V gb ga ρρ-=-乙甲.当截去的体积2222()G b a V gb ga ρρ-<-乙甲时,p p >乙甲.当截去的体积2222()G b a V gb ga ρρ-=-乙甲时,p p =乙甲.当

高考物理复习第二章相互作用微极值问题备考练习题

17 极值问题 [方法点拨] (1)三力平衡下的极值问题,常用图解法,将力的问题转化为三角形问题,求某一边的最短值.(2)多力平衡时求极值一般用解析法,由三角函数、二次函数、不等式求解.1.(2018·姜堰中学月考)如图1所示,用细线相连的质量分别为2m、m的小球A、B在拉力F作用下,处于静止状态,且细线OA与竖直方向的夹角保持θ=30°不变,则拉力F的最小值为( ) 图1 A.33 2 mg B. 23+1 2 mg C.3+2 2 mg D. 3 2 mg 2.如图2所示,质量均为m=10 kg的A、B两物体放在粗糙的水平木板上,中间用劲度系数为k=5×102 N/m的弹簧连接,刚开始时A、B两物体处于平衡状态,弹簧的压缩量为Δx= 5 cm.已知两物体与木板间的动摩擦因数均为μ= 3 2 ,重力加速度g=10 m/s2,设最大静摩 擦力等于滑动摩擦力.现将木板的右端缓慢抬起,木板形成斜面,在木板缓慢抬起过程中,以下说法正确的是( ) 图2 A.A先开始滑动,A刚开始滑动时木板的倾角θ=30° B.A先开始滑动,A刚开始滑动时木板的倾角θ=60° C.B先开始滑动,B刚开始滑动时木板的倾角θ=30° D.B先开始滑动,B刚开始滑动时木板的倾角θ=60° 3.如图3所示,在水平板左端有一固定挡板,挡板上连接一轻质弹簧.紧贴弹簧放一质量为 m的滑块,此时弹簧处于自然长度.已知滑块与水平板的动摩擦因数为 3 3 (最大静摩擦力与 滑动摩擦力视为相等).现将板的右端缓慢抬起使板与水平面间的夹角为θ,最后直到板竖直,此过程中弹簧弹力的大小F随夹角θ的变化关系可能是( )

图3 4.如图4所示,质量为M的滑块a,置于水平地面上,质量为m的滑块b放在a上.二者接触面水平.现将一方向水平向右的力F作用在b上.让F从0缓慢增大,当F增大到某一值时,b相对a滑动,同时a与地面间摩擦力达到最大.已知a、b间的动摩擦因数为μ1,a 与地面之间的动摩擦因数为μ2,且最大静摩擦力等于滑动摩擦力,则μ1与μ2之比为( ) 图4 A.m M B. M m C. m M+m D. M+m m 5.(2018·兴化一中质检)如图5所示,质量均为m的木块A和B,用一个劲度系数为k的竖直轻质弹簧连接,最初系统静止,现在用力缓慢拉A直到B刚好离开地面,则这一过程A上升的高度为( ) 图5 A.mg k B. 2mg k C.3mg k D. 4mg k 6.如图6所示,质量为M的斜劈倾角为θ,在水平面上保持静止,当将一质量为m的木块放在斜面上时正好匀速下滑.如果用与斜面成α角的力F拉着木块沿斜面匀速上滑.

高中物理重点专题练习:(临界问题)(精选.)

课堂练习:(临界问题) 1、一劲度系数为m N k /200=的轻弹簧直立在水平地板上,弹簧下端与地板相连,上端与一质量kg m 5.0=的物体B 相连,B 上放一质量也为kg 5.0的物体A ,如图。现用一竖直向下的力F 压A ,使B A 、均静止。当力F 取下列何值时,撤去F 后可使B A 、不分开 ( ) A.N 5 B.N 8 N 15 D.N 20 2、如图,三个物块质量分别为1m 、 2m 、M ,M 与1m 用弹簧联结,2m 放在1m 上,用足够大的外力F 竖直向下压缩弹簧,且弹力作用在弹性限度以内,弹簧的自然长度为L 。则撤去外力F ,当2m 离开1m 时弹簧的长度为___________,当M 与地面间的相互作用力刚为零时,1m 的加速度为 。 3、如图,车厢内光滑的墙壁上,用线拴住一个重球,车静止时,线的拉力为T ,墙对球的支持力为N 。车向右作加速运动时,线的拉力为T ',墙对球的支持力为N ',则这四个力的关系应为:T ' T ;N ' N 。(填>、<或=)若墙对球的支持力为0,则物体的运动状态可能是 或 。 4、在光滑的水平面上,B A 、两物体紧靠在一起,如图。A 物体的质量为m ,B 物体的质量m 5,A F 是N 4的水平向右的恒力,N t F B )316(-=(t 以s 为单位),是随时间变化的水平力。从 静止开始,当=t s 时,B A 、两物体开始分离,此时B 物体的速度方向 朝 (填“左”或“右”)。 5、如图,在斜面体上用平行于斜面的轻绳挂一小球,小球质量为m ,斜面体倾角为θ,置于光滑水平面上 (g 取2/10s m ),求: (1)当斜面体向右匀速直线运动时,轻绳拉力为多大; (2)当斜面体向左加速运动时,使小球对斜面体的压力为零时,斜面体加速度为多大; (3)为使小球不相对斜面滑动,斜面体水平向右运动的加速度的最大值为多少。

动力学中的临界极值问题的处理讲课教案

动力学中的临界极值问题的处理

动力学中临界极值问题的处理及分析 物理学中的临界和极值问题牵涉到一定条件下寻求最佳结果或讨论其物理过程范围的问题,此类问题通常难度较大技巧性强,所涉及的内容往往与动力学、力学密切相关,综合性强。在高考命题中经常以压轴题的形式出现,临界和极值问题是每年高考必考的内容之一。 一.解决动力学中临界极值问题的基本思路 所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。至于是“出现”还是“不出现”,需视具体问题而定。极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。临界问题往往是和极值问题联系在一起的。 解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。动力学中的临界和极值是物理中的常见题型,同学们在刚刚学过的必修1中匀变速运动规律、共点力平衡、牛顿运动定律中都涉及到临界和极值问题。在解决临办极值问题 注意以下几点:○1临界点是一个特殊的转换状态,是物理过程发生变化的转折点,在这个转折点上,系统的一些物理量达到极值。○2临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。○3许多临界问题 常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语 其内含规律就能找到临界条件。○4有时,某些临界问题中并不包含常见的临界 术语,但审题时发现某个物理量在变化过程中会发生突变,如运动中汽车做匀 减速运动类问题,则该物理量突变时物体所处的状态即为临界状态。○5临界问 题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情 景,抓住临界状态的特征,找到正确的解题方向。○6确定临界点一般用极端分 析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。解题常用的思路用矢量法、三角函数法、一元二次方程判别式法或根据物理过程的特点求极值法等。 二.匀变速运动规律中与临界极值相关问题的解读 在质点做匀变速运动中涉及到临界与极值的问题主要有“相遇”、“追及”、“最大距离”、“最小距离”、“最大速度”、“最小速度”等。 【例1】速度大小是5m/s的甲、乙两列火车,在同一直线上相向而行。当它们相隔2000m时,一只鸟以10m/s的速度离开甲车头向乙车头飞去,当到达乙车车头时立即返回,并这样连续在两车间来回飞着。问: (1)当两车头相遇时,这鸟共飞行多少时间?

中学物理中极值问题解法种种

中学物理中极值问题解法种种 卢小柱 极值问题是中学物理中一类内容丰富、难度较大和技巧性较强的物理问题.它要求学生的基础知识和基本技能较熟练,并有较强的综合分析问题和解决问题的能力,以及能熟练地运用数学知识解答物理问题.下面对常见的极值问题的解法作一归纳,以供参考. 1.配方法 若题中物理量的变化规律可表示为二次函数y=ax 2+bx+c 的形式,则经配方有 y=a(x+b a 2)2+442ac b a -.若a>0,则当x=-b a 2时,y 有极小值y min =442 ac b a -;若a<0,则当x=- b a 2时,y 有极大值y max =442 ac b a -. 例1 甲、乙两辆汽车同方向行驶,甲在乙前50m 处以速度20m/s 作匀速直线运动, 乙车的初速度为4m/s,加速度为8m/s 2.试问什么时候甲车在前时,两车相距最远?最远距离是多少? 解: 设运动时间为ts,由运动学公式有 甲的位移为s 1=20t, 乙的位移为s 2=4t+4t 2 两车相距?s=s 1+50-s 2=50+20t -4t -4t 2=-4t 2+16t+50=-4(t -2)2+66 当t=2s 时, ?s 有极大值为 ?s max =66m. 例2 如图1所示的电路中,电源内阻为r,电动势为ε,则当变阻器电阻R 为何值时,电源输出功率最大? 解: 电源输出功率为P=I 2R=(εR r +)2R=ε2222R R Rr r ++ 分母配方后得:P= ε2 2 4(/)R r R r -+ 故当R r R =/,即R=r 时,分母最小,P 最大.P max =ε2 4r . 2.判别式法 若物理量的变化关系为二次函数,或者通过巧妙的变换能使物理量出现二次项,则可利用判别式?=b 2-4ac 来求解.当?≥0时有实根,?=0时取极值. 例3 火焰与光屏之间的距离是L,在它们中间放有一个凸透镜,其焦距为f.试证明,要使火焰在光屏上成清晰像,则L 至少要为4f. 证明:设物距为u,像距为v,则u+v=L ……① 由成像公式有:111 u v f += ……② 由①②得:u 2-Lu+Lf=0 故要成实像,则必须?=L 2-4Lf ≥0,解得L 最小为4f. 例4 如图2所示,顶角为2α的光滑圆锥置于磁感应强度为B 、方向竖直向下的匀强磁场中.现有一质量为m 、带电量为+Q 的小球沿圆锥面在水平面内作匀速圆周运动,求小球作圆周运动的最小半径. 解: 小球受力如图,建坐标.由圆周运动知识得

高中物理临界问题解题技巧类解

高中物理临界问题解题技巧类解 临界问题是物理现象中的常见现象。所谓临界状态就是物理现象从一种状态变化成另一种状态的中间过程,临界状态通常具有以下特点:瞬时性、突变性、关联性、极值性等。临界状态往往隐藏着关键性的隐含条件,是解题的切入口,在物理解题中起举足轻重的作用。求解临界问题通常有如下方法:极限法、假设法、数学分析法(包括解析法、几何分析法等)、图象法等。 极限法:在题目中如出现“最大”、“最小”、“刚好”、“要使”等词语时,一般隐含着临界问题。处理问题时,一般把物理问题(或过程)设想为临界状态,从而使隐藏着的条件暴露出来,达到求解的目的。假设法:有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,解决办法是采用假设法,把物理过程按变化的方向作进一步的外推,从而判断可能出现的情况。数学分析法;是一种很理性的分析方式,把物理现象转化成数学语言,用数学工具加以推导,从而求出临界问题,用这种分析方法一定要注意理论分析与物理实际紧密联系起来,切忌纯数学理论分析。图象法:将物理过程的变化规律反映到物理图象中,通过图象分析求出临界问题。下面列举的是高中物理各知识系统中典型的临界问题。 一、运动学中的临界问题 例1、一列客车以速度v 1前进,司机发现前方在同一轨道上有一列货车正在以速度v 2匀速前进,且v 1v 2,货车车尾与客车车头相距s 0,客车立即刹车做匀减速运动,而货车仍保持匀速运动。求客车的加速度a 符合什么条件两车才不会撞上? 分析:这一类问题一般用数学方法(解析法)来求解。若要客车不撞上货车,则要求客车尽可能快地减速,当客车的速度减小到与货车速度相等时两车相对静止,若以后客车继续减速,则两车的距离又会增大;若以后客车速度不变,则两车将一直保持相对静止。可见,两车恰好相碰时速度相等是临界状态,即两车不相碰的条件是:两车速度相等时两车的位移之差△S ≤S 0。下面用两种方法求解。 解法一:以客车开始刹车时两车所在位置分别为两车各自位移的起点,则,客车:21112 s v t at =-,货车:22s v t =, 两车不相撞的条件:21,v v at =-120s s s -≤。 联立以上各式有:2 120 ()2v v a s -≥。 解法二:客车减速到2v 的过程中客车的位移为:1212v v s t += , 经历的时间为:12v v t a -=;货车的位移为:22s v t =,

高中物理中的极值专题

物理中的极值问题 1.物理中的极值问题: 物理试题常出现如:至少、最大、最短、最长等物理量的计算,这类问题就属于极值问题。其处理是高考试题中是常见的,本专题以此作为重点,试图找出处理该问题的一般方法。 2.物理中极值的数学工具: (1)y=ax 2 +bx+c 当a >0时,函数有极小值 y m in =a b a c 442 - 当a <0时,函数有极大值 y m ax =a b a c 442 - (2)y= x a +b x 当ab =x 2 时,有最小值 y m in =2ab (3)y=a sin θ+b cos θ=22b a + sin ()θ?+ 当θ?+=90°时,函数有最大值。 y m ax =22b a + 此时,θ=90°-arctan a b (4)y =a sin θcon θ= 21a sin2θ 当θ=45°时,有最大值:y m ax =2 1a 3.处理方法: (1)物理型方法: 就是根据对物理现象的分析与判断,找出物理过程中出现极值的条件,这个分析过程,既可以用物理规律的动态分析方法,也何以用物理图像发热方法(s-t 图或v-t 图)进而求出极值的大小。该方法过程简单,思路清晰,分析物理过程是处理问题的关键。 (2)数学型方法: 就是根据物理现象,建立物理模型,利用物理公式,写出需求量与自变量间的数学函数关系,再利用函数式讨论出现极值的条件和极值的大小。 4.自主练习 1.如图所示,在倾角为300的足够长的斜面上有一质量为m 的物体,它受到沿斜面方向的力F 的作用。力F 可按图(a )、(b )(c )、(d )所示的四种方式随时间变化(图中纵坐标是F 与mg 的比值,力沿斜面向上为正)。已知此物体在t =0时速度为零,若用v 1、v 2 、v 3 、v 4分别表示上述四种受力情况下物体在3秒末的速率,则这四个速率中最大的是( ) A 、v 1 B 、v 2 C 、v 3 D 、v 4 2.一枚火箭由地面竖直向上发射,其v ~t 图像如图所示,则 A .火箭在t 2—t 3时间内向下运动 B .火箭能上升的最大高度为4v 1t 1 v v 12

极值法在物理解题中的应用

极值法在物理解题中的应用 极值法又称为极端假设法,在数学教学里面是很有效的解题方法,将数学解题思想运用到物理的解题过程中,可以使物理解题变得更加简单快捷,简化了解题过程,使解题思路变得更加清晰,为考试赢得了时间. 例1如图1甲所示的电路,电源电压保持不变.闭合开关S,调节滑动变阻器,两电压表的示数随电路中电流变化的图线如图1乙所示.根据图线的信息可知:电源电压为,电阻R1的阻值为Ω. 解析首先这是一条串联电路,串联电路中有一个重要的性质就是串联分压U1∶U2=R1∶R2,R2是一只滑动变阻器,运用极值法,当P在最左端的时候,R2接入电路的阻值为0,其两端的电压也就为0,此时电路中的电流最大,从而确定乙图中的乙为R2对应的图线,此时的最大电流为0.6 A,图线甲所对应则代表R1,其对应的电压为6 V,电阻则为10 Ω;同样我们再次运用极值法,当滑片P在最右端的时候,总电阻取得最大值,电路中的电流则取得最小值0.2 A,此时总电阻为30 Ω,R2最大阻值为20 Ω.

将极值法与图象巧妙的结合,建立一一对应的关系,让学生很容易找到极值法所对应的极值点,帮助我们确定图象中各个数据点的意义与关系,从而找到我们所需要的信息,使得学生的思维更加清晰明朗,增强了学生解题的信心与勇气,激发了学生学习的热情和兴趣. 例2如图2所示,电源电压保持6 V不变.电流表的量程为0~0.6 A.电压表量程0~3 V,定值电阻R1的规格为“10 Ω0.5 A”,滑动变阻器R2的规格为“20 Ω 1 A”.闭合开关,为了保证电路安全,求滑动变阻器接入电路的取值范围? 解析首先我们要知道“保证电路安全”的含义,即用电器、仪表、电源等所有的一切都要在允许的范围内工作,不能超过量程或被烧坏.由题意可得,粗看本题中电流的极值是0.5 A,而不是电流表的最大量程0.6 A,很多学生知道取极值,也知道不能取0.6 A,就一下子取了0.5 A,但是在本题中,当电流取0.5 A 时,电压表的电压为5 V,显然超过了电压表的量程3 V,这是不符合保护电路安全的要求的,所以本题中应取电压表的极值3 V,带入计算,此时电流取得的最大值只能是0.3 A,从而求出电路中的最小电阻为20 Ω,得出滑动变阻器的阻值范围为10 Ω~20 Ω.

初中物理电学动态电路分析(极值问题)-困难篇包含答案

初中物理电学动态电路分析(极值问题) 一、单选题 1.如图所示,电源两端电压保持12V不变,小灯泡L上标有“6V 1A”(灯丝电阻不变),滑动变阻器R最大电阻值为60Ω.下列说法正确的是() A. S闭合后,滑片向右滑动,电压表示数增大 B. S闭合后,灯丝中的最小电流为0.2A C. 小灯泡L正常发光时,灯丝阻电阻为12 Ω D. 小灯泡L正常发光时,滑动变阻器连入电路的阻值为6Ω 2.如图所示的电路,电源电压U=12V保持不变,滑动变阻器R0标有“100Ω1A”字样,灯泡L标有“6V6W”字样(灯丝电阻不随温度而变化),电流表量程为0~0.6A,电压表量程为0~15V. 为了确保测量准确,要求电表的示数不小于其最大测量值的1/3,要使测量准确并确保电路安全,下列判断正确的是() A. 灯泡L消耗的最小功率是0.24W B. 正常发光时灯丝的电阻是12Ω C. 电路中电流的变化范围是0.11A~0.6A D. 滑动变阻器阻值的变化范围是14Ω~48Ω 3.如图所示,电源电压保持6V不变,电流表量程为0~0.6A,电压表量程为0~3V,定值电阻R1的规格为“10Ω 0.5A”,滑动变阻器R2的规格为“20Ω 1A”。闭合开关,为了保证电路安全,在变阻器滑片移动过程中,下列说法正确的是() ①电阻R1消耗电功率允许的变化范围为0.4W~0.9W ②电流表示数允许的变化范围为0.2A~0.5A ③滑动变阻器R2允许接入电路阻值的变化范围为10Ω~20Ω ④电路消耗总电功率允许的变化范围为1.8W~3W A. 只有①和③ B. 只有①和④ C. 只有②和③ D. 只有②和④ 4.如图甲所示的电路中,R0为定值电阻,R为电阻式传感器,电源电压保持不变,当R阻值从0增大到60Ω,测得R的电功率与通过它的电流关系图像如图乙,下列说法正确的是()

高中物理临界问题总结

高中物理临界问题总结 物理常见临界条件有哪些呢?正在备考的同学们赶紧来看看高中物理知识点物理常见临界条件汇总。下面是小编为您整理的作文,希望对您有所帮助。 高中物理临界问题总结 1.演绎法:以原理、定理和定律为依据,先找出所研究问题的一般规律和一般解,然后分析讨论其特殊规律和特殊解,即采用从一般到特殊的推理方法。 2.临界法:以原理、定理或定律为依据,直接从临界状态和相应的临界量入手,求出所研究问题的特殊规律和特殊解,以此对一般情况进行分析讨论和推理,即采用林特殊到一般的推理方法。 由于临界状态比一般状态简单,故解决临界问题时用临界法比演绎法简捷。在找临界状态和临界量时,常常用到极限分析法:即通过恰当地选取某个物理量(临界物理量)推向极端(“极大”和“极小”,“极左”和“极右”等),从而把隐蔵的临界现象(或“各种可能性”)暴露出来,找到解决问题的“突破口”。因此,先分析临界条件 物理学中临界问题题1 如图所示,细杆的一端与一小球相连,可绕过O点的水平轴自由转动。现给小球一初速度,使它做圆周运动,图中a、b分别表示小球轨道的最低点和最高点,则杆对球的作用力可能是 A.处为拉力,为拉力

B.处为拉力,为推力 C.处为推力,为拉力 D.处为推力,为推力 解析因为圆周运动的物体,向心力指向圆心,小球在最低点时所需向心力沿杆由a指向O,向心力是杆对小球的拉力与小球重力的合力,而重力方向向下,故杆必定给球向上的拉力,小球在最高点时若杆恰好对球没有作用力,即小球的重力恰好对球没有作用力,即小球的重力恰好提供向心力,设此时小球速度为vb,则:mg = m vb = 当小球在最高点的速度vvb时,所需的向心力Fmg,杆对小球有向下的拉力;若小球的速度vvb时,杆对小球有向上推力,故选A、B正确 评析本题关键是明确越过临界状态vb = 时,杆对球的作用力方向将发生变化。

高中物理-动力学中的临界和极值问题

高中物理-动力学中的临界和极值问题 在应用牛顿运动定律解决动力学问题时,会出现一些临界或极值条件的标志: 1.若题目中出现“恰好”“刚好”等字眼,明显表示过程中存在临界点. 2.若题目中有“取值范围”“多长时间”“多大距离”等词语,表明过程中存在着“起止点”,而这些“起止点”往往就对应临界状态. 3.若题目中有“最大”“最小”“至多”“至少”等字眼,表明过程中存在着极值,而极值点往往是临界点. 4.若题目要求“最终加速度”“稳定加速度”等即是求收尾加速度或收尾速度. 一、接触与分离的临界条件 物体分离的临界条件是相互作用力由原来的不为零变为零.因此解答此类问题,应该对原状态下研究对象的受力和运动状态进行分析,由牛顿第二定律或平衡条件列方程,令其中相互作用的弹力为零解得临界状态的加速度,以临界加速度为依据分析各种状态下物体的受力情况及运动状态的变化. 质量为m 、半径为R 的小球用长度也 为R 的轻质细线悬挂在小车车厢水平顶部的A 点,现观察到小球与车顶有接触,重力加速度为g ,则下列判断正确的是( ) A .小车正向右做减速运动,加速度大小可能为3g B .小车正向左做减速运动,加速度大小可能为3 3 g C .若小车向右的加速度大小为23g ,则车厢顶部对小球的弹力为mg D .若细线张力减小,则小球一定离开车厢顶部 [解析] 如图所示,小球恰好与车顶接触的临界状态是车顶对小球的弹力恰为零,故临界加速度a 0=g tan θ,由线长等于小球半径可得,θ=60°,a 0=3g .小球与车顶接触时,小车具有向右的加速度,加速度大小a ≥3g ,A 、B 项错;当小车向右的加速度大小a =23g 时,ma F N +mg =tan θ,解得F N =mg ,C 项正确;细线张力F T =ma sin θ, 小球与车顶接触 的临界(最小)值F Tmin =2mg ,当张力的初始值F T >2mg 时,张力减小时只要仍大于或等于临界值,小球就不会离 开车厢顶部,D 项错误. [答案] C 二、绳子断裂与松弛的临界条件 绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是F T =0. 如图所示,小车内 固定一个倾角为θ =37°的光滑斜面,用一根平行于斜面的细线系住一个质量为m =2 kg 的小球,取g =10 m/s 2,sin 37°=0.6, cos 37°=0.8,则: (1)当小车以a 1=5 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大? (2)当小车以a 2=20 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大? [解析] 本题中存在一个临界状态,即小球刚好脱离斜面的状态,设此时加速度为a 0,对小球受力分析如图甲所示.将细线拉力分解为水平x 方向和竖直y 方向两个分力, 则得到 F cos θ=ma 0 F sin θ-mg =0 a 0=g tan θ=403 m/s 2. (1)a 1=5 m/s 2

相关文档
最新文档