半导体工艺整理资料

半导体工艺整理资料
半导体工艺整理资料

第一章微电子工艺引论

1.硅片、芯片的概念

硅片:制造电子器件的基本半导体材料硅的圆形单晶薄片

芯片:由硅片生产的半导体产品

2.*什么是微电子工业技术?微电子工业技术主要包括哪些技术?

微电子工艺技术:在半导体材料芯片上采用微米级加工工艺制造微小型化电子元器件和微型化电路技术。包括超精细加工技术、薄膜生长和控制技术、高密度组装技术、过程检测和过程控制技术等

3.集成电路制造涉及的5个大的制造阶段的内容

集成电路制造阶段:硅片制备、芯片制造、芯片测试/拣选、装配与封装、终测

4.IC工艺前工序,IC工艺后工序,以及IC工艺辅助工序

IC工艺前工序:

薄膜制备技术:主要包括外延、氧化、化学气相淀积、物理气相淀积(如溅射、蒸发) 等掺杂技术:主要包括扩散和离子注入等技术

图形转换技术:主要包括光刻、刻蚀等技术

IC工艺后工序:划片、封装、测试、老化、筛选

IC工艺辅助工序:超净厂房技术;超纯水、高纯气体制备技术;光刻掩膜版制备技术;

材料准备技术

5.微芯片技术发展的主要趋势

提高芯片性能(速度、功耗)

提高芯片可靠性(低失效)

降低芯片成本(减小特征尺寸,增加硅片面积,制造规模)

6.什么是关键尺寸(CD)?

芯片上的物理尺寸特征称为特征尺寸

特别是硅片上的最小特征尺寸,也称为关键尺寸或CD

第二章半导体材料

1.本征半导体和非本征半导体的区别是什么?

本征半导体:不含任何杂质的纯净半导体,其纯度在99.999999%(8~10个9)

2.为何硅被选为最主要的半导体材料?

硅材料:

硅的丰裕度——制造成本低

熔点高(1412 OC)——更宽的工艺限度和工作温度范围

SiO2的天然生成

3.GaAs相对硅的优点和缺点各是什么?

优点:

a)比硅更高的电子迁移率,高频微波信号响应好——无线和高速数字通信

b)抗辐射能力强——军事和空间应用

c)电阻率大——器件隔离容易实现

d)发光二极管和激光器

主要缺点

a)没有稳定的起钝化保护作用的自然氧化层

b)晶体缺陷比硅高几个数量级

c)成本高

第三章圆片的制备

1.两种基本的单晶硅生产方法

直拉法(CZ法)、区熔法

2.晶体缺陷根据维数可分为哪四种?

a)点缺陷—空位、自填隙等

b)线缺陷—位错

c)面缺陷—层错

d)体缺陷

3.*画出圆片制备的基本工艺步骤流程图,并给出其任意三个步骤的主要作用晶体生长、整型、切片、磨片倒角、刻蚀、抛光、清洗、检查、包装

磨片和倒角:切片完成后,传统上要进行双面的机械磨片以除去切片时留下的损伤,达到硅片两面高度的平行及平坦;硅片边缘抛光修整(又叫倒角)可使硅片边缘获得平滑的半径周线

切片:对于200mm的硅片,切片是用带有金刚石切割边缘的内圆切割机来完成的。

对于300mm的硅片,用线锯来切片。厚度一般在775±25微米

清洗:半导体硅片必须被清洗使得在发送给芯片制造厂之前达到超净的洁净状态

第四章沾污控制

1.净化间污染分类

净化间沾污、颗粒、金属杂质、有机物沾污、自然氧化层、静电释放(ESD)

2.半导体制造中,可以接受的颗粒尺寸的粗略法则

必须小于最小器件特征尺寸的一半

3.金属污染的主要来源

a)化学溶液

b)半导体制造中的各种工序,如:离子注入

c)化学品与传输管道反应

d)化学品与容器反应

4.*超净服的目标

超净服系统的目标是满足以下职能标准:

a)对身体产生的颗粒和浮质的总体抑制

b)超净服系统颗粒零释放

c)对ESD的零静电积累

d)无化学和生物残余物的释放

5.什么是可动离子污染

可动离子沾污(MIC):

a)金属杂质以离子形式出现,且是高度活动性

b)危害半导体工艺的典型金属杂质是碱金属。如钠,就是最常见的可移动离子沾污物,

而且移动性最强

6.静电释放的概念及带来的问题

静电释放(ESD):

a)也是一种形式的沾污,因为它是静电荷从一个物体向另一个物体未经控制地转移,

可能损坏芯片

b)半导体制造中特别容易产生静电释放,因为硅片加工保持在较低的湿度中

静电释放带来的问题:

a)发生在几个纳秒内的静电释放能产生超过1A的峰值电流

蒸发金属导线和穿透氧化层

击穿栅氧化层的诱因

b)吸附颗粒到硅片表面

颗粒越小,静电的吸引作用就越明显

器件特征尺寸的缩小,更需要严格控制硅片放电

7.芯片生产厂房的7种污染源

空气、人、厂房、水、工艺用化学品、工艺气体、生产设备

8.硅片表面的颗粒数与工艺步骤数之间的关系图

9.硅片清洗目标

硅片清洗的目标——去除所有表面沾污

颗粒、有机物、金属、自然氧化层

第五章工艺腔内的气体控制

1.工艺用气体通常分为哪两类?

通用气体:氧气(O2)、氮气(N2)、氢气(H2)、氦气(He)和氩气(Ar),纯度要控制在7个9(99.99999%)以上

特殊气体:指一些工艺气体以及其它在半导体集成电路制造中比较重要的气体,纯度要控制在4个9 (99.99%)以上

2.常见的初级泵和高级泵

常见的两种初级泵:

a)干性机械泵

b)增压/调压泵:可处理大量气体而不需要润滑剂,增压器通常被称为罗茨增压泵

常见的两种高真空泵:

a)加速分子泵(涡轮泵):是一种多用途、可靠的洁净泵,运作机理是机械化的压缩

b)冷凝泵:是一种俘获式泵,它通过使气体凝结并俘获在泵中的方式去除工艺腔体中

的气体

3.质量流量计(MFC)的概念

利用气体的热传输特性,直接测量进入腔体的质量流量比率,来控制进入腔体的气流

4.残气分析器(RGA)最常用的用途和基本构成

用途:用来检验残留在已清空系统中的气体分子的类型、检漏、工艺中的故障查询基本构成:一个离子发生器、一个孔径、一个分析器和一个探测器。

第六章氧化

1.氧化物的两种生产方式

热氧化生长、淀积

2.氧化层在芯片制造中有哪几方面的应用?

保护器件免受划伤和隔离污染

限制带电载流子场区隔离(表面钝化)

栅氧或储存器单元结构中的介质材料

掺杂中的注入掩蔽

金属导电层间的介质层

3.表面钝化的概念

SiO2可以通过束缚Si的悬挂键,从而降低它的表面态密度,这种效果称为表面钝化能防止电性能退化,并减少由潮湿、离子或其他外部污染物引起的漏电流的通路4.关于热氧化的两个化学反应

干氧氧化在没有水汽的氛围里进行,化学反应方程式为:

Si(固)+ O2(气)→SiO2(固)

湿氧氧化有水汽参与,氧化反应速率较快,化学反应方程式为:

Si(固)+ 2H2O(水汽)→SiO2(固)+ 2H2(气)

5.*氧化物生产

初始阶段:O与Si反应,在硅表面生成二氧化硅生成

继续氧化:生成的SiO2将阻挡O原子与Si原子直接接触,所以其后的继续氧化是O2原子通过扩散穿过已生成的二氧化硅层,向Si一侧运动到达界面进行反应而增厚的线性阶段氧化物生长厚度:

X=(B/A)t

抛物线阶段

X=(Bt)1/2

X:氧化物生长厚度

B/A:为线性速率系数,温度升高系数增大

B:抛物线速率系数

t:为生长时间

第七章掺杂

1.掺杂的两种方法

热扩散:利用高温驱动杂质穿过硅的晶格结构。这种方法受到时间和温度的影响

离子注入:

a通过高压离子轰击把杂质引入硅片

b现代晶片制造中几乎所有掺杂工艺都是使用离子注入

2.列举半导体制造中常用的四种杂质,并说明是N型还是P型。

磷N

砷N

硼P

镓P

3.扩散发生需要的两个必要的条件

浓度差、过程所必须得能量

4.热扩散的三个步骤,以及它们的作业

预淀积:为整个扩散过程建立浓度梯度、炉温一般800~1000 0C

推进:将由预淀积引入的杂质作为扩散源,在高温下进行扩散。目的是为了控制表面浓度和扩散深度1000~1250 0C

激活:稍为升高炉温,使杂质原子与晶格中的硅原子键合

5.*离子注入的优缺点

离子注入的优点:精确控制杂质含量、很好的杂质均匀性、对杂质穿透深度有很好的控制、产生单一离子束、低温工艺、注入的离子能穿过薄膜、无固溶度极限

离子注入的主要缺点:

a)高能杂质离子轰击硅原子将对晶体结构产生损伤(可用高温退火进行修复)

b)注入设备的复杂性(这一缺点被注入机对剂量和深度的控制能力及整体工艺的灵活

性弥补)

6.重要的离子输入参数

剂量、射程

7.剂量和能量的公式

Q=(It)/(enA)

I为束流,单位是库仑每秒(安培)

t为注入时间,单位是秒

e是电子电荷,等于1.6 x 10-19库仑

n是离子电荷(比如B+等于1)

A是注入面积,单位是cm2

8.离子输入设备的5个主要子系统

离子源、引出电极(吸极)和离子分析器、加速管、扫描系统、工艺室

9.退火的目的是什么?高温退火和RTA哪个更优越

退火能够加热被注入硅片,修复晶格缺陷;还能使杂质原子移动到晶格点,将其激活RTA更优越,此方法不会导致杂质的扩散,快速的升温过程和短暂的持续时间能够在晶格缺陷的修复、激活杂质和最小化杂质扩散三者间取得优化

10.描述沟道效益。控制沟道效益的4种方法

当注入离子未与硅原子碰撞减速,而是穿透了晶格间隙时,就发生了沟道效应

4种方法:倾斜硅片、掩蔽氧化层、硅预非晶化、使用质量较大的原子

11.列举10个使用离子注入的掺杂工艺

深埋层、倒掺杂阱、穿通阻挡层、阈值电压调整、轻掺杂漏区(LDD)、源漏注入、多晶硅栅、沟槽电容器、超浅结、绝缘体上硅(SOI)

第八章光刻

1.光刻的概念及其本质

光刻指的是将图形转移到一个平面的任一复制过程

光刻的本质是把临时电路结构复制到以后要进行刻蚀和离子注入的硅片上

2.*光刻工艺的8个基本步骤

气相成底膜、旋转涂胶、软烘、对准和曝光、曝光后烘焙、显影、坚膜烘焙、显影检查3.光刻胶的概念以及其目的

光刻胶的概念:一种有机化合物,受紫外光曝光后,在显影液中的溶解度会发生变化 光刻胶的目的

a) 将掩模版图案转移到硅片表面顶层的光刻胶中

b) 在后续工艺中,保护光刻胶下面的材料(如刻蚀或离子注入的阻挡层) 4. 光刻胶显影参数

显影温度、显影时间、显影液量、当量浓度、清洗、排风、硅片吸盘 5.

*正胶和负胶的显影结果

正性光刻胶:曝光区域溶解于显影液,显影后图形与掩模版图形一样 负性光刻胶:曝光区域不溶解于显影液,显影后图形与掩模版图形相反 6.

常用于光学光刻的两种紫外光源 汞灯

准分子激光

7.

反射切口、驻波的概念,抗反射涂层的作用

反射切口:在刻蚀形成的垂直侧墙表面,反射光入射到不需要曝光的光刻胶中就会形成反射切口

驻波的概念:入射光与反射光发射干涉引起、引起随光刻胶厚度变化的不均匀曝光 抗反射涂层的作用:减小光反射和阻止光干涉 8.

*分辨率的概念以及计算

9. 从早期的硅片制造以来光刻设备可分为哪五代?列举任意两种的优越点

接触式光刻机、接近式光刻机、扫描投影光刻机、分步重复光刻机、步进扫描光刻机 接触式光刻机:图像失真小,图形分辨率高

接近式光刻机:掩模版不与光刻胶直接接触,大大减小了沾污 10. 可能成功代替光学光刻技术的4种光刻技术

极紫外(EUV )光刻技术

角度限制投影电子束光刻技术(SCALPEL ) 离子束投影光刻技术(IPL ) X 射线光刻技术

第九章 刻蚀

1. 刻蚀的概念及基本目的

刻蚀:用化学或物理方法有选择地从硅片表面去除不需要的材料的过程 基本目的:在涂胶的硅片上正确地复制掩模图形 2. 两种基本的刻蚀工艺

干法刻蚀、湿法腐蚀

3.等离子体的概念

等离子体又叫做电浆,是由部分电子被剥夺后的原子及原子被电离后产生的正负电子组成的离子化气体状物质,它广泛存在于宇宙中,常被视为是除去固、液、气外,物质存在的第四态。

4.选择比的概念

同一刻蚀条件下一种材料与另一种材料相比刻蚀速率快多少

定义为被刻蚀材料的刻蚀速率与另一种材料的刻蚀速率的比

5.*负载和微负载效益的概念

负载效应:要刻蚀硅片表面的大面积区域,则会耗尽刻蚀剂浓度使刻蚀速率慢下来;如果刻蚀的面积比较小,则刻蚀会快些

微负载效应(深宽比相关刻蚀(ARDE))——具有高深宽比硅槽的刻蚀速率要比具有低深宽比硅槽的刻蚀速率慢

6.干法刻蚀的应用

介质:氧化物和氮化硅

硅:多晶硅栅和单晶硅槽

金属:铝和钨

7.湿法腐蚀相比干法刻蚀的优点

对材料具有高的选择比

不会对器件带来等离子体损伤

设备简单

第十章淀积

1.淀积膜的过程的三个不同阶段

a)晶核形成,成束的稳定小晶核形成

b)聚集成束,也称为岛生长

c)形成连续的膜

2.化学气相淀积(CVD)的概念,有哪五种基本化学反应?

化学气相淀积(CVD)的概念:通过气体混合的化学反应在硅片表面淀积一层固体膜的工艺

高温分解、光分解、还原反应、氧化反应、氧化还原反应

3.CVD中质量传输限制和表面反应控制限制的概念

质量传输限制:

a)CVD反应的速率不可能超过反应气体传输到硅片上的速率

b)无论温度如何,若传输到硅片表面加速反应的反应气体的量都不足。在此情况下,

CVD工艺通常是受质量传输所限制的

表面反应控制限制:

a)在更低的反应温度和压力下,驱动表面反应的能量更小,表面反应速度会降低

b)反应物到达表面的速度将超过表面化学反应的速度

c)这种情况下,淀积速度是受化学反应速度限制的

4.*APCVD TEOS-O3方法淀积SiO2的反应方程式;用PECVD制备SiO2反应方程式;LPCVD

淀积多晶硅和PECVD淀积氮化硅的化学反应方程式

APCVD TEOS-O3方法:Si(C2H5O4) + 8O3 ——> SiO2 + 10H2O + 8CO2

PECVD:SiH4(气态)+2N2O(气态)——>SiO2(固态)+2N2(气态)+2H2(气态)

LPCVD:

多晶硅:SiH4 (气态)——>Si(固态)+2H2(气态)

氮化硅:3SiCl2H2(气态)+4NH3(气态) ——>Si3N4(固态)+6HCl(气态)+6H2(气态)

5.HDPCVD工艺的五个步骤

a)离子诱导淀积:指离子被托出等离子体并淀积形成间隙填充的现象

b)溅射刻蚀:具有一定能量的Ar和因为硅片偏置被吸引到薄膜的反应离子轰击表面

并刻蚀原子

c)再次淀积:原子从间隙的底部被剥离,通常会再次淀积到侧壁上

d)热中性CVD:这对热能驱动的一些淀积反应有很小的贡献;

e)反射:离子反射出侧壁,然后淀积,是另一种贡献

6.外延的概念,以及IC制作中一般采用的三种外延方法

外延:在单晶衬底上淀积一层薄的单晶层

三种外延方法:气相外延(VPE)金属有机CVD(MOCVD)分子束外延(MBE)

7.*介质材料的3个主要用途,其中哪个的发展趋势是高K哪个是低K?

层间介质(ILD)低K

栅氧化层高K

器件隔离

8.*随着特征尺寸的减少,门延迟与互连延迟分别怎么变化?

门延迟降低、互连延迟增大

第十一章金属化

1.金属化,互连,接触,通孔的概念

金属化:

应用化学或物理处理方法在绝缘介质薄膜上淀积金属薄膜

随后刻印图形以便形成互连金属线和集成电路的孔填充塞的过程

互连(interconnect):

由导电材料,如铝、多晶硅或铜制成的连线将电信号传输到芯片的不同部分

接触(contact)

硅芯片内的器件与第一层金属之间在硅表面的连接

通孔(via)

穿过各种介质层从某一金属层到毗邻的另一金属层形成电通路的开口

2.硅芯片制造业中各种金属和金属合金

铝、铝铜合金、铜、阻挡层金属、硅化物、金属填充塞

3.*IC互连金属化引入铜的优点

a)电阻率的减小:在20℃时,互连金属线的电阻率从铝的2.65 mW-cm 减小到铜的

1.678 mW-cm ;减少RC的信号延迟,增加芯片速度

b)功耗的减少:减小了线的宽度,降低了功耗

c)更高的集成密度:更窄的线宽,允许更高密度的电路集成,这意味着需要更少的金

属层

d)良好的抗电迁徒性能:铜不需要考虑电迁徒问题

e)更少的工艺步骤:用大马士革方法处理铜具有减少工艺步骤20%to 30 %的潜力

4.自对准金属硅化物的形成工艺剖面图

5.*用双大马士革法的铜金属化的10个步骤

第十二章器件技术简介

1.无源元件和有源元件分别含哪些?

无源元件:电阻、电容

有源元件:二极管、晶体管

2.增强型和耗尽型MOSFET的区别

3.*CMOS反相器的顶视图,剖视图

P54页图3.22 3.23

第十三章CMOS集成电路制造工艺

1.亚微米CMOS IC制造厂可分成哪六个独立的生产区

扩散(包括氧化、膜淀积和掺杂工艺)、光刻、刻蚀、薄膜、离子注入、抛光

2.*以双阱工艺的CMOS反相器为例,CMOS制作的具体步骤,以及前六个步骤的剖面图;

或在完整剖面图上表示各个步骤的位置

3.STI工艺的三个步骤及剖面图

槽刻蚀

氧化物填充

氧化物平坦化

剖面图PPT P22

第十四章硅片测试

1.各种薄膜厚度的典型测试技术

椭偏仪:非破坏、非接触的光学薄膜厚度测试技术,主要用于测透明的薄膜

X射线荧光技术:主要用于单层薄膜的测量

光声技术:可用于测量金属薄层

2.掺杂浓度的典型测量方法

四探针法:最典型的应用是高掺杂浓度

热波系统:可用于监测离子注入剂量浓度

扩展电阻探针(SRP):用于测量掺杂浓度

电容-电压特性测试:也能用于测量掺杂浓度

二次离子质谱仪(SIMS):测量掺杂类型以及杂质浓度

3.IC产品的不同电学测试

4.在线参数测试的目标

鉴别工艺问题:硅片制造过程中工艺问题的早期鉴定

通过/失效标准:决定硅片是否继续后面的制造程序

数据收集:为改变工艺,收集硅片数据以评估工艺倾向

特殊测试:在需要的时候评估特殊性能参数

硅片级可靠性:需要确定可靠性与工艺条件的联系时,进行随机的硅片级可靠性测试5.硅片拣选测试的目标

芯片功能:检验所有芯片功能的操作,确保只有好的芯片被送到装配和封装的下一个IC 生产阶段

芯片分类:根据工作速度特性对好的芯片进行分类

生产成品率响应:提供重要的成品率信息,以评估和改善整体制造工艺的能力

测试覆盖率:用最小的成本得到较高的内部器件测试覆盖率

第十五章封装

1.集成电路封装的4个重要功能

a)保护芯片以免由环境和传递引起损坏

b)为芯片的信号输入和输出提供互连

c)芯片的物理支撑

d)散热

2.引线键合的概念和三种方法

引线键合:将芯片表面的铝压点和引线框架上或基座上的电极内端进行电连接最常用的方法

三种引线键合的方法:热压键合、超声键合、热超声球键合

3.*先进的集成电路封装设计有哪些?

倒装芯片、球栅阵列(BGA)、板上芯片(COB)、卷带式自动键合(TAB)、多芯片模块(MCM)、芯片尺寸封装(CSP)、圆片级封装

调味品发酵工艺学复习资料

第一章味精 1.谷氨酸发酵机制: 谷氨酸的生物合成途径大致是:葡萄糖经EMP途径或HMP途经生成丙酮酸,再氧化成乙酰辅酶A,然后进入TCA,再通过乙醛酸循环、CO2固定作用,生成a-酮戊二酸,a-酮戊二酸在谷氨酸脱氢酶的催化及有NH4+存在的条件下生成谷氨酸。 在微生物的代谢中,谷氨酸比天冬氨酸优先合成。谷氨酸合成过量时,谷氨酸抑制谷氨酸脱氢酶的合成,使代谢转向合成天冬氨酸;天冬氨酸合成过量后,反馈抑制磷酸烯醇丙酮酸羧化酶的活力,停止草酰乙酸的合成。所以,在正常情况下,谷氨酸并不积累。 2.谷氨酸的大量积累: 代谢调节控制;细胞膜通透性的特异调节;发酵条件的适合 3.GA生物合成的内在因素 ①产生菌必须具备以下条件:α—KGA脱氢酶酶活性微弱或丧失(为什么α—KGA是谷氨酸发酵的限制性关键酶?这是菌体生成并积累α—KGA的关键,从上图可以看出,α—KGA是菌体进行TCA循环的中间性产物,很快在α—KGA脱氢酶的作用下氧化脱羧生成琥珀酸辅酶A,在正常的微生物体内他的浓度很低,也就是说,由α—KGA进行还原氨基化生成GA的可能性很少。只有当体内α—KGA脱氢酶活性很低时,TCA循环才能够停止,α—KGA才得以积累。); ②GA产生菌体内的NADPH的再氧化能力欠缺或丧失(1、NADPH是α—KGA还原氨基化生成GA必须物质,而且该还原氨基化所需要的NADPH是与柠檬酸氧化脱羧相偶联的。2、由于NADPH的再氧化能力欠缺或丧失,使得体内的NADPH有一定的积累,NADPH对于抑制α—KGA的脱羧氧化有一定的意义。); ③产生菌体内必须有乙醛酸循环(DCA)的关键酶——异柠檬酸裂解酶(该酶是一种调节酶,或称为别构酶,其活性可以通过某种方式进行调节,通过该酶酶活性的调节来实现DCA循环的封闭,DCA 循环的封闭是实现GA 发酵的首要条件) ④菌体有强烈的L—谷氨酸脱氢酶活性(L—谷氨酸脱氢酶,实质上GA产生菌体内该酶的酶活性都很强,该反应的关键是与异柠檬酸脱羧氧化相偶联) 4.GA发酵的外在因素

江苏高校的半导体物理复习资料(整理后)

一、填充题 1. 两种不同半导体接触后, 费米能级较高的半导体界面一侧带电 达到热平衡后两者的费米能级。 2. 半导体硅的价带极大值位于k空间第一布里渊区的中央,其导带极小值位于 方向上距布里渊区边界约0.85倍处,因此属于半导体。 3. 晶体中缺陷一般可分为三类:点缺陷,如;线缺陷, 如;面缺陷,如层错和晶粒间界。 4. 间隙原子和空位成对出现的点缺陷称为; 形成原子空位而无间隙原子的点缺陷称为。 5.杂质可显著改变载流子浓度;杂质可显著改变非平衡载流子的寿命,是有效的复合中心。 6. 硅在砷化镓中既能取代镓而表现为,又能取代砷而表现 为,这种性质称为杂质的双性行为。 7.对于ZnO半导体,在真空中进行脱氧处理,可产生,从而可获得 ZnO半导体材料。 8.在一定温度下,与费米能级持平的量子态上的电子占据概率为,高于费米能级2kT能级处的占据概率为。 9.本征半导体的电阻率随温度增加而,杂质半导体的电阻率随温度增加,先下降然后,再单调下降。

10.n型半导体的费米能级在极低温(0K)时位于导带底和施主能级之间处,随温度升高,费米能级先上升至一极值,然后下降至。 11. 硅的导带极小值位于k空间布里渊区的方向。 12. 受主杂质的能级一般位于。 13. 有效质量的意义在于它概括了半导体的作用。 14. 除了掺杂,也可改变半导体的导电类型。 15. 是测量半导体内载流子有效质量的重要技术手段。 16. PN结电容可分为和扩散电容两种。 17. PN结击穿的主要机制有、隧道击穿和热击穿。 18. PN结的空间电荷区变窄,是由于PN结加的是电压。 19.能带中载流子的有效质量反比于能量函数对于波矢k的, 引入有效质量的意义在于其反映了晶体材料的的作用。 20. 从能带角度来看,锗、硅属于半导体,而砷化稼 属于半导体,后者有利于光子的吸收和发射。 21.除了这一手段,通过引入也可在半导体禁带中引入能级,从而改变半导体的导电类型。 22. 半导体硅导带底附近的等能面是沿方向的旋转椭球面,载流 子在长轴方向(纵向)有效质量m l 在短轴方向(横向)有效质量m t 。 23.对于化学通式为MX的化合物半导体,正离子M空位一般表现

工业设计史

工业设计史 人类设计活动的历史大体分三阶段,即设计的萌芽阶段,手工艺设计的萌芽阶段和工业设计阶段。工业设计直到20世纪20年代才开始确立,作为一门独立完整的现代学科。工业设计是商品经济的产物,它具有刺激消费的作用。 1919年德国包豪斯成立,进一步从理论上、实践上和教育体制上推动拉工业设计的发展。美国著名设计师拉瑟尔·赖特1956年应邀去台湾讲学,在一定程度上推动拉台湾工业设计运动。1987年中国工业设计协会成立,88年正式成立。 工业设计大致分三个发展时期。第一时期:18世纪下半叶至20世纪初期,工业设计的酝酿和搜索阶段。第二时期:第一和第二次世界大战之间,工业设计形成与发展时期。第三时期:第二次世界大战之后,工业设计与科学技术紧密结合时期。 ※ ※3即传统又现代※4主要在英国※5商品废止制、通用标准化设计 ※6塑料时代、反传统风格※7罗维航天设计大师(有洁癖)

设计是人类为拉实现某种特定的目的而进行的一项创造性活动,是人类得以生存和发展的最基本活动。从人类有意识地制造和使用原始的工具和装饰品开始,人类的设计便开始萌发拉。设计的萌芽阶段从旧石器时代一直持续到新石器时代中期,其特征是用石、木、骨等自然材料加工制作成各种工具。 世界上最早的石器是在非洲的坦桑尼亚发现的,距今有300万至50万年。距今七八千年,人类出现拉第一次社会分工,从采集、渔猎过渡到以农业为基础的经济生活,并有拉产品交换。手工艺设计阶段由原始社会后期开始,经过奴隶社会一直持续到工业革命前。手工业设计阶段有两个重点的特点,一是实用性;二是设计、生产、销售一体化。 制陶是通过火的应用,使泥土改变其内在性质。这是人力改变天然物的开端,是人类发明史上重要的一页。新石器时代晚期,彩陶出现。彩陶是指一种绘有黑、红色装饰花纹的红褐色或棕黄色陶器。陶器的造型一般是为拉适应生活实用而设计的。小口尖底彩陶瓶中水用完时,瓶口自动朝下,打水时方便。打满水时瓶口朝上,方便提运。关键是瓶的造型和栓绳瓣的位置恰倒好处。 南北朝时进入瓷器时代。明代家具取得高度的艺术成就的四个重要因素:意匠美(朴素得人机工程学)、材料美、结构美和工艺美。埃及是尼罗河的礼物。他有三大建筑体系:中式及佛教建筑体系;欧式、哥特式、拜占廷建筑体系;伊斯兰建筑体系。古埃及金字塔最成功的代表是公元前27~26世纪建于今开罗近郊的吉萨金字塔群。其中最大的叫作库富金字塔,其次是胡夫金字塔。古希腊是欧洲文化的摇篮。古希腊建筑影响欧洲2000年。帕提农神庙代表着古希腊多立克(Doric)柱式的最高成就。雅典伊瑞克提翁神庙就是典型的希腊爱奥尼克(Lonic)柱式神庙。科林斯柱头(Corinth)柱头上饰以卷草。13世纪的法国巴黎圣母院是哥特式风格。13世纪后半期,以法国为中心的哥特式建筑风格风靡欧洲大陆。法国的巴黎圣母院、德国的科隆大教堂都是哥特式建筑的杰出代表。 文艺复兴在佛罗伦萨。到17世纪的设计进入拉一个新的历史时期,史称浪漫时期。16~17世纪交替的时期,巴洛克设计风格开始流行,主要流行地区为意大利。;洛可可(ROCOCO)原意为岩石和贝壳的意思,特指盛行于18世纪法国路易十五时代的一种艺术风格,主要体现于建筑的室内装饰和家具等设计领域。 18世纪在英国开始的商业化是工业设计发展的起点。18世纪各种流行的风格此起彼伏,从巴洛克、洛可可、中国风、哥特式直到新古典,表明拉日益扩展中的市场对于新奇的不断追求。在无数的消费品生产领域中,新颖的设计成拉一种主要的市场促销方式。18世纪前所未有的广大市场使“时尚”、“趣味”等成设计演变中的关键因素,商品生产中的劳动分工也促使拉设计的专业化,推动拉设计的发展。18世纪末至19世纪初机器成拉工业中的新成员。许多技术性的工作由大量未受过传统手工艺训练的工人来承担。由于机器重复生产的准确性,这些工人不可能在产品生产过程中对产品设计产生个人的影响,只能按照预先制定的设计进行大批量的重复生产,这就使得在机械化的工业中,产品的设计与生产进一步分开。 18世纪的设计风格是非常矛盾的。由于受到建筑风格的影响,复古思潮统治着18世纪下半叶的设计活动,这个时期比较流行的是新古典和浪漫主义。新古典是资本主义初期最先出现的文化上的一种思潮,在建筑和设计史上指18世纪60年代开始在欧洲盛行的古典形式。新古典在建筑上追求建筑物体形的单纯、独立和完整,细节的朴实,形式的符合结构逻辑,并且减少纯装饰性的构件,显示拉人们对于理性的向往。新古典主义风格也体现于当时的产品上,特点是放弃拉洛可可过分矫饰的曲线和华丽的装饰,追求合理的结构和简洁的形式,构件和细部装饰喜用古典建筑式的部件。 浪漫主义是18世纪下半叶至19世纪上半叶活跃于欧洲艺术领域中的另一主要艺术思潮。浪漫主义始源于工业工业革命后的英国,一开始就带有反抗资本主义制度与大工业生产的情绪,它回避现实,向往中世纪的世界观,崇尚传统的文化艺术。浪漫主义在要求发扬个

基建档案整理方法.docx

基建档案整理要求 基建档案,全称是基本建设档案,指在各种建筑物、构筑物、地上地下管线等基本建设工程规划、勘察、设计、施工、使用、维修与装修活动中形成并归档的科学技术文件材料。一个具体项目的基建档案是指从整个建设项目的酝酿、决策到建成投产(使用)的全过程中形成的、应当归档保存的文件材料。 基建档案的特点是以工程项目为中心形成的科技文件材料具 有成套性。包括文字材料、图纸、图表、计算材料、声像等。 一、归档范围 每一个单项基建工程基本上都可以分成五个阶段(前期准备阶段、设计阶段、施工阶段、(工程监理)、竣工验收阶段和使用维护阶段)形成的文件。 基建项目中形成的照片一般归声像档案类,特殊情况,如打桩时土质问题的照片,可同基建文字材料一起立卷。 与基建工程连在一起的设备,比如某些化工装置、电梯安装等的档案,与基本建设档案一般很难截然分开,可以作为基建档案的一个组成部分,但设备主体及设备开箱和运转维护过程的文件材料归入设备类。 有产权分属的基建项目,要视具体签定的协议涉及的产权比例来确定归档单位。所占比例大的,视为基建项目归档单位,进行整理归档;占有部分产权的另一方有权保管其拥有产权的那部分档案资料。 若项目立项不成功,此时,批复可归入批复年的文书档案,视具体情况,划分为长期或短期。 具体归档范围参阅基本建设项目文件材料立卷方法和保管期限(附件一) 二、归档要求 1、归档的基建项目材料要完整、准确系统、字迹清楚、图面整洁。 2、归档时间 负责基建类档案归档管理的部门,指定专(兼)职人员在平时

感谢你的观看 做好基建项目材料的收集、积累,按竣工年度归档。但施工时间短的,在基建项目验收后两个月内,按立卷要求分类整理装订;施工时间跨度长的,可采取分阶段归档。房屋产权档案在每户办理完手续后一个月内按立卷要求整理装订。 3、分类与代号 B基建类 B1基建项目类(按单项工程排列) B1.1 ×××项目 本单位第一项工程代号 B2房屋产权类 B2.1单位产权 B2.2房改产权 面积补差的材料按分类方案归类,即在分类方案中列出每一个地址或每一幢房屋的代码,将对应的材料归入相应的类别中;货币补差的材料归入办理完毕年度的文书档案。 三、基建档案整理要求 (一)基建类档案整理 1、立卷 每一项工程一般都是在五个阶段的基础上分问题(内容)——保管期限进行组卷。如果一项工程文件材料形成数量比较少,可以一个阶段组一卷,或者五个阶段合成一卷。 2、卷内文件材料的排列 ①卷内文件的排列 一般按文件材料的重要程度和时间先后排列:批复在前、报告请示在后;正文在前、底稿在后。 ②图样材料的排列 有图纸目录的,按图纸的原目录、图号排列;没有图纸目录的,先排总平面布置图,后排局部图,即按图纸类别序号排列(即地质图、初步设计图、建筑施工图、水工图、电气图、气管图、更改图)。卷内排完一个专业项目,再排另一个专业项目。 ③文字和图样交错材料的排列 一般情况文字排前,图纸排后。如果文字材料只是对图样材料的补充或一般说明,图纸应排在前面,文字材料在后面。 3、卷内文件编页码 感谢你的观看

【半导体研磨 精】半导体晶圆的生产工艺流程介绍

?从大的方面来讲,晶圆生产包括晶棒制造和晶片制造两大步骤,它又可细分为以下几道主要工序(其中晶棒制造只包括下面的第一道工序,其余的全部属晶片制造,所以有时又统称它们为晶柱切片后处理工序): 晶棒成长--> 晶棒裁切与检测--> 外径研磨--> 切片--> 圆边--> 表层研磨--> 蚀刻--> 去疵--> 抛光--> 清洗--> 检验--> 包装 1 晶棒成长工序:它又可细分为: 1)融化(Melt Down) 将块状的高纯度复晶硅置于石英坩锅内,加热到其熔点1420°C以上,使其完全融化。 2)颈部成长(Neck Growth) 待硅融浆的温度稳定之后,将〈1.0.0〉方向的晶种慢慢插入其中,接着将晶种慢慢往上提升,使其直径缩小到一定尺寸(一般约6mm左右),维持此直径并拉长 100-200mm,以消除晶种内的晶粒排列取向差异。 3)晶冠成长(Crown Growth) 颈部成长完成后,慢慢降低提升速度和温度,使颈部直径逐渐加大到所需尺寸(如 5、6、8、12吋等)。 4)晶体成长(Body Growth) 不断调整提升速度和融炼温度,维持固定的晶棒直径,只到晶棒长度达到预定值。 5)尾部成长(Tail Growth) 1

当晶棒长度达到预定值后再逐渐加快提升速度并提高融炼温度,使晶棒直径逐渐变小,以避免因热应力造成排差和滑移等现象产生,最终使晶棒与液面完全分离。到此即得到一根完整的晶棒。 2 晶棒裁切与检测(Cutting & Inspection) 将长成的晶棒去掉直径偏小的头、尾部分,并对尺寸进行检测,以决定下步加工的工艺参数。 3 外径研磨(Su rf ace Grinding & Shaping) 由于在晶棒成长过程中,其外径尺寸和圆度均有一定偏差,其外园柱面也凹凸不平,所以必须对外径进行修整、研磨,使其尺寸、形状误差均小于允许偏差。 4 切片(Wire Saw Sl ic ing) 由于硅的硬度非常大,所以在本工序里,采用环状、其内径边缘镶嵌有钻石颗粒的薄片锯片将晶棒切割成一片片薄片。 5 圆边(Edge Profiling) 由于刚切下来的晶片外边缘很锋利,硅单晶又是脆性材料,为避免边角崩裂影响晶片强度、破坏晶片表面光洁和对后工序带来污染颗粒,必须用专用的电脑控制设备自动修整晶片边缘形状和外径尺寸。 ? 6 研磨(Lapping) 研磨的目的在于去掉切割时在晶片表面产生的锯痕和破损,使晶片表面达到所要求的光洁度。 7 蚀刻(Etching) 1

酒精工艺学复习题(材料详实)

酒精发酵工艺学复习题 一、填空题(请把答案填写到空格处) 1.酒精生产常用的淀粉质原料有玉米、甘薯、木薯等。 2. 酒精生产常用的谷物原料有玉米、高粱、大麦等。 3. 酒精生产常用的薯类原料有甘薯、木薯、马铃薯等。 4.木质纤维素的主要组成成分是纤维素、半纤维素、木质素。 5.常用的原料粉碎方法有湿式粉碎、干式粉碎两种。 6.常用的原料除杂方法有筛选、风选、磁力除铁三种。 7.常用的原料输送方式有机械输送、气流输送、混合输送三种。 8. 酒精厂常用的粉碎设备是滚筒式粉碎机、锤式粉碎机。 9.酒精厂常用的输送机械有皮带输送机、螺旋输送器、斗式提升机三种。 10.玉米淀粉和甘薯淀粉的糊化温度分别是(65~75)℃、(53~64)℃。 11.双酶法糖化工艺中使用的两种酶制剂是耐高温α-淀粉酶、葡萄糖淀粉酶。 12.淀粉质原料连续糖化工艺分成混合前冷却糖化工艺、真空冷却糖化工艺、二级真空冷却糖化工艺三种。 13. 酒精发酵过程中产生的副产物主要有甘油、杂醇油、琥珀酸等。 14.酒精发酵常污染的细菌有醋酸菌、乳酸菌、丁酸菌。 15.酒精蒸馏塔按作用原理可分为鼓泡塔、膜式塔。 16.从精馏塔提取杂醇油的方式可以是液相取油,也可以是气相取油。 17.酒精蒸馏塔按其塔板结构可分为泡罩塔、浮阀塔、筛板塔。 18.酒精的化学处理是提高酒精质量的一种辅助措施,常用的化学试剂是高锰酸钾、氢氧化钠。19.无水酒精的制备方法有氧化钙吸水法、离子交换树脂法、共沸法、分子筛法等。 20. 共沸法制备无水酒精常用的共沸剂是苯、环己烷。 21. 连续发酵可分为_全混(均相)连续发酵、梯级连续发酵两大类。 二、判断题(正确打√,错误打×) 1.酒母培养罐和酒精发酵罐的构造是一样的。× 2. 酒化酶是参与淀粉水解和酒精发酵的各种酶和辅酶的总称。(×) 3. 薯干的果胶质含量较多,使发酵醪中甲醇含量较高。(√) 4. 减少发酵过程中二氧化碳的产生量就能提高酒精生成量。(×) 5.采用高细胞密度酒精发酵时,必须定期向发酵罐中供应氧气。(√) 6.异戊醇在酒精中的挥发系数随着酒精浓度的增大而减小,但始终大于1。(×) 7.只要酒精发酵正常,发酵醪中就不会有甘油生成。(×) 8. 玉米中蛋白质含量较多,使发酵醪中杂醇油含量较高。(×) 9. 甲醇不是由酵母菌代谢活动产生的,而是由原料中的果胶质分解而来。(√) 10. 甲醇是由酵母菌代谢活动产生的。(×)

工业设计史复习资料(1)

1.浪漫主义18世纪下半叶至19世纪上半叶活跃于欧洲艺术领域,始源于工业革命后的英国,带有反抗资本主义制度与大工业生产的情绪,它回避现实,向往中世纪的世界观,崇尚传统的文化艺术。要求发扬个性自由,提倡自然天性,追求非凡的趣味和异国情调,特别是东方的情调。反对机械化,对抗机器生产。由于浪漫主义反对工业化生产,也就无法解决工业条件下的设计问题,并且对后来反对机械化的英国工艺美术运动产生了深远影响。 2.样式设计即经常性地改变汽车的外部风格以强调美学外观,而技术零件的生产则可保持相对稳定。以市场为导向,本质是形式主义,现代主义“多样化的统一”原则让位其反面“统一中的多样化”。以福特公司为例,是商业设计的代表。 3.折衷主义其历史背景是随着美国工业的发展,“美国体系”得到更广传播。美国发展成为了一个复杂而多元化的社会,开始意识到他在世界上的地位,并努力寻求文化上的认同感。在19世纪,一个更为直接和严峻的问题就是风格上的折衷主义,所谓折衷主义就是任意模仿历史上的各种风格,或自由组合各种式样而不拘泥某种特定风格,也被称为“集仿主义”。 4.后现代主义源于20世纪60年代,在20世纪70-80年代的建筑界和设计界掀起轩然大波。旨在反抗现代主义纯而有纯的方法论的一场运动,所谓“后现代”并不是指时间上处于“现代”之后,而是针对艺术风格的发展演变而言。后现代主义的主要特征归结于三点:即文脉主义、引喻主义和装饰主义。 5.青春风格在德国,新艺术称为“青春风格”,得名于《青春》杂志。在青春风格艺术家和设计师作品中,曲线因素第一次受到节制,并逐步转变成几何因素的形式构图,是新艺术转向功能主义的重要步骤。雷迈思克米德是“青春风格”的重要人物,他设计的餐具标志着一种对于传统形式的突破。著名的建筑师、设计师贝伦斯也是青春风格的代表人物,美国的代表人物泰凡尼擅长设计和制作玻璃制品。 6.有计划的商品废止制美国商业性设计的核心,即通过人为的方式使产品在较短时间内失效,从而迫使消费者不断地购买新产品。商业的三种废止形式:功能型废止,合意型废止,质量型废止。其本质是形式主义。 7.理性主义理性主义是现代主义的关键因素。理性主义强调以设计科学为基础,强调对设计过程的理性分析,不追求任何表面的个人风格,体现出一种“无名性”的设计特征。它试图为设计确定一种科学的、系统的理论,即所谓用设计科学来指导设计,从而减少设计中的主观意识。20世纪60年代以来,以“无名性”为特征的理性主义设计为国际上一些引导潮流的大设计集团采用。如荷兰的飞利浦公司、日本的索尼公司、德国的布劳恩公司等。 8.孟菲斯孟菲斯是一个国际设计集团,是后现代主义设计组织杰出代表。提出了“反设计”的观念。1980年,由索特萨斯和7名年轻设计师组成。反对一切固有观念,反对将生活铸成固定模式。“孟菲斯”开创了一种无视一切模式和突破所有清规戒律的开放性设计思想,“孟菲斯”设计是试验的,从而刺激了丰富多彩的意大利新潮设计。“孟菲斯”对功能有全新的解释,即功能不是绝对的,而是有生命的、发展的,它是产品与生活之间一种可能关系。这种功能的含义不只是物质上的,也是文化上的、精神上的。产品不仅要有使用价值,更要表达一种特定的文化内涵,使设计成为某一文化系统的隐喻和符号。1988年,索特萨斯宣布孟菲斯结束。 9.有机现代主义软功能主义是现代主义和北欧的斯堪的纳维亚国家设计风格走到一起后出现的,设计风格从几何型走向S型曲线,从以纯粹的功能主导,走向一定的人情味道,是现代功能主义和北欧的人文情调和手工艺文化相结合,被称为“有机现代主义”。有机现代主义这个名词真正出现的时间为二战以后。 10.绿色设计:20世纪末,设计师力图通过设计活动,在人—社会—环境之间建立起一种协调发展的机制,这标志着工业设计发展的一次重大转变,绿色设计成了当今工业设计发展的主要趋势之一。源于人们对于现代技术文化所引起的环境

发酵工艺学复习资料

1、菌种扩大培养: 种子扩大培养是指将保存在砂土管、冷冻干燥管中处于休眠状态的生产菌种接入试管斜面活化后,再经过扁瓶或摇瓶及种子罐逐级扩大培养而获得一定数量和质量的纯种过程,称为种子扩大培养。这些纯种培养物称为种子。 2、双酶法糖化工艺: 包括淀粉的液化和糖化两个步骤,液化是利用液化酶使淀粉糊化。粘度降低,并水解到糊精和低聚糖的程度,然后利用糖化酶将液化产物进一步水解成葡萄糖的过程。 3、淀粉老化: 分子间氢键已断裂的糊化淀粉又重新排列形成新的氢键的过程,也就是复结晶 4、淀粉水解糖: 在工业生产上将淀粉水解为葡萄糖的过得称为淀粉的“糖化”,所制得的糖液你为淀粉水解糖。 5、双边发酵工艺: 边糖化边发酵,其持点是采用较低温度使淀粉糖化和酒精发酵同时进行。 发酵周期较长,淀粉利用率低,但产品香气足、风味好,当前一部分厂仍在采用。, 6、二高三低现象: pH高、残糖高、OD值低、温度低、谷氨酸低。 7、发酵转换: 培养条件不适宜,几乎不产生谷氨酸,而得到大量菌体或者谷氨酸发酵转换为累积乳酸,琥珀酸,缬氨酸,谷氨酰胺等。 8、过度氧化作用: 过度氧化作用是指发酵过程中当乙醇即将耗尽而有氧存在时,代谢途径发生改变,醋酸进一步氧化成CO2和水的作用。 9、淀粉糊化: 淀粉乳受热,淀粉颗粒膨胀,当温度上升到一定程度时,淀粉颗粒的偏光十字消失,颗粒急骤膨胀,体积增大几百倍,粘度迅速增高,变成粘稠的糊状物(淀粉糊) 10、双边发酵: 在酿造过程中,在糖化的同时,酒精发酵也同时进行。 11、DE值:

糖化液中的还原糖含量(以葡萄糖计算)占干物质的百分率 %100?=干物质含量 还原糖含量值DE 12、谷氨酸的生物合成途径包括哪些途径? 以葡萄糖为原料的代谢途径,以醋酸和正石蜡为原料的代谢途径 13、在食醋酿造过程中,工厂最常用的醋酸杆菌是什么? 醋酸杆菌(AS1.41 沪酿1.01) 14、现有的谷氨酸生产菌主要是有哪些种属? 短杆菌属 棒杆菌属 小杆菌属 节杆菌属 15、在味精工业谷氨酸发酵中常用的碳源和氮源有什么? 在谷氨酸发酵中,国内常用的碳源为淀粉水解糖,国外常用的为糖蜜。 氮源为尿素,液氨和氨水。 16、谷氨酸发酵的代谢控制育种有哪些? 1.日常菌种工作:定期分纯 小剂量诱变刺激 高产菌制作安瓿管 2.选育耐高渗压菌株:耐高糖,耐高谷氨酸,耐高糖、高谷氨酸 17、谷氨酸发酵过程中污染的原因分析。

2020年整理工业设计史学习心得.pdf

篇一:工业设计史学习心得 工业设计史学习心得 姓名:xxx 学号:xxx 班级:xxx 指导老师:xxx 通过学习工业设计史,我对工业设计有了更深一步的认识。工业革命是工业设计的母体,所以,工业设计是工业革命的产物,是随着工业和经济发展而孕育出来的,它以科学技术与艺术相结合为手段,以满足市场需要和社会效益为目的,以创造更为合理的生活方式为原则,通过人性化的造型设计,推出具有全新面貌的产品,在满足消费者日益曾长的需求的前提下,获得良好的市场地位和经济效益。 下面是我自己的一些观点: 1、关于莫里斯,为什么他是现代设计之父?我难以理解,也许这是我上此课的最大遗憾。其成就是许多里程碑式的人物都有的;其机遇或者想法也并非自成一家,别无分店。其最大成就是打破装饰性为主的传统建筑,然而是否设计世界以此为古今分界呢?难以定论!我将继续研习史潮以求真解。 2、我较喜欢功能主义的代表人物格罗比乌斯和唯美主义的拉里克,前者的设计精神领导了包豪斯;后者的高雅风格征服世界成为法国高雅风格的代表 3、我最崇拜的设计师是美国人罗维,可口可乐标志设计者,流线型风格的倡导者,工业设计专业的先驱。原因很简单:他让流线型深入产品深入人心!这也是我最喜欢用的风格。 4、战后日本意大利发展神速。德国也不落后,似乎但凡战败国,只要其略有改悔之意便得万人扶正。日本有三菱日产本田丰田索尼佳能??每一个在我们国家都人皆耳熟能详。这是日本人的骄傲也是我 们国家的悲哀! 我开始关注我们这个专业的前景,却发现工业设计真是无处不在,它绝对不只是冰冷的机械,从我们手中的铅笔到我们日常生活中的一桌一椅,再到家用电器,到汽车轮船,甚至航空母舰无一不属于我们工业设计的范畴。是的,设计无处不在!酝酿了那么久,终于转入了对工业设计史的具体学习.十八世纪到十九世纪应该算是工业设计的开端了。 18世纪的设计风格是非常矛盾的。工业革命后,新的材料、技术和新的生产方式不断出现,传统的设计已不能满足新时代的要求, 人们以各自的方式探索新的设计道路。在这一过程中,混乱是难免的。由于传统的风格和形式在长期的实践中已定型、成熟,当人们改用全然不同的材料进行商品生产时,还不熟悉新的可能性,起初总是要借鉴甚至模仿习见的传统形式。这

档案归档文件整理的基本方法

归档文件整理的基本方法 一、装订 1、件的区分 件是指归档文件的整理单位。一般以每份文件为一件,文件正本与定稿为一件,正文与附件为一件,定件与复制件为一件,转发文与被转发文为一件,报表、名册、图册等一册(本)为一件,来文与复文为一件;一次会议或活动的文件可为一件或两件;会议记录、简报、信息均可为一件或两件;介绍信、存根经白纸托裱各满30张为一件。“为一件”是指在实体上装订在一起,编目时也只体现为一条条目。 2、装订方法 每“件”文件材料的具体排列顺序如下:正文在前,定稿在后;正文在前,附件在后;原件在前,复件在后;转文在前,被转发文在后;复文在前,来文在后。 每件的装订主要采取的左上角装订法,具体操作将文件的左、上侧对齐,并在左上角按包角纸大小四面涂上浆糊,用包角纸套在左上侧,压紧即可;文件超过40页以上,采用左侧三孔一线装订法。 二、分类 1、分类方法 根据实际情况,我们选择以下分类方法

保管期限-年度分类法 这种方法适用于内部机构虽有变化但不复杂的立档单位。主要是设置简单的基层单位或小机关,或每年形成的文件数量少的机关。如:长久:2001年、2002年、2003年…… 定期:2001年、2002年、2003年…… 2、编制分类方案 分类方案一般有引言、类别序号、类目名称组成,必要时可对类目所指的范围和归类方法等加以说明。 (1)引言,提示分类方法。如按保管期限-年度,还是按其它分类方法。 (2)类别序号,是最低一级类目(机构或问题)的序号 (3)类目名称,按机构分类的,机关内部第一层机构名称就是类名,如,办公室、业务处;按问题分类的加“类”字,如党务类、综合类等。 采用两级分类的也应编制分类方案,以相对固定一个单位归档文件的排列顺序。 3、文件按照其自身的内容、形式、时间、来源等方面,根据编制分类方案,分门别类地组放在一起,使所有文件构成一个有机整体。 三、归档文件排列

半导体制造工艺流程

半导体制造工艺流程 N型硅:掺入V族元素--磷P、砷As、锑Sb P型硅:掺入III族元素—镓Ga、硼B PN结: 半导体元件制造过程可分为 前段(FrontEnd)制程 晶圆处理制程(WaferFabrication;简称WaferFab)、 晶圆针测制程(WaferProbe); 後段(BackEnd) 构装(Packaging)、 测试制程(InitialTestandFinalTest) 一、晶圆处理制程 晶圆处理制程之主要工作为在矽晶圆上制作电路与电子元件(如电晶体、电容体、逻辑闸等),为上述各制程中所需技术最复杂且资金投入最多的过程,以微处理器(Microprocessor)为例,其所需处理步骤可达数百道,而其所需加工机台先进且昂贵,动辄数千万一台,其所需制造环境为为一温度、湿度与含尘(Particle)均需控制的无尘室(Clean-Room),虽然详细的处理程序是随著产品种类与所使用的技术有关;不过其基本处理步骤通常是晶圆先经过适当的清洗(Cleaning)之後,接著进行氧化(Oxidation)及沈积,最後进行微影、蚀刻及离子植入等反覆步骤,以完成晶圆上电路的加工与制作。 二、晶圆针测制程 经过WaferFab之制程後,晶圆上即形成一格格的小格,我们称之为晶方或是晶粒(Die),在一般情形下,同一片晶圆上皆制作相同的晶片,但是也有可能在同一片晶圆上制作不同规格的产品;这些晶圆必须通过晶片允收测试,晶粒将会一一经过针测(Probe)仪器以测试其电气特性,而不合格的的晶粒将会被标上记号(InkDot),此程序即称之为晶圆针测制程(WaferProbe)。然後晶圆将依晶粒为单位分割成一粒粒独立的晶粒 三、IC构装制程 IC構裝製程(Packaging):利用塑膠或陶瓷包裝晶粒與配線以成積體電路目的:是為了製造出所生產的電路的保護層,避免電路受到機械性刮傷或是高溫破壞。 半导体制造工艺分类 半导体制造工艺分类 一双极型IC的基本制造工艺: A在元器件间要做电隔离区(PN结隔离、全介质隔离及PN结介质混合隔离)ECL(不掺金)(非饱和型)、TTL/DTL(饱和型)、STTL(饱和型)B在元器件间自然隔离 I2L(饱和型) 半导体制造工艺分类 二MOSIC的基本制造工艺: 根据栅工艺分类 A铝栅工艺 B硅栅工艺

半导体物理习题及复习资料

复习思考题与自测题 第一章 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层 电子参与共有化运动有何不同。 答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。 2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。 答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量 3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么? 答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。 4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么? 答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。 5.简述有效质量与能带结构的关系; 答:能带越窄,有效质量越大,能带越宽,有效质量越小。 6.从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同;答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。在外电F

整理资料的方法

Word,PDF,PPT,TXT之间的转换方法(好东西,以后整理课件就不会那么麻烦了。。。) 把PPT转WORD形式的方法 1.利用"大纲"视图打开PPT演示文稿,单击"大纲",在左侧"幻灯片/大纲”任务窗格的“大纲”选项卡里单击一下鼠标,按"Ctrl+A"组合健全选内容,然后使用"Ctrl+C"组合键或右键单击在快捷菜单中选择"复制"命令,然后粘贴到Word里。 提示:这种方法会把原来幻灯片中的行标、各种符号原封不动的复制下来。 2.利用"发送"功能巧转换打开要转换的PPT幻灯片,单击"文件"→"发送"→"MicrosoftWord"菜单命令。然后选择"只使用大纲"单选按钮并单击"确定"按钮,等一会就发现整篇PPT文档在一个Word文档里被打开。 提示:在转换后会发现Word有很多空行。在Word里用替换功能全部删除空行可按"Ctrl+H"打开"替换"对话框,在"查找内容"里输入"^p^p",在"替换为"里输入"^p",多单击几次"全部替换"按钮即可。("^"可在英文状态下用"Shift+6"键来输入。)3.利用"另存为"直接转换打开需要转换的幻灯片,点击"文件"→"另存为",然后在"保存类型"列表框里选择存为"rtf"格式。现在用Word打开刚刚保存的rtf文件,再进行适当的编辑即可实现转换。4.PPTConverttoDOC软件转换PPTConverttoDOC是绿色软,解压后直接运行,在运行之前请将Word和PPT程序都关闭。选中要转换的PPT文件,直接拖曳到"PPTConverttoDOC"程序里。单击工具软件里的"开始"按钮即可转换,转换结束后程序自动退出。 提示:如果选中"转换时加分隔标志",则会在转换好的word文档中显示当前内容在原幻灯片的哪一页。转换完成后即可自动新建一个Word文档,显示该PPT文件中的所有文字。ps: 第四种慎用,百度上很多所谓的那个软件都是有病毒的,毒性不小,一般的杀毒软件查不出~~ PDF文档的规范性使得浏览者在阅读上方便了许多,但倘若要从里面提取些资料,实在是麻烦的可以。 二、把PDF转换成Word的方法 Adobe Acrobat 7.0 Professional 是编辑PDF的软件。 用Adobe Acrobat 7.0 Professional 打开他另存为WORD试试看。 或者用ScanSoft PDF Converte,安装完成后不须任何设置,它会自动整合到Word中。当我们在Word中点击“打开”菜单时,在“打开”对话框的“文件类型”下拉菜单中可以看到“PDF”选项,这就意味着我们可以用Word直接打开PDF文档了! ScanSoft PDF Converter的工作原理其实很简单,它先捕获PDF文档中的信息,分离文字、图片、表格和卷,再将它们统一成Word格式。由于Word在打开 PDF文档时,会将PDF格式转换成DOC格式,因此打开速度会较一般的文件慢。打开时会显示PDF Converter转换进度。转换完毕后可以看到,文档中的文字格式、版面设计保持了原汁原味,没有发生任何变化,表格和图片也完整地保存下来了,可以轻松进行编辑。 除了能够在Word中直接打开PDF文档外,右击PDF文档,在弹出菜单中选择“Open PDF in Word”命令也可打开该文件。另外,它还会在Outlook中加入一个工具按钮,如果收到的电子邮件附件中有PDF文档,就可以直接点击该按钮将它转换成Word文件。 有时我们在网上搜索到PDF格式的文件,同样可以通过右键菜单的相关命令直接在Word中打开它。 三、Word转换成PPT的方法

半导体工艺流程

1、清洗 集成电路芯片生产的清洗包括硅片的清洗和工器具的清洗。由于半导体生产污染要求非常严格,清洗工艺需要消耗大量的高纯水;且为进行特殊过滤和纯化广泛使用化学试剂和有机溶剂。 在硅片的加工工艺中,硅片先按各自的要求放入各种药液槽进行表面化学处理,再送入清洗槽,将其表面粘附的药液清洗干净后进入下一道工序。常用的清洗方式是将硅片沉浸在液体槽内或使用液体喷雾清洗,同时为有更好的清洗效果,通常使用超声波激励和擦片措施,一般在有机溶剂清洗后立即采用无机酸将其氧化去除,最后用超纯水进行清洗,如图1 —6所示。 图1—6硅片清洗工艺示意图 工具的清洗基本米用硅片清洗同样的方法。 2、热氧化 热氧化是在800~1250C高温的氧气氛围和惰性携带气体(N2)下使硅片表面的硅氧化生成二氧化硅膜的过程,产生的二氧化硅用以作 为扩散、离子注入的阻挡层,或介质隔离层。典型的热氧化化学反应为:

Si + O2f SiO2 3、扩散 扩散是在硅表面掺入纯杂质原子的过程。通常是使用乙硼烷(B2H6)作为N —源和磷烷(PH3)作为P+源。工艺生产过程中通常 分为沉积源和驱赶两步,典型的化学反应为: 2PH3 f 2P + 3H2 4、离子注入 离子注入也是一种给硅片掺杂的过程。它的基本原理是把掺杂物质(原子)离子化后,在数千到数百万伏特电压的电场下得到加速,以较高的能量注入到硅片表面或其它薄膜中。经高温退火后,注入离子活化,起施主或受主的作用。 5、光刻 光刻包括涂胶、曝光、显影等过程。涂胶是通过硅片高速旋转在硅片表面均匀涂上光刻胶的过程;曝光是使用光刻机,并透过光掩膜版对涂胶的硅片进行光照,使部分光刻胶得到光照,另外,部分光刻胶得不到光照,从而改变光刻胶性质;显影是对曝光后的光刻胶进行去除,由于光照后的光刻胶和未被光照的光刻胶将分别溶于显影液和不溶于显影液,这样就使光刻胶上 形成了沟槽。 光刻胶 基片------------ ?涂胶后基片 1 1 1 1 ~ 显影后基片V------------- 曝光后基片 6、湿法腐蚀和等离子刻蚀

发酵工艺学名词解释

名词解释:1.发酵:通过微生物的生长和代谢活动,产生和积累人们所需代谢产物的一切微生物培养过程。 2.发酵工艺:指工业生产上通过“工业发酵”来加工或制作产品,其对应的加工或制作工艺。 3.前体:在微生物代谢产物的生物合成过程中,有些化合物能直接被微生物利用构成产物分子结构的一部分,而化合物本身的结构没有大的变化,这些物质称为前体。 4.热阻:指微生物在某一特定条件下的致死时间。 5.对数残留定律:指在一定温度下,微生物受热后,活菌数不断减少,其减少速度随残留活菌数的减少而降低,且在任何瞬间,菌的死亡速率与残存的活菌数成正比。 6.实消:将配制好的培养基放入发酵罐或其他装置中,通入蒸汽将培养基和所有设备一起进行加热灭菌的操作过程称为实罐灭菌。 7.连消:培养基在发酵罐外经过一套灭菌设备连续加热灭菌,冷却后送入已灭菌的发酵罐内,这种工艺过程称为连消灭菌。 8.空消:无论是种子罐、发酵罐还是液氨罐、消泡罐,当培养基尚未进罐前对罐进行预先灭菌,为空罐灭菌。 9.液化:用ɑ-淀粉酶将淀粉转化为糊精和低聚糖。 10.糖化:用糖化酶将糊精和低聚糖转化葡萄糖。 11.种子制备:将固体培养基上培养出的孢子或菌体转入到液体培养基中培养,使其繁殖成大量菌丝或菌体的过程。 12.菌种保藏:根据菌种的生理、生化特性,人工创造条件使菌体的代谢活动处于休眠状态。 13.呼吸临界氧浓度:在溶解浓度低时,呼吸强度随溶氧浓度的增加而增加,当溶氧浓度达到某一值后,呼吸强度不再随溶解氧浓度的增加而变化,把此时的溶解氧浓度称为呼吸临界氧浓度。 14.溶解氧饱和度:在一定温度和压力下,空气中的氧在水中的溶解度。 15.氧传递系数:比表面积与以浓度差为推动力的氧传质系数的乘积。 16.分批发酵:指一次性投入料液,发酵过程中不补料,一直到放罐。 17.补料分批发酵:指在发酵过程中一次或多次补入含有一种或多种营养成分的新鲜料液,以达到延长发酵周期,提高产量的目的。 18.连续发酵:指在特定的发酵设备中进行的,一边连续不断地输入新鲜无菌料液,同时一边连续不断地放出发酵料液。 简答题:1发酵过程有哪些特征谈谈你对发酵工程技术应用前景的想法 特征:1.原料广 2.反应条件温和,易控制 3.产物单一,纯度高 4.投资少,效益好想法:随着生物技术的发展,发酵工程的应用领域也在不断扩大,基因工程及细胞杂交技术在微生物育种上的应用,将使发酵用菌种量达到前所未有的水平;生物反应器技术及分离技术的相应进步将发酵工业的某些神秘特征;由于物理微生物数据库、发酵动力学、发酵传递学的发展,将使人们能够清楚的描述与使用微生物。(个人的,你也可以自已) 2.发酵工业对菌种的要求 答:1.菌种不能是病源菌 2.发酵周期短,生产能力强 3.发酵过程中不产生或少产生与目标产物性质相似的副产物 4.原料来源广泛价格低廉,菌种能高效地将原料转化为产品5.对需添加剂的前体有耐受能力,且不能将前体作为一般碳源利用 6.遗传性状稳定,菌种不易变异退化 7培养条件易于控制 3.菌种选育有哪些方法 答:1.自然选育 2、诱变选育 3.原生质体技术育种 4.基因工程技术育种 4.自然选育、诱变选育的概念,一般步骤,影响诱变的主要因素。

半导体物理_复习题共10页word资料

第七篇 题解-半导体表面与MIS 结构 刘诺 编 7-1、解: 又因为 0V V V s G += 7-3、解: (1) 表面积累:当金属表面所加的电压使得半导体表面出现多子积累时,这 就是表面积累,其能带图和电荷分布如图所示: (2) 表面耗尽:当金属表面所加的电压使得半导体表面载流子浓度几乎为零 时,这就是表面耗尽,其能带图和电荷分布如图所示: (3)当金属表面所加的电压使得半导体表面的少子浓度比多子浓度多时,这就是表面反型,其能带图和电荷分布如图所示: 7-3、解:理想MIS 结构的高频、低频电容-电压特性曲线如图所示; 其中AB 段对应表面积累,C 到D 段为表面耗尽,GH 和EF 对应表面反型。 7-4、解:使半导体表面达到强反型时加在金属电极上的栅电压就是开启电压。这时半导体的表面势 7-5、答:当MIS 结构的半导体能带平直时,在金属表面上所加的电压就叫平带电容。平带电压是度量实际MIS 结构与理想MIS 结构之间的偏离程度的物理量,据此可以获得材料功函数、界面电荷及分布等材料特性参数。 7-6、解:影响MIS 结构平带电压的因素分为两种: (1)金属与半导体功函数差。例如,当W m

相关文档
最新文档