基于单片机万年历设计说明

基于单片机万年历设计说明
基于单片机万年历设计说明

基于单片机万年历设计

摘要:本文介绍了基于STC89C52单片机的多功能电子万年历的硬件结构和软硬件设计方法。本设计由数据显示模块、温度采集模块、时间处理模块和调整设置模块四个模块组成。系统以STC89C52单片机为控制器,以串行时钟日历芯片DS1302记录日历和时间,它可以对年、月、日、时、分、秒进行计时,还具有闰年补偿等多种功能。温度采集选用DS18B20芯片,万年历采用直观的数字显示,数据显示采用1602A液晶显示模块,可以在LCD上同时显示年、月、日、周日、时、分、秒,还具有时间校准等功能。此万年历具有读取方便、显示直观、功能多样、电路简洁、成本低廉等诸多优点,具有广阔的市场前景。

关键字:万年历温度计液晶显示

0 前言

随着科技的快速发展,时间的流逝,从观太阳、摆钟到现在电子钟,人类不断研究,不断创新纪录。它可以对年、月、日、时、分、秒进行计时,还具有闰年补偿等多种功能,而且DS1302的使用寿命长,误差小。对于数字电子万年历采用直观的数字显示,可以同时显示年、月、日、时、分、秒和温度等信息,还具有时间校准等功能。该电路采用STC89C52单片机作为核心,功耗小,能在3V 的低压工作,电压可选用3~5V电压供电。

此万年历具有读取方便、显示直观、功能多样、电路简洁、成本低廉等诸多优点,符合电子仪器仪表的发展趋势,具有广阔的市场前景。

1 总体方案设计

单片机电子万年历的制作有多种方法,可供选择的器件和运用的技术也有很多种。所以,系统的总体设计方案应在满足系统功能的前提下,充分考虑系统使用的环境,所选的结构要简单使用、易于实现,器件的选用着眼于合适的参数、稳定的性能、较低的功耗以及低廉的成本。

系统的功能往往决定了系统采用的结构,经过成本,性能,功耗等多方面的考虑决定用三个8位74LS164串行接口外接LCD显示器,RESPACK-8对单片机STC89C52进行供电,时间芯片DS1302连接单片机STC89C52。从而实现电子万年历的功能。

按照系统设计的要求,初步确定系统由电源模块、时钟模块、显示模块、键盘接口模块、温度测量模块和闹钟模块共六个模块组成,电路系统构成框图如图1所示。

图1 硬件电路框图

2 硬件电路设计

2.1 单片机的选择

2.1.1 51单片机及12单片机结构及功能

单片机又称单片微控制器,可以完成复杂的运算、逻辑控制、通信等功能。80C51单片机的时钟信号用来提供单片机各种位操作时间基准,80C52单片机的时钟信号。通常有两种电路形式:部震荡方式和外部震荡方式。由于80C52的系统性能满足系统数据采集及时间精度的要求,而且产品产量丰富来源广,应用也很成熟,故采用来作为控制核心。

单片机系统是实现环境电压多路采集功能的核心模块。每次选通一路通道信号进行模拟量转换数字量和输出允许。STC12C5A60AD/S2系列带A/D转换的单片机的A/D转换口在P1口,上电复位后P1口为弱上拉型IO口,用户可以通过软件设置将8路中的任何一路设置为A/D转换,不须作为A/D使用的口可继续作为IO口使用。STC12C5A60AD/S2系列单片机与89C52单片机最小系统相同,而功能上较51单片机相比更为强大。

单片机最小系统电路如图2所示。

图3 时钟电路

2.1.3复位电路

本系统的复位电路是采用按键复位的电路,复位输入引脚RET为其提供了初始化的手段。当其ALE及PSEN两引脚输出高电平,RET引脚高电平到时,单片

机复位。按下按钮,则直接把+5V加到了RET端从而复位称为手动复位。复位后,

P0到P3并行I/O 口全为高电平,其它寄存器全部清零,只有SBUF 寄存器状态不确定。系统复位电路如图4所示。

图4 复位电路

2.2时钟芯片DS1302接口设计与性能分析 2.2.1DS1302性能简介

DS1302是Dallas 公司生产的一种实时时钟芯片。它通过串行方式与单片机进行数据传送,能够向单片机提供包括秒、分、时、日、月、年等在的实时时间信息,并可对月末日期、闰年天数自动进行调整;它还拥有用于主电源和备份电源的双电源引脚,在主电源关闭的情况下,也能保持时钟的连续运行。另外,它还能提供31字节的用于高速数据暂存的RAM 。

DS1302时钟芯片主要包括移位寄存器、控制逻辑电路、振荡器。DS1302与单片机系统的数据传送依靠RST ,I/O ,SCLK 三根端线即可完成。其工作过程可概括为:首先系统RST 引脚驱动至高电平,然后在SCLK 时钟脉冲的作用下,通过I/O 引脚向DS1302输入地址/命令字节,随后再在SCLK 时钟脉冲的配合下,从I/O 引脚写入或读出相应的数据字节。因此,其与单片机之间的数据传送是十分容易实现的,DS1302的引脚排列及部结构图如图4:

DS1302引脚说明:

X1,X2 32.768kHz 晶振引脚 GND 地线 RST 复位端

I/O 数据输入/输出端口 SCLK 串行时钟端口

XTAL2

18

XTAL1

19

ALE 30EA

31

PSEN 29RST

9

P0.0/AD039P0.1/AD138P0.2/AD237P0.3/AD336P0.4/AD435P0.5/AD534P0.6/AD633P0.7/AD732P1.0/T21P1.1/T2EX 2P1.23P1.34P1.45P1.56P1.67P1.78

P3.0/RXD 10P3.1/TXD 11P3.2/INT012P3.3/INT113P3.4/T014P3.7/RD

17

P3.6/WR 16P3.5/T115P2.7/A1528P2.0/A821P2.1/A922P2.2/A1023P2.3/A1124P2.4/A1225P2.5/A1326P2.6/A1427U9

AT89C52

C6

22uF

R2

10k

VCC1 慢速充电引脚

VCC2 电源引脚图4 DS1302的引脚

2.2.2DS1302接口电路设计

1时钟芯片DS1302的接口电路及工作原理:

图5 DS1302与MCU接口电路

图5为DS1302的接口电路,其中Vcc1为后备电源,Vcc2为主电源。VCC1在单电源与电池供电的系统中提供低电源并提供低功率的电池备份。VCC2在双电源系统中提供主电源,在这种运用方式中VCC1连接到备份电源,以便在没有主电源的情况下能保存时间信息以及数据。

DS1302由VCC1或VCC2 两者中较大者供电。当VCC2大于VCC1+0.2V时,VCC2给DS1302供电。当VCC2小于VCC1时,DS1302由VCC1供电。

DS1302在每次进行读、写程序前都必须初始化,先把SCLK端置“0”,接着把RST端置“1”,最后才给予SCLK脉冲;读/写时序如下图6所示。表-1为DS1302的控制字,此控制字的位7必须置1,若为0则不能对DS1302进行读写数据。对于位6,若对时间进行读/写时,CK=0,对程序进行读/写时RAM=1。位1至位5指操作单元的地址。位0是读/写操作位,进行读操作时,该位为1;进行写操作时,该位为0。控制字节总是从最低位开始输入/输出的。表-2为DS1302的日历、时间寄存器容:“CH”是时钟暂停标志位,当该位为1时,时钟振荡器停止,DS1302处于低功耗状态;当该位为0时,时钟开始运行。“WP”是写保护位,在任何的对时钟和RAM的写操作之前,“WP”必须为0。当“WP”为1时,写保护位防止对任一寄存器的写操作。

2、DS1302的控制字

DS1302的控制字如表2所示。控制字节的高有效位(位7)必须是逻辑1,

如果它为0,则不能把数据写入DS1302中,位6如果0,则表示存取日历时钟数据,为1表示存取RAM 数据;位5至位1指示操作单元的地址;最低有效位(位0)如为1表示进行读操作,为0表示进行写操作。控制字节总是从最低位开始输出。

表2 DS1302的控制字格式

1 RAM/CK

A4

A3

A2

A1

A0

RD/WR

3、数据输入输出(I/O )

在控制指令字输入后的下一个SCLK 时钟的上升沿时,数据被写入DS1302,数据输入从低位即位0开始。同样,在紧跟8位的控制指令字后的下一个SCLK 脉冲的下降沿读出DS1302的数据,读出数据时从低位0位到高位7。如下图6所示。

图6 DS1302读/写时序图

4、DS1302的寄存器AM

DS1302有12个寄存器,其中有7个寄存器与日历、时钟相关,存放的数据位为BCD 码形式,其日历、时间寄存器及其控制字见表3。

表3 DS1302的日历、时间寄存器

写寄存器 读寄存器 Bit7 Bit6 Bit5 Bit7 Bit3 Bit2

Bit1 Bit0

80H 81H CH 10秒 秒 82H 83H 10分

84H 85H 12/24——

0 10

时 时 AM ——

/PM 86H 87H 0 0 10 日 日 88H 89H 0 0 0 10月 月

8AH 8BH 0

0 0 0 0 星期 8CH 8DH 10年

8EH

8FH

WP 0

0 0

此外,DS1302 还有年份寄存器、控制寄存器、充电寄存器、时钟突发寄存器及与RAM相关的寄存器等。时钟突发寄存器可一次性顺序读写除充电寄存器外的所有寄存器容。 DS1302与RAM相关的寄存器分为两类:一类是单个RAM单元,共31个,每个单元组态为一个8位的字节,其命令控制字为C0H~FDH,其中奇数为读操作,偶数为写操作;另一类为突发方式下的RAM寄存器,此方式下可一次性读写所有的RAM的31个字节,命令控制字为FEH(写)、FFH(读)。

2.3温度芯片DS18B20接口设计与性能分析

2.3.1 DS18B20性能简介

1.DS18B20的主要特性

DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9-12位的数字值读数方式。现场温度直接以"一线总线"的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压围,使系统设计更灵活、方便。其性能特点可归纳如下:

1独特的单线接口仅需要一个端口引脚进行通信;

2测温围在-55℃到125℃,分辨率最大可达0.0625℃;

3采用了3线制与单片机相连,减少了外部硬件电路;

4零待机功耗;

5可通过数据线供电,电压围在3.0V-5.5V;

6用户可定义的非易失性温度报警设置;

7报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;

8负电压特性,电源极性接反时,温度计不会因发热烧毁,只是不能正常工作。

2.DS18B20工作原理

DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。 DS18B20测温原理如图5所示。图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器

中的数值即为所测温度。图7中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。

图7 DS18B20测温原理

2.3.2 DS18B20接口电路设计

如8图所示,该系统中采用数字式温度传感器DS18B20,具有测量精度高,电路连接简单特点,此类传感器仅需要一条数据线进行数据传输,用P3.7与DS18B20的DQ 口连接,Vcc 接电源,GND 接地。

图8温度传感器DS18B20接口电路

LSB 位置/清除

增加

计数器1

斜率累加器

计数比较器

温度寄存

减到0

预置

计数器2

减到0

停止

预置

低温度系数晶振

高温度系数晶振

2.3.3 DS18B20的工作时序

1、复位时序图

图9复位时序图2、读时序图

图10读时序图

3、写时序图

图11 写时序图

4、工作时序

1)总线时序

图12 总线时序2)写周期时序

图13写周期时序

3)起始/停止时序

图14 起始/停止时序4)应答时序

图15 应答时序

5)立即地址读时序

图16 立即地址读时序

2.4 LCD显示模块

2.4.1LCM1602的特性及使用说明

1.LCM1602的接口信号说明如表4:

表4 LCM1602的接口信号

编号引脚符号功能说明编号引脚符号功能说明

1 VSS 电源地9 D

2 DATA I/O

2 VDD 电源正极10 D

3 DATA I/O

3 VL 液晶显示偏压信号11 D

4 DATA I/O

4 RS 数据/命令选择端(H/L)12 D

5 DATA I/O

5 R/W 读/写选择端(H/L)13 D

6 DATA I/O

6 E 使能信号14 D

7 DATA I/O

7 D0 DATA I/O 15 BLA 背光正极

8 D1 DATA I/O 16 BLK 背光负极

2、基本操作时序如下:

1)读状态:RS=L,RW=H,E=H

2)写指令:RS=L,RW=L,D0~D7=指令码,E=高脉冲

3)读数据:RS=H,RW=H,E=H

4)写数据:RS=H,RW=L,D0~D7=数据,E=高脉冲

3、初始化设置

1)显示模式设置如表5:

表5显示模式设置

指令码功能

2)显示开/关及光标设置如表6:

表6 显示开/关及光标设置

指令码功能

0 0 0 0 1 D C B D=1开显示;D=0关显示

C=1显示光标;C=0不显示光标

B=1光标闪烁;B=0光标不显示

0 0 0 0 0 1 N S N=1当读或写一个字符后地址指针加一,且光

标加一

N=0当读或写一个字符后地址指针减一,且光

标减一

S=1当写一个字符,整屏显示左移(N=1)2.4.2LCM1602与MCU的接口电路

LCD的D0~D7分别接单片机的的P2口,作为数据线,因为P0口部没有上拉电阻,所以外部另外加上10K的上拉电阻;P1.0—P1.2分别接LCD的RS、RW、E三个控制管脚;RV1用来调节LCD的显示灰度;BLK、BLA为背光的阴极和阳极,接上相应电平即点亮背光灯。

2.5按键模块设计

本系统用到了5个按键,其中一个用作系统手动复位,另外4个采用独立按键,该种接法查询简单,程序处理简单,可节省CPU资源,按键电路如图17所示,4个独立按键分别与STC89C52的P3.4、P3.5、P3.6、P3.7接口相连。

图17 按键电路

对以上4个按键作简要说明:S4——SET 键,S3——UP键,S2——DOWN键,S5——OUT/STOP键。

SET 键:按下SET键进入时间校准状态,按一下进入秒调整,两下分调整,依此类推可进行各年月日,时分秒以及星期的校准;

UP键:当SET键按下时,UP进行SET选定项(如:小时)的加操作;

DOWN键:当SET键按下时,DOWN进行SET选定项(如:小时)的减操作;

OUT键:当OUT键按下时,此键功能为退出校准功能,进入下一模式,显示温度值和上下限的温度值。

)出现2个机器周期以上的

单片机就处于循

而本系

s,那么复位脉冲宽度最小

单片机的上电复位POR (

TRST),以

再插入一

在单片机开始进入运行

RST持

C=10~30μF,

本电阻为 4.7K的电阻。

3 系统的软件设计

电子万年历的功能是在程序控制下实现的。该系统的软件设计方法与硬件设计相对应,按整体功能分成多个不同的程序模块,分别进行设计、编程和调试,最后通过主程序将各程序模块连接起来。这样有利于程序修改和调试,增强了程序的可移植性。

本系统的软件部分主要要进行公历计算程序设计,温度测量程序设计,按键的扫描输入等。程序开始运行后首先要进行初始化,把单片机的各引脚的状态按程序里面的初始化命令进行初始化,初始化完成后运行温度测量程序,读取出温度传感器测量出来的温度,然后运行公历计算程序,得到公历的时间、日期信息,再运行按键扫描程序,检测有无按键按下,如果没有按键按下则直接调用节日计算程序,根据得到的公历日期信息计算出节日,如果有按键按下则更新按键修改后的变量后送给节日计算程序,由节日计算程序根据修改后的变量计算出对应的节假日,计算完成后运行显示程序,显示程序将得到的温度数据、公历信息、节假日信息送给对应的数码管让其显示。

3.1主程序流程图的设计

主程序流程图:

图19 主程序流程图

3.2 程序设计

3.2.1 DS1302读写程序设计

本系统的时间读取主要来源于单片机对DS1302的操作,在硬件上时钟芯片DS1302与单片机的连接需要三条线,即SCLK(7)、I/O(6)、RST(5),具体连接图见系统硬件设计原理图。读取写程序设计如下:

sbit clk = P1^3; //ds1302时钟线定义

sbit io = P1^4; //数据线

sbit rst = P1^5; //复位线

//秒分时日月年星期uchar code write_add[]={0x80,0x82,0x84,0x86,0x88,0x8c,0x8a}; //写地址

uchar code read_add[] ={0x81,0x83,0x85,0x87,0x89,0x8d,0x8b}; //

读地址

uchar code init_ds[] ={0x58,0x00,0x00,0x01,0x01,0x13,0x1};

uchar miao,fen,shi,ri,yue,week,nian;

uchar i;

uchar fen1=0x11,shi1=0; //两个闹钟变量的定义

bit open1;

/*************写一个数据到对应的地址里***************/

void write_ds1302(uchar add,uchar dat)

{

rst = 1; //把复位线拿高

for(i=0;i<8;i++)

{ //低位在前

clk = 0; //时钟线拿低开始写数据

io = add & 0x01;

add >>= 1; //把地址右移一位

clk = 1; //时钟线拿高

}

for(i=0;i<8;i++)

{

clk = 0; //时钟线拿低开始写数据

io = dat & 0x01;

dat >>= 1; //把数据右移一位

clk = 1; //时钟线拿高

}

rst = 0; //复位线合低

clk = 0;

io = 0;

}

/*************从对应的地址读一个数据出来***************/

uchar read_ds1302(uchar add)

{

uchar value,i;

rst = 1; //把复位线拿高

for(i=0;i<8;i++)

{ //低位在前

clk = 0; //时钟线拿低开始写数据

io = add & 0x01;

add >>= 1; //把地址右移一位

clk = 1; //时钟线拿高

}

for(i=0;i<8;i++)

{

clk = 0; //时钟线拿低开始读数据

value >>= 1;

if(io == 1)

value |= 0x80;

clk = 1; //时钟线拿高

}

rst = 0; //复位线合低

clk = 0;

io = 0;

return value; //返回读出来的数据

}

/*************把要的时间年月日都读出来***************/ void read_time()

{

miao = read_ds1302(read_add[0]); //读秒

fen = read_ds1302(read_add[1]); //读分

shi = read_ds1302(read_add[2]); //读时

ri = read_ds1302(read_add[3]); //读日

yue = read_ds1302(read_add[4]); //读月

nian = read_ds1302(read_add[5]); //读年

week = read_ds1302(read_add[6]); //读星期

Conversion(0,nian,yue,ri); //农历转换

n_nian = year_moon ;

n_yue = month_moon ;

n_ri = day_moon ;

/*************把要写的时间年月日都写入ds1302里***************/ void write_time()

{

write_ds1302(0x8e,0x00); //打开写保护

write_ds1302(write_add[0],miao); //写秒

write_ds1302(write_add[1],fen); //写分

write_ds1302(write_add[2],shi); //写时

write_ds1302(write_add[3],ri); //写日

write_ds1302(write_add[4],yue); //写月

write_ds1302(write_add[5],nian); //写星期

write_ds1302(write_add[6],week); //写年

write_ds1302(0x8e,0x80); //关闭写保护

}

/*************把数据保存到ds1302 RAM中**0-31*************/

void write_ds1302ram(uchar add,uchar dat)

{

add <<= 1; //地址是从第二位开始的

add &= 0xfe; //把最低位清零是写的命令

add |= 0xc0; //地址最高两位为 1

write_ds1302(0x8e,0x00);

write_ds1302(add,dat);

write_ds1302(0x8e,0x80);

}

/*************把数据从ds1302 RAM读出来**0-31*************/

uchar read_ds1302ram(uchar add)

{

add <<= 1; //地址是从第二位开始的

add |= 0x01; //把最高位置1 是读命令

add |= 0xc0; //地址最高两位为 1

return(read_ds1302(add));

/*************初始化ds1302时间***************/

void init_ds1302()

{

uchar i;

rst = 0; //第一次读写数据时要把IO品拿低

clk = 0;

io = 0;

i = read_ds1302ram(30);

if(i != 3)

{

i = 3;

write_ds1302ram(30,i); //4050 4100 3080

write_ds1302(0x8e,0x00); //打开写保护

for(i=0;i<7;i++)

write_ds1302(write_add[i],init_ds[i]); //把最高位值0 允许ds1302工作

write_ds1302(0x8e,0x80); //关写保护

}

}

DS1302与微处理器进行数据交换时,首先由微处理器向电路发送命令字节,命令字节最高位MSB(D7)必须为逻辑 1,如果D7=0,则禁止写DS1302,即写保护;D6=0,指定时钟数据,D6=1,指定RAM数据;D5~D1指定输入或输出的特定寄存器;最低位LSB(D0)为逻辑0,指定写操作(输入),D0=1,指定读操作(输出) 。

3.2.2 温度程序设计

单总线上最基本的操作有初始化、写和读3种,所有其它的操作都由这3

种基本操作组合而成,初始化用于对总线上的器件进行状态复位,写用于主节点向总线上写入一位数据,读用于主节点从总线上读取一位数据。在这3种操作中,只有写操作是单向的,初始化操作和读操作都是双向的。具体程序设计如下:byte ow_reset(void)

{

byte presence;

基于单片机的万年历设计

基于单片机的万年历设计 摘要 进入二十一世纪,电子技术无处不在,电子产品给我们生活带来便利的同时也改变着我们的世界。基于单片机技术的电子产品已经遍及社会的每个角落。电子万年历以其体积小,携带方便、实用,美观等优势一直占领着广阔的市场,同时也给人们的生活带来诸多方便。 本设计由硬件设计和软件设计两大部分组成。硬件设计上,以AT89C51单片机为控制核心,通过DS1302与DS18B20通信获得实时时间和实时环境温度,并将得到的数据通过1602液晶显示出来,同时通过相应的按键调整相应的值。硬件部分详细介绍了本设计所应用的各硬件接口技术和各个接口模块的功能。软件设计上,本设计采用C 语言进行软件设计,在硬件的基础上来进行各功能软件模块的编写。同时软件的设计采用模块化结构,使程序设计的逻辑关系更加简单易懂。 由于该设计用液晶为载体来显示,所以具有良好的人机交互界面与友好的操作,可以显示时间、日期、星期、温度并具有闹铃功能。 关键词:AT89C51单片机;万年历;液晶技术;DS1302;DS18B20

Design of Multifunctional digital Perpetual Calendar Based on MCU Abstract Enters for the 21st century, the electronic technology is ubiquitous, the electronic products live for us bring the convenience at the same time also to change our world.Already spread social based on the monolithic integrated circuit technology electronic products each quoin.The electronic ten thousand calendars are small by its volume, the carryhome is convenient, is practical, artistic and so on the superiority are seizing the broad market continuously, simultaneously also gives people's life to bring conveniently many. This design designs major part two by the hardware design and the software is composed.The hardware designs, take AT89C51 monolithic integrated circuit as the control core, obtains the real-time time and the real-time ambient temperature through DS1302 and the DS18B20 correspondence, and will obtain data through 1602 liquid crystal displays, simultaneously through corresponding pressed key adjustment corresponding value.The hardware part introduced in detail this design applies various hardware connection technology and each interface module function.The software designs, this design uses the C language to carry on the software design, carries on various functions software module in the hardware foundation the compilation.Simultaneously the software design uses the modular structure, makes the programming the logical relations to be simpler easy to understand. Because this design demonstrated with the liquid crystal for the carrier, therefore has the good man-machine interaction contact surface and the friendly operation, may demonstrate the time, the date, the week, the temperature and have the noisy bell function. Keywords: AT89C51 monolithic integrated circuit; Ten thousand calendars; Liquid crystal technology; DS1302; DS18B20

单片机万年历C语言程序完整

#include #include //#include "LCD1602.h" //#include "DS1302.h" #define uint unsigned int #define uchar unsigned char sbit DS1302_CLK = P1^7; //实时时钟时钟线引脚 sbit DS1302_IO = P1^6; //实时时钟数据线引脚 sbit DS1302_RST = P1^5; //实时时钟复位线引脚 sbit ACC0 = ACC^0; sbit ACC7 = ACC^7; char hide_sec,hide_min,hide_hour,hide_day,hide_week,hide_month,hide_year; //秒,分,时到日,月,年位闪的计数 sbit Set = P2^0; //模式切换键 sbit Up = P2^1; //加法按钮 sbit Down = P2^2; //减法按钮 sbit out = P2^3; //立刻跳出调整模式按钮 sbit DQ = P3^0; char done,count,temp,flag,up_flag,down_flag,t_value; uchar TempBuffer[5],week_value[2]; void show_time(); //液晶显示程序 /***********1602液晶显示部分子程序****************/ //Port Definitions********************************************************** sbit LcdRs = P2^5; sbit LcdRw = P2^6; sbit LcdEn = P2^7; sfr DBPort = 0x80; //P0=0x80,P1=0x90,P2=0xA0,P3=0xB0.数据端口 //内部等待函数************************************************************** unsigned char LCD_Wait(void) { LcdRs=0; LcdRw=1; _nop_(); LcdEn=1; _nop_(); LcdEn=0; return DBPort; } //向LCD写入命令或数据************************************** #define LCD_COMMAND 0 // Command

基于单片机电子万年历的毕业设计说明

单片机课程设计报告 电子万年历设计 姓名:建强 学号: 专业班级: 08电气(2)班指导老师:吴永 所在学院:科技学院 2011年6月30日

摘要 随着科技的快速发展,时间的流逝,至从观太阳、摆钟到现在电子钟,人类不断研究,不断创新纪录。美国DALLAS公司推出的具有涓细电流充电能的低功耗实时时钟电路DS1302。它可以对年、月、日、周日、时、分、秒进行计时,还具有闰年补偿等多种功能,而且DS1302的使用寿命长,误差小。对于数字电子万年历采用直观的数字显示,可以同时显示年、月、日、周日、时、分、秒和温度等信息,还具有时间校准等功能。该电路采用AT89S52单片机作为核心,功耗小,能在3V的低压工作,电压可选用3~5V电压供电。 综上所述此万年历具有读取方便、显示直观、功能多样、电路简洁、成本低廉等诸多优点,符合电子仪器仪表的发展趋势,具有广阔的市场前景。 本设计是基于51系列的单片机进行的电子万年历设计,可以显示年月日时分秒及周信息,具有可调整日期和时间功能。在设计的同时对单片机的理论基础和外围扩展知识进行了比较全面准备。在硬件与软件设计时,没有良好的基础知识和实践经验会受到很大限制,每项功能实现时需要那种硬件,程序该如何编写,算法如何实现等,没有一定的基础就不可能很好的实现。 具体实现功能: (1)显示年月日时分秒及星期信息 (2)具有可调整日期和时间功能 (3)与即时时间同步

目录 1方案论证 (3) 1.1单片机芯片的选择方案和论证 (3) 1.2显示模块选择方案和论证 (3) 1.3时钟芯片的选择方案和论证 (4) 1.4电路设计最终方案决定 (4) 2系统的硬件设计与实现 (5) 2.1电路设计框图 (5) 2.2系统硬件概述 (5) 2.3主要单元电路的设计 (5) 2.3.1单片机主控制模块的设计 (5) 2.3.2时钟电路模块的设计 (6) 2.3.3电路原理及说明 (7) 2.3.4显示模块的设计 (8) 3系统的软件设计 (9) 3.1程序流程框图 (9) 4测试与结果分析 (11) 4.1硬件测试 (10) 4.2软件测试 (10) 4.3测试结果分析与结论 (10) 4.3.1 测试结果分析 (10) 4.3.2 测试结论 (10) 5prodeus软件仿真........................................ ..........错误!未定义书签。 5.1Proteus ISIS简介 (12) 5.2Proteus运行流程 (13) 5.3Proteus功能仿真 (13) 6课程设计总结与体会.......................................... .....错误!未定义书签。 参考文献...........................................................错误!未定义书签。 附录一:系统电路图.................................................错误!未定义书签。 附录二:系统程序...................................................错误!未定义书签。

基于51单片机的万年历的设计

单片机课程实训SCM PRACTICAL TRAINING

目录 第一部分课程设计任务书 (1) 一、课程设计题目 (1) 二、课程设计时间 (1) 三、实训提交方式 (1) 四、设计要求 (1) 第二部分课程设计报告 (2) 一、单片机发展概况 (2) 二、MCS-51单片机系统简介 (2) 三、设计思想 (3) 四、硬件电路设计 (3) 1. 总体设计 (3) 2. 晶振电路 (4) 3. 复位电路 (4) 4. DS1302时钟电路 (5) 5. 温度采集系统电路 (5) 6. 按键调整电路 (6) 7. 闹钟提示电路 (6) 五、软件设计框图 (7) 六、程序源代码 (8) 1. 主程序 (8) 2. 温度控制程序 (11) 3. 日历设置程序 (13) 4. 时钟控制程序 (18) 5. 显示设置程序 (20) 七、结束语 (23) 八、课程设计小组分工 (23) 九、参考文献 (23)

第一部分课程设计任务书 一、课程设计题目 用中小规模集成芯片设计制作万年历。 二、课程设计时间 五天 三、实训提交方式 提交实训设计报告电子版与纸质版 四、设计要求 (1)显示年、月、日、时、分、秒和星期,并有相应的农历显示。(2)可通过键盘自动调整时间。 (3)具有闹钟功能。 (4)能够显示环境温度,误差小于±1℃ (5)计时精度:月误差小于20秒。

第二部分课程设计报告 一、单片机发展概况 单片机诞生于20世纪70年代末,它的发展史大致可分为三个阶段: 第一阶段(1976-1978):初级单片机微处理阶段。该时期的单片机具有 8 位CPU,并行 I/O 端口、8 位时序同步计数器,寻址范围 4KB,但是没有串行口。 第二阶段(1978-1982):高性能单片机微机处理阶段,该时期的单片机具有I/O 串行端口,有多级中断处理系统,15 位时序同步技术器,RAM、ROM 容量加大,寻址范围可达 64KB。 第三阶段(1982-至今)位单片机微处理改良型及 16 位单片机微处理阶段民用电子产品、计算机系统中的部件控制器、智能仪器仪表、工业测控、网络与通信的职能接口、军工领域、办公自动化、集散控制系统、并行多机处理系统和局域网络系统。 二、MCS-51单片机系统简介 MCS-51系列单片机产品都是以Intel公司最早的典型产品8051为核心构成的。MCS-51单片机由CPU 、RAM 、ROM 、I/O接口、定时器/计数器、中断系统、内部总线等部件组成。8051单片机的基本性能有: ◆8位CPU; ◆布尔代数处理器,具有位寻址能力; ◆128B内部RAM,21个专用寄存器; ◆4KB内部掩膜ROM; ◆2个16位可编程二进制加1定时器/计数器; ◆32个(4×8位)双向可独立寻址的I/O口; ◆1个全双工UART(异步串行通信口); ◆5个中断源,两级中断结构; ◆片内振荡器及时钟电路,晶振频率为1.2MHz~12MHz; ◆外部程序/数据存储器寻址空间均为64KB; ◆111条指令,大部分为单字节指令; ◆单一+5V电源供电,双列直插40引脚DIP封装。

51单片机万年历毕业设计论文

专科毕业设计(论文) 题目51单片机电子万年历论文 51单片机电子万年历论文 摘要: 电子万年历是一种非常广泛日常计时工具,对现代社会越来越流行。它可以对年、月、日、周日、时、分、秒进行计时,还具有闰年补偿等多种功能,而且DS1302的使用寿命长,误差小。对于数字电子万年历采用直观的数字显示,可以同时显示年、月、日、周日、时、分、秒和温度等信息,还具有时间校准等功能。该电路采用AT89S52单片机作为核心,功耗小,能在3V的低压工作,电压可选用3~5V电压供电。 本设计是基于51系列的单片机进行的电子万年历设计,可以显示年月日时分秒及周信息,具有可调整日期和时间功能。在设计的同时对单片机的理论基础和外围扩展知识进行了比较全面准备。在硬件与软件设计时,没有良好的基础知识和实践经验会受到很大限制,每项功能实现时需要那种硬件,程序该如何编写,算法如何实现等,没有一定的基础就不可能很好的实现。在编写程序过程中发现

以现有的相关知识要独自完成编写任务困难重重,在老师和同学的帮助下才完成 了程序部分的编写。 万年历的设计过程在硬件与软件方面进行同步设计。硬件部分主要由AT89C52单片机,LED显示电路,以及调时按键电路等组成。在单片机的选择上本人使用了AT89C52单片机,该单片机适合于许多较为复杂控制应用场合。显示器使用2片7SEG-MPX8-CA和一片7SEG-MPX4-CA。7SEG-MPX8-CA是一种八个共阳二极管显示器,7SEG-MPX4-CA是一种四个共阳二极管显示器。为了能更轻松的控制这三片显示器,本人使用了3片74HC164来驱动。74HC164 是 8 位边沿触发式移位寄存器,串行输入数据,然后并行输出。软件方面主要包括日历程序、时间调整程序,公历转阴历程序,显示程序等。程序采用汇编语言编写,以便更简单地实现调整时间及阴历显示功能。所有程序编写完成后,在wave软件中进行调试,确定没有问题后,在Proteus软件中嵌入单片机内进行仿真。最后总在老师同学的帮助以及自己的努力下完成了此次电子万年历的设计。 关键词: 时钟电钟;DS1302;DS18B20;动态扫描;单片机 Abstract E-calendar day time is a very wide range of tools, increasingly popular in modern society. It can be year, month, day, Sunday, hours, minutes, seconds for time, but also has a leap year compensation to a variety of functions, and the DS1302's long life, small error. For the digital electronic calendar using an intuitive digital display can simultaneously display year, month, day, Sunday, hours, minutes, seconds, and temperature and other information, but also a time-calibration and other functions. The circuit uses AT89S52 microcontroller as the core, power consumption, low-voltage work in 3V, the voltage can choose 3 ~ 5V voltage supply. The design is based on 51 series of microcontrollers to the design of electronic calendar, you can display date information on when the minutes and seconds, and weeks, with adjustable date and time functions. At the same time in the design of the theoretical basis of the MCU and peripheral expansion of knowledge of the more comprehensive preparation. The hardware and software design, there is no good basic knowledge and practical experience will be greatly limited, each feature is required to achieve the kind of hardware, procedures, how to write, how to implement such algorithms, there is no certain foundation can not be good implementation. Found during the preparation process to the existing knowledge to complete the preparation of the task alone difficult, In the help of teachers and students to complete the program part of the preparation. Calendar of the design process in hardware and software to synchronize the design. Hardware mainly by the AT89C52 microcontroller, LED display circuit, and the tune composed of the circuit when the button. In the SCM choice I used the AT89C52 microcontroller, which is suitable for many of the more complex control applications. Monitor the use of two 7SEG-MPX8-CA and a 7SEG-MPX4-CA. 7SEG-MPX8-CA is a total

基于51单片机的万年历设计

目录 第一章绪论 (3) 第二章设计要求及设计框图 (4) 2.1 设计要求 (4) 2.2 设计框图 (4) 第三章知识要点 (4) 3.1 LMO16L液晶模块 (4) 3.1.1 LM016L引脚说明 (5) 3.1.2 控制指令 (5) 3.1.3 基于Proteus ISIS 7的液晶模块仿真 (6) 3.2 单片机A T89C51 (8) 3.2.1 主要特性 (8) 3.2.2 管脚说明 (9) 3.2.3 振荡器特性 (11) 3.2.4 芯片擦除 (11) 3.3 时钟芯片DS1302 (11) 3.3.1 DS1302的控制字节 (12) 3.3.2 数据输入输出(I/O) (12) 3.3.3 DS1302的寄存器 (12) 3.4 DS18B20数字温度传感器 (13) 3.4.1技术性能描述 (13) 3.4.2 DS18B20主要的数据部件 (14) 3.4.3 DS18B20温度处理过程 (15) 3.4.4 DS18B20的主要特性 (17) 3.4.5 DS18B20的外形和内部结构 (17) 3.4.6 DS18B20工作原理 (18) 3.4.7 DS18B20的应用电路 (21) 3.4.8 DS18B20使用中注意事项 (23) 第四章硬件设计 (24) 4.1 Proteus软件 (24) 4.1.1 Proteus软件介绍 (24) 4.1.2 功能特点 (24) 4.1.3 革命性的特点 (24) 4.1.4 基本操作 (25) 4.1.5 选择要使用的元件 (25) 4.1.6 功能模块 (26) 4.2 基于89C51的万年历与温度显示器的硬件设计 (28) 4.2.1 设计框图 (29) 4.2.2 电路原理图 (29) 4.3 元件清单 (30) 第五章软件设计 (30)

推荐-基于51单片机控制的语音报时万年历课程设计1 精品

基于51单片机控制的语音报时万年历 -----20/11/20XX SDU(WH) 一.实验要求 运用单片机及相关外设实现以下功能: 1)万年历及时钟显示 2)时间日期可调 3)可对时间进行整点报时和随机报时 二.方案分析 根据实验要求,选用STC公司的8051系列,STC12C5A16S2增强型51单片机。此单片机功能强大,具有片内EEPROM、1T分频系数、片内ADC转换器等较为实用功能,故选用此款。 实验中,对日期和时间进行显示,显示的字符数较多,故选用12864LCD屏幕。该屏幕操作较为便捷,外围电路相对简单,实用性较强。 为了实现要求中的时间日期可调,故按键是不可缺少的,所以使用了较多的按键。一方面,单片机的I/O口较为充足;另一方面,按键较多,选择的余地较大,方便编程控制。 实验中,并未要求对时间和日期进行保存和掉电续运行,所以并未添加EEPROM和DS12C887-RTC芯片。实际上,对万年历来说,这是较为重要的,但为了方便实现和编程的简单,此处并未添加,而是使用单片机的定时器控制时间,精度有差别。且上电默认时间为20XX-01-01 09:00:00 之后需要手动调整为正确时间。 要求中的语音报时功能,这里选用ISD1760芯片的模块来帮助实现。此模块通过软件模拟SPI协议控制。先将所需要的声音片段录入芯片的EEPROM区域,之后读出各段声音的地址段,然后在程序中定义出相应地址予以控制播放哪一声音片段。 三.电路硬件设计 实际效果图 四.程序代码部分

Main.h #ifndef _MAIN_H #define _MAIN_H #include "reg52.h" #include "INTRINS.H" #include "math.h" #include "string.h" #include "key.h" #include "led.h" #include "12864.h" #include "main.h" #include "isd1700.h" #include "sound.h" extern unsigned int count; extern unsigned int key_time[8]; extern unsigned char key_new; extern unsigned char key_old; extern unsigned char stop_flag; extern unsigned char key_follow[8]; extern unsigned int key_num[8]; sbit BEEP=P3^7; sbit ISD_SS=P0^7; sbit ISD_MISO=P0^4; sbit ISD_MOSI=P0^5; sbit ISD_SCLK=P0^6; extern unsigned char date_show[]; extern unsigned char time_show[]; extern unsigned char sec; extern unsigned char min; extern unsigned char hour; extern unsigned char day; extern unsigned char month; extern unsigned char year_f; extern unsigned char year_l; extern unsigned char leap_year_flag;

基于单片机的万年历时钟设计【文献综述】

毕业设计开题报告 测控技术与仪器 基于单片机的万年历时钟设计 1前言部分 在当代繁忙的工作与生活中,时间与我们每一个人都有非常密切的关系,每个人都受到时间的影响。为了更好的利用我们自己的时间,需要一款灵活、稳定而又功能强大的自动定时控制系统,以规范本单位的作息时间或定时控制一些设备。目前,市面上出现的一些时控设备或功能单一,或使用烦琐,或价格昂贵,总有一些不尽如人意的地方[1]。我们必须对时间有一个度量,因此产生了钟表。钟表的发展是非常迅速的,17 世纪中叶, 由荷兰人C. Huygens来发明的第一个钟摆与以前任何计时装置相比, 摆钟的精确度提高了上百倍,而他随后发明的螺旋平衡弹簧,又进一步提高精度、减小体积, 导致了怀表的出现。然而再好的摆钟,其精度也只能达到每年误差不超过一秒[2]。1939年出现了利用石英晶体振动计时的石英钟, 每天误差只有千分之二秒, 到二次大战后精度提高到30 年才差一秒。很快, 测年的技术又推进到原子层面, 1948 年出现第一台原子钟, 1955年又发明了铯原子钟, 利用Cs133原子的共振频率计时,现在精度已经高达每天只差十亿分之一秒[2]。 从刚开始的机械式钟表到现在普遍用到的数字式钟表,即使现在钟表千奇百怪,但是它们都只是完成一种功能——计时功能,只是工作原理不同而已,在人们的使用过程中,逐渐发现了钟表的功能太单一,无法更大程度上的满足人们的需求。发展到现在人们广泛使用的万年历。万年历在家庭居室、学校、车站和广场使用越来越广泛,给人们的生活、学习、工作带来极大的方便[3]。电子万年历具有信息量大、直观清晰、经济实用等优点,正成为家庭、商场、公共场所等新的消费热点,具有重要的开发价值[4]。随着科技的不断发展,家用电子产品不但种类日益丰富,而且变得更加经济实用,,功能也越来越齐全,除了公历年月、日、时分秒、星期显示及闹铃外,又增加了农历、温度、24节气及l2生肖等显示。甚至还有语音报时等独特功能。再加上造型新颖别致,附带立体动感画面,

基于单片机的多功能电子万年历设计开题报告

毕业设计开题报告 1.结合毕业设计课题情况,根据所查阅的文献资料,撰写2000字左右的文献综述: 文献综述 一、本课题研究背景 单片机从20世纪70年代末出现后,以其卓越的性能,得到了广泛的应用,已经深入到各个领域。单片机芯片本身是按工业测控环境要求设计的,分为民用、工业品、军品,其中工业品和军品具有较强的适合恶劣环境的能力[1]。由于单片机本身就是一个计算机系统,因此,只要在单片机的外围适当加一些必要的扩展电路及通道接口,就可有构成各种应用系统,如控制系统、数据采集系统、自动控制系统、自动测试系统、检测监视系统、智能仪表、功能模块等[2]。单片机的应用领域十分广泛,自20世纪80年代以来,单片机的应用已经深入到工业、农业、国防、科研、机关、教育、商业以及家电、生活、娱乐、玩具等各个领域中。单片机应该在检测、控制领域中,具有以下特点:1)小巧灵活、成本化、易于产品化。2)可靠性好,适用范围广[3]。 近年来,电子钟已成为人们日常生活中必不可少的物品,广泛用于个人家庭以及车站、码头、剧院、办公室等公共场所,给人们的生活、学习、工作、娱乐带来了极大的方便。随着技术的发展,人们已不再满足于钟表原先简单的计时功能,希望出现一些新的功能,诸如日历的显示、闹钟的应用等,以带来更大的方便,而所有这些,又都是以数字化的电子时钟为基础的。因此,研究实用电子时钟及其扩展应用,有着非常现实的意义,具有很大的实用价值[4]。 由于数字集成电路技术的发展和采用了先进的石英技术,现代电子钟具有走时准确、性能稳定、制作维修简单等优点,弥补了传统钟表的许多不足之处[5]。我们利用单片机技术设计制作的电子万年历, 可以很方便的由软件编程进行功能的调整和改进,使其在能够准确显示年、月、日、时间、星期的同时,还能具有很多其他的功能[6]。如设定闹钟、语音报时、阴阳历的转换、二十四节气的显示等,有一定的新颖性和实用性,同时体积小、携带方便,使用也更为方便,具有技术更新周期短、成本低、开放灵活等优点,具备一定的市场前景。这里要介绍的就是一款可满足使用者特殊要求,输出方式灵活、计时准确、性能稳定、维护方便的实用电子万年历[7]。

单片机课程设计—万年历[1]

郑州轻工业学院 软件学院 单片机与接口技术课程设计总结报告 设计题目:电子万年历 学生姓名: 系别: 专业: 班级: 学号: 指导教师: 2011年12月16日

设计题目: 电子万年历 设计任务与要求: 1、显示年月日时分秒及星期信息 2、具有可调整日期和时间功能 3、增加闰年计算功能 方案比较: 方案一:系统分为主控制器模块、显示模块、按键开关模块,主控制模块采用 AT89C52单片机为控制中心,显示模块采用普通的共阴LED数码管,键输入采用中断实现 功能调整,计时使用AT89C52单片机自带的定时器功能,实现对时间、日期的操作,通 过按键盘开关实现对时间、日期的调整。 方案二:系统分为主控模块、时钟电路模块、按键扫描模块,LCD显示模块,电源 电路、复位电路、晶振电路等模块。主控模块采用AT89C52单片机,按键模块用四个按键,用于调整时间,显示模块采用LCD1602,时钟电路模块采用DS1302时钟芯片实现对 时间、日期的操作。 两个方案工作原理大致相同,只有显示模块和时钟电路不同。LED数码管价格适中,对于数字显示效果较好,而且使用单片机的端口也较少; LCD1602液晶显示屏,显示功 能强大,可以显示大量文字、图形,显示多样性,清晰可见,价格相对LED数码管来说 要昂贵些,但是基于本设计显示的东西较多,若采用LED数码管的话,所需数码管较多,而且不利于控制,因此选择LCD1602作为显示模块。DS1302是一款高性能的实时时钟芯片,以计时准确、接口简单、使用方便、工作电压范围宽和低功耗等优点,得到广泛的 应用,实时时钟有秒、分、时、星期、日、月和年,月小于31天时可以自动调整,并具 有闰年补偿功能,而且在掉电时能够在外部纽扣电池的供电下继续工作。单片机有定时 器的功能,但时间误差较大,且需要编写时钟程序,因此采用DS1302作为时钟电路。 对比以上方案,结合设计技术指标与要求我们选择了方案二进行设计。

基于51单片机温湿度检测+电子万年历的毕业设计论文

毕业设计论文 基于51单片机温湿度检测+电子万年历的设计

[摘要]:温湿度检测是生活生产中的重要的参数。本设计为基于51单片机的温湿度检测与控制系统,采用模块化、层次化设计。用新型的智能温湿度传感器SHT10主要实现对温度、湿度的检测,将温度湿度信号通过传感器进行信号的采集并转换成数字信号,再运用单片机STC89C52RC进行数据的分析和处理,为显示提供信号,显示部分采用LCD1602液晶显示所测温湿度值。系统电路简单、集成度高、工作稳定、调试方便、检测精度高,具有一定的实用价值。 [关键字]:STC89C52RC SHT10 LCD1602 按键指示灯蜂鸣器电子万年历Based on 51 single chip microcomputer temperature and humidity detection + electronic calendar design Abstract:Temperature and humidity detection is important parameters in the production of life. This design is based on 51 single chip microcomputer temperature and humidity detection and control system, adopting modular, hierarchical design. With new type of intelligent temperature and humidity sensor SHT10 main realization about the detection of temperature, humidity, temperature humidity signal acquisition is converted into digital signals through the sensor signal, using SCM STC89C52RC for data analysis and processing, provides the signal for display, display part adopts LCD1602 LCD display the measured temperature and humidity values. Simple circuit, high integration, work stability, convenient debugging, high detection precision, has certain practical value. Key words:STC89C52RC SHT10 LCD1602 key indicator light buzzer The electronic calendar

基于单片机的数字万年历设计

论文题目: 基于单片机的数字万年历设计 完成日期: 指导教师签字: 答辩小组成员签字:

潍坊科技学院毕业论文摘要 摘要 现代工业革命代表性特征就是计算机产品出现和应用,而随着计算机技术的不断深入创新和发展,基于计算机核心技术思维模式的电子类产品,已经逐步作为人类社会生活的密不可分的重要组成部分,较为典型代表就是:有效记录时间电子类产品。本次毕业设计选题定为:基于单片机的数字万年历设计,选择AT89S52作为数字万年历的核心控制处理器,系统以串行DS1302芯片记录日历时间,AT89S52作为数字万年历的核心控制处理器,可以进行闰年补偿并且可以进行精确的计,本文所设计数字万年历的,能够满足用户对于温度的检测功能,芯片上选择具有应用广泛和功能强大的芯片,同时选择具有较强抗干扰能力的液晶显示板,作为数字万年历的用户交互界面。这种万年历具有数据读取十分方便、功能丰富、电路看起来十分的简单明了并且制作成本并不是太高等各方面的优点。因此,会有十分良好的市场前景。它可通过设计一个基于单片机的数字万年历的设计,有效解决了现在现有的产品中存在的问题,因此在推向市场的时候会具有很好的应用价值。 关键词:单片机;万年历;AT89S52;DS1302;DS18B20; I

潍坊科技学院毕业论文摘要 ABSTRACT Modern Industrial Revolution represents the characteristic is the computer products and applications, and along with the computer technology the deepening of innovation and development, based on computer the thinking patterns of the core technology of electronic products has gradually as inseparable and important component of human social life, the typical representative is: effective recording time electronics products. The graduation design topic is: Design of digital calendar based on MCU, using AT89S52 as the core of digital calendar control processor system with serial chip DS1302 calendar to record time AT89S52 as the core of digital calendar control processor can leap year compensation and accurate. In this paper, the design digital calendar, can meet the user for temperature detection function, chip selection is widely used and powerful chip, and a liquid crystal display panel having strong anti-interference ability, as the interface of the digital calendar. This calendar with data read is very convenient, feature rich, the circuit looks very simple and the manufacturing cost is not too high and the advantages. Therefore, there will be a very good market prospects. It can be through the design of a design based on single chip digital calendar, an effective solution to the problems existing in the existing product. Therefore, in pushing the market has a good application value. Key Words:SCM;calendar;DS1302;DS18B20; II

单片机万年历程序..

单片机万年历程序 #include //调用单片机头文件 #define uchar unsigned char //无符号字符型宏定义变量范围0~255 #define uint unsigned int //无符号整型宏定义变量范围0~65535 #include "eeprom52.h" #include "nongli.h" bit flag_200ms ; bit flag_100ms ; sbit beep = P3^7; //蜂鸣器定义 bit flag_beep_en; uint clock_value; //用作闹钟用的 sbit dq = P3^1; //18b20 IO口的定义 uint temperature ; //温度变量 uchar flag_nl; //农历阳历显示标志位 uchar menu_1,menu_2; uchar key_time,flag_value; //用做连加的中间变量 bit key_500ms ; uchar n_nian,n_yue,n_ri; //农历显示的函数

#include "ds1302.h" #include "lcd1602.h" /******************把数据保存到单片机内部eeprom中******************/ void write_eeprom() { SectorErase(0x2000); byte_write(0x2000, fen1); byte_write(0x2001, shi1); byte_write(0x2002, open1); byte_write(0x2058, a_a); } /******************把数据从单片机内部eeprom中读出来*****************/ void read_eeprom() { fen1 = byte_read(0x2000); shi1 = byte_read(0x2001); open1 = byte_read(0x2002); a_a = byte_read(0x2058); } /**************开机自检eeprom初始化*****************/ void init_eeprom() { read_eeprom(); //先读 if(a_a != 1) //新的单片机初始单片机内问eeprom { fen1 = 3;

相关文档
最新文档