回热式低温制冷机

冷冻机组方案比较(精选.)

海德家文化广场空调方案比较 选择什么样的中央空调,对现代化的建筑而言是一件举足轻重的事情,对使用业主来讲更是一件长达二、三十年的事情,直接涉及到初投资,以后每年的运行费用以及所使用能源的长远性,设备的性能及维护保养等,因此,我们做一份中央空调的几种方案的比较资料,从他们的性能、初投资以及各自的发展历史到以后趋势都有详细论述,以供领导在决策时参考之用。 一、项目概况 本项目为大型商业综合体,位于常州市武进区邹区镇。 二、方案阐述 我们将原设计主机设备统计列表如下: 机组型式制冷量台数总制冷量启动方式冷冻水进出水温水冷离心式冷水机组1400TR 4 5600TR 初级电抗启动 12℃/6℃水冷离心式冷水机组700TR 2 1400TR 星三角启动 量较大的离心机和2台制冷量较小的机组。 推荐方案: 机组型式制冷量台数总制冷量启动方式冷冻水进出水温 方案一水冷离心式冷水机组2000TR 3 6000TR 10KV初级电 抗启动 12℃/6℃水冷离心式冷水机组1000TR 1 1000TR 星三角启动12℃/6℃ 方案二水冷离心式冷水机组2000TR 3 6000TR 10KV初级电 抗启动 12℃/6℃水冷离心式冷水机组1000TR 1 1000TR 变频启动12℃/6℃ 1000TR的定频机组。该方案的特点是仅采用4台制冷机组,设备投资和安装成本都有较大降低,也降低了机房面积,同时采用一台较小的1000TR的冷水机组来调节负荷。该方案的缺点是机组台数较少和单台机组制冷量较大,因为该建筑面积较大,建成初期可能会入住率较低,这样的话空调负荷可能会很低,定频机组难以调节。

1000TR的变频机组。该方案的特点是采用4台制冷机组,设备投资和安装成本都有所降低,也降低了机房面积,同时采用1台变频的1000TR的机组可很好地调节负荷,并大大降低运行费用。另外因采用了同冷量的机组,其辅助的设备,如水泵、冷却塔等设备也容易配置,减少初投资和维护成本。 三、投资经济性比较: 方案机组型式单台制冷量台数机组单价机组总价 原设计方案水冷离心式 冷水机组 1400TR 4 2,010,000元 10,140,000元水冷离心式 冷水机组 700TR 2 1,050,000元 推荐方案一水冷离心式 冷水机组 2000TR 3 2,590,000元 9,130,000元定频离心式 冷水机组 1000TR 1 1,360,000元 推荐方案二水冷离心式 冷水机组 2000TR 3 2,590,000元 9,430,000元变频离心式 冷水机组 1000TR 1 1,660,000元 机房中的制冷机组台数由6台变成4台,设备的初始投资变少了,同时机房的建安成本也大幅降低,并且节约了机房的面积。如果按推荐方案二,在机组中增加1台变频机组,那么初期设备的投资也比原设计减少了约70万元,而且大大降低了运行费用。

溴化锂吸收式制冷机的工作原理讲解

溴化锂吸收式制冷机的工作原理是: 冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃.以上循环如此反复进行,最终达到制取低温冷水的目的。 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 工作原理与循环 溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为0。85kPa的溴化锂溶液与具有1kPa 压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0。87kPa)为止. 图1 吸收制冷的原理

低温制冷技术新发展

低温制冷技术新发展
巨永林
上海交通大学 制冷与低温工程研究所
Institute of Refrigeration and Cryogenics

主要内容
1 国际大科学工程项目简介 2 高能粒子加速器和探测器 3 国际热核反应实验堆(ITER) 4 空间红外探测
Institute of Refrigeration and Cryogenics

1 国际大科学工程
投资大(30-120亿美元) 时间长(10-20年) 国际合作(十几-上百个国家)
Institute of Refrigeration and Cryogenics

美国能源部20年大科 学工程发展规划
美国能源部2003年11月公布 了二十年中长期大科学工程 发展规划,共28项,拟投资 120亿美元。这些大工程项 目中的80%是以低温与超导 技术为工程基础的。 “这些大科学工程将使科学 发生革命,使美国科学位于 世界前沿,将会产生重大科 学发现,对人类社会做出重 大贡献”Spencer Abraham (美国能源部长)

28个项目

? ? ? ? ? ? ? ? ? ? ? ? ?
Spallation Neutron Source (散裂中子源) ITER (国际热核聚变实验) Joint Dark Energy Mission(联合暗能量计划) NSLS upgrade(同步辐射光源-升级计划) Free Electron Laser(自由电子激光器) RHIC-B(相对重离子对撞机-B计划) e-RHIC(电子-相对重离子对撞机) Double Beta Decay(双Beta衰变) Super Neutrino Beam(超级中微子束) Fusion Energy Contingency(聚变能约束) BTeV(千亿电子伏特加速器) ILC(国际直线加速器) ……
Institute of Refrigeration and Cryogenics

溴化锂吸收式制冷机的工作原理最详细的讲解

溴化锂吸收式制冷机的工作原理是: https://www.360docs.net/doc/fd15489200.html,/showProduct.asp?f_id=737 冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃。以上循环如此反复进行,最终达到制取低温冷水的目的。 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 工作原理与循环 溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为0.85kPa的溴化锂溶液与具有1kPa 压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0.87kPa)为止。 图1 吸收制冷的原理

低温制冷机项目合作方案

低温制冷机项目 合作方案 规划设计/投资分析/实施方案

摘要 低温制冷机是指在低温下可以提供冷量的封闭制冷机。低温制冷机是 近几十年才发展起来的,随着低温物理的发展,电子工业、宇航技术的发展,使低温制冷机在中、小型、特别是在小型和微型低温制冷技术中获得 了十分重要的地位。全球低温制冷机产业市场规模将从2020年的24亿美 元增长到2025年的33亿美元,复合年增长率为6.6%。半导体行业、超导 磁体和电源系统中低温冷却器的采用率不断上升,以及在MRI、NMR设备和 质子治疗领域中急速采用低温冷却器的情况,是推动全球低温冷却器市场 增长的主要因素。推动市场增长的其他关键因素包括在太空应用中对低温 冷却器的需求不断增长,以及在微卫星军事应用中对低温冷却器的发展等。 该低温制冷机项目计划总投资17181.29万元,其中:固定资产投 资14988.96万元,占项目总投资的87.24%;流动资金2192.33万元,占项目总投资的12.76%。 本期项目达产年营业收入20575.00万元,总成本费用16111.44 万元,税金及附加300.69万元,利润总额4463.56万元,利税总额5379.91万元,税后净利润3347.67万元,达产年纳税总额2032.24万元;达产年投资利润率25.98%,投资利税率31.31%,投资回报率 19.48%,全部投资回收期6.63年,提供就业职位408个。

低温制冷机项目合作方案目录 第一章概况 一、项目名称及建设性质 二、项目承办单位 三、战略合作单位 四、项目提出的理由 五、项目选址及用地综述 六、土建工程建设指标 七、设备购置 八、产品规划方案 九、原材料供应 十、项目能耗分析 十一、环境保护 十二、项目建设符合性 十三、项目进度规划 十四、投资估算及经济效益分析 十五、报告说明 十六、项目评价 十七、主要经济指标

溴化锂吸收式制冷原理

溴化锂吸收式制冷原理 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 溴化锂吸收式制冷原理同蒸汽压缩式制冷原理有相同之处,都是利用液态制冷剂在低温、低压条件下,蒸发、气化吸收载冷剂(冷水)的热负荷,产生制冷效应。所不同的是,溴化锂吸收式制冷是利用“溴化 锂一水”组成的二元溶液为工质对,完成制冷循环的。 在溴化锂吸收式制冷机内循环的二元工质对中,水是制冷剂。在真空(绝对压力:870Pa)状态下蒸发,具有较低的蒸发温度(5℃),从而吸收载冷剂热负荷,使之温度降低,源源不断地输出低温冷水。 工质对中溴化锂水溶液则是吸收剂,可在常温和低温下强烈地吸收水蒸气,但在高温下又能将其吸收的水分释放出来。制冷剂在二元溶液工质对中,不断地被吸收或释放出来。吸收与释放周而复始,不断循环,因此,蒸发制冷循环也连续不断。制冷过程所需的热能可为蒸汽,也可利用废热,废汽,以及地下热水(75'C以上)。在燃油或天然气充足的地方,还可采用直燃型溴化锂吸收式制冷机制取低温水。这 些特征充分表现出溴化锂吸收式制冷机良好的经济性能,促进了溴化锂吸收式制冷机的发展。 因为溴化锂吸收式制冷机的制冷剂是水,制冷温度只能在o℃以上,一般不低于5℃,故溴化锂吸收式制冷机多用于空气调节工程作低温冷源,特别适用于大、中型空调工程中使用。溴化锂吸收式制冷机在某些生产工艺中也可用作低温冷却水。 第一节吸收式制冷的基本原理 一、吸收式制冷机基本工作原理 从热力学原理知道,任何液体工质在由液态向气态转化过程必然向周围吸收热量。在汽化时会吸收汽化热。水在一定压力下汽化,而又必然是相应的温度。而且汽化压力愈低,汽化温度也愈低。如一个大气压下水的汽化温度为100~C,而在o.05大气压时汽化温度为33℃等。如果我们能创造一个 压力很低的条件,让水在这个压力条件下汽化吸热,就可以得到相应的低温。 一定温度和浓度的溴化锂溶液的饱和压力比同温度的水的饱和蒸汽压力低得多。由于溴化锂溶液和水之间存在蒸汽压力差,溴化锂溶液即吸收水的蒸汽,使水的蒸汽压力降低,水则进一步蒸发并吸收热量,而使本身的温度降低到对应的较低蒸汽压力的蒸发温度,从而实现制冷。 蒸汽压缩式制冷机的工作循环由压缩、冷凝、节流、蒸发四个基本过程组成。吸收式制冷机的基本工作过程实际上也是这四个过程,不过在压缩过程中,蒸汽不是利用压缩机的机械压缩,而是使用另一种方法完成的。如图2—1所示,由蒸发器出来的低压制冷剂蒸汽先进人吸收器,成在吸收器中用一种液态吸收剂来吸收,以维持蒸发器内的低压,在吸收的过程中要放出大量的溶解热。热量由管内冷却水或其他冷却介质带走,然后用溶液泵将这一由吸收剂与制冷剂混合而成的溶液送人发生器。溶液在发

吸收式制冷分析

第七章 吸收式制冷 吸收式制冷是液体气化制冷的另一种形式,它和蒸气压缩式制冷一样,是利用液态制冷剂在低温低压下气化以达到制冷目的的。所不同的是:蒸气压缩式制冷是靠消耗机械功(或电能)使热量从低温物体向高温物体转移,而吸收式制冷则依靠消耗热能来完成这种非自发过程。 第一节 吸收式制冷的基本原理 一、基本原理 对于吸收剂循环而言,可以将吸收器、发生器和溶液泵看作是一个“热力压缩机”,吸收器相当于压缩机的吸入侧,发生器相当于压缩机的压出侧。吸收剂可视为将已产生制冷效应的制冷剂蒸气从循环的低压侧输送到高压侧的运载液体。 二、吸收式制冷机的热力系数 蒸气压缩式制冷机用制冷系数ε评价其经济性,由于吸收式制冷机所消耗的能量主要是热能,故常以“热力系数”作为其经济性评价指标。热力系数ζ是吸收式制冷机所获得的制冷量0φ与消耗的热量g φ之比。 g φζφ= (7-1) 图7-1 吸收式与蒸气压缩式制冷循环的比较 (a )蒸气压缩式制冷循环 (b )吸收式制冷循环 (b ) (a )

0g a k e P φφφφφ++=+= (7-2) 00g e S S S S ?=?+?+?≥ (7-3) 0g e g e S T T T φφφ?=- - + ≥ (7-4) g e e g g T T T T P T T φφ--≥- (7-5) ) () (000T T T T T T e g e g g --≤ =φφζ (7-6) 最大热力系数ζmax 为 c c 0 max εηζ=--= T T T T T T e g e g (7-6a) 热力系数ζ与最大热力系数ζmax 之比称为热力完善度ηa ,即 max a ζηζ= (7-7) 第二节 二元溶液的特性 一、二元溶液的基本特性 B A v v V )1(1ξξ-+= (7-8) 两种液体混合前的比焓 k 蒸发器冷媒 环境 发生器热媒 图7-2 吸收式制冷系统与外界 的能量交换 图7-3 可逆吸收式制冷循环

溴化锂吸收式制冷机参数

溴化锂吸收式制冷机工作原理、特点及相关产品参数 溴化锂吸收式制冷机工作原理、特点及相关产品参数 溴化锂吸收式制冷机工作原理:溴化锂吸收式制冷机是以溴化锂溶液为吸收剂,以水为制冷剂,利用水在高真空下蒸发吸热达到制冷的目的。为使制冷过程能连续不断地进行下去,蒸发后的冷剂水蒸气被溴化锂溶液所吸收,溶液变稀,这一过程是在吸收器中发生的,然后以热能为动力,将溶液加热使其水份分离出来,而溶液变浓,这一过程是在发生器中进行的。发生器中得到的蒸汽在冷凝器中凝结成水,经节流后再送至蒸发器中蒸发。如此循环达到连续制冷的目的。 溴化锂吸收式制冷机的特点 一、优点 (一)以热能为动力,电能耗用较少,且对热源要求不高。能利用各种低势热能和废汽、废热,如高于20kPa(0.2kgf/cm2)表压饱和蒸汽、高干75℃的热水以及地热、太阳能等,有利于热源的综合利 用。具有很好的节电、节能效果,经济性好。 (二)整个机组除功率很小的屏蔽泵外,没有其他运动部件,振动小、噪声低、运行比较安静。 (三)以溴化锂溶液为工质,机器在真空状态下运转,无臭、无毒、无爆炸危险、安全可靠、 无公害、有利于满足环境保护的要求。 (四)冷量调节范围宽。随着外界负荷变化,机组可在10%~100%的范围内进行冷量的无级调 节。即使低负荷运行,热效率几乎不下降,性能稳定,能很好适应负荷变化的要求。 (五)对外界条件变化的适应性强。如标准外界条件为:蒸汽压力5.88 X 105Pa(6kgf/cm2)表压,冷却水进口温度32℃,冷媒水出口温度10℃的蒸汽双效机,实际运行表明,能在蒸汽压力(1.96~7.84) X 105Pa(2.0~8.0kgf/cm2)表压,冷却水进口温度25~40℃,冷媒水出口温度5~15C的宽阔 范围内稳定运转。 (六)安装简便,对安装基础要求低。机器运转时振动小,无需特殊基础,只考虑静负荷即可。 可安装在室内、室外、底层、楼层或屋顶。安装时只需作一般校平,按要求连接汽、水、电即可。 (七)制造简单,操作、维修保养方便。机组中除屏蔽泵、真空泵和真空间等附属设备外,几乎都是换热设备,制造比较容易。由于机组性能稳定,对外界条件变化适应性强,因而操作比较简单。机 组的维修保养工作,主要在于保持其气密性。 二、缺点 (一)在有空气的情况下,溴化锂溶液对普通碳钢具有强烈的腐蚀性。这不仅影响机组的寿命, 而且影响机组的性能和正常运转。

制冷及低温原理(2014年中期试卷)

重庆大学 制冷与低温原理 期中考试试卷 2014-2015 学年 第 1 学期 开课学院: 动力工程学院 课程号:14011535 考试日期: 2014.10.30 考试方式: 考试时间: 45 分钟 一、 填空题(20分,每空2分) 1. 压缩机吸气过热分为有用过热和无用过热,无用过热会使制冷剂单位质量制冷量__不变__(不变,减小或增大);实践表明,多数情况下,压缩机吸气过热的大部分是无用过热,为了避免大量无用过热,常采用____气液或者回热热____交换器。 2. 蒸汽压缩式制冷中,降低蒸发温度和提高冷凝温度都会使得制冷机的 COP___ 降低_____,二者中对制冷性能系数影响较为明显的是________蒸发温度___。 3. R718代表的制冷剂是____H 2O___;制冷剂选用时通常要考虑环境影响指数,通常是指___温室影响指数____和臭氧衰减指数。 4. 超临界制冷循环是循环中制冷剂的放热过程在____临界温度____以上,为非凝结相变的放热过程。 5. 为获得低温而采取两级压缩或复叠式制冷循环的主要原因有__减小压比__ 和 ____获得比单级压缩循环更低的制冷温度 ___ 。 6. 采用液体过冷循环,在相同过冷度下,过冷使制冷量和制冷系数提高的百分数与制冷剂的____比热容_______和____潜热_______有关。 7. 工作在蒸发温度5℃,冷凝温度50℃工况下的热泵循环,其理想制热 系数为 7.18 。 8. CO 2超临界制冷循环放热过程为一变温过程,有较大的___温度___滑移。正好与所需的变温热源相匹配,是一种特殊的___劳伦兹___ 循 环,用于热回收时,有较高的热效率。 9. 评价一个制冷循环与可逆制冷循环的接近程度,通常用_____热力完善度或循环效率_______指标表示。 10.压缩机和 节流阀或膨胀阀 把整个单级蒸汽压缩制冷循环分成高压和低压两部分。 二、判断题 (20分,每题2分) 1.制冷循环中应用液体过冷对改善制冷循环的性能总是有利的。 ( Y ) 2.氨制冷系统中的制冷剂管道可以用不锈钢管。 ( Y ) 3.蒸气压缩式制冷系统中高压液管是连接冷凝器和膨胀阀之间的管道。 ( Y ) 4.物质从致密态到质稀态相变时,吸收热量。 ( Y ) 5.气体绝热节流是一个典型的可逆过程,节流前后的焓值不变。 ( N ) 6.饱和空气的干球温度、湿球温度和露点温度三者相等。 ( Y ) 7.制冷循环的性能系数用来反映消耗一定的补偿能可获得多少收益能,供热系数可能大于1,也可能小于1。 ( N ) 8.双级压缩制冷循环中,高压级压缩机的输气量等于低压级压缩机的输气量。 ( N ) 9.制冷剂R600a 对臭氧层有极大的破坏作用。 ( N ) 10.制冷剂的ODP 值越大,表明对臭氧层的破坏潜力越大;GWP 越小,表明对全球气候变暖的贡献越小。 ( Y ) 命 题人: 组题人: 审 题 人: 命题 时 间: 教 务处制 学院 动力工程学院 专业、班 年级 学号 姓名 公平竞争、诚实守信、严肃考纪、拒绝作弊 封 线 密

吸收式制冷机组

溴化锂吸收式制冷机是以溴化锂溶液为吸收剂,以水为制冷剂,利用水在高真空下蒸发吸热达到制冷的目的。 为使制冷过程能连续不断地进行下去,蒸发后的冷剂水蒸气被溴化锂溶液所吸收,溶液变稀,这一过程是在吸收器中发生的,然后以热能为动力,将溶液加热使其水份分离出来,而溶液变浓,这一过程是在发生器中进行的。发生器中得到的蒸汽在冷凝器中凝结成水,经节流后再送至蒸发器中蒸发。如此循环达到连续制冷的目的。 从吸收器出来的溴化锂稀溶液,由溶液泵(即发生器泵),升压经溶液热交换器,被发生器出来的高温浓溶液加热温度提高后,进入发生器。在发生器中受到传热管内热源蒸汽加热,溶液温度提高直至沸腾,溶液中的水份逐渐蒸发出来,而溶液浓度不断增大。 单效溴化锂吸收式制冷机的热源蒸汽压力一般为0.098MPa(表压)。发生器中蒸发出来的冷剂水蒸气向上经挡液板进入冷凝器,挡液板起汽液分离作用,防止液滴随蒸汽进入冷凝器。冷凝器的传热管内通入冷却水,所以管外冷剂水蒸气被冷却水冷却,冷凝成水,此即冷剂水。 积聚在冷凝器下部的冷剂水经节流后流入蒸发器内,因为冷凝器中的压力比蒸发器中的压力要高。如:当冷凝器温度为45℃时,冷凝压力为9580Pa(71.9mmHg);蒸发温度为5℃时,蒸发压力872Pa(6.45mmHg)。 U 冷剂水进入蒸发器后,由于压力降低首先闪蒸出部分冷剂水蒸气。因蒸发器为喷淋式热交换器,喷淋量要比蒸发量大许多倍,故大部分冷剂水是聚集在蒸发器的水盘内的,然后由冷剂水泵升压后送入蒸发器的喷淋管中,经喷嘴喷淋到管簇外表面上,在吸取了流过管内的冷媒水的热量后,蒸发成低压的冷剂水蒸气。由于蒸发器内压力较低,故可以得到生产工艺过程或空调系统所需要的低温冷媒水,达到制冷的目的。例如蒸发器压力为872Pa时,冷剂水的蒸发温度为5℃,这时可以得到7℃的冷媒水。 蒸发出来的冷剂蒸汽经挡液板将其夹杂的液滴分离后进入吸收器,被由吸收器泵送来并均匀喷淋在吸收管簇外表的中间溶液所吸收,溶液重新变稀。中间溶液是由来自溶液热交换器放热降温后的浓溶液和吸收器液囊中的稀溶液混合得到的。为保证吸收过程的不断进行,需将吸收过程所放出的热量由传热管内的冷却水及时带走。中间溶液吸收了一定量的水蒸气后成为稀溶液,聚集在吸收器 由上述循环工作过程可见,吸收式制冷机与压缩式制冷机在获取冷量的原理上是相同的,都是利用高压液体制冷剂经节流阀(或U型管)节流降压后,在低压下蒸发来制取冷量,它们都有起同样作用的冷凝、蒸发和节流装置。而主要区别在于由低压冷剂蒸汽如何变成高压蒸汽所采用的方法不同,压缩式制冷机是通过原动机驱动压缩机来实现的,而吸收式制冷机是通过吸收器,溶液泵和发生器等设备来实现的。 从吸收器出来的稀溶液温度较低,而稀溶液温度越低,则在发生器中需要更多热量。自发生器出来的浓溶液温度较高,而浓溶液温度越高,在吸收器中则要求更多的冷却水量。因此设置溶液

低温空调机组选型方案

低温空调机组选型方案 目的 本项目中低温空调机组是项目的重大设备之一,关系到一个项目的核心使用功能,而且涉及到电气、管道、通风三个专业交叉配合工作,是项目实施过程中的重点管控对象。为了确保采购的空调机组符合设计要求,业主需求,在采购前,对空调机组的选型需进行严格把控; 编制依据 业主URS 设计图纸 组合式空调机组GB/T14294-2008 建筑通风用空气处理机组机械性能EN1886-1998 GMP验收规范 选型要求 以低温空调机组AHU-122机组选型为例,进行描述: 组合式空调机组AHU-122,分为新风段,G4过滤段,混合段,进风段,上层表冷盘管段,下层表冷盘管段,均流段,上层风机段,下层风机段,出风段,加热盘管段,F6过滤器段,出风段; 此台机组服务于凝血因子冷库(2~8°C);房间需求温度为2~8°C; 考虑到此房间的重要性,空调机组内设置了双风机;正常运行时,一台风机开启;另一台风机作为备用;同时,风机与前后阀门做连锁;阀门开启,风机才可以开启; 为了节省空调机组内阀门开启时间和程序启动的延迟,建议采用双风机单独以机组总风量的50%运行;当一台风机损坏时,另一台风机可以快速升频,以机组总风量100%运行,服务于房间; 经过空气处理计算,表冷盘管处理后的空气温度需达到-5 度;机组内设置了两套表冷盘管,作为融霜时切换使用; 空调机组壁板材质选择 空调机组壁板的保温性能应稳定可靠;由于低温空调机组内部空气温度

低,与室外空气接触易结露,考虑到保温材料采用玻璃棉毡和橡塑保温板,因吸水受潮会使保温性能下降,不可作为低温空调机组的壁板;而聚氨酯发泡不吸水,不溶化,稳定性好,适用于低温空调机组壁板选择; 壁板厚度选择 经查,设计图纸中成都夏季工况见下图: 室外计算干球温度为31.8度;为了防止空调机组冷量损耗和空调机组外观结露,经过厂家计算,壁板厚度为80mm以上较好; 此次选型提供空调机组箱体框架: 1.面板为三明治面板结构,内外板均为镀锌钢加静电粉末喷涂,无焊接。板厚为100mm,表面做静电粉末喷涂处理(涂层厚度100um)。保温材料采用聚氨酯发泡。 2.机组框架采用高强度玻璃纤维材质,避免框架的冷桥结露。全包结构,无裸露框架。 3.面板密封采用双层液体发泡密封,保证机组的低漏风率。 4. 机组的箱体须要有足够的强度,有完整可靠的框架结构,提供满足机械强度的级别,机械强度达到D1等级。箱体在运输和启动、运行、停止后不应出现永久凹凸变形。 5. 所有机组在所有的侧板、底板、顶板、门框部分均无冷桥设计。要求机组保温板隔热性能至少达到T2的标准,壳体防冷桥系数为大于0.6,符合欧洲标准TB2等级,此项作为机组保温性能的重要参考依据。 6. 面板为可拆卸的形式。 7. 机组内部部件如盘管、挡水板等均要有维修空间或可从机组侧面抽

水冷螺杆式低温冷冻机组详解

KDSL系列水冷螺杆式低温冷冻机组是凯德利公司针对钢铁、医药、电子、化工、食品等特殊行业,根据多年工业用冷冻机组设计经验,综合国内外先进技术精心设计研发的新一代低温冷冻设备,其温度范围可在 -30℃ ~ 0℃之间任意调节,压缩机采用国际知名品牌的新型螺杆压缩机,比一般压缩机能效高出20%~30%,并获得欧美多国专利和ISO9001国际品质认证。系统零部件及电气控制元件均采用国际著名品牌,性能稳定可靠,控制系统采用PLC触摸屏控制,使操作更为简便。可根据客户需求订制各种使用工况的冷冻设备。

凯德利牌双级复叠机组是以酒精或盐水作为载冷剂的低温冷冻机机组由两台压缩机组成二元复叠式制冷系统,高温级采用R22/R404A为工质,低温级采用R23为工质,其工作过程如下: 1、高温级 R22/R404A循环系统:被压缩的R22/R404A高压制冷剂蒸汽从压缩机排出,经过油分离器,进入冷凝器,在冷凝器中通过不断流动的冷却水带走热量,凝结成高压R22/R404A液体。液态R22/R404A制冷剂由冷凝器出来后,经过干燥过滤器、电磁阀等,进入膨胀阀节流降压为低压液体。然后进入冷凝—蒸发器,在冷凝—蒸发器内吸收R23的热量,蒸发成低压蒸汽后流入压缩机中。制冷剂R22/R404A不断重复上述循环,保证了低温级 R23循环系统的正常运行。 2、低温级 R23循环系统:被压缩的R23高压制冷剂蒸汽从压缩机排出,经过油分离器与油过滤器,进入冷凝—蒸发器,在冷凝—蒸发器中通过吸收 R404A级冷量,凝结成R23高压液体。液态R23制冷剂由冷凝—蒸发器出来后,经过干燥过滤器等,进入膨胀阀节流降压为低压液体。然后进入蒸发器,在蒸发器中R23吸收载冷剂热量,汽化蒸发为低压蒸汽后流入压缩机中。制冷剂 R23不断重复上述循环,为用户提供低温载冷剂。

吸收式制冷机的现状与发展

合肥通用职业技术学院毕业设计论文 题目:吸收式制冷机的现状与发展 系别:机械工程系 专业:制冷与冷藏技术 学制:三年制 姓名: 学号: 指导教师:管梦瑶 二O一五年四月五日

摘要 简单回顾了吸收式制冷技术的发展背景;较详细地介绍了国内外吸收式制冷技术的研究热点,主要包括对新工质对、吸收循环、传热与传质、智能化控制方式等几方面的研究。目前,溴化锂吸收式机组已经被广泛地应用于空调系统,本文对其在国内外的应用现状进行了详细介绍,主要包括热电冷联产、直燃型吸收式冷热水机组、蒸汽型吸收式冷水机组、热水型吸收式冷水机组、太阳能吸收式机组等。最后对吸收式制冷技术的前景进行了展望。 关键词:吸收式制冷技术;溴化锂;节约能源;保护环境

目录 前言 (5) 第1章吸收式制冷技术的主要种类 (6) 1.1氨水吸收式制冷机 (6) 1.2溴化锂吸收式制冷机 (7) 第2章吸收式制冷技术的研究 (9) 2.1 新工质对的研究 (9) 2.2 吸收循环的研究 (9) 2.3 传热与传质的研究 (10) 2.4 智能化控制方式的研究 (11) 第3章吸收式制冷技术的应用 (12) 3.1 热电冷联产 (12) 3.2直燃型吸收式冷热水机组 (13) 3.3蒸汽型吸收式冷水机组 (13) 3.4 热水型吸收式冷水机组 (13) 3.5太阳能吸收式机组 (13) 结语 (15) 参考文献 (16)

前言 能源与环境是现代经济与技术发展的基础与推动力。吸收式技术也是在能源与环境问题日益突出的情况下得以迅速发展。吸收式制冷机组,因为能够利用廉价能源和低品位热能解决电力供应不足、不含 CFC类对臭氧层有破坏的物质,而得到广泛的推广应用。 1973 年的中东石油危机,推动了能源利用技术的发展,使利用低品位热能的吸收式热泵技术、热电冷联产技术等吸收式冷热源设备的研究,进入了实用化的开发阶段。1987 年蒙特利尔协议签订后,由于吸收式制冷技术可采用对环境无破坏作用的天然制冷剂,它作为一种现实可行的替代制冷技术得到了进一步的发展。氨-水工质对也随之得到了科学界的重新认识和推广应用。在 20 世纪 90 年代,随着吸收式制冷机性能的显著提高,直燃型多效溴化锂吸收式制冷机、高效氨-水GAX 循环吸收式制冷机,以及小型氨-水吸收式制冷机进入了商业化开发阶段。各种吸收式机组在余热利用、总能系统和区域集中供热(冷)方面得到了进一步推广应用。

制冷站建设方案

化产车间制冷站建设方案 净化车间是年产120万吨焦炭设计生产能力的配套设施,设计时采用的冷水方案为空喷塔降温,当夏季生产负荷大时,效果达不到生产所需的冷水效果,制约我车间生产。唐山征楠焦化有限公司现有闲置的两台直燃型溴化锂制冷机组,计划运至我公司,故特制订本方案。 1.位置的选择及安装方位: 制冷站位置选择在化产综合泵房西侧,厕所北侧,13.8米X32米空场处,具体摆放位置见附表1。 2.工艺管线的确定: 制冷机的制冷水循环,采取和原系统低温水管道并网的方式,由低温水泵提供循环动力。制冷机的冷却水采用原系统的循环水分流一部分循环水,对机组实现冷却降温。具体工艺图见附件2。 3.目前公司制冷站所需建设设施: 3.1土建部分:需建设制冷机组基础,鼓风机及消音器基础,煤气过滤器预热器基础,管道支架基础,厂房围墙基础。 3.2设备部分:煤气管线开口及铺设,制冷水管道铺设,循环水管道铺设,燃烧系统和机组的管线连接。 3.3电气仪表部分:电力调配配电线路,需配设保证照明和机组运行的基础线路。仪表部分需按说明书对到厂后的设备仪表进行恢复安装调试。 4. 准备工作 4.1 办公室需对设备材料图纸及时复印,发放到相关人员手中。

4.2化产车间结合机修车间对管线的长度、直径和阀门进行估算,提前准备好材料。 4.3化产车间及时调节指标,确保在施工接口等环节中,不出现大的生产波动。 5.施工顺序: 5.1土建施工:在给出土建图纸后,土建优先施工。 5.2设备安装:唐山制冷机组来后,先对设备进行定点安装,根据工艺管线图,再对设备进行连接安装。化产车间紧密配合,确保工艺管线的正确性,同时确定保温范围及冬季水循环系统放空点。 5.3制冷机电气设备、监控系统、仪表的安装。 5.4 设备附属及工艺管道除锈刷漆。 6. 调试、开工投入生产。 6.1可联系双良厂家入厂调试。 7.施工技术要求: 7.1 制冷机的安装要根据随机资料的技术要求进行。 7.2 管道安装技术要求按《管道施工规范》进行。 7.3制冷机调试、开工根据随机资料的技术要求进行。 8. 施工安全环保措施 8.1施工前,工程施工人员要作好安全教育,熟悉现场施工情况,确认危险源点,搞好防范措施。 8.2引入煤气管线施工时,必须采用盲板封堵,吹扫前不得拆除。8.3进入化产车间施工,动火前要办理动火证,得到安全部门的认可。

制冷机房群控系统方案

、机房能源管理系统功能 冷水系统的机房群控系统包括以下主要内容:一是实现冷水系统的能量控制管理,主要包括根据冷量负荷计算对冷水机组进行台数控制、根据系统压差实现一次泵变流量控制、根据冷却水供水温度实现对冷却水泵的控制管理;二是根据大厦的日程安排自动开关冷水机组、冷冻水泵、冷却水泵等,并实现各设备之间开关机顺序及连锁保护功能;三是累计每台冷水机组、冷冻水泵、冷却水泵运行时间,自动选择运行时间最短的设备启动,使每台设备运行时间基本相等,延长机组的寿命;四是动态显示机组、水泵及相关设备的运行状态和报警信息,自动记录系统数据,如遇故障则自动停泵,备用泵自动投入使用。 (A)系统冷量控制管理 制冷系统的制冷量是采用自动监测计算系统负荷方式,通过DDC控制系统控制制冷机组运行台数进行控制。系统的供、回水温度以及回水流量可通过传感器输入到现场DDC控制器,根据这些参数,系统将能够计算出用户实际所需要的冷量,并将计算出的冷量值输入到能量管理系统。 根据冷负荷对冷水机组进行台数控制,设计根据分、集水器上的供回水温差及回水流量计算出系统冷负荷:Q=C×L×(T2-T1) 式中:Q———计算冷负荷;L———流量,L=L1+L2+L3; T2———回水温度;T1———供水温度; C———水比热。

同时,在低负荷时,系统实时监测冷水机组的冷冻水出水温度,当冷水机组出水温度低于系统冷冻水温度设定值并持续一段时间后,系统会自动关闭低负荷冷水机组,此时冷冻水系统仍继续运行,满足系统冷量低负荷运行要求;当冷冻水温度超出系统冷冻水温度设定值并持续一段时间后,系统自动运行冷水机组,自适应冷水系统的负荷变化。 系统在启动或低负荷运行时,先运行一台冷水机组,当第一台冷水机组启动60min后,冷水机组出水温度基本达稳定温度,系统再启动负荷控制管理功能。每30min 把计算出的实际冷负荷与当前运行机组的额定冷量比较,当实际负荷小于当前机组的额定总负荷一定量时,减少相应的机组台数运行;当实际负荷大于当前机组的额定总负荷一定量时,增加相应的机组台数运行。 (B)冷水机组运行台数控制管理 DDC系统将输入的冷量值与所有正在运行的制冷机组额定制冷量的总和进行比较,如果用户实际消耗冷量少于一台制冷机的额定制冷量时,DDC系统将发出一个开关量信号,该信号将使一台制冷机组停止运行,制冷机组在停机后将输入动作信号至DDC系统,DDC系统确认机组已经停止运行后,将输出关闭与

溴化锂吸收式机组介绍

溴化锂吸收式机组介绍 一、制冷基础知识 电制冷与溴化锂吸收式制冷的不同 二、溴化锂吸收式制冷机的特点 在当前制冷、空调设备突飞猛进的发展过程中,溴化锂吸收式制冷机组。以其显著的优点,成为发展速度最快的一种主机设备。它具备以下的几种优缺点。 1、优点 1)耗电量小。用热能作为动力,只需极小的电能就能正常工作。

2)对大气无污染,符合环保要求。制冷工质为溴化锂溶液,制冷机在真空状态下运行,无臭、无毒、无爆炸危险、不破坏大气层,安全可靠。 3)噪音低、振动小、运行平稳。整个制冷机除屏蔽泵外,没有别的运动部件,特别适合用于医院、写字楼、宾馆等场所。 4)调节范围宽。在外界条件发生变化时,可在10%-100%范围内进行冷量的无级调节。 5)机组安装要求低。因机组运行时振动极小,故不需要特殊的基础,可安装在中间楼层或屋顶,也可安装在室外。 6)维护保养方便。由于机组主要由换热器组成,维护保养的主要工作就是维持机组内的真空度。 7)直燃机可实现一机多用。更加适合城市对烟气排放的要求 2、缺点 1)腐蚀性强。在有空气的情况下,溴化锂溶液对金属具有较强的腐蚀性。这不仅影响机组的寿命,而且直接影响机组的性能和正常运行。 2)冷却水耗量大。由于溴化锂溶液吸收冷剂蒸汽是放热过程,冷剂蒸汽的冷凝和吸收都需要冷却,因此冷却负荷较大。 3)体积较大。溴冷机基本上是由多个换热器组成,所以占据空间较多。 4)不能制取低温。由于用水做制冷剂,不能制取0℃以下的低温。 三、溴化锂吸收式机组工作原理 3.1溴冷机组型式 溴化锂吸收式制冷按使用能源可分为: 1、蒸汽型使用蒸汽作为能源。根据做工蒸汽品味高低,还可以分为:单效和双效; 单效的工作压力范围为0.03~0.15MPa(表压) 双效的工作压力范围为0.4MPa,0.6MPa,0.8MPa(表压) 2、直燃型一般以油、气等可燃物质为燃料或空气源热泵。不仅夏天能制冷,而且冬天可以供热及提供生活用卫生热水。 3、热水型使用热水为热源的溴化锂机组。通常以工业余热、废热、地热

低温制冷机组方案

低温工艺冷源技术方案 技术要求 根据业主所提出的要求,要求螺杆式冷水机出水温度为-25℃,制冷量为20万大卡,载冷剂为乙二醇。 二、参数及设计: 设计依据GB/T 18430.1-2001《蒸气压缩循环冷水(热泵)机组工商业用和类似用途的冷水(热泵)机组》 冷负荷计算 四、设备选型: 螺杆型乙二醇机组,出水温度-25℃,回水温度-20℃,需配比质量浓度至少50%乙二醇水溶液(到该机组有可能起始凝固温度-33.8℃,比热3.11KJ/kg.K,密度1088kg/m3)。 选择机组LSLZ-240S,共1台 参数如下: 冷量:235.7kw 输入功率:152.2kw 冷冻水流量:50.2 t/h(按照50%浓度的乙二醇水溶液进行计算) 冷却水流量:82.5 t/h 制冷剂:R22 载冷剂:乙二醇水溶液 名义工况:蒸发器进水温度-20℃,出水温度-25℃;冷凝器进水温度30℃,出水温度35℃。 五、螺杆式乙二醇机组技术参数 项目 单位 型号 制冷量 kW 235.7 kcal/h 202702 电源

3φ 380V 50Hz 配电功率 kW 303.4 压缩机 型式 半封尊闭螺杆式 启动方式 星-三角降压 冷凝器 型式 壳管式高效换热器 水流量 t/h 82.5

水压降 kPa 50-80 蒸发器 型式 壳管式高效换热器 水流量 t/h 50.2(50%乙二醇溶液) 水压降 kPa 80-100 冷媒 名称 R22 充注量 kg

130 接管规格冷凝器mm DN125 蒸发器 DN150 放水阀mm DN40 外形尺寸长(L)mm 3800 宽(W)mm 1300

吸收式制冷机介绍

吸收式制冷机在氮肥行业节能降耗方面的应用 1 氮肥行业能耗现状 中国是世界上最大的化肥生产和消费国,到2004年年底,我国合成氨年产能达到42220kt,但吨氨能耗却与国际先进水平相差了600~700kg标煤。国内化工行业的五大高耗能产业中,合成氨耗能占总量的40%,单位能耗比国际先进水平高31.2%。 2005年,国家发改委颁布的《国家节能中长期规划》,已将合成氨列为节能降耗的重点领域和重点工程。根据规划要求,未来15年,国家一方面将加快推进以洁净煤或天然气替代石油合成氨的工业改造,以节约宝贵的石油资源;另一方面将大力推动节能降耗技术的开发和推广应用,将大型合成氨单位能耗由目前的1372 kg标准煤/t降低到1000kt标准煤/t。到2010年,合成氨行业节能目标是:能源利用效率由目前的42%提高到45.5%,实现节能5700~5850kt标煤,减少排放二氧化碳13770~14130kt。因此,进一步加快合成氨装置的节能改造,已成为众多大化肥生产企业节能降耗的必经之路。 2 吸收式制冷机在氮肥行业节能降耗方面的可行性 余热是在一定生产工艺条件下,系统中没有被利用的能源,也就是多余、废弃的能源。它包括高温废气余热,冷却介质余热、废汽废水余热、高温产品和炉渣余热、化学反应余热、可燃废气废液和废料余热以及高压流体余压等。 合成氨及尿素合成过程都是放热反应,都会生产大量的废(余)热,目前行业内已采用余热锅炉,热交换器热回收等方式利用了部分高温废热源。而部分低温热源由于品位较低没有有效利用。 合成氨和尿素生产过程中,氨分离、半水煤气降温、碳丙液冷却等工艺都需要大量低温冷水,有些企业采用氨压缩制冷机或冰机提供冷水,消耗了大量的电能,增加了企业生产成本,而如果不采用冰机提供冷水,生产效率低,尤其在夏季会严重影响产能,同样也造成生产能耗高,生产成本高。 而溴化锂吸收式制冷机可以利用低品位的热能,通过机组制取5℃以上的低温冷水。将溴化锂吸收式制冷机车合成氨和尿素生产工艺中使用,一方面可以充分利用生产过程的大量废热,另一方面则可以提供生产工艺需要的冷水,减少冰机电耗,提高产量。因此在氮肥行业利用溴化锂吸收式制冷机进行节能降耗是完全可行的。 3 吸收式制冷机在氮肥行业节能降耗中的应用 由于溴化锂吸收式制冷可利用废热制取低温冷水,国内部分企业已在实际生产工艺中进行了应用。 3.1 河南心连心化工有限公司利用热水两段型吸收式制冷机进行节能降耗

相关文档
最新文档