高压静电纺丝法制备聚芳醚酮超细纤维非织造布

高压静电纺丝法制备聚芳醚酮超细纤维非织造布
高压静电纺丝法制备聚芳醚酮超细纤维非织造布

傅克反应与聚芳醚-砜-酮

傅-克反应,又称傅列德尔-克拉夫茨反应(Friedel –Crafts reaction ),由法国化学家查尔斯?傅列德尔与美国化学家詹姆斯?克拉夫茨于1877年,共同发现,是一类针对芳香族的亲电取代反应。根据取代物的不同,该反应主要分为傅列德尔-克拉夫茨烷基化反应和傅列德尔-克拉夫茨酰基化反应。由于傅-克反应是实现碳碳成键的最有效方式之一,并且是制备各种芳基酮, 杂环芳烃酮等的重要手段, 所以它在医药、农药、染料、香料等工业生产中具有非常广泛的应用。在聚合物合成上与之相关的是一类高性能工程材料,聚(醚)砜和聚(醚)酮。1962年,Dupont 公司的Bonner ,首次采用傅克反应合成了聚醚酮酮(PEKK )。 傅克反应机理如下所示: S O O Cl C O Cl O O AlCl 4 + C O AlCl 3 O -H S O O 聚(醚)砜和聚(醚)酮类聚合物按傅克亲电取代路线合成时,由于所用单体大多来源方便、价格低廉,而且合成反应容易控制,不需要高温和真空条件,反应条件温和,因此聚合物大多成本低,容易得到推广应用。一般反应条件为在无水AlCl 3和N ,N-二甲基甲酰胺(DMF )存在下,于1,2-二氯乙烷(DCE )中进行低温(冰水浴)共缩聚反应。 然而,聚合过程中被带正电荷的亲电试剂进攻的苯环上的5个氢具有相等的活性,尽管由于空间位阻的作用对位的氢最易于脱去,然而其他的氢仍有可能被亲电试剂进攻,这样就必然得到有一定程度支化和交联的聚合物。支化、交联反应一般会降低树脂的性能,导致高温流动性差,冲击强度低,脆性大,后加工困难等。在支化、交联严重时,将得不到具有使用价值的反应产物。

静电纺丝法简介

CENTRAL SOUTH UNIVERSITY 硕士生课程论文 题目静电纺丝法简介 学生姓名张辉华 学号133511018 指导教师秦毅红 学院冶金与环境学院专业冶金工程 完成时间2014.5.27

静电纺丝法简介 摘要:静电纺丝法是聚合物溶液或熔体在静电作用下进行喷射拉伸而获得纳米级纤维的纺丝,作为一种新颖的纳米纤维制备方法,具有许多一般纳米纤维制备法没有的优点,在国内外一直引起广泛的关注。本文主要是介绍了静电纺丝的基本原理以及研究重点,同时简要地介绍了此方法在电池材料一起其他材料上的应用。 前言 静电纺丝就是高分子流体静电雾化的特殊形式,此时雾化分裂出的物质不是微小液滴,而是聚合物微小射流,可以运行相当长的距离,最终固化成纤维。静电纺丝技术在1934年首先由Formhals[1]提出, 随后的相当长一段时间又有多项专利出现。近年来,随着纳米材料研究的兴起,人们发现由电纺制得的纤维的直径可以达到纳米级,使得这种技术重新受到重视并出现了大量的文献[2]。目前, 主要是从事材料、化工和高分子领域的科学家在研究静电纺丝。 1 静电纺丝实验装置与基本原理 1.1 电纺过程 所需设备高压电源,溶液储存装置,喷射装置( 如内径 1 mm 的毛细管) 和收集装置( 如金属平板、铝箔等) 。图1为传统的单纺装置。 图1 经典的静电纺丝装置示意图

高压静电场(一般在几千到几万伏) 在毛细喷丝头和接地极间瞬时产生一个电位差,使毛细管内聚合物溶液或者熔融体(一般为非牛顿流体) 克服自身的表面张力和粘弹性力,在喷丝头末断呈现半球状的液滴。随着电场强度增加,液滴被拉成圆锥状即Taylor锥。当电场强度超过一临界值后,将克服液滴的表面张力形成射流(一般流速数m/s),在电场中进一步加速,直径减小,拉伸成一直线至一定距离后弯曲,进而循环或者循螺旋形路径行走,伴随溶剂挥发或熔融体冷却固化,终落在收集板上形成纤维,直径一般在几十纳米到几微米之间。 除去传统的单纺丝还有其他的一些纺丝方式,如同轴静电纺丝,共轴复合纺丝就是将两种不同聚合物溶液预先不经混合, 而是各自在电场力的驱动下共轴 喷射经过同一个毛细管或注射器针头出口,得到连续的复合纤维的方法,该纤维具有核-壳结构。共轴复合纺丝设备如图2(a)所示,核-壳结构纤维如图2(b)所示。 图2 同轴纺丝和复合纤维形貌 同轴纺丝能直接接一步制备复合微/纳米线,可以制备医用复合纳米线、空心纳米管,这种方法制备出来的材料品质要明显优于涂覆法制备的材料。此外可以将碳纳米管与挥发性溶剂混合液用作内纺液, 将聚合物溶液用作外纺液, 利用溶剂的挥发性就可以携带碳纳米管渗透到外层聚合物中, 形成连续的碳纳米管增强 的复合纳米纤维。

聚芳醚酮和聚醚醚酮简介

聚芳醚酮(PAEK)简介 聚芳醚酮(英文名称polyetherketoneketone)简称PAEK。是一类亚苯基环通过氧桥(醚键)和羰基(酮)连接而成的一类结晶型聚合物。按分子链中醚键、酮基与苯环连接次序和比例的不同,可形成许多不同的聚合物。 主要有聚醚醚酮(PEEK)、聚醚酮(PEK)、聚醚酮酮(PEKK)、聚醚醚酮酮(PEEKK)和聚醚酮醚酮酮(PEKEKK)等品种。 聚芳醚酮分子结构中含有刚性的苯环,因此具有优良的高温性能、力学性能、电绝缘性、耐辐射和耐化学品性等特点。聚芳醚酮分子结构中的醚键又使其具有柔性,因此可以用热塑性工程塑料的加工方法进行成型加工。聚芳醚酮系列品种中,分子链中的醚键与酮基的比例(E/K)越低,其熔点和玻璃化温度就越高。 聚芳醚酮可用来制造耐高冲击齿轮、轴承、电熨斗零件、微波炉转盘传动件、汽车齿轮密封件、齿轮支撑座、轴衬、粉末涂料和超纯介质输送管道、航空航天结构材料等。 一、聚芳醚酮的发展 聚芳醚酮的研究开发始于20世纪60年代。1962年美国Du pont公司和1964年英国ICI公司分别报道了在

Friedel-Crafts催化剂存在下,通过亲电取代可以合成聚芳醚酮。后来,陆续有人对这一技术进行研究和作出重大贡献。1979年,英国ICI制得了高分子量的PEK,奠定了合成聚芳醚酮的基础。 在聚芳醚酮主要品种中,以PEEK最为重要,于1977年由英国ICI公司研究开发成功,1980年投产。到二十世纪80年代末,世界上有5大公司生产聚芳醚酮,分别是英国ICI、美国Du pont和Amoco、德国BASF 和Hoechst。 国内于20世纪80年代中期开始研制聚芳醚酮。1990年吉林大学发表了制造专利并有少量生产。 二、聚芳醚酮的用途 由于聚芳醚酮优越的各种性能及易加工性能,几乎可用于每一个工业领域。 (1)航空航天领域:用碳纤维、玻璃纤维增强的聚芳醚酮可用于飞机和飞船的机舱、门把手、操纵杆、发动机零件、直升机旋翼等; (2)电子工业:电线电缆包覆、高温接线柱、电机绝缘材料等; (3)汽车工业:汽车齿轮秘封片、吃路边你支撑座、轴承粉末涂料、轮胎内压传感器壳等; (4)机械设备:轴承座、超离心机、复印机上分离爪、化工用滤材、叶轮等。

静电纺丝技术的工艺原理及应用

静电纺丝技术的工艺原理及应用 静电纺丝技术是目前制备纳米纤维最重要的基本方法。这一技术的核心是使带电荷流体在静电场中流动与变形,最终得到纤维状物质,从而为高分子成为纳米功能材料提供了一种新的加工方法。由于纳米纤维具有许多特性,例如纤维纤度细、比表面积大、孔隙率高,因而具有广泛的应用。 1、静电纺技术 静电纺是一项简单方便、廉价而且对环境无污染的纺丝技术。早在20世纪30年代,Formals A就已经在其专利中报道了利用高压静电纺丝,但是直到近些年,由于对纳米科技研究的迅速升温,激起了人们对这种可制备纳米尺寸纤维的纺丝技术进行深入研究的浓厚兴趣。 1.1 静电纺技术的基本原理 静电纺丝技术(Electrospinning fiber technique)是使带电的高分子溶液(或熔体)在静电场中流动变形,经溶剂蒸发或熔体冷却而固化,从而得到纤维状物质的一种方法。对聚合物纤维电纺过程的图式说明见图1。 静电纺丝机的基本组成主要有3个部分:静电高压电源、液体供给装置、纤维收集装置。静电高压电源根据电流变换方式可以分成DC/DC和AC/DC两种类型,实验中多用IX;/DC电源。液体供给装置是一端带有毛细管的容器(如注射器),其中盛 有高分子溶液或熔体,将一金属线的一端伸进容器中,使液体与高压电发生器的正极相连。纤维收集装置是在毛细管相对端设置的技术收集板,可以是金属类平面(如锡纸)或者是旋转的滚轮等。收集板用导线接地,作为负极,并与高压电源负极相连。另外随着对实验要求的提高,液体流量控制系统也被渐渐的采用,这样可以将液体的流速控制得更准确。电场的大小与毛细管口聚合物溶液的表面张力有关。由于电场的作用,聚合物溶液表面会产生电荷。电荷相互排斥和相反电荷电极对表面电荷的压缩,均会直接产生一种与表面张力相反的力。当电场强度增加时,毛细管口的流体半球表面会被拉成锥形,称为Taylor锥。进一步增加电场强度,是用来克服表面张力的静电排斥力到达一个临界值,此时带电射流从Taylor锥尖喷射出来。带电后的聚合物射流经过不稳定拉伸过程,

杂萘联苯聚醚砜酮的研究

杂萘联苯聚醚砜酮的研究 摘要:新型的杂萘联苯聚醚砜酮(PPESK)是一种工程塑料,其各项性能优异,是一种优良的绝缘材料。此树脂广泛应用于漆包线和各种膜的制作,效果良好。经改性的PPESK性能更优,应用领域广,有很好的研究前景。 关键词:杂萘联苯聚醚砜酮、绝缘材料、膜、改性 聚芳醚砜(PES)和聚芳醚酮(PEK)是两个综合性能优异的耐高温工程塑料品种,后来有人合成了新型的杂萘联苯型聚醚砜(PPES)和聚醚酮(PPEK),性能优良,其中PPES的溶解性好,PPEK的玻璃化转变温度相对较高。基于以上工作,采用共聚的方法,合成共聚物聚醚砜酮(PPESK)以使PPES和PPEK相互补充,互补长短,得到综合性能都很优异的耐高温工程塑料,并进一步对其改性,开发其应用前景。 一、杂萘联苯聚醚砜酮 (一)合成 杂萘联苯聚醚砜酮是由单体DHPZ、二氯二苯砜、二氟二苯酮在以无水K 2CO 3 为催化剂、甲苯为带水剂、N,N-二甲基乙酰胺(DMAC)为溶剂,加热至160-165℃下溶液共聚合得到的,反应式如下: 通过控制共聚合时的投料比和反应时间,能得到不同化学结构的共聚产物,这些共聚物具有不同的性能。经过调节二氯砜和二氟酮的比例(S/K),得到当投料砜酮比为1:1(S/K=1:1)所共聚成的特性粘度为0.6的聚合物为基材,检测树脂的综合性能。得出PPESK的玻璃化转变温度和热失重温度都较高,具有较高的耐热等级;同时具有优良的电性能、力学性能和粘结力,是一种综合性能优异的工程塑料。 (二)、应用 1、制漆包线新型的PPESK树脂在耐热、膜韧性及单向刮漆性能优异,具有 较高的耐热等级(H级)。这种PPESK基体适合于做H级漆包线漆,是耐高温漆包线的一个新品种。和传统的聚酰亚胺漆包线比较,PPESK漆包线价格低廉,耐水解性能好,且这种漆制漆工艺简单,可用常规方法制漆。同时,它便于运输和储存,是一种很有前途的漆包线漆。 2、制膜杂萘联苯聚醚砜酮是一种新型特种工程塑料,耐盐酸、硝酸、硫酸、

医学领域的静电纺丝技术

近年来,由于疾病、人口老龄化、意外事故等造成大量的人体器官和组织的损坏和功能缺失,如何实现人体组织和器官的快速修复和重建以及治疗药物在人体内的可控释放已成为生物医学研究领域面临的重要问题。 要使缺损的组织和器官得以修复和重建,其过程是构建有生物活性的细胞支架材料,这种支架可以载有生长因子或本体细胞,植入体内后支架材料逐渐被分解和吸收的同时,细胞增殖并形成新的组织,从而修复缺损组织替代器官,支架材料或作为一种体外装置,暂时替代器官功能,达到提高生命质量,延长生命的目的。 自20世纪60 年代以来,对于药物控制释放体系的研究,受到研究者的广泛关注。与传统给药模式相比药物控制释放具有显著的优点,除提高药物治疗的准确性、有效性、安全性外,还明显降低了药物的生产成本和不良反应,药物控制释放材料的研究得到迅速发展,其中制备性能优良的药物载体已成为药物控制释放技术的研究热点。 由于高分子材料的化学组成、加工工艺和性能易于调控,在一定尺度上通过调控聚合过程或加工工艺,可易于改变或调节材料的物化性能,因此把组织工程学和药物控制释放原理与高分子材料结合起来,合成具有生物相容性和刺激响应性的生物功能材料,具有重大的科学意义和广阔的应用前景。

静电纺丝作为一种简单、有效、方便而经济的高分子材料加工技术,其技术核心是将具有一定粘度且带有电荷的高分子熔体或溶液在高压静电场中喷射、拉伸细化、劈裂,终固化成微纳米级纤维状物质的过程。 静电纺聚合物纳米纤维具有比表面积大、孔隙率高、良好的三维结构和各向同性的力学性能等优点,能够满足组织工程中细胞支架和药物控释载体在比表面积、多孔结构和力学性能等方面的要求,而且具有纤维孔隙结构的支架材料与细胞增殖有良好的适配性,可有效模拟细胞外基质环境,同时比膜状材料更有利于细胞粘附。 国内纳米纤维和静电纺丝技术正在蓬勃发展,科研发文数量一直位居全球首位。近年来,电纺纤维及其纤维膜由于高的比表面积,高的孔隙率以及形貌可控等优点在伤口愈合方面引起了很多关注,电纺纤维膜一方面能够物理隔绝病毒和细菌,又能够透气保湿,给伤口营造一个良好的愈合环境。 另一方面,电纺纤维的直径以及纤维膜的孔径与细胞外基质的尺寸相仿,能够促进细胞生长,加速伤口愈合速度,减少疤痕产生,因此在创伤敷料方面有独特的优势。 但大多数电纺敷料通常是经过先制备再应用的过程,容易对伤口造成二次创伤。原位电纺目前是一种较为理想制备及应用电纺敷料的方法。便携式手持静电

静电纺丝纳米纤维的制备工艺及其应用

综述与专论 合成纤维工业,2009,32(4):48CH I NA SYNTHETI C FI BER I NDUSTRY 收稿日期:2008 09 17;修改稿收到日期:2009 05 27。作者简介:董晓英(1956 ),教授。从事纳米材料的教学和科研工作。 静电纺丝纳米纤维的制备工艺及其应用 董晓英1 董 鑫 2 (1.江苏技术师范学院,江苏常州 213001;2.慕尼黑大学,德国慕尼黑 80539)摘 要:简述了静电纺丝制备纳米纤维的原理;探讨了静电纺丝电压、流速、接收距离、溶剂浓度等工艺条 件;介绍了同轴静电纺丝制备皮芯结构的超细纤维及中空纤维技术以及静电纺丝纳米纤维毡在生物医药方面的应用。指出静电纺丝纳米纤维材料在生物医用方面具有广阔的应用前景,进一步实现低压纺丝、开发无毒溶剂,控制同轴静电纺丝纳米纤维的释放性能是今后静电纺丝的研发方向。 关键词:静电纺丝 纳米纤维 工艺 生物 医药 应用 中图分类号:TQ 340.64 文献识别码:A 文章编号:1001 0041(2009)04 0048 04 静电纺丝法是一种高速制备纳米纤维的有效方法,其装置简单,成本低廉,供选择的基体材料和所载药物种类众多,可通过改变电压、流速、接 收距离、溶液浓度配比等纺丝工艺控制纤维形貌,从而控制药物的释放。静电纺丝纳米纤维在生物、医药方面有着广泛的应用。1 静电纺丝及其工艺条件 静电纺丝技术最早报道于1934年的美国专利[1] ,发明人For mhals 用静电斥力的推动成功纺出醋酸纤维素纤维,溶剂为丙酮和乙醇。后来,For mha ls 改进了静电纺丝设备,通过多个针头纺丝或复合纺丝 [2] 。 1969年,英国Taylor [3] 研究了强电场作用下 水/油界面的形成。首先,从理论计算上考虑电场、重力和溶液粘度的影响,建立了锥状物模型,即在高压电场下溶液喷出前的形状称为Tay lor 锥。Tay l o r 还根据其模型计算了喷出时的临界锥角为98.6 。 静电纺丝纤维喷出针头后,在空中弯曲回转,最后落在接收器上,给人多股纤维同时喷出的印 象。阿克隆大学的Dosh i 等[4] 假设带电高分子溶液在喷出后互相排斥,克服表面张力而分裂成若干股纤维,落到接收器上形成无纺纤维毡。但是 麻省理工学院的Shin 等[5]和以色列的Yari n [6] 等通过高速成像,只有1股纤维从喷丝口喷出,然后在电场力作用下快速弯曲旋转,给人以很多股纤维的假象。1971年,杜邦公司的B au m garten [7] 研究了纺丝工艺参数对丙烯酸在N,N 二甲基甲酰(D M F)胺溶液中静电纺丝纤维直径的影响。纺 丝工艺参数主要包括喷射距离、溶液粘度、环境气体、流速和电压等。 1.1 电压 足够的电压是形成连续稳定纤维的先决条件。如果电压过小,则产生静电喷射,形成独立的珠状物。随着电压的增加,逐渐形成串珠结构,电压进一步增大,串珠逐渐减少,直至形成连续稳定 的纤维。Deitzel 等[8] 研究了聚氧化乙烯(PEO )/水体系中电压对喷丝口Tay lor 锥表面的影响。结果表明,当电压较小时,Tay lor 锥形成于针头外悬挂液滴的表面;随电压增加,液滴体积逐渐变小,直至液滴和Tay lor 锥相继消失。同时,纤维上串珠的分布密度也随电压增大而增加。因此,一般适宜电压为10~25kV 。1.2 流速 流速是影响静电纺丝纤维形貌的另一重要参数。M ege lski [9] 等研究了静电纺丝流速对聚苯乙烯/四氢呋喃(THF)体系的影响,随着流速增大,纤维直径增加,纤维表面的孔径也增大。同时,流速增大也促进了更明显的串珠结构,其原因是溶剂在到达接受装置前不能完全挥发。目前所采用的流速为1~3mL /h 。1.3 接收距离 接收距离也会在一定程度上影响静电纺丝的 纤维形貌。Jaeger [10] 等研究了PEO /水溶液的静电纺丝行为,随着接收距离由1c m 增大到3.5c m,纤维直径从19 m 下降到9 m 。根据M egel

特种工程塑料PEEK、PEI、LCP

1、聚醚酮类与聚醚醚酮(PEEK) 聚醚酮类是大分子主链的一个链节中同时含有醚基和酮基的一类高聚物的总称。按命名习惯,当链节中含有一个醚基和一个酮基时,称为聚醚酮(英文缩写为PEK),当链节中含有一个醚基和二个酮基时,称为聚醚酮酮(英文缩写为PEKK),当链节中含有二个醚基和一个酮基时,称为聚醚醚酮(英文缩写为PEEK)。它们的构造式如下: 聚醚醚酮一直是聚醚酮类中最主要的品种。它是由4.4–二氟苯酮、对苯二酚和碳酸钠或碳酸钾为原料,以苯砜为溶剂制得。 聚醚醚酮是一种具有热固性树脂使用特性的热塑性树脂,它是一种结晶性聚合物,熔点334℃,分解温度在500℃以上,其制品具有良好的机械性能和耐热性。可在220℃连续使用,最高使用温度为240℃。加入30%玻璃纤维后,可在310℃连续使用。聚醚醚酮有优良的耐辐射性和耐化学药品性,除浓硫酸外,可耐所有的化学试剂。聚醚醚酮即使在260℃的热水中也不会发生水解。此外具有优异的电绝缘性能,良好的韧性,在高温下仍保持优良的耐磨性。聚醚醚酮在火焰中燃烧性低,且只发出低量的烟气,其燃烧性属于UL94V-0级。 由于聚醚醚酮熔点高,因此注塑加工温度高。通常设定值为360-390℃。熔融后的聚醚醚酮,有良好的加工流动性。 2、聚酰胺–酰亚胺(PAI) 聚酰胺–酰亚胺是大分子主链的一个链节中同时含有酰胺基和酰亚胺的一类高聚物的总称,其英

文缩写为PAI。聚酰胺–酰亚胺通常是由偏苯三酸酐与芳香族二胺缩聚而得,其典型分子构造式如下: 聚酰胺–酰亚胺是一种新型的耐高温、耐辐射绝缘材料和结构材料,不仅室温机械性能突出,并且中高温下也有优良的机械性能,如Amoco公司产品Torlon 4203,在175℃时的拉伸强度仍在110Mpa以上,弯曲强度在150Mpa以上。聚酰胺–酰亚胺的很高的热变形温度,大约为275℃左右,经玻璃纤维增强后,热变形温度在300℃以上。聚酰胺–酰亚胺UL连续使用温度为220℃,在220℃经1500小时热老化后,拉伸强度仍保持在80%以上。 聚酰胺–酰亚胺有优的异耐摩擦、磨耗性能,其摩擦系数较低。为进一步提高其耐磨性和减小摩擦系数,常采用添加石墨或氟聚合物的方法。 聚酰胺-酰亚胺具有十分优异的尺寸稳定性,其线膨胀系数很低,类似于金属。 聚酰胺-酰亚胺有突出的耐燃性,氧指数达45以上,0.2毫米厚度的试样也能通过UL94 V-0等级的燃烧试验,且发烟量很能小。 聚酰胺-酰亚胺在成型加工前要充分干燥,干燥温度通常为150-180℃,干燥时间为4-8小时,使含水量在0.05%以下。否则,易引起成型缺陷,或使制品发脆。注塑成型时的温度控制通常为330-380℃,从加料口到喷嘴逐步升高。模具温度通常为160-190℃。 为了便于成型,商品聚酰胺-酰亚胺通常分子量相对较低。因此模制品常常较脆、甚至耐化学性也较差。为使制品具有较佳的综合性能,需要采用后固化工艺。通常可在200℃左右后固化24小时。 3、聚醚酰亚胺(PEI) 聚醚酰亚胺是大分子主链的一个链节中同时含有酰亚胺基和醚基的一类高聚物的总称,又称聚醚亚胺(英文缩写为PEI),是一种非结晶性的热塑性聚酰亚胺。它通常由芳香族醚酐和芳香烃二胺缩聚而成。其典型聚醚酰亚胺的分子构造式如下:

静电纺丝操作说明

静电纺丝操作步骤(有粘结性的溶液) 溶液配制好后按如下步骤进行喷丝实验: 1.打开总开关,检查正负压电源的调节旋钮是否归零(左旋到底),紧急停机旋 。 2.控制面板上的钥匙电源开关右拧,此时进 入标签页面。点击来到推注控制页面。 3.或,快速将注射器的

活塞推到底,此时点击。 4.点击,使滑块迅速移退至一定位置,取出空的注射器,将纺丝液注入到 注射器中,固定到推注泵卡口处,通过或来调节滑块位置,使针头 此时显示框内出现负值, 的可用长度,在此范围内任意设定需要纺丝的距离。 5. 接收器:固定式的,平行式的,高转速的) 6.点击并修改、或参数。 7.通过设备底部滑台上的夹子调节喷丝头与连接器之间的距离, 确定好位置,高压夹头加紧,点击,此时推注装置开始单独运行。 8.将控制面板上的、红色按钮按下,此时正负高压开 启,调节旋钮;边观察纺丝现象边调节 (目的是调节喷丝效果),直至出现比较稳定的喷射流即可。 9.若启动平移装置,可以通过触摸屏点击,首先检查平移部分的中点,一 般将标尺的零点设定为中点,并设定平移行程和平移速度。也可以通过点击 “设为中点”即可将当前 位置设定为平移中点, 点击,此时平移装置开始单独运行。 10.若需启动接收装置,可以通过触摸屏点击,设定转辊接收速度,直接 以及。 11.若需要同时启动两个推注装置、平移装置、接收装置,可以分别在相应的标 签页面设置好运行参数之后,点击进入联动标签页面,点击,此时所有能动的装置都会启动,如需停止,点击“停止”即可,此为联动启动功能。 12. 完毕之后再打开正负高压继续进行实验。 13. 操作功能之后方可手触所收集的材料。

特种工程塑料性能及应用分析

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/fd13638846.html,)特种工程塑料性能及应用分析 一、聚酰亚胺PI 聚酰亚胺,简称PI,是最早出现的耐高温、高强度的特种工程塑料。在耐热性工程塑料中占有极其重要的地位,是分子主链中含有酰亚胺集团的芳杂环聚合物的总称。已经工业化生产并具规模的品种主要有均苯型聚酰亚胺、聚酰胺酰亚胺(PAI)、聚醚酰亚胺(PEI)和双马来酰亚胺(BMI)。 物料性能 ①力学性能优异,拉伸强度高,耐蠕变性、耐磨耗性也十分优良; ②耐热性优良,长期使用温度都在200℃以上。耐低温性也非常突出,在-269℃低温下还能保持力学强度; ③是阻燃性聚合物,燃烧烟雾密度低,有毒气体含量小; ④耐辐射性能优良,耐电晕性优于其他工程塑料。 适用范围 飞机发动机部件、飞机内部结构件等;高强度和尺寸稳定性的民用工业和军事用插座、电子仪表及家用电器的一些高性能工作部件;发动机的活塞、连杆、调速齿轮等一些耐高温的精密零件。还适于制造需经过多次消毒的医用器皿、医疗器械,以及需要在极低温、甚至和液氮接触的一些工作部件。 二、聚芳酯PAR 基本性质 比重:1.2-1.26g/cm3 成型收缩率:0.8%

成型温度:300-350℃ 干燥条件:100~120℃、5小时 物料性能 ①为透明无定形热塑性工程塑料,具有优良的耐热性、阻燃性和无毒性。可以直接采用普通热塑性成型方法加工成制品; ②具有优异的热性能,在1.86MPA的负荷下,其热变形温度高达175度,分解温度为443度。其各种力学性能受温度影响较小。 成型特性 ①随着制品壁厚增加,成型收缩率增大; ②吸湿性较小,约0.1-0.3%,但注塑时微量水分会引起聚芳脂分解。故材料成型前必须进行干燥。使其含水率小于0.02%; 适用范围 ①适于制作耐热、耐燃和尺寸稳定性高的电器零件。连接器、线圈架、继电器外壳; ②照明零件。可制成透明的灯罩、照明器、汽车反光罩等。 三、液晶型聚合物LCP 液晶聚合物是指在一定条件下能形成液晶态的高分子材料,简称LCP,是近年来发展最快的新型材料之一。可分为溶致型(LLCP)和热致型(TLCP)两类。热致型液晶指在熔融状态能呈现液晶状态,作为工程塑料应用的主要是这一类。按耐温等级大体可分为超耐热型、中耐热型、低耐热型三种。 物料性质 ①LCP是高强度、高模量、耐蠕变、耐高冲击的高分子材料,其力学性能远高于普通工程材料;

特种工程塑料聚芳醚酮

特种工程塑料聚芳醚酮 1、反应原理及发展历程 由于聚芳醚酮中含有醚键和酮键,所以在合成聚芳醚酮时是根据聚芳醚酮中醚键和酮键的引入方式不同而进行合成路线的设计。其中分为以下两种方式进行合成: 第一种方式是利用亲电取代反应路线进行合成聚芳醚酮,通过芳酞氯与芳烃进行Friedel-Crafts的反应,采用BF3、AICI3等作为催化剂。这类反应的优点在于合成的成本低,原材料都很容易得到,不用在高温情况下进行反应操作等优点。 图1 亲电取代反应 第二种方法是利用亲核取代反应路线进行合成聚芳醚酮,通过在碱金属碳酸盐的作用下和芳香族二卤化物反应。这种方法的优点则是聚合物支化度低,反应很容易得到控制。

图2 亲核取代反应 近年来,由于热塑性树脂得到了广泛的应用,包括聚甲醛、聚苯醚、聚飒等等,而近十年来其聚芳醚酮一系列的聚合物是热塑性树脂中最具有特点和优异性能的树脂。 1)聚醚醚酮(PEEK):聚醚醚酮是一种新型的芳香族结晶高聚物, 玻璃化转变温度在143℃,熔点在334℃,具有热塑性树脂的 性能又具有热固性塑料的耐热性和化学稳定性。这种树脂是在 1977年由英国帝国化学公司研制开发的,聚醚醚酮是在聚芳 醚酮一系列聚合物中最早应用到市场,并大批量生产的。近几 年来,国内也相继研制出PEEK。由于聚醚醚酮的密度小经常 被应用到航空航天,汽车等领域中,以做到大型载体的轻量化。 另外PEEK树脂在高温下可以维持其本身较高的强度,其刚性 较大,尺寸稳定性好,十分接近于金属铝材料,在化学方面聚 醚醚酮就有很好的热稳定性,耐腐蚀性同时自身还具有阻燃 性。在加工性能上也表现出优异的可加工型,成型效率高等优 点。所以根据聚醚醚酮自身拥有的优异性能的基础上,研究人

静电纺丝技术

摘要:文章介绍了静电纺丝制备纳米纤维的技术,详细地介绍了这种技术的优点,以及它在各个方面广泛的应用。此外,虽然它具有很多的优点,但目前也仍然存在一些问题,我们也对此进行了探讨。 关键词:静电纺丝纳米纤维应用原理 前言:近年来,纳米结构材料,如纳米纤维、纳米管,由于其尺寸效应十分显著,在光、热、磁、电等方面的性质和体材料明显不同,出现许多新奇特性,因此收到了研究人员的高度重视。纳米纤维最大的特点就是比表面积大,从而导致其表面能和活性的增大,产生小尺寸效应、表面或界面效应、量子尺寸效应、宏观量子隧道效应等,在化学、物理性质方面表现出特异性[1]。电纺技术是一种简单和通用的获得连续微米级别以下的超细纤维的方法。通过电纺的方法可以制备出多种纳米纤维,包括氧化物纤维,高子分聚合物纤维等。静电纺丝方法制备的纳米纤维,具有纳米尺寸的直径,高比表面以及纤维之间形成的微小孔隙[2]。 纳米纤维、静电纺丝都是一些新事物,具有广阔的发展前景。可以用于组织工程、人造器官、药物传递和创伤修复等。另外,对植物施用杀虫剂是纳米纤维可能大规模应用的又一个领域。但当前的静电纺丝技术还不成熟,有待于深入地研究,以制得高质量的纤维并能使纳米纤维的制备实现产业化[3]。 一静电电纺丝技术 静电纺丝技术(electrospinning)在国内一般简称为电纺,其是一种利用聚合物流体在强电场作用下,通过金属喷嘴进行喷射拉伸而获得直径为数十纳米到数微米的纳米级纤维的纺丝技术。通过静电纺丝技术得到的纳米级纤维具有直径小、表面积大、孔隙率高、精细程度一致等特点,在组织工程、传感器、工业、国防、农业工程等领域具有极大的发展潜力,而且其在医药领域诸如伤口敷料、控制释放体系等方面也有着巨大的应用前景[5]。从科学基础来看,这一发明可视为静电雾化技术的一种特例。静电雾化与静电纺丝的最大区别在于:两者所使用的工作介质不同。静电雾化采用的是粘度较低的牛顿流体;而静电纺丝采用的是粘度较高的非牛顿流体。由于静电雾化技术与静电纺丝技术原理类似,所以前者的研究也为后者提供了一定的理论基础[4]。因为静电纺丝过程涉及到的学科领域很多,所以至今对它的研究仍处于探索阶段,虽然早在1934年,Formals就发明了用静电力制备聚合物纤维的实验装置并申请了专利,在其专利中,他公布了如何以丙酮作为溶剂的醋酸纤维素溶液在电极间形成射流,从而在静电推力下产生聚合物纤维。 静电纺丝技术的思路最早来源于人们对液体在电场力作用下的电喷射行为的研究。Raleigh在1882年研究发现,当液滴承受的电场力超过表面张力时,其原本的平衡状态被打破,悬挂在金属喷丝头上的液滴就分裂成一系列带电小液

国内外特种工程塑料聚芳醚酮的生产、应用及发展前景

国内外特种工程塑料聚芳醚酮的生产、应用及发展前景 作者:饶先花, 曹民, 代惊奇, 曾祥斌, 赵建青, 赵东辉, 吴忠文, RAO Xian-hua, CAO Min, DAI Jing-qi, ZENG Xiang-bin, ZHAO Jian-qing, ZHAO Dong-hui, WU Zhong-wen 作者单位:饶先花,RAO Xian-hua(华南理工大学,广东广州510641;金发科技股份有限公司,广东广州510520), 曹民,代惊奇,曾祥斌,赵东辉,吴忠文,CAO Min,DAI Jing-qi,ZENG Xiang-bin,ZHAO Dong-hui,WU Zhong- wen(金发科技股份有限公司,广东广州,510520), 赵建青,ZHAO Jian-qing(华南理工大学,广东广州 ,510641) 刊名: 塑料工业 英文刊名:China Plastics Industry 年,卷(期):2012,40(9) 参考文献(8条) 1.李玉芳特种工程塑料聚醚醚酮的开发与应用 2004(11) 2.DUPONT Boron trifluoride-hydrogen fluoride catayzed synithesis of poly (aromatic sulfone) and poly (aromatic ketone) polymers 1969 3.吴忠文聚醚醚酮类树脂的国际、国内发展历程及新进展[期刊论文]-化工新型材料 2010(12) 4.徐利敏;赵剑锋;雷玉平特种工程塑料PAEK的性能及应用[期刊论文]-塑料科技 2006(05) 5.钟鸣;易志群;宋才生主链含酰亚胺结构的聚醚醚酮的合成及其性能[期刊论文]-应用化学 2009(11) 6.周福贵;赵东辉;姜振华聚醚砜醚酮的合成与性能[期刊论文]-高等学校化学学报 2010(10) 7.邓纯博;刘冬妍;刘学勇聚醚醚酮及其复合材料作为骨科植入物的研究进展[期刊论文]-生物医学工程与临床 2009(05) 8.吴忠文新一代耐高温多功能重防腐涂料用树脂 2010(11) 本文链接:https://www.360docs.net/doc/fd13638846.html,/Periodical_slgy201209005.aspx

静电纺丝技术

静电纺丝技术的研究 摘要:文章介绍了静电纺丝制备纳米纤维的技术,详细地介绍了这种技术的优点,以及它在各个方面广泛的应用。此外,虽然它具有很多的优点,但目前也仍然存在一些问题,我们也对此进行了探讨。 关键词:静电纺丝纳米纤维应用原理 前言:近年来,纳米结构材料,如纳米纤维、纳米管,由于其尺寸效应十分显著,在光、热、磁、电等方面的性质和体材料明显不同,出现许多新奇特性,因此收到了研究人员的高度重视。纳米纤维最大的特点就是比表面积大,从而导致其表面能和活性的增大,产生小尺寸效应、表面或界面效应、量子尺寸效应、宏观量子隧道效应等,在化学、物理性质方面表现出特异性[1]。电纺技术是一种简单和通用的获得连续微米级别以下的超细纤维的方法。通过电纺的方法可以制备出多种纳米纤维,包括氧化物纤维,高子分聚合物纤维等。静电纺丝方法制备的纳米纤维,具有纳米尺寸的直径,高比表面以及纤维之间形成的微小孔隙[2]。 纳米纤维、静电纺丝都是一些新事物,具有广阔的发展前景。可以用于组织工程、人造器官、药物传递和创伤修复等。另外,对植物施用杀虫剂是纳米纤维可能大规模应用的又一个领域。但当前的静电纺丝技术还不成熟,有待于深入地研究,以制得高质量的纤维并能使纳米纤维的制备实现产业化[3]。 一静电电纺丝技术 静电纺丝技术(electrospinning)在国内一般简称为电纺,其是一种利用聚合物流体在强电场作用下,通过金属喷嘴进行喷射拉伸而获得直径为数十纳米到数微米的纳米级纤维的纺丝技术。通过静电纺丝技术得到的纳米级纤维具有直径小、表面积大、孔隙率高、精细程度一致等特点,在组织工程、传感器、工业、国防、农业工程等领域具有极大的发展潜力,而且其在医药领域诸如伤口敷料、控制释放体系等方面也有着巨大的应用前景[5]。从科学基础来看,这一发明可视为静电雾化技术的一种特例。静电雾化与静电纺丝的最大区别在于:两者所使用的工作介质不同。静电雾化采用的是粘度较低的牛顿流体;而静电纺丝采用的是粘度较高的非牛顿流体。由于静电雾化技术与静电纺丝技术原理类似,所以前者的研究也为后者提供了一定的理论基础[4]。因为静电纺丝过程涉及到的学科领域很多,所以至今对它的研究仍处于探索阶段,虽然早在1934年,Formals就发明了用静电力制备聚合物纤维的实验装置并申请了专利,在其专利中,他公布了如何以丙酮作为溶剂的醋酸纤维素溶液在电极间形成射流,从而在静电推力下产生聚合物纤维。 静电纺丝技术的思路最早来源于人们对液体在电场力作用下的电喷射行为

特种工程塑料介绍.

特种工程塑料 介绍:特种工程塑料也叫高性能工程塑料是指综合性能更高,长期使用温度在150℃以上的工程塑料,主要用于高科技,军事和宇航、航空等工业。 特种工程塑料主要包括聚苯硫醚(PPS),聚砜(PSF),聚酰亚胺(PI), 聚芳酯(PAR),液晶聚合物(LCP),聚醚醚酮(PEEK),含氟聚合物等,特种工程塑料种类多,性能优异价格昂贵。 聚苯硫醚(PPS) 聚苯硫醚全称为聚苯基硫醚,是分子主链中带有苯硫基的热塑性树脂,英文名为polyphenylene snlfide(简称PPS)。 PPS是结晶型(结晶度55%-65%)的高刚性白色粉末聚合物,耐热性高(连续使用温度达240℃)、机械强度、刚性、难燃性、耐化学药品性,电气特性、尺寸稳定性都优良的树脂,耐磨、抗蠕变性优,阻燃性优。有自熄性。达UL94V-0级,高温、高湿下仍保持良好的电性能。流动性好,易成型,成型时几乎没有缩孔凹斑。与各种无机填料有良好的亲和性。增强改性后可提高其物理机械机械性能和耐热性(热变形温度),增强材料有玻璃纤维、碳纤维、聚芳酰胺纤维、金属纤维等,以玻璃纤维为主。无机填充料有滑石、高岭土、碳酸钙、二氧化硅、二硫化钼等。 PPS/PTFE、PPS/PA、PPS/PPO等合金已商品化,PPS/PTFE合金改进了PPS的脆性,润滑性和耐腐蚀性,PPS/PA合金为高韧性合金。 玻纤增强PPS具有优异的热稳定性、耐磨性、抗蠕变性、在宽范围(温度、湿度、频率)内有极佳的机械性能和电性能,介电量数小、介电损耗低。作为耐高温,防腐涂料,涂层可以在180℃下长期使用;电子电器工业上作连接器,绝缘隔板,端子,开关;机械和粘密机械在做泵、齿轮、活塞环贮槽、叶片阀件,钟表零部件,照相机部件;汽车工业上汽化器。分配器部件,电子电气组等零件,批气阀气,传感器部伯件;家电部件有磁带录相机结构部件、品体二极管、各种零件;另个还用于宇航、航空工业,PPS/PTFE可做防粘、耐磨部件及传动件,如轴泵。 聚砜类树脂是20世纪60年代中期以后出现的一类热塑性工程塑料,是一类主链上含有砜荃和芳核的非结晶性热塑性工程塑料。 按其化学结构可分为脂族聚砜和芳族聚砜。脂族聚砜不耐碱,不耐热,无实用价值,而芳族聚砜中的双酚A聚砜及其改性产品--非双酚A的聚芳砜,以及聚醚砜,则有较广泛的用途,是业已商业化生产的高分子量聚砜树脂。 双酚A聚砜树脂是美国联碳公司(UCC)于1965年开发成功的,商品名为Udel polysuifone; 聚芳砜是美国3M公司在1967年开发成功的,商品名为Astrel; 聚醚砜由英国卜内门公司(ICI)于1972年开发成功的,商品名为Victrex。 聚砜类树脂结构中的氧都具有高度共振二芳基砜集团,硫原子处于完全氧化状态,砜基的高共振使聚砜类树脂具有极其出色的耐氧化性能和耐热性能,具有出色的熔融稳定性,这些都是高温模塑和挤出成型必须具备的加工性能。 聚砜 介绍:聚砜是分子主链中含有链节的热塑性树脂,英文名Polysalfone(简称PSF或PSU)有普通双酚A型PSF(即通常所说的PSF),聚芳砜和聚醚砜二种。 PSF是略带琥珀色非晶型透明或半透明聚合物,力学性能优异,刚性大,耐磨、高强度,即使在高温下也保持优良的机械性能是其突出的优点,其范围为为-100~150℃, 长期使用温度为160℃,短期使用温度为190℃,热稳定性高,耐水解,尺寸稳定性好,成型收缩率小, 无毒,耐辐射,耐燃,有熄性。在宽广的温度和频率范围内有优良的电性能。化学稳定性好,除浓硝酸、浓硫酸、

特种工程塑料研究与发展趋势

特种工程塑料研究与发展趋势 作者:孙卫东 一、概述 特种工程塑料,又称高性能工程塑料,是继通用塑料、工程塑料之后的第三代高分子材料。它是从上世纪六十年代为满足电子、电气、航空、航天等军工及汽车工业等领域要求而发展起来的一类综合性能优异的工程塑料。随着科学技术的发展,人类对太空的不断探索、全球电子信息领域的高速推进、新型能源工业、生物医学工程及汽车工业等领域的发展,有力地推动了特种工程塑料的研究与开发,并使其应用达到了前所未有的高度。目前已实现工业化生产的主要有以下几大类品种:含氟塑料;聚芳酯(Polyarylate,PAR)聚苯酯(Poly (p—Hydroxybenzate),PHB);砜聚合物(聚砜(Polysulfone,PSU)、聚芳砜(Polyphenysulfone,PPSU)、聚醚砜(Polyethersulfone,PPSU));聚苯硫醚(Polyphenylene Sulfide,PPS);聚芳香族聚酮(聚芳醚酮(Polyaryletherketone,PAEK、聚醚醚酮(PEEK)、聚醚酮酮(PEKK));聚酰亚胺(Polyimide,PI)及热致液晶聚合物(Thermotropic Liquid Crystal Polymer TLCP)等等。 二、特种工程塑料的特点: 1、结构特点: 特种工程塑料大都具有刚性骨架,有的大分子主链上含有大量的芳环、杂环,有的共轭双键还以梯形或半梯形结构有序排列,分子的规整性好。它们的化学结构使大分子链的构象变化势垒很高,呈现出高刚性和高熔点(或高粘流温度)的特点,即使在高温下其分子链仍保持相对固定的排列。 大分子链中大量芳环、杂环及梯型结构的存在,使其化学键能高于一般线性C-C键,在高温下使用不易发生降解和裂解。对于那些双排碳链的梯型结构,即使受热或辐照后,部分链断裂,也不大可能同时断在并排的两点上,所以大分子链不至于切断,使相对分子质量下降。还有这种结构在消耗外界多余的能量之后,有可能使断裂键重新愈合。这些大分子中的环行结构多数按对位连接,主链具有最高的热稳定性。并且含氢量很少,聚合物与氧反应的可能性也小。因此,特种工程塑料的物理力学性能和化学性能比通用工程塑料优异[1],。 2、性能特点: ①耐温性能优越:既耐低温又耐高温,且能够经受高低温的交变冲击。在液氮(-196℃)甚至液氢(-253℃)中,它仍能保持韧性。分解温度很高,并有高的热氧化稳定性,在氧气气氛中的分解温度往往与惰性气氛中的十分接近。软化点、玻璃化转变温度和熔点都高。它们的热变形温度至少是170℃,连续使用温度在150℃以上,在180℃空气中能够保持50%力学性能,在115℃下至少能够使用十年以上(105 h),在80℃或更高温度下能够耐多种化学介质。热变形温度高,使用温度范围广。 ②力学性能好:拉伸强度在45Mpa以上,弯曲模量在2000Mpa左右,弹性模量大。 ③综合性能优异:尺寸稳定,耐模损,难燃,耐辐射,低放气,介电性能优异,耐老化,抗水解,对大多数化学介质稳定等等。 3、加工及其他特点: 大多数特种工程塑料可采用常规的塑料加工方法如注射、挤出加工,可采用普通的成型加工设备注射、挤出、模压成制品,有的还可作复合材料、薄膜、纤维和涂料。但其不同之处在于: ①加工温度高,通常在300~400℃; ②注射压力大,一般在120~160MPa; ③模具必需加热,与通用塑料的冷却相反。加热温度达到80~140℃。 原材料价格高,产品附加值高:原材料和产品销售价格为普通工程塑料的十倍到几十倍(通

醋酸纤维素高压静电纺丝

实验三醋酸纤维素高压静电纺丝 1. 实验目的 (1)通过本实验了解静电纺丝的工作原理,及其哪些聚合物可以通过静电纺丝技术制备。(2)了解静电纺丝技术制备纳米纤维中的影响因素,如温度、浓度、表面张力、电压、供料速度和收集板间距等条件的影响。 2.实验原理 (1) 工作原理 静电纺丝纳米纤维的首个专利在1934年被报道后,直到二十世纪中期该纳米技术的潜在应用前景才受到各领域的广泛关注。与无机纳米棒、碳纳米管和纳米金属线不同,静电纺丝技术对于有效地控制纤维的排布和二维、三维纳米纤维的制备有独特的潜在价值。与自下而上的生产方法相比,自上而下的生产纳米材料的最大优点是低成本。通常,这种工艺生产的纳米纤维还具有取向分布均匀和无需昂贵净化费用的特点。 静电纺丝的基本装置由三部分组成:高压电源、注射器(带有小直径针头)和收集装置,如图1所示。高压电源主要是使纺丝液形成带电喷射流,注射器是为纺丝提供供料,而大多数的收集装置是带有铝箔纸滚筒收集装置。高压电源的一极接在注射器的针头上,另一极接在收集装置上。纺丝液在泵的推力作用下被挤出。带电喷射流无规则收集到铝箔纸上,形成无纺布。 静电纺丝的基本原理是:聚合物纺丝液在电场力的作用下,由于聚合物表面张力作用,在注射器的针头上会产生一个圆锥形的纺丝液滴(称之为Taylor锥),当电场力大于喷丝口处纺丝液滴(Taylor锥)的表面张力时,带电的纺丝液就会从Taylor锥中被拉伸出来。在丝的形成过程中,带电的喷射流由于不稳定被拉伸,变的越来越细,于此同时大部分的溶剂挥发。纳米纤维被无规地收集在收集板上形成纤维膜结构。

图 1 静电纺丝装置示意图 (2) 静电纺丝基本参数及其对纤维形貌的影响 目前,静电纺丝主要包括熔融静电纺丝和溶液静电纺丝两种。与溶液静电纺丝不同的是熔融静电纺丝是使聚合物在高温条件下熔融,然后在电场力作用下被拉伸成丝,纺丝大部分是在真空条件下进行的。熔融静电纺丝所得纤维直径比较粗,甚至有达到几个微米,且目前只有极少聚合物被纺丝成功。然而目前已通过溶液静电纺丝制备直径从小于3 nm到1 μm 的上百种聚合物纤维。本论文讨论的都是溶液静电纺丝。 溶液性质对静电纺丝纤维形貌和直径的影响因素主要包括以下三个方面: ①聚合物分子量 聚合物分子量对聚合物溶液的流变性和电性能,如粘度、表面张力、电导率和介电常数等有重要影响。这些特性都可以影响纤维的形貌和结构。McKee等人报道,只有当聚合物的分子量大于缠结分子量时,聚合物才可以通过静电纺丝制得纳米纤维。Gupta等人合成了一系列分子量的甲基丙烯酸甲酯(PMMA),他们发现随着PMMA分子量的增大,纺丝纤维的珠子(bead)明显减少。如果PMMA浓度低,但是分子量分布窄,同样可以得到均一纳米纤维。 ②高分子溶液的浓度和粘度 静电纺丝过程中,溶液的浓度和粘度是影响纤维形貌和直径最关键因素之一。例如,Reneker把聚环氧乙烷(PEO)溶解在水和乙醇的混合溶液中进行纺丝,发现纺丝液的粘度在1-20 泊时,比较适合于纺丝。当纺丝液的粘度大于20 泊时,由于纺丝液内聚能比较大,纺丝喷射流不稳定,而不能进行静电纺丝。相反的粘度比较低(小于1泊)时,只能形成液滴而不能形成喷射流即不能成丝。 ③表面张力

相关文档
最新文档