线性与非线性

线性与非线性
线性与非线性

线性规划与非线性规划

线性linear,指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数;非线性non-linear则指不按比例、不成直线的关系,一阶导数不为常数。

如问:两个眼睛的视敏度是一个眼睛的几倍?很容易想到的是两倍,可实际是6-10倍!这就是非线性。激光也是非线性的!天体运动存在混沌;电、光与声波的振荡,会突陷混沌;地磁场在400万年间,方向突变16次,也是由于混沌。甚至人类自己,原来都是非线性的:与传统的想法相反,健康人的脑电图和心脏跳动并不是规则的,而是混沌的,混沌正是生命力的表现,混沌系统对外界的刺激反应,比非混沌系统快。

非线性规划

nonlinear programming

具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个n

元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是线性函数的情形则属于线性规划。

简史

非线性规划是20世纪50年代才开始形成的一门新兴学科。1951年H.W.库恩和A.W.塔克发表的关于最优性条件(后来称为库恩-塔克条件)的论文是非线性规划正式诞生的一个重要标志。在50年代还得出了可分离规划和二次规划的n种解法,它们大都是以G.B.丹齐克提出的解线性规划的单纯形法为基础的。50年代末到60年代末出现了许多解非线性规划问题的有效的算法,70年代又得到进一步的发展。非线性规划在工程、管理、经济、科研、军事等方面都有广泛的应用,为最优设计提供了有力的工具。实例

下面通过实例归纳出非线性规划数学模型的一般形式,介绍有关非线性规划的基本概念。

例1 (投资决策问题)某企业有n个项目可供选择投资,并且至少要对其中一个项目投资。已知

该企业拥有总资金A元,投资于第i个项目需花资金ai元,并预计可收益bi元。试选择最佳投资方案。

解设投资决策变量为

则投资总额为∑aixi,投资总收益为∑bixi。因为该公司至少要对一个项目投资,并且总的投资金额不能超过总资金,故有限制条件

另外,由于xi只取值0或1,所以还有

最佳投资方案应是投资额最小而总收益最大的方案,所以这个最佳投资决策问题归结为总资金以及决策变量(取0或1)的限制条件下,极大化总收益和总投资之比。因此,其数学模型为:

上面例题是在一组等式或不等式的约束下,求一个函数的最大值(或最小值)问题,其中目标函数或约束条件中至少有一个非线性函数,这类问题称之为非线性规划问题,简记为(NP)。可概括为一般形式

(NP)

其中x=[x1 ... xn]称为模型(NP)的决策变量,f 称为目标函数,gi和hj 称为约束函数。另外,gi(x)=0称为等式约束,hj(x)<=0称为不等式约束。

常见问题

对于一个实际问题,在把它归结成非线性规划问题时,一般要注意如下几点:

(i)确定供选方案:首先要收集同问题有关的资料和数据,在全面熟悉问题的基础上,确认什么是问题的可供选择的方案,并用一组变量来表示它们。

(ii)提出追求目标:经过资料分析,根据实际需要和可能,提出要追求极小化或极大化的目标。

并且,运用各种科学和技术原理,把它表示成数学关系式。

(iii)给出价值标准:在提出要追求的目标之后,要确立所考虑目标的“好”或“坏”的价值标准,并用某种数量形式来描述它。

(iv)寻求限制条件:由于所追求的目标一般都要在一定的条件下取得极小化或极大化效果,因此还需要寻找出问题的所有限制条件,这些条件通常用变量之间的一些不等式或等式来表示。

数学模型

对实际规划问题作定量分析,必须建立数学模型。建立数学模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,称之为目标函数。然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,称之为约束条件。非线性规划问题的一般数学模型可表述为求未知量x1,x2,…,xn,使满足约束条件:gi(x1,…,xn)≥0 i=1,…,m

hj(x1,…,xn)=0 j=1,…,p

并使目标函数f(x1,…,xn)达到最小值(或最大值)。其中f,诸gi和诸hj都是定义在n维向量空间

Rn的某子集D(定义域)上的实值函数,且至少有一个是非线性函数。

上述模型可简记为:

min f(x)

s.t. gi(x)≥0 i=1,…,m

hj(x)=0 j=1,…,p

其中x=(x1,…,xn)属于定义域D,符号min表示“求最小值”,符号s.t.表示“受约束于”。

定义域D 中满足约束条件的点称为问题的可

行解。全体可行解所成的集合称为问题的可行集。对于一个可行解x*,如果存在x*的一个邻域,使目标函数在x*处的值f(x*)优于(指不大于或不小于)该邻域中任何其他可行解处的函数值,则称x*为问题的局部最优解(简称局部解)。如果f(x*)优于一切可行解处的目标函数值,则称x*为问题的整体最优解(简称整体解)。实用非线性规划问题要求整体解,而现有解法大多只是求出局部解。

一维最优化方法

指寻求一元函数在某区间上的最优值点的方法。这类方法不仅有实用价值,而且大量多维最优化方法都依赖于一系列的一维最优化。常用的一维最优化方法有黄金分割法、切线法和插值法。

①黄金分割法又称0.618法。它适用于单峰函数。其基本思想是:在初始寻查区间中设计一列点,通过逐次比较其函数值,逐步缩小寻查区间,以得出近似最优值点。

②切线法又称牛顿法。它也是针对单峰函数的。其基本思想是:在一个猜测点附近将目标函数的导函数线性化,用此线性函数的零点作为新的猜测点,逐步迭代去逼近最优点。

③插值法又称多项式逼近法。其基本思想是用多项式(通常用二次或三次多项式)去拟合目标函数。

此外,还有斐波那契法、割线法、有理插值法、分批搜索法等。

无约束最优化方法

指寻求n元实函数f在整个n维向量空间Rn上的最优值点的方法。这类方法的意义在于:虽然实用规划问题大多是有约束的,但许多约束最优化方法可将有约束问题转化为若干无约束问题来求解。

无约束最优化方法大多是逐次一维搜索的迭代算法。这类迭代算法可分为两类。一类需要用目标函数的导函数,称为解析法。另一类不涉及导数,只用到函数值,称为直接法。这些迭代算法的基本思想

是:在一个近似点处选定一个有利搜索方向,沿这个方向进行一维寻查,得出新的近似点。然后对新点施行同样手续,如此反复迭代,直到满足预定的精度要求为止。根据搜索方向的取法不同,可以有各种算法。属于解析型的算法有:①梯度法:又称最速下降法。这是早期的解析法,收敛速度较慢。②牛顿法:收敛速度快,但不稳定,计算也较困难。③共轭梯度法:收敛较快,效果较好。④变尺度法:这是一类效率较高的方法。其中达维登-弗莱彻-鲍威尔变尺度法,简称DFP法,是最常用的方法。属于直接型的算法有交替方向法(又称坐标轮换法)、模式搜索法、旋转方向法、鲍威尔共轭方向法和单纯形加速法等。

约束最优化方法

指前述一般非线性规划模型的求解方法。常用的约束最优化方法有4种。①拉格朗日乘子法:它是将原问题转化为求拉格朗日函数的驻点。②制约函数法:又称系列无约束最小化方法,简称SUMT 法。它又分两类,一类叫惩罚函数法,或称外点法;另一类叫障碍函数法,或称内点法。它们都是将原问题转化为一系列无约束问题来求解。③可行方向法:这是一类通过逐次选取可行下降方向去逼近最

优点的迭代算法。如佐坦迪克法、弗兰克-沃尔夫法、投影梯度法和简约梯度法都属于此类算法。④近似型算法:这类算法包括序贯线性规划法和序贯二次规划法。前者将原问题化为一系列线性规划问题求解,后者将原问题化为一系列二次规划问题求解。

凸规划

这是一类特殊的非线性规划。在前述非线性规划数学模型中,若f是凸函数,诸gi都是凹函数,诸hj都是一次函数,则称之为凸规划。所谓f是凸函数,是指f有如下性质:它的定义域是凸集,且对于定义域中任意两点x和y及任一小于1的正数α,下式都成立:

f((1-α)x +αy)α≤(1-α)f(x)+αf(y)

将上述不等式中的不等号反向即得凹函数的定义。所谓凸集,是指具有如下性质的集合:连结集合中任意两点的直线段上的点全部属于该集合。

对于一般的非线性规划问题,局部解不一定是整体解。但凸规划的局部解必为整体解,而且凸规划的可行集和最优解集都是凸集。

二次规划

一类特殊的非线性规划。它的目标函数是二次函数,约束条件是线性的。求解二次规划的方法很多。较简便易行的是沃尔夫法。它是依据库恩-塔克条件,在线性规划单纯形法的基础上加以修正而成的。此外还有莱姆基法、毕尔法、凯勒法等。

几何规划

几何规划一类特殊的非线性规划。它的目标函数和约束函数都是正定多项式(或称正项式)。几何规划本身一般不是凸规划,但经适当变量替换,即可变为凸规划。几何规划的局部最优解必为整体最优解。求解几何规划的方法有两类。一类是通过对偶规划去求解;另一类是直接求解原规划,这类算法大多建立在根据几何不等式将多项式转化为单项式的思想上。

应用问题

在经营管理、工程设计、科学研究、军事指挥等方面普遍地存在着最优化问题。例如:如何在现有人力、物力、财力条件下合理安排产品生产,以取得最高的利润;如何设计某种产品,在满足规格、性能要求的前提下,达到最低的成本;如何确定一个自动控制系统的某些参数,使系统的工作状态最

佳;如何分配一个动力系统中各电站的负荷,在保证一定指标要求的前提下,使总耗费最小;如何安排库存储量,既能保证供应,又使储存费用最低;如何组织货源,既能满足顾客需要,又使资金周转最快等。对于静态的最优化问题,当目标函数或约束条件出现未知量的非线性函数,且不便于线性化,或勉强线性化后会招致较大误差时,就可应用非线性规划的方法去处理。

参考书目

席少霖、赵凤治:《最优化计算方法》,上海科学技术出版社,上海,1983。

阿佛里耳著,李元熹等译:《非线性规划──分析与方法》,上海科学技术出版社,上海,1979。(M.Avriel, Nonlinear Programming analysis and methods,Prentice-Hall, 1976.)

赫梅布劳著,张义燊等译:《实用非线性规划》,科学出版社,北京,1981。(D.M. Himmelblau,Applied Nonlinear Programming,McGraw-Hill,New York,1972.)

非线性建筑设计中建筑表皮的表现性与逻辑性分析研究

非线性建筑设计中建筑表皮的表现性与逻辑性分析研究摘要:在非线性建筑设计中,表皮设计对其呈现的哲学观点——表现性和逻辑性结合作用是通常会产生冲突,而这种冲突对于非线性设计是有影响甚至是不利的,如何去了解这个冲突矛盾,并且找到合适并且高效的方法去解决,是本文所讨论的重点。 关键词:非线性设计;建筑表皮;表现性;逻辑性 abstract: in the nonlinear architectural design, skin design usually produces conflict with their philosophical views presented - the role of performance and logic combination, such conflict for the nonlinear design is influential or even detrimental. how to understand this conflict and contradiction, and find a suitable and efficient method to solve the problem is the focus of discussion in this article. key words: nonlinear design; building skin; performance; logic 中图分类号:tu201文献标识码: a 文章编号: 0 引言 在当今科技发展的影响下非线性建筑设计的研究获得了极大的发展。其中,非线性建筑设计的表皮也逐渐成为建筑师所关注的问题。其应用给人们视觉和心理带来的感受也越来越直观和彻底。表皮应用的合理与否更是直接影响到非线性建筑与环境的互动关系,

非线性时间序列

近代时间序列分析选讲: 一. 非线性时间序列 二. GARCH模型 三. 多元时间序列 四. 协整模型

非线性时间序列 第一章.非线性时间序列浅释 1.从线性到非线性自回归模型 2.线性时间序列定义的多样性第二章. 非线性时间序列模型 1. 概述 2. 非线性自回归模型 3.带条件异方差的自回归模型 4.两种可逆性 5.时间序列与伪随机数 第三章.马尔可夫链与AR模型 1. 马尔可夫链 2. AR模型所确定的马尔可夫链 3. 若干例子 第四章. 统计建模方法 1. 概论 2. 线性性检验 3.AR模型参数估计 4.AR模型阶数估计 第五章. 实例和展望 1. 实例 2.展望

第一章.非线性时间序列浅释 1. 从线性到非线性自回归模型 时间序列{x t}是一串随机变量序列, 它有广泛的实际背景, 特别是在经济与金融领域中尤其显著. 关于它们的从线性与非线性概念, 可从以下的例子入手作一浅释的说明. 考查一阶线性自回归模型---LAR(1): x t=αx t-1+e t, t=1,2,…(1.1) 其中{e t}为i.i.d.序列,且Ee t=0, Ee t=σ2<∞, 而且e t与{x t-1,x t-1,…}独立. 反复使用(1.1)式的递推关系, 就可得到 x t=αx t-1+e t = e t + αx t-1 = e t + α{ e t-1 + αx t-2} = e t + αe t-1 + α2 x t-2 =… = e t + αe t-1 + α2e t-2

+…+ αn-1e t-n+1 +αn x t-n. (1.2) 如果当n→∞时, αn x t-n→0, (1.3) {e t+αe t-1+α2e t-2+…+αn-1e t-n+1} →∑j=0∞αj e t-j . (1.4) 虽然保证以上的收敛是有条件的, 而且要涉及到具体收敛的含义, 但是, 对以上的简单模型, 不难相信, 当|α|<1时, (1.3)(1.4)式成立. 于是, 当|α|<1时, 模型LAR(1)有平稳解, 且可表达为 x t=∑j=0∞αj e t-j . (1.5) 通过上面叙述可见求LAR(1)模型的解有简便之优点, 此其一. 还有第二点, 容易推广到LAR(p)模型. 为此考查如下的p阶线性自回归模型LAR(p):

介绍四种典型的非线性材料

介绍四种典型的非线性材料 本文从材料的特性入手着重分析了物体的应力和应变。弹塑性分析是工程上常见问通,工程上常用ANSYS软件解决这方面的问题,工程材料的塑性变形引起的非线性问题通常是弹塑性分析。 塑性变性引起的非线性问题—弹塑性分析,工程上常用ANSYS软件来完成这方面的工作。塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说,当其应力低于比例极限时,应力—应变关系是线性的,另外,大多数材料在其应力低于屈服点时表现为弹性行为也就是说当移走载荷时其应变也完全消失。 1、塑性材料的特性 由于屈服点和比例极限相差很小,因此在ANSYS程序中假定它们相同在应力—应变的曲线中低于屈服点的叫做弹性部分,超过屈服点的叫做塑性部分也叫做应变强化部分,塑性分析中考虑了塑性区域的材料特性。 1.1 路径相关性塑性是不可恢复的,那么这种问题就与加载历史有关,这类非线性问题叫做与路径相关的或非保守的非线性,路径相关性是指对一种给定的边界条件可能有多个正确的解,内部的应力应变分布存在为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。 1.2 率相关性塑性应变的大小可能是加载速度快慢的函数,如果塑性应变的大小与时间有关这种塑性叫做率无关性塑性,相反与应变率有关的塑性叫做率相关的塑性。大多的材料都有某种程度上的率相关性,但在大多数静力分析所经历的应变范围两者的应力应变曲线差别不大,所以在一般的分析中我们变为是与率无关的。 1.3 工程应力应变与真实的应力应变塑性材料的数据一般以拉伸的应力应变曲线形式给出材料数据,可能是工程应力与工程应变也可能是真实应力与真实应变。大应变的塑性分析一般采用真实的应力应变数据,而小应变分析一般采用工程的应力应变数据。 1.4 塑性在什么时候激活当材料中的应力超过屈服点时塑性被激活也就是说有塑性应变发生而屈服应力本身可能是下列某个参数的函数:①温度;②应变率;③以前的应变历史;④侧限压力;⑤其它参数。 2、塑性理论简介 塑性理论的三个主要方面:屈服准则;流动准则;强化准则。 2.1 屈服准则 屈服准则对单向受拉试件我们可以通过简单的比较轴向应力与材料的屈服应力来决定是否有塑性变形发生,然而对于一般的应力状态是否到达屈服点并不是明显的,屈服准则是一个可以用来与单轴侧试的屈服应力相比较的应力状态的标t表示,因此知道了应力状态和屈服准则程序就能确定是否有塑性应变产生,屈服准则的值有时候也叫做等效应力,一个通用的屈服准则是Von Miles屈服准则当等效应力超过材料的屈服应力时将会发生塑性变形。 2.2.流动准则 流动准则描述了发生屈服时塑性应变的方向,也就是说流动准则定义了单个塑性应变分量等随着屈服是怎样发展的。 2.3.强化准则 强化准则描述了初始屈服准则随着塑性应变的增加是怎样发展的,等向强化是指屈服面以材料中所作塑性功的大小为基础在尺寸上扩张对Mises屈服准则来说屈服面在所有方向均匀扩张,由于等向强化在受压方向的屈服应力等于受拉过程中所达到的最高应力,随动强化假定屈服面的大小保持不变而仅在屈服的方向上移动当某个方向的屈服应力升高时其相反方向的屈服应力,应该降低在随动强化中由于拉伸方向屈服应力的增加导致压缩方向屈服应力的降低所以在对应的两个屈服应力之间总存一个的差值2yQ初始各向同性的材料在屈服后将不再是向同性的。 1.经典双线性随动强化 BKIN 2.双线性等向强化 BISO

非线性规划模型

非线性规划模型 在上一次作业中,我们对线性规划模型进行了相应的介绍及优缺点,然而在实际问题中并不是所有的问题都可以利用线性规划模型求解。实际问题中许多都可以归结为一个非线性规划问题,即如果目标函数和约束条件中包含有非线性函数,则这样的问题称为非线性规划问题。一般来说,解决非线性的问题要比线性的问题难得多,不像线性规划有适用于一般情况的单纯形法。对于线性规划来说,其可行域一般是一个凸集,只要存在最优解,则其最优解一定在可行域的边界上达到;对于非线性规划,即使是存在最优解,却是可以在可行域的任一点达到,因此,对于非线性规划模型,迄今为止还没有一种适用于一般情况的求解方法,我们在本文中也只是介绍了几个比较常用的几个求解方法。 一、非线性规划的分类 1无约束的非线性规划 当问题没有约束条件时,即求多元函数的极值问题,一般模型为 ()min 0 x R f X X ∈??? ≥?? 此类问题即为无约束的非线性规划问题 1.1无约束非线性规划的解法 1.1.1一般迭代法 即为可行方向法。对于问题()min 0x R f X X ∈??? ≥?? 给出)(x f 的极小点的初始值)0(X ,按某种规律计算出一系列的 ),2,1()( =k X k ,希望点阵}{)(k X 的极限*X 就是)(x f 的一个极小点。 由一个解向量) (k X 求出另一个新的解向量)1(+k X 向量是由方向和长度确定的,所以),2,1()1( =+=+k P X X k k k k λ 即求解k λ和k P ,选择k λ和k P 的原则是使目标函数在点阵上的值逐步减小,即 .)()()(10 ≥≥≥≥k X f X f X f 检验}{)(k X 是否收敛与最优解,及对于给定的精度0>ε,是否 ε≤?+||)(||1k X f 。 1.1.2一维搜索法 当用迭代法求函数的极小点时,常常用到一维搜索,即沿某一已知方向求目标函数的极小点。一维搜索的方法很多,常用的有: (1)试探法(“成功—失败”,斐波那契法,0.618法等); (2)插值法(抛物线插值法,三次插值法等);

非线性规划的概念和原理

第五章 非线性规划的概念和原理 非线性规划的理论是在线性规划的基础上发展起来的。1951年,库恩(H.W.Kuhn )和塔克(A.W.Tucker )等人提出了非线性规划的最优性条件,为它的发展奠定了基础。以后随着电子计算机的普遍使用,非线性规划的理论和方法有了很大的发展,其应用的领域也越来越广泛,特别是在军事,经济,管理,生产过程自动化,工程设计和产品优化设计等方面都有着重要的应用。 一般来说,解非线性规划问题要比求解线性规划问题困难得多,而且也不像线性规划那样有统一的数学模型及如单纯形法这一通用解法。非线性规划的各种算法大都有自己特定的适用范围。都有一定的局限性,到目前为止还没有适合于各种非线性规划问题的一般算法。这正是需要人们进一步研究的课题。 5.1 非线性规划的实例及数学模型 [例题6.1] 投资问题: 假定国家的下一个五年计划内用于发展某种工业的总投资为b 亿元,可供选择兴建的项目共有几个。已知第j 个项目的投资为j a 亿元,可得收益为j c 亿元,问应如何进行投资,才能使盈利率(即单位投资可得到的收益)为最高? 解:令决策变量为j x ,则j x 应满足条件() 10j j x x -= 同时j x 应满足约束条件 1 n j j j a x b =≤∑ 目标函数是要求盈利率()1121 ,,,n j j j n n j j j c x f x x x a x === ∑∑L 最大。 [例题6.2] 厂址选择问题: 设有n 个市场,第j 个市场位置为() ,j j p q ,它对某种货物的需要量为j b ()1,2,,j n =L 。 现计划建立m 个仓库,第i 个仓库的存储容量为i a ()1,2,,i m =L 。试确定仓库的位置,使各仓库对各市场的运输量与路程乘积之和为最小。 解:设第i 个仓库的位置为(),i i x y ()1,2,,i m =L ,第i 个仓库到第j 个市场的货物供应量为i j z ()1,2,,,1,2,,i m j n ==L L ,则第i 个仓库到第j 个市场的距离为

非线性模型参数估计方法步骤

EViews非线性模型参数估计方法步骤 1.新建EViews工作区,并将时间序列X、P1和P0导入到工作区; 2.设定参数的初始值全部为1,其方法是在工作区中其输入下列命令 并按回车键 param c(1) 1 c(2) 1 c(3) 1 c(4) 1 3.估计非线性模型参数,其方法是在工作区中其输入下列命令并按 回车键 nls q=exp(c(1))*x^c(2)*p1^c(3)*p0^c(4) 4.得到结果见table01(91页表3. 5.4结果)(案例一结束) Dependent Variable: Q Method: Least Squares Date: 03/29/15 Time: 21:44 Sample: 1985 2006 Included observations: 22 Convergence achieved after 9 iterations Q=EXP(C(1))*X^C(2)*P1^C(3)*P0^C(4) Coefficient Std. Error t-Statistic Prob. C(1) 5.567708 0.083537 66.64931 0.0000 C(2) 0.555715 0.029067 19.11874 0.0000 C(3) -0.190154 0.143823 -1.322146 0.2027 C(4) -0.394861 0.159291 -2.478866 0.0233 R-squared 0.983631 Mean dependent var 1830.000 Adjusted R-squared 0.980903 S.D. dependent var 365.1392 S.E. of regression 50.45954 Akaike info criterion 10.84319 Sum squared resid 45830.98 Schwarz criterion 11.04156 Log likelihood -115.2751 Hannan-Quinn criter. 10.88992 Durbin-Watson stat 0.672163 (92页表3.5.5结果)(案例二过程) 5.新建EViews工作区,并将时间序列X、P1和P0导入到工作区;

第三章 非线性规划[001]

第三章 非线性规划 §1 非线性规划 1.1 非线性规划的实例与定义 如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。一般说来,解非线性规划要比解线性规划问题困难得多。而且,也不象线性规划有单纯形法这一通用方法,非线性规划目前还没有适于各种问题的一般算法,各个方法都有自己特定的适用范围。 下面通过实例归纳出非线性规划数学模型的一般形式,介绍有关非线性规划的基本概念。 例 1 (投资决策问题)某企业有n 个项目可供选择投资,并且至少要对其中一个项目投资。已知该企业拥有总资金A 元,投资于第),,1(n i i 个项目需花资金i a 元,并预计可收益i b 元。试选择最佳投资方案。 解 设投资决策变量为 个项目 决定不投资第,个项目决定投资第i i x i 0,1,n i ,,1 , 则投资总额为 n i i i x a 1 ,投资总收益为 n i i i x b 1。因为该公司至少要对一个项目投资,并且总的投资金额不能超过总资金A ,故有限制条件 n i i i A x a 10 另外,由于),,1(n i x i 只取值0或1,所以还有 .,,1,0)1(n i x x i i 最佳投资方案应是投资额最小而总收益最大的方案,所以这个最佳投资决策问题归结为总资金以及决策变量(取0或1)的限制条件下,极大化总收益和总投资之比。因此,其数学模型为: n i i i n i i i x a x b Q 11 max s.t. n i i i A x a 10 .,,1,0)1(n i x x i i 上面例题是在一组等式或不等式的约束下,求一个函数的最大值(或最小值)问题,其中至少有一个非线性函数,这类问题称之为非线性规划问题。可概括为一般形式 )(min x f q j x h j ,,1,0)(s.t. (NP) p i x g i ,,1,0)(

非线性回归

非线性回归 一、可化为线性回归的曲线回归 在实际问题当中,有许多回归模型的被解释变量y 与解释变量x 之间的关系都不是线性的,其中一些回归模型通过对自变量或因变量的函数变换可以转化为线性关系,利用线性回归求解未知参数,并作回归诊断。如下列模型。 ε ββ++=x e y 10-------(1) εββββ+++++=p p x x x y 2210--------(2) ε e ae y bx =--------------------(3) ε+=bx ae y -------------(4) 对于(1)式,只需令x e x ='即可化为y 对x '是线性的形式εββ+'+=x y 10,需要指出的是,新引进的自变量只能依赖于原始变量,而不能与未知参数有关。 对于(2)式,可以令1x =x ,2x =2x ,…, p x =p x ,于是得到y 关于1x ,2x ,…, p x 的线性表达式εββββ+++++=p p x x x y 22110 对与(3)式,对等式两边同时去自然数对数,得ε++=bx a y ln ln ,令 y y ln =',a ln 0=β,b =1β,于是得到y '关于x 的一元线性回归模型: ε ββ++='x y 10。对于(4)式,当b 未知时,不能通过对等式两边同时取自然 数对数的方法将回归模型线性化,只能用非线性最小二乘方法求解。 回归模型(3)可以线性化,而(4)不可以线性化,两个回归模型有相同的回归函数bx ae ,只是误差项ε的形式不同。(3)式的误差项称为乘性误差项,(4)式的误差项称为加性误差项。因而一个非线性回归模型是否可以线性化,不仅与回归函数的形式有关,而且与误差项的形式有关,误差项的形式还可以有其他多种形式。 乘性误差项模型和加性误差项模型所得的结果有一定差异,其中乘性误差项模型认为t y 本身是异方差的,而t y ln 是等方差的。加性误差项模型认为t y 是等方差的。从统计性质看两者的差异,前者淡化了t y 值大的项(近期数据)的作用,强化了t y 值小的项(早期数据)的作用,对早起数据拟合得效果较好,而后者则对近期数据拟合得效果较好。 影响模型拟合效果的统计性质主要是异方差、自相关和共线性这三个方面。异方差可以同构选择乘性误差项模型和加性误差项模型解决,必要时还可以使用加权最小二乘。 二、多项式回归 多项式回归模型是一种重要的曲线回归模型,这种模型通常容易转化为一般的多元线性回归来做处理。

非线性回归分析

非线性回归分析(转载) (2009-10-23 08:40:20) 转载 分类:Web分析 标签: 杂谈 在回归分析中,当自变量和因变量间的关系不能简单地表示为线性方程,或者不能表示为可化为线性方程的时侯,可采用非线性估计来建立回归模型。 SPSS提供了非线性回归“Nonlinear”过程,下面就以实例来介绍非线性拟合“Nonlinear”过程的基本步骤和使用方法。 应用实例 研究了南美斑潜蝇幼虫在不同温度条件下的发育速率,得到试验数据如下: 表5-1 南美斑潜蝇幼虫在不同温度条件下的发育速率 温度℃17.5 20 22.5 25 27.5 30 35 发育速率0.0638 0.0826 0.1100 0.1327 0.1667 0.1859 0.1572 根据以上数据拟合逻辑斯蒂模型: 本例子数据保存在DATA6-4.SAV。 1)准备分析数据 在SPSS数据编辑窗口建立变量“t”和“v”两个变量,把表6-14中的数据分别输入“温度”和“发育速率”对应的变量中。 或者打开已经存在的数据文件(DATA6-4.SAV)。 2)启动线性回归过程 单击SPSS主菜单的“Analyze”下的“Regression”中“Nonlinear”项,将打开如图5-1

所示的线回归对话窗口。 图5-1 Nonlinear非线性回归对话窗口 3) 设置分析变量 设置因变量:从左侧的变量列表框中选择一个因变量进入“Dependent(s)”框。本例子选“发育速率[v]”变量为因变量。 4) 设置参数变量和初始值 单击“Parameters”按钮,将打开如图6-14所示的对话框。该对话框用于设置参数的初始值。 图5-2 设置参数初始值

非线性规划模型

非线性规划模型 在上一次作业中,我们对线性规划模型进行了相应的介绍及优缺点,然而在 实际问题中并不是所有的问题都可以利用线性规划模型求解。实际问题中许多都 可以归结为一个非线性规划问题,即如果目标函数和约束条件中包含有非线性函数,则这样的问题称为非线性规划问题。一般来说,解决非线性的问题要比线性的问题难得多,不像线性规划有适用于一般情况的单纯形法。对于线性规划来说,其可行域一般是一个凸集,只要存在最优解,则其最优解一定在可行域的边界上达到;对于非线性规划,即使是存在最优解,却是可以在可行域的任一点达到,因此,对于非线性规划模型,迄今为止还没有一种适用于一般情况的求解方法,我们在本文中也只是介绍了几个比较常用的几个求解方法。 一、非线性规划的分类1无约束的非线性规划当问题没有约束条件时,即求多元函数 的极值问题,一般模型为 I r m i n f(X) X 一0 此类问题即为无约束的非线性规划问题 1.1无约束非线性规划的解法 1.1.1 一般迭代法 即为可行方向法。对于问题J mnf(X) [X X O 给出f (X)的极小点的初始值X(O),按某种规律计算出一系列的X(k)(k =1,2,…), 希望点阵{X (k)}的极限X "就是f (X)的一个极小点。 由一个解向量X(k)求出另一个新的解向量X(kI) 向量是由方向和长度确定的,所以XZ I)=X k「k P k(k =12…) 即求解A和P k,选择'k和P k的原则是使目标函数在点阵上的值逐步减小,即 f (X0) 一f (X1) 一- f (X k) 一. 检验{X(k)}是否收敛与最优解,及对于给定的精度;7,是否IIlf(X k JlF ; 1.1.2 一维搜索法 当用迭代法求函数的极小点时,常常用到一维搜索,即沿某一已知方向求目标函数的极小点。一维搜索的方法很多,常用的有: (1)试探法(“成功一失败”,斐波那契法,0.618法等); (2)插值法(抛物线插值法,三次插值法等); (3)微积分中的求根法(切线法,二分法等)。考虑一维极小化问题 a?f(t) 若f (t)是[a,b]区间上的下单峰函数,我们介绍通过不断地缩短[a,b]的长度,来

简析非线性建筑的设计

龙源期刊网 https://www.360docs.net/doc/fc8738591.html, 简析非线性建筑的设计 作者:贾景奇张娜 来源:《科技探索》2013年第09期 中图分类号:TU 文献标识码:A 文章编号:1007-0745(2013)09-0186-01 摘要:当前,西方建筑创作中出现的追求非线性形态的倾向于非线性科学有着不解的渊源,一些建筑师有意或无意地引入了非线性科学的基本原理来拓展建筑创作的理论和方法。非线性复杂形体建筑是用理性表达感情的典型建筑类型,虽然目前在世界范围内,总体的建造量不算太大,但它代表了建筑设计领域和建筑技术的最高水准。 关键词:建筑非线性建筑形式建筑立面 任何艺术的理论、形式、风格的产生,都与当时的时代背景息息相关,建筑更不例外。1920年产生的现代主义建筑体系在统治了世界近半个世纪后,历史进入了一个多元共存的时代,各种学科的交叉融合,为建筑理论地发展与建筑设计的创新提供了丰富的养分,建筑师们在各种新思想与新理论地指导下不断进行着各种建筑实践的探索,各种各样的建筑理论与建筑形式不断涌现。在可持续发展成为人类实践主题的当代,建筑师们都希望能够为建筑学的发展找到正确的方向。非线性建筑设计冲破了传统欧几里得几何学与现代主义建筑匀质空间的限制,走向动感强烈、风格多变的自由空间造型艺术的领域[1]。这样的建筑必定是运用最新地 科学理论与建筑技术,迎合人类社会的发展趋势并体现时代精神特色。 建筑作为一种塑造物质形体和空间的造型艺术,似乎先天的拥有“形式”的优先权[2]。当代世界建筑在"复杂性科学研究"的影响下,建筑形态呈现平滑、折叠、混沌的趋势以及复杂性 形态[3]。2004年竣工的瑞士再保险公司总部大楼坐落在伦敦圣玛丽阿克斯大街,是座玻璃外观的尖顶摩天大厦,高180米,40层。面对狭窄的基地,建筑师没有追求强烈的视觉效果, 而是试图找到”适合基地的最有效的结构”,生态节能,顺应环境成为建筑的出发点。为此福斯事务所组织了一个由建筑师、结构工程师、建筑物理工程师数学家、计算机编程员等各类专家特殊的设计顾问小组。他们借助于特定的计算机程序,通过严谨的数学公式生成各种几何形式,对其进行理性的评估、筛选。建筑最终经过电脑模拟和风洞试验,由空气动力学决定,形成了这种螺旋形的双曲面型体。 建筑形体备良好的物理性能 (1)塔楼表面的空气动力学曲面能够引导风能沿建筑表面光滑地吹过,大大降低了建筑的 风荷载。 (2)风经过建筑时,会在其表面形成一定的风压,从而增强了建筑室内通风。 (3)避免在建筑周边产生的强烈下旋气流和强风,改善了建筑周边城市环境的通风状况。

求解非线性规划

非线性规划的实例与定义 如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。一般说来,解非线性规划要比解线性规划问题困难得多。而且,也不象线性规划有单纯形法这一通用方法,非线性规划目前还没有适于各种问题的一般算法,各个方法都有自己特定的适用范围。 1.2 线性规划与非线性规划的区别 如果线性规划的最优解存在,其最优解只能在其可行域的边界上达到(特别是可行域的顶点上达到);而非线性规划的最优解(如果最优解存在)则可能在其可行域的任意一点达到。 1.3 非线性规划的Matlab 解法 Matlab 中非线性规划的数学模型写成以下形式 )(min x f ???????=≤=?≤0 )(0)(x Ceq x C Beq x Aeq B Ax , 其中)(x f 是标量函数, Beq Aeq B A ,,,是相应维数的矩阵和向量,)(),(x Ceq x C 是非线性向量函数。 Matlab 中的命令是 X=FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS) 它的返回值是向量x ,其中FUN 是用M 文件定义的函数)(x f ;X0是x 的初始值;A,B,Aeq,Beq 定义了线性约束Beq X Aeq B X A =≤*,*,如果没有等式约束,则A=[],B=[],Aeq=[],Beq=[];LB 和UB 是变量x 的下界和上界,如果上界和下界没有约束,则LB=[],UB=[],如果x 无下界,则LB=-inf ,如果x 无上界,则UB=inf ;NONLCON 是用M 文件定义的非线性向量函数)(),(x Ceq x C ;OPTIONS 定义了优化参数,可以使用Matlab 缺省的参数设置。 例2 求下列非线性规划问题

求解非线性规划

求解非线性规划

————————————————————————————————作者:————————————————————————————————日期:

非线性规划的实例与定义 如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。一般说来,解非线性规划要比解线性规划问题困难得多。而且,也不象线性规划有单纯形法这一通用方法,非线性规划目前还没有适于各种问题的一般算法,各个方法都有自己特定的适用范围。 1.2 线性规划与非线性规划的区别 如果线性规划的最优解存在,其最优解只能在其可行域的边界上达到(特别是可行域的顶点上达到);而非线性规划的最优解(如果最优解存在)则可能在其可行域的任意一点达到。 1.3 非线性规划的Matlab 解法 Matlab 中非线性规划的数学模型写成以下形式 )(min x f ???????=≤=?≤0 )(0)(x Ceq x C Beq x Aeq B Ax , 其中)(x f 是标量函数,Beq Aeq B A ,,,是相应维数的矩阵和向量,)(),(x Ceq x C 是非线性向量函数。 Matlab 中的命令是 X=FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS) 它的返回值是向量x ,其中FUN 是用M 文件定义的函数)(x f ;X0是x 的初始值;A,B,Aeq,Beq 定义了线性约束Beq X Aeq B X A =≤*,*,如果没有等式约束,则A=[],B=[],Aeq=[],Beq=[];LB 和UB 是变量x 的下界和上界,如果上界和下界没有约束,则LB=[],UB=[],如果x 无下界,则LB=-inf ,如果x 无上界,则UB=inf ;NONLCON 是用M 文件定义的非线性向量函数)(),(x Ceq x C ;OPTIONS 定义了优化参数,可以使用Matlab 缺省的参数设置。 例2 求下列非线性规划问题

matlab非线性参数拟合估计_很好的参考材料

使用nlinfit、fminsearch在matlab中实现基于最小二乘法的 非线性参数拟合 (整理自网上资源) 最小二乘法在曲线拟合中比较普遍。拟合的模型主要有 1.直线型 2.多项式型 3.分数函数型 4.指数函数型 5.对数线性型 6.高斯函数型 ...... 一般对于LS问题,通常利用反斜杠运算“\”、fminsearch或优化工具箱提供的极小化函数求解。在Matlab中,曲线拟合工具箱也提供了曲线拟合的图形界面操作。在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型。 “\”命令 1.假设要拟合的多项式是:y=a+b*x+c*x^ 2.首先建立设计矩阵X: X=[ones(size(x)) x x^2]; 执行: para=X\y para中包含了三个参数:para(1)=a;para(2)=b;para(3)=c; 这种方法对于系数是线性的模型也适应。 2.假设要拟合:y=a+b*exp(x)+cx*exp(x^2) 设计矩阵X为 X=[ones(size(x)) exp(x) x.*exp(x.^2)]; para=X\y 3.多重回归(乘积回归) 设要拟合:y=a+b*x+c*t,其中x和t是预测变量,y是响应变量。设计矩阵为X=[ones(size(x)) x t] %注意x,t大小相等! para=X\y polyfit函数 polyfit函数不需要输入设计矩阵,在参数估计中,polyfit会根据输入的数据生成设计矩阵。 1.假设要拟合的多项式是:y=a+b*x+c*x^2 p=polyfit(x,y,2) 然后可以使用polyval在t处预测: y_hat=polyval(p,t) polyfit函数可以给出置信区间。 [p S]=polyfit(x,y,2) %S中包含了标准差 [y_fit,delta] = polyval(p,t,S) %按照拟合模型在t处预测 在每个t处的95%CI为:(y_fit-1.96*delta, y_fit+1.96*delta)

非线性规划

非线性规划(nonlinear programming) 1.非线性规划概念 非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个n元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是线性函数的情形则属于线性规划。 2.非线性规划发展史 公元前500年古希腊在讨论建筑美学中就已发现了长方形长与宽的最佳比例为0.618,称为黄金分割比。其倒数至今在优选法中仍得到广泛应用。在微积分出现以前,已有许多学者开始研究用数学方法解决最优化问题。例如阿基米德证明:给定周长,圆所包围的面积为最大。这就是欧洲古代城堡几乎都建成圆形的原因。但是最优化方法真正形成为科学方法则在17世纪以后。17世纪,I.牛顿和G.W.莱布尼茨在他们所创建的微积分中,提出求解具有多个自变量的实值函数的最大值和最小值的方法。以后又进一步讨论具有未知函数的函数极值,从而形成变分法。这一时期的最优化方法可以称为古典最优化方法。 最优化方法不同类型的最优化问题可以有不同的最优化方法,即使同一类型的问题也可有多种最优化方法。反之,某些最优化方法可适用于不同类型的模型。最优化问题的求解方法一般可以分成解析法、直接法、数值计算法和其他方法。 (1)解析法:这种方法只适用于目标函数和约束条件有明显的解析表达式的情况。求解方法是:先求出最优的必要条件,得到一组方程或不等式,再求解这组方程或不等式,一般是用求导数的方法或变分法求出必要条件,通过必要条件将问题简化,因此也称间接法。 (2)直接法:当目标函数较为复杂或者不能用变量显函数描述时,无法用解析法求必要条件。此时可采用直接搜索的方法经过若干次迭代搜索到最优点。这种方法常常根据经验或通过试验得到所需结果。对于一维搜索(单变量极值问题),主要用消去法或多项式插值法;对于多维搜索问题(多变量极值问题)主要应用爬山法。 (3)数值计算法:这种方法也是一种直接法。它以梯度法为基础,所以是一种解析与数值计算相结合的方法。 (4)其他方法:如网络最优化方法等。

(完整版)线性分析与非线性分析的区别

线性分析在结构方面就是指应力应变曲线刚开始的弹性部分,也就是没有达到应力屈服点的结构分析 非线性分析包括状态非线性,几何非线性,以及材料非线性,状态非线性比如就是钓鱼竿,几何比如就是物体的大变形,材料比如就是塑性材料属性。

2.非线性行为的原因 引起结构非线性的原因很多,主要可分为以下3种类型。 (1)状态变化(包括接触) 许多普通结构表现出一种与状态相关的非线性行为。例如,一根只能拉伸的电缆可能是松弛的,也可能是绷紧的;轴承套可能是接触的,也可能是不接触的;冻土可能是冻结的,也可能是融化的。这些系统的刚度由于系统状态的改变而突然变化。状态改变或许和载荷直接有关(如在电缆情况中),也可能是由某种外部原因引起的(如在冻土中的紊乱热力学条件)。接触是一种很普遍的非线性行为,接触是状态变化非线性类型中一个特殊而重要的子集。(2)几何非线性 结构如果经受大变形,其变化的几何形状可能会引起结构的非线性响应。如图5.2所示的钓鱼杆,在轻微的载荷作用下,会产生很大的变形。随着垂向载荷的增加,杆不断弯曲导致动力臂明显减少,致使杆在较高载荷下刚度不断增加。 (3)材料非线性

非线性的应力-应变关系是结构非线性的常见原因。许多因素可以影响材料的应力-应变性质,包括加载历史(如在弹-塑性响应状况下)、环境状况(如温度)、加载的时间总量(如在蠕变响应状况下)等。 3.非线性结构分析中应注意的问题 (1)牛顿-拉普森方法 ANSYS程序的方程求解器可以通过计算一系列的联立线性方程来预测工程系统的响应。然而,非线性结构的行为不能直接用这样一系列的线性方程来表示,需要一系列的带校正的线性近似来求解非线性问题。 一种近似的非线性求解是将载荷分成一系列的载荷增量。可以在几个载荷步内或者在一个载荷步的几个子步内施加载荷增量。在每一个增量的求解完成后,继续进行下一个载荷增量之前,程序调整刚度矩阵以反映结构刚度的非线性变化。遗憾的是,纯粹的增量近似不可避免地随着每一个载荷增量积累误差,最终导种结果失去平衡,如图5.3a所示。 ANSYS程序通过使用牛顿-拉普森平衡迭代克服了这种困难,在某个容限范围内,它使每一个载荷增量的末端解都达到平衡收敛。图5.3b描述了在单自由度非线性分析中牛顿-拉普森平衡迭代的使用。在每次求解前,NR方法估算出残差矢量,这个矢量是回复力(对应于单元应力的载荷)和所加载荷的差值。之后,程序使用非平衡载荷进行线性求解,并且核查收敛性。如果不满足收敛准则,则重新估算非平衡载荷,修改刚度矩阵,获得新解,持续这种迭代过程直到问题收敛。 几何非线性分析 随着位移增长,一个有限单元已移动的坐标可以以多种方式改变结构的刚度。一般来说这类问题总是非线性的,需要进行迭代获得一个有效的解。 大应变效应 一个结构的总刚度依赖于它组成单元的方向和刚度。当一个单元的节点经历位移后,那个单元对总体结构刚度的贡献可以以两种方式改变。首先,如果这个单元的形状改变,它的单元刚度将改变,如图5.9a所示;其次,如果这个单元的取向改变,它的单元刚度也将改变,如图5.9b所示。小变形和小应变分析假定位移小到足够使所得到的刚度改变无足轻重。这

几何非线性分析

几何非线性分析 随着位移增长,一个有限单元已移动的坐标可以以多种方式改变结构的刚度。一般来说这类问题总是是非线性的,需要进行迭代获得一个有效的解。 大应变效应 一个结构的总刚度依赖于它的组成部件(单元)的方向和单刚。当一个单元的结点经历位移后,那个单元对总体结构刚度的贡献可以以两种方式改变变。首先,如果这个单元的形状改变,它的单元刚度将改变。(看图2─1(a))。其次,如果这个单元的取向改变,它的局部刚度转化到全局部件的变换也将改变。(看图2─1(b))。小的变形和小的应变分析假定位移小到足够使所得到的刚度改变无足轻重。这种刚度不变假定意味着使用基于最初几何形状的结构刚度的一次迭代足以计算出小变形分析中的位移。(什么时候使用“小”变形和应变依赖于特定分析中要求的精度等级。 相反,大应变分析说明由单元的形状和取向改变导致的刚度改变。因为刚度受位移影响,且反之亦然,所以在大应变分析中需要迭代求解来得到正确的位移。通过发出NLGEOM,ON(GUI路径Main Menu>Solution>Analysis Options),来激活大应变效应。这效应改变单元的形状和取向,且还随单元转动表面载荷。(集中载荷和惯性载荷保持它们最初的方向。)在大多数实体单元(包括所有的大应变和超弹性单元),以及部分的壳单元中大应变特性是可用的。在ANSYS/Linear Plus程序中大应变效应是不可用的。

图1─11 大应变和大转动 大应变处理对一个单元经历的总旋度或应变没有理论限制。(某些ANSYS 单元类型将受到总应变的实际限制──参看下面。)然而,应限制应变增量以保持精度。因此,总载荷应当被分成几个较小的步,这可以〔NSUBST,DELTIM,AUTOTS〕,通过GUI路径 Main Menu>Solution>Time/Prequent)。无论何时当系统是非保守系统,来自动实现如在模型中有塑性或摩擦,或者有多个大位移解存在,如具有突然转换现象,使用小的载荷增量具有双重重要性。 关于大应变的特殊建模讨论 应力─应变 在大应变求解中,所有应力─应变输入和结果将依据真实应力和真实(或对数)应变。(一维时,真实应变将表求为。对于响应的小应变区,真实应变和工程应变基本上是一致的。)要从小工程应变转换成对数应变,使用。要从工程应力转换成真实应力,使用。(这种应力)转化反对不可压缩塑性应力─应变数据是有效的。) 为了得到可接受的结果,对真实应变超过50%的塑性分析,应使用大应变单元(VISCO106,107及108)。 单元的形状 应该认识到在大应变分析的任何迭代中低劣的单元形状(也就是,大的纵横比,过度的顶角以及具有负面积的已扭曲单元)将是有害的。因此,你必须和注

一般非线性规划

一般非线性规划 标准型为: min F(X) s.t AX<=b b e q X A e q =? G(X)0≤ Ceq(X)=0 VLB ≤X ≤VUB 其中X 为n 维变元向量,G(X)与Ceq(X)均为非线性函数组成的向量,其它变量的含义与线性规划、二次规划中相同.用Matlab 求解上述问题,基本步骤分三步: 1. 首先建立M 文件fun.m,定义目标函数F (X ): function f=fun(X); f=F(X); 2. 若约束条件中有非线性约束:G(X)0≤或Ceq(X)=0,则建立M 文件nonlcon.m 定义函数G(X)与Ceq(X): function [G,Ceq]=nonlcon(X) G=... Ceq=... 3. 建立主程序.非线性规划求解的函数是fmincon,命令的基本格式如下: (1) x=fmincon (‘fun’,X0,A,b) (2) x=fmincon (‘fun’,X0,A,b,Aeq,beq) (3) x=fmincon (‘fun’,X0,A,b, Aeq,beq,VLB,VUB) (4) x=fmincon (‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’) (5)x=fmincon (‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’,options) (6) [x,fval]= fmincon(...) (7) [x,fval,exitflag]= fmincon(...) (8)[x,fval,exitflag,output]= fmincon(...) 注意: [1] fmincon 函数提供了大型优化算法和中型优化算法。默认时,若在

非线性科学介绍)

【内容提要】非线性科学是研究非线性现象共性的一门新兴的交叉学科。其主要研究内容包括混沌、分形和孤立子。本文主要介绍了非线性科学的起源、主要内容、主要研究方法及其工程应用,并对其未来发展进行了一些思考。 【关键词】非线性科学/研究方法/工程应用 非线性科学是研究非线性现象共性的一门新兴的交叉学科,产生于20世纪六七十年代。其标志是:1963年美国气象学家洛伦兹发表的《确定论的非周期流》论文,揭示确定性非线性方程存在混沌(Chaos);1965年数学家查布斯基和克鲁斯卡尔通过计算机实验发现孤立子(Soliton);1975年美籍数学家芒德勃罗发表《分形:形态、机遇和维数》一书,创立了分形(Fractal)理论。混沌、孤立子、分形代表了非线性现象的三大普适类,构成非线性科学的三大理论。[1] 非线性科学的发展标志着人类对自然的认识由线性现象发展到非线性现象。非线性科学中的混沌理论被认为是20世纪继相对论、量子力学之后的又一次革命;分形几何是继微积分以来的又一次革命;孤立子理论则预示着物理学与数学的统一。 一、线性科学与非线性科学

所谓线性,是指量与量之间的关系用直角坐标系形象地表示出来时是一条直线。在数学上,主要通过对算子的描述来讨论系统的线性与否。如果算子Y满足: 其中,α为常数,u、v为任意函数,则称算子为线性算子,否则称为非线性算子。[2]线性系统中部分之和等于整体,描述线性系统的方程遵从叠加原理,即方程的不同解加起来仍然是方程的解。线性理论是研究线性系统的理论,主要包括:牛顿经典力学、爱因斯坦的相对论和量子力学理论等,它有成熟的数学工具,如线性方程、曲线,以及微积分等数学方法。[3] 虽然非线性问题自古以来就有,但人们开始只能解决线性问题,随着科学技术的发展,在解决非线性问题方面才逐步取得进展。当代所有的科学前沿问题几乎都是非线性问题。从物理现象来看,线性现象是在空间和时间上光滑和规则的运动,非线性现象则是从规则运动向不规则运动的过渡和突变。非线性科学贯穿了自然科学、工程科学、数学和社会科学的几乎每门学科。[4] 二、非线性科学的起源[5]

相关文档
最新文档