氧化淀粉胶应用研究进展

氧化淀粉胶应用研究进展
氧化淀粉胶应用研究进展

如何防止淀粉类食物老化要点

如何防止淀粉类食物老化 淀粉类食物如面包、糕点及各种面食,在存放过程中会随着时间延长而发生一系列内在品质上的变化,老化是除了微生物腐败外,另一个导致淀粉类食物品质不良的原因。了解老化的各种现象及影响因子,有助于对淀粉类食物的配方、组成、加工过程及包装做更好的改进。经实验研究发现,影响淀粉的老化主要有以下几个因素: 1、温度 淀粉类食物的熟成必须在淀粉糊化温度以上时才能发生。不同种类、来源的淀粉其糊化温度有所不同,虽然不同种类的淀粉其糊化温度有所不同,但是淀粉老化是在淀粉糊化后温度缓慢冷却的过程中开始的,一般不会在淀粉糊化之前发生老化。大多数淀粉类食物发生老化时与温度的关系,一般规律为:在略低于淀粉糊化温度以上和淀粉冻结温度以下,淀粉类食物一般不容易发生老化现象。而如果把淀粉类食物放置在上述两种温度之间,淀粉类食物的老化程度也随着环境温度的不断下降而增加,老化速度也逐步加快。发生老化作用的最适温度约在2℃-4℃之间。 2、水分 淀粉类食物中均含有一定的水分。水分的挥发作用及重新分布会促进老化。水分的多少会影响淀粉老化的速度,当淀粉类食物含 30%-60% 水分时,淀粉最易发生老化;当水分含量在70%以上时,食物中的淀粉糊化较彻底,老化程度比较缓慢;当水分含量低于10%时,食物便不容易发生老化现象。 在淀粉类食物发生老化的过程中,绝大数食物会伴有变硬现象,甚至能使一些食物老化后产生粉质化。这些现象归因于在加工制作淀粉类食物时,总需添加一定量的水,经过人为地混合或捏合,在加热时淀粉颗粒开始膨胀,淀粉分子结构松散,水分子进入食物中的淀粉分子中并与其缔合。当食物制作成熟食后,在冷却及贮存的过程中,由于淀粉分子与水分子之间的氢键很不稳定,易断裂,从而使淀粉分子之间重新形成稳定的氢键。在这个过程中,就有一部分水从食物中被排挤出来,出现脱水收缩现象,致使淀粉类食物发生变硬、变脆等不良现象,口感很快降低。 3、淀粉组成 绝大多数天然淀粉可分为长链状的直链淀粉和树支状的支链淀粉。这两种不同结构的淀粉分子在一般淀粉颗粒中均存在。直链淀粉在冷水中不发生溶解,只有通过加压或加热才能逐渐溶解于水,形成较为粘滞的胶体溶液。但这种胶体溶液的性质非常不稳定,在静置的情况下非常容易析出;而支链淀粉极易溶解于热水之中,形成一种高黏度的胶状体,并且这种胶体溶液在冷却后也很稳定。 4、蛋白质

淀粉的研究进展

淀粉精细化学品 课题名称:淀粉衍生物絮凝剂的研究进展 姓名:马玉林 学号:P102014101 专业年级:10级化学工程与工艺一班 2012年10月22日

淀粉衍生物絮凝剂的研究进展 马玉林 (西北民族大学,甘肃兰州730100) 【摘要】近年来,全世界对淀粉衍生物絮凝剂的研究、开发、应用方面取得了显著进展。文章对淀粉衍生物絮凝剂的研究进行了综述,指出淀粉絮凝剂在研究中存在的问题和发展趋势,认为改性淀粉絮凝剂是最有发展前景的绿色絮凝剂之一。 【关键词】絮凝剂;改性淀粉;废水处理 近年来,合成有机高分子絮凝剂由于具有相对分子质量大、分子链官能团多的结构特点,在市场占绝对的优势。但随着石油产品价格不断上涨,其使用成本也相应增加,并且合成类有机高分子絮凝剂由于残留单体的毒性,也限制了其在水处理方面的应用。20世纪70年代以来,美、英、日和印度等国结合本国天然高分子资源,开展了化学改性有机高分子絮凝剂的研制工作。经改性后的天然高分子絮凝剂与合成有机高分子絮凝剂相比,具有选择性大、无毒、廉价等显著特点。 在众多天然改性高分子絮凝剂中,淀粉改性絮凝剂的研究、开发尤为引人注目。因为淀粉来源广。价格低廉。并且产物完全可被生物降解,因此,进入20世纪80年代以来,改性淀粉絮凝剂的研制开发呈现出明显的增长趋势,美、日、英等国家在废水处理中已开始使用淀粉生物絮凝剂,进几年,我国研究淀粉衍生物作为水处理絮凝剂也已取得了较大的进展。 1 淀粉类絮凝剂 淀粉的资源十分丰富,自然界中淀粉的含量远远超过其他有机物,是人类可以采用的最丰富的有机资源,也是开发最早、最多的一类天然高分子絮凝剂。淀粉分子带有许多羟基,通过这些羟基的酯化、醚化、氧化和交联等反应,可改变淀粉的性质。淀粉还能与屏息脂、丙烯酸、丙烯酰胺等人工合成高分子单体起连枝共聚反应,分子链上接有人工合成高分子链,使共聚物具有天然高分子和人工合成高分子两者的性质。 目前,改性淀粉已广泛用于食品、石油、造纸、电镀、印染和皮革等工业废水处理、污泥脱水,饮用水净化,重金属离子去除和矿物冶炼。淀粉衍生物絮凝剂主要有以下4种。 1.1阳离子型淀粉衍生物絮凝剂 阳离子型淀粉衍生物絮凝剂可以与水中微粒起电荷中和及吸附架桥作用,从而使体系中的微粒脱稳、絮凝而有助于沉降和过滤脱水。它对无机物质悬浮或有机物质悬浮液都有很好的净化作用,使用的pH范围宽,用量少,成本低。 阳离子淀粉是在碱性介质中,由胺类化合物与淀粉的羟基直接发生亲核取代

淀粉老化

淀粉老化 含淀粉的粮食经加工成熟,是将淀粉糊化,而糊化了的淀粉在室温或低于室温的条件下慢慢地冷却,经过一段时间,变得不透明,甚至凝结沉淀,这种现象称为淀粉的老化,俗称"淀粉的返生"。 "老化"是"糊化"的逆过程,"老化"过程的实质是:在糊化过程中,已经溶解膨胀的淀粉分子重新排列组合,形成一种类似天然淀粉结构的物质。值得注意的是:淀粉老化的过程是不可逆的,比如生米煮成熟饭后,不可能再恢复成原来的生米。老化后的淀粉,不仅口感变差,消化吸收率也随之降低。米煮成熟饭后,不可能再恢复成原来的生米。老化后的淀粉,不仅口感变差,消化吸收率也随之降低。 淀粉的老化首先与淀粉的组成密切相关,含直链淀粉多的淀粉易老化,不易糊化;含支链淀粉多的淀粉易糊化不易老化。玉米淀粉、小麦淀粉易老化,糯米淀粉老化速度缓慢。 食物中淀粉含水量30%~60%时易老化;含水量小于10%时不易老化。面包含水30%~40%,馒头含水44%,米饭含水60%~70%,它们的含水量都在淀粉易发生老化反应的范围内,冷却后容易发生返生现象。食物的贮存温度也与淀粉老化的速度有关,一般淀粉变性老化最适宜的温度是2~10℃,贮存温度高于60℃或低于-20℃时都不会发生淀粉的老化现象。 防止和延缓淀粉老化的措施。 1).温度:老化的最适宜的温度为2~4℃,高于60℃低于20℃都不发生老化。 2).水分:食品含水量在30~60%之间,淀粉易发生老化现象,食品中的含水量在10%以下的干燥状态或超过60%以上水分的食品,则不易产生老化现象。 3).酸碱性:在PH4以下的酸性或碱性环境中,淀粉不易老化。 4).表面活性物质:在食品中加入脂肪甘油脂,糖脂,磷脂,大豆蛋白或聚氧化乙烯等表面活性物质,均有延缓淀粉老化的效果,这是由于它们可以降低液面的表面能力,产生乳化现象,使淀粉胶束之间形成一层薄膜,防止形成以水分子为介质的氢的结合,从而延缓老化时间。 5).膨化处理:影响谷物或淀粉制品经高温、高压的膨化处理后,可以加深淀粉的α化程度,实践证明,膨化食品经放置很长时间后,也不发生老化现象,其原因可能是: a.膨化后食品的含水量在10%以下 b.在膨化过程中,高压瞬间变成常压时,呈过热状态的水分子在瞬间汽化而产生强烈爆炸,分子约膨胀2000倍,巨大的膨胀压力破坏了淀粉链的结构,长链切短,改变了淀粉链结构,破坏了某些胶束的重新聚合力,保持了淀粉的稳定性。 由于膨化技术具有使淀粉彻底α化的特点,有利于酶的水解,不仅易于被人体消化吸收,也有助于微生物对淀粉的利用和发酵,因此开展膨化技术的研究不论在焙烤食品和发酵工业方面都有重要意义。 日常生活中凉的馒头、米饭放置一段时间后会变得硬和干缩;凉粉变得硬而不透明;年糕等糯米制品粘糯性变差,这些都是淀粉的老化所致。 含淀粉的粮食经加工成熟,是将淀粉糊化,而糊化了的淀粉在室温或低于室温的条件下慢慢地冷却,经过一段时间,变得不透明,甚至凝结沉淀,这种现象称为淀粉的老化,俗称"淀粉的返生"。 "老化"是"糊化"的逆过程,"老化"过程的实质是:在糊化过程中,已经溶解膨胀的淀粉分子重新排列组合,形成一种类似天然淀粉结构的物质。值得注意的是:淀粉老化的过程是不可逆的,比如生米煮成熟饭后,不可能再恢复成原来的生米。老化后的淀粉,不仅口感变差,消化吸收率也随之降低。米煮成熟饭后,不可能再恢复成原来的生米。老化后的淀粉,不仅口感变差,消化吸收率也随之降低。 淀粉的老化首先与淀粉的组成密切相关,含直链淀粉多的淀粉易老化,不易糊化;含支链淀粉多的淀粉易糊化不易老化。玉米淀粉、小麦淀粉易老化,糯米淀粉老化速度缓慢。

抗性淀粉研究进展

抗性淀粉研究进展 摘要:抗性淀粉是膳食纤维的一种,对于人体健康具有重要的食用价值和保健作用。本文就抗性淀粉的分类、制备方法、对人体的生理功能、及其在食品中的应用进行综述。 关键词:抗性淀粉;生理功能;食品应用 抗性淀粉(resistant starch,RS)是膳食纤维的一种,是人类小肠内不能消化吸收,但能在结肠发酵的淀粉及其分解产物[1]。1982年,英国生理学家Englyst发现并非所有淀粉都能被α-淀粉酶水解,由此提出抗性淀粉这一概念[2]。因为抗性淀粉在小肠内不被消化吸收,而是进入结肠被肠道微生物利用发酵产生短链脂肪酸再被吸收,有利于其能量缓慢释放,此外,还能产生二氧化碳、甲烷等气体维持结肠良好的微生态环境,有研究发现短链脂肪酸还能降低人体的胆固醇,这些功能都改善了人体健康。抗性淀粉的热量较低,热值一般不超过10.0-10.5KJ/g[3],具有膳食纤维的功能特性,但在食品加工能克服膳食纤维的某些缺点,改善食品品质。目前,人们已经将抗性淀粉应用在面条、饼干、酸奶等食品中。本文主要从抗性淀粉的分类、制作方法、健康特性、食品应用方面进行阐述。 1 抗性淀粉的分类 普通淀粉的形状为圆形或椭圆形轮廓,光滑平整;抗性淀粉为不规则的碎石状,表面鳞状起伏[4]。高直连淀粉(如玉米、大麦)是RS的主要来源,一般来说,直链淀粉与支链淀粉的比例比值越大,抗性淀粉的含量越高[5]。此外,抗性淀粉的颗粒大,因其体面积比大,与酶接触机会小,水解速度慢。宾石玉[2]等的研究测定高直连玉米淀粉、玉米、早籼稻糙米、糯米的抗性淀粉的含量分别为44.98%、3.89%、1.52%和0。 1.1 物理包埋淀粉(RS1) 因淀粉包埋在食物基质(蛋白质、细胞壁等)中,这种物理结构阻碍了淀粉与淀粉酶的接触而阻碍淀粉的消化,一般通过碾磨、破碎等手段可破坏包埋体系而转变为易消化淀粉。典型代表:谷粒、种子、豆类。 1.2 抗性淀粉颗粒(RS2) 主要存在水分含量较低的天然淀粉颗粒中,由于淀粉颗粒结构排列规律,晶体结构表面致密使得淀粉酶不易作用,从而对淀粉酶产生抗性,可通过热处理如蒸煮使其糊化失去抗性。典型代表:生的薯类、青香蕉淀粉颗粒。 1.3 回生淀粉(RS3) 食品加工过程中发生回生作用而形成的抗性淀粉。因淀粉颗粒在大量水中加热膨胀最终崩解,在冷却过程中,淀粉链重新靠近、缠绕折叠,定向排列成的紧密的淀粉晶体结构,而不易与淀粉酶结合。典型代表:加热放冷的马铃薯、红薯以及过夜的米饭。 1.4 化学改性淀粉(RS4) 通过化学改性(酯化、醚化、交联作用)或基因改良而引起淀粉分子结构发生变化而不利于淀粉酶作用的淀粉。典型代表:交联淀粉、基质改良粘大米。 1.5 淀粉脂质复合物(RS5) 当淀粉与脂质之间发生相互作用时,直连淀粉和支链淀粉的长链部分与脂肪醇或脂肪酸结合形成的复合物称RS5。脂质存在于RS5淀粉链中的双螺旋中,使得淀粉结构发生改变,不溶于水,且具热稳定性,不易与淀粉酶反应[6]。典型代表:含有淀粉和脂质的谷物和食品。 2 抗性淀粉的制备 从抗性的制备工艺方面,RS3 型抗性淀粉具有生产安全、易于控制及热稳定性好的优点,因此是最具有工业化生产与广阔的应用前景的一类抗性淀粉。抗性淀粉的产率与原料中的直链淀粉含量成正比,随着直链淀粉与支链淀粉的比例增高,抗性淀粉产率由7.61%增大至

淀粉质食品的抗老化研究进展

淀粉质食品的抗老化研究进展 李云波1 胡 燕2 (1.河南科技学院食品学院,河南新乡453003;2.华中农业大学食品科技学院,湖北武汉430070) 摘 要:老化是影响淀粉质食品品质的一大问题。阐述了淀粉质食品的老化机理和影响老化的因素及抗老化的方法。淀粉质食品的成分、贮藏条件、加工工艺等都可以影响老化速度。目前抗老化方法主要有控制贮藏条件、添加蛋白质、酶、乳化剂、多糖等。 关键词:淀粉质食品;抗老化;进展 中图分类号:X792 文献标识码:A 文章编号:1672-3198(2009)10-0272-01 淀粉质食物的品种繁多,风味各异,是人们日常生活中不可或缺的一类食品。如米饭、馒头及其它许多糕点、面点都是典型的淀粉质食品。然而,这些淀粉质食物制作成熟后,会随着时间的推移发生一系列的内在品质变化,比如米饭的变硬、馒头的干缩,面包由松软变硬脆等等。上述这些变化都是由于淀粉的老化现象所致。淀粉的老化是影响淀粉食品货架期的重要原因,对淀粉食品的抗老化研究具有非常重要的现实意义。 1 淀粉的老化机理 经完全糊化的淀粉,在较低温度下自然冷却或慢慢脱水干燥.就会使淀粉分子间发生氢键再度结合,使淀粉乳胶体内水分子逐渐脱出,发生离水作用。这时,淀粉分子则重新排列成有序的结晶而凝沉,淀粉乳老化回生成凝胶体。这种糊化后再回生结晶的淀粉称为老化淀粉(即 淀粉)。老化后的淀粉难以复水并变硬,难以消化吸收。简单地说,淀粉老化是糊化淀粉分子形成有规律排列的结晶化过程。 2 影响淀粉质食品老化的因素 2.1 食品成分对老化的影响 用来源或品种不同的淀粉制成的淀粉类食物,在贮藏过程中,老化的速度是不同的。因为在这些来源不同、品种不同的原料的淀粉组成成分中,支链淀粉和直链淀粉的比例是不同的,因而影响到不同淀粉类食物的老化速度。通常情况下,直链淀粉分子含量较高的食物容易发生老化,而支链淀粉含量较高的食物不太容易发生老化。原因在于支链淀粉的分子呈三维空间分布,形成复杂的网状结构。淀粉分子之间有一定的空间距离,不易形成氢键,妨碍了淀粉分子微晶束形成,阻止了 化淀粉向 化转变。所以选用支链淀粉含量较高的原料做成的淀粉类食物,对延缓食物中的淀粉发生老化是有益的。如果将淀粉分子降解,或是将淀粉糊精化,也可以在很大程度上减缓该类食物老化。 面粉食品在储藏过程中的老化速度与蛋白质的含量有关系。用蛋白质含量高的面粉制成的各式面点比用蛋白质含量低的面粉制成的各式面点,其老化速度明显减慢。 食物所含水分的多少对淀粉老化的速度也是有影响的。当淀粉类食物中的水分含量在30%~60%时,食物中的淀粉最容易发生老化;当淀粉类食物的水分含量在70%以上时,其老化现象就慢一些;当淀粉类食物的水分含量降至10%以下时,食物也不容易发生老化现象。 2.2 环境对老化的影响 以温度变化对米饭老化作用的影响为例,如果把温度控制在60 以上贮存米饭,一般不大容易发生米饭老化的现象。但是如果把米饭放在温度2 ~4 的环境下,米饭的老化速度就要快得多,基本上是米饭老化速度的最高峰。温度与大多数淀粉类食物发生老化关系的一般规律为:在略低于淀粉糊化温度(大约在40 ~60 )以上和淀粉冻结温度以下(大约为-7 左右)时,淀粉类食物一般不容易发生老化现象。而如果把淀粉类食物放置于上述二者温度之间,淀粉类食物的老化程度随着环境温度的不断下降而增加,老化速度也呈逐步加快的趋势。淀粉类食物发生老化作用的最适温度约在2 ~4 之间。 2.3 加工工艺对老化的影响 某些加工工艺对淀粉食品的老化有一定的延缓作用。如食品原料经过膨化处理后,其老化速度明显低于相同条件下未经过膨化处理的淀粉食品。一方面是因为膨化食品中水分含量较少,另一方面可能是因为膨化处理使淀粉的分子结构发生了改变、降解。 3 抗老化方法 3.1 控制储存条件抗老化 将淀粉类食物的储存温度控制在60 以上或-7 以下,淀粉类食物不容易发生老化。另外,当淀粉类食物的水分含量在70%以上或在10%以下时,可有效延缓其老化。 3.2 酶制剂抗老化 在淀粉质食品生产中添加淀粉酶、脂肪酶等酶制剂能起到抗老化的作用。麦芽糖淀粉酶作用于面粉中淀粉部分,使其产生小分子量的糊精,防止淀粉面筋之间的相互作用而产生的老化。 -淀粉酶能将面粉中的损伤淀粉连续不断地水解成小分子糊精和可溶性淀粉,这些小分子糊精阻止了淀粉与面筋蛋白中的麦谷蛋白之间的相互作用,从而起到延缓淀粉老化的作用。 脂肪酶在面团内有双重作用,一是氧化面粉中的色素 272

铋系半导体材料制备及水污染治理研究进展

铋系半导体材料制备及水污染治理研究进展 发表时间:2019-07-18T09:06:38.667Z 来源:《科技尚品》2019年第3期作者:顾传波董梅 [导读] 近年来,铋系光催化剂因为具有合适的带隙及独特的电子构型和层状结构,在可见光照射下即可表现出优良的光催化性能。无论在有机物降解还是气体净化方面,铋系光催化剂材料都展现出了优越的性能,受到了越来越多的关注。 中芯国际集成电路制造(天津)有限公司 随着环境污染的加剧和能源的短缺,人类已陷入能源危机。寻找有效的高性能新能源来代替不可再生能源,已成为当前人类解决能源危机的有效方法之一。新能源材料是引导和支撑新能源发展的重要基础,是降低碳排放、优化能源结构、实现可持续发展的重要途径。其中,光催化以其室温深度反应和可直接利用太阳能作为光源来驱动反应等独特性能,成为一种理想的环境污染治理技术和洁净能源生产技术。 一、铋系半导体材料制备 1.一元金属铋系化合物。一元铋系光催化剂主要包括氧化铋和硫化铋。目前已经报道的氧化铋有α,β,γ,δ 相( Bi2O3) 和非计量相( Bi2O 2. 33和Bi2O0. 75) 等多种晶态结构氧化铋物理性质的特殊性及晶体形态的多样性使其广泛应用于电子陶瓷、高折光率玻璃、光电材料、核工程、传感器、微电子元件、高温超导材料、核反应堆燃料和催化剂等领域中。氧化铋属于间接带隙半导体,且不同晶相的氧化铋的禁带宽度差别较大,范围约为2 ~ 3. 96 eV,光催化性能差异也较为明显,其中带隙能依次递减,在可见光下都表现出了较好的降解污染物性能,且呈现依次增高的趋势。目前氧化铋的制备方法包括沉淀法、高温煅烧法、静电纺丝法、铋单质氧化法、水热合成法、熔体雾化燃烧法等。 2. 卤氧化铋系化合物。卤氧化铋系半导体材料是近几年来研究最为广泛的一种新型光催化材料,包括氯氧化铋,溴氧化铋和碘氧化铋等,属于四方晶系。随着卤素原子序数的增加,卤氧化铋的禁带宽度呈现逐渐递减的趋势,BiOBr 和BiOI 的带隙能分别在2. 6 和1. 8 eV 左右,具有很好的可见光光催化活性。卤氧化铋制备方法非常简单,常温常压下将含铋盐的溶液与含卤素的钾盐混合搅拌即可得到。通过水解法、微乳液法、溶剂热法、静电纺丝法和固相法等还可制备出光催化性能更为优异的特定形貌纳米卤氧化铋。铋系半导体材料的开发显然有效解决了TiO2的可见光吸收问题,但量子效率低和光生载流子复合依然是铋系光催化剂在光催化过程中亟待解决的难题。近年来研究者们一直努力探索采用各种方法如掺杂、复合、助催化剂负载等手段来改善铋系光催化剂的量子效率,以期获得优异的光催化性能,并将其运用于环境污染物去除。目前,铋系光催化剂在大气净化、有机废水处理、重金属离子去除、杀菌等方面的应用已取得了一系列的重要研究成果。 二、水污染治理研究进展 1.有机染料去除。有机染料广泛应用于纺织、印染、涂层、医药等行业。在这些工业生产过程中,有10% ~ 15% 的有机染料随工业废水排放到周围的水体、土壤及大气中。这些有机染料色度高、毒性大、成分复杂、化学需氧量( COD) 高、化学性质稳定,对生态环境尤其是水环境造成了严重的污染。铋系光催化材料作为光催化领域研究的热点,常常用于降解水中罗丹明B、甲基蓝和亚甲基蓝等染料类化合物。由于染料敏化作用的存在,某些铋系光催化剂( 如碳酸氧铋、卤氧铋等) 即使本身不能吸收可见光,在可见光下也可以快速地使染料褪色。可见光下染料本身先吸收电子被激发,进而向铋系催化剂导带上注入电子,注入的电子进一步和催化剂表面吸附的氧气发生反应,生成超氧自由基、羟基自由基等活性物种。在多种活性物种的共同作用下,染料分子逐步被氧化分解成小分子并最终被矿化成二氧化碳、水等。表征结果显示该界面异质结材料具有较大的比表面积,更重要的是ZnO 的耦合能明显改善BiOI 光生载体的转移,既有效抑制了光生电子和空穴的复合,又显著延长了光生载流子的寿命,因此我们将p-n 型ZnO/BiOI 异质结的超高光催化活性归结为该材料的高比表面积和界面异质结结构。 2.有机农药去除。我国是农业生产大国,有机农药( 原药) 的年使用量高达数十万吨。虽然农药在农业病虫草害防治方面具有重要应用,但是近年来的过度使用使其在环境中尤其是水中的残留量日益增多,严重威胁着人类健康。除了有机染料,铋系光催化剂被广泛地用于有机农药光催化降解。例如,在非离子型表面活性剂聚乙二醇辛基苯基醚的辅助下,将Bi2WO6用于疏水性抗生素诺氟沙星的可见光催化降解。结果表明,适量的会吸附在Bi2WO6表面,促进诺氟沙星的吸附、降解; 当TX100 浓度为0. 25 mM,pH 值为9 时,降解效果最佳。此外,他们还通过捕获剂实验探明了起决定作用的活性物种,利用高效液相色谱-串联质谱联用仪( HPLC /MS /MS) 检测了诺氟沙星降解的中间产物,并提出了可能的降解历程。由此可见,铋系半导体材料在染料、农药和抗生素等难降解有机污染物的可见光去除上具有极大的应用前景,虽然催化剂和改性方法的不同在一定程度上改变了铋系半导体的光催化机理,但其深度降解有机污染物的根本原因在于利用可见光下其表面所产生的多种类型氧化性活性物(空穴、羟基自由基、超氧负离子和单线态氧等) 的氧化还原协同作用。 3. 无机废水处理。无机废水主要源于现代化工、冶铁、采矿等部门在生产过程中所排出的废水,且多数含有强氧化物、重金属离子、高价态盐等有害物质,对人类和环境都造成了危害。其中重金属离子可通过迁移逐步在植物和其他生物体内富集,进而通过食物链转至人体或牲畜体内蓄积,对动植物乃至人类造成更大的危害。目前,无机废水的治理已经引起了广泛关注。现有的处理技术包括化学沉淀法、活性炭吸附法、湿法氧化法等。但这几类治理方法均存在成本高、易造成二次污染等缺点。而光催化因为以太阳能为直接驱动力,具有环境友好、循环可逆等优点,受到研究者的广泛青睐。由此可见,铋系半导体材料不仅可以通过其表面强氧化性活性物种实现有机污染物的深度氧化,还可以利用其导带电子的还原能力有效还原重金属离子和溴酸根等。鉴于实际废水的复杂性,利用铋系光催化剂同时实现有机污染物和高价态有毒离子的去除显然具有重大意义。 三、发展态势 铋系半导体作为一种新型的光催化剂,尽管其在紫外光和可见光照射下均具有较好的光催化性能,但其研究尚未成熟,还存在一些问题。1)目前已开发的新型光催化剂,其光催化反应机理的研究还处于设想与推测阶段,需要通过不断的实验进一步进行验证。换言之,只有通过深入的研究和实践,才能使得新型光催化剂实用化。2)光催化剂的固化一直是光催化剂应用于实际生活中的主要问题之一。光催化剂的粉体在实际应用时不便回收、多次利用,且容易造成二次污染,因此,光催化剂固化是将来发展的必然趋势。目前主要的固化方法是制备光催化剂薄膜,基板的选择、薄膜与基板的连接、薄膜的制备工艺等都是需要定量定性考虑的问题。3)虽然已开发出多种可见光响应光催化剂,但大部分光量子效率不高。部分光催化剂在可见光区的催化能力也较低,且某些高价铋光催化剂容易失去活性。部分光

羟丙基淀粉研究进展

羟丙基淀粉研究进展 [摘要] 综述了羟丙基淀粉的理化性质、分析测试方法,合成工艺及以羟丙基淀粉基的复合变性淀粉,并对羟丙基淀粉研究进行了展望。 [关键字] 羟丙基淀粉性质合成工艺复合变性分析测试 [Abstract] This paper examines the physicochemical properties, the instrumental analytical methods, the synthesis technology of hydroxypropyl starch, and the complex modification of hydroxypropyl starch. And this examination includes a prospect of science and technology of hydroxypropyl starch in the last part. [Keywords] hydroxypropyl starch synthesis technology Physicochemical Properties complex modification Analytical Test 羟丙基淀粉是食品、石油、纺织、印刷、造纸、印染等行业不可缺少的生产助剂,随着科技的发展、经济的繁荣、行业竞争的日益激烈,对羟丙基淀粉使用性能、生产工艺、成本控制也提出了更高的要求。 1 羟丙基化对淀粉理化性质的影响 淀粉羟丙基化是指醚化剂与淀粉葡萄糖单元的羟基作用,使淀粉分子在该位置联接一个或多个羟丙基单元,非离子性的羟丙基与淀粉分子之间以强稳定的醚键联结使得羟丙基淀粉具有非常优秀的耐PH值性能。 1.1 降解性 由于羟丙基化使淀粉分子链间隔变大,结晶破坏,因此随摩尔取代度增加淀粉更易降解;但也有实验显示摩尔取度较低的羟丙基淀粉比原淀粉更易水解,但随着摩尔取代度的增加羟丙基淀粉的水解率和水解难易程度都要低于原淀粉,这种现象在马铃薯淀粉,蜡质玉米淀粉,木薯淀粉中都存在,这是由于摩尔取代度高低不同的羟丙基淀粉水解机理不同造成的。 1.2 降滤失性 亲水性羟丙基的引入破坏了淀粉颗粒的内部结构,弱化了分之间的氢键作用力,明显提高了淀粉对水的包容性,降滤失作用。需要注意的是羟丙基淀粉在水中的溶解度随取代度的提高而增大,随温度升高而增大。 1.3 淀粉糊性质 (1)成糊温度:羟丙基淀粉成糊温度随取代度的增加而降低也是本领域公认的事实,James曾测定羟丙基含量每提高1%(W%),成糊温度降低致少6.5℃。(2)糊化

速干型玉米淀粉胶粘剂

速干型玉米淀粉胶粘剂 -------------------------------------------------------------------------------- 2009-05-18 12:39:26 原料名称功用重量% 玉米淀粉本品主要原料13-18 双氧水氧化剂 1.5-3.0 氢氧化钠(30%溶液) 糊化剂5-8 硼砂交联剂0.2-0.6 尿素①助剂0.5-2.0 催干剂② 1.2-4.8 水加至100.0 ①尿素:又称脲或碳酰胺。无色晶体。大量存在于人类和哺乳动物的尿中。熔点132.7℃,加热温度超过熔点即分解。溶于水、乙醇和苯,几乎不溶于乙醚和氯仿。水溶液呈中性。 生产厂:上海吴泾化工厂、安徽淮南化肥厂、辽宁辽河化肥厂、河北石家庄化肥厂、广州氮肥厂等。 ②催干剂:白色至淡黄色粉末,不溶于水,能分散于胶液中,加快胶液使用时的成膜速度。本品中用以提高胶液干燥速度。 生产厂:上海长风化工厂、河南新郑化工二厂、天津助剂厂等。 制备及使用方法 (1)在带搅拌器的反应釜中加入水及玉米淀粉,搅拌使与淀粉完全混匀后,加热至60-65℃,然后加入适量氢氧化钠溶液,调节淀粉液的pH值为9.5-10。 (2)在不断搅拌下加入配方量为1/2量的双氧水,反应20-40分钟。再投入剩余量的双氧水,再搅拌20-30分钟,进行氧化。 (3)加入剩余的氢氧化钠溶液,使淀粉发生糊化,这时胶液流动性增加,粘度有所下降,并呈透明状。操作时应注意碱液的用量,氢氧化钠太少,糊化不够,粘合力较差。反之,氢氧化钠过高,游离碱量多,使胶液的pH值太高,碱性太强。 (4)加入预先用适量水溶解好的硼砂及尿素,不断搅拌20-30分钟,制成半透明状胶液。 (5)最后加入催干剂充分搅匀即制成产品。 使用时代替泡花碱,用作瓦楞纸箱胶粘剂。 来源:涂料中国原文参考:file:///G:/胶水配方/速干型玉米淀粉胶粘剂.htm

改性淀粉的研究进展及其应用综述

改性淀粉的研究进展及其应用综述 李月丰 (湖南农业大学食品科技学院,湖南长沙 410128) 摘要:本文综述了改性淀粉的主要特点,阐述了改性淀粉在各领域的应用研究,展望了改性淀粉的发展前景。 关键词:改性淀粉;应用;研究进展 0、前言 淀粉是天然高分子聚合物,是自然界来源最丰富的一种可再生物质,可降解,不会对环境造成污染。由直链淀粉和支链淀粉两部分组成,其水解的终产物为葡萄糖。 改性淀粉以天然淀粉为原料经过特定的化学方法、物理方法、酶处理法, 改良其原有性能的淀粉, 被广泛应用于食品、医药、皮革、铸造、造纸、纺织、水处理等行业。 1、改性淀粉在不同领域中的应用 1.1、在食品行业的应用 改性淀粉由于耐热、耐酸,具有良好的黏着性、稳定性、凝胶性和淀粉糊的透明度,较好的弥补和改善普通淀粉的不足,在食品行业有着广泛的用途。交联淀粉广泛应用于食品的增稠剂中, 尤其是需要粘度稳定性很好的浓溶液中。低交联度的淀粉可以在水果馅饼中用作填充料,加入罐头中可使其耐灭菌处理。酸法变性淀粉则大大提高了淀粉的凝胶性,用于果冻、夹心饼、软糖的生产。淀粉衍生物醋酸淀粉酯在食品工业中用作耐酸粘合剂。Hung, P. V. 和Morita, N.(2004)研究还表明[1-2]:交联键能加强淀粉颗粒之间的结合作用, 使之较稳定存在, 从而糊液有较好的流动性。李文钊等[3]将一种T0098 预糊化淀粉应用在面包中,可延缓老化, 使烘焙制品保持柔软蓬松, 延长保存期。王玉田等人[4]将玉米改性淀粉应用于灌肠制品中,发现灌肠制品在弹性、气味、滋味和组织状态及贮藏方面均有很大改善,并具有较高的成品率和经济效益。 1.2、在水处理中的应用 改性淀粉作为一种很有发展前途的新型水处理剂,已经得到越来越多的重

淀粉泡沫材料研究研究进展

淀粉泡沫材料研究研究进展 作者:周江,佟金来源:吉林大学 [摘要]:在概述淀粉材料发泡原理的基础上,综述了淀粉泡沫材料研究与开发的最新进展。阐述了材料组成和发泡工艺参数等因素对淀粉泡沫材料的发泡行为和性能的影响,介绍了淀粉泡沫材料在包装领域的应用,并对未来的研发方向做了展望。 泡沫塑料(如聚苯乙烯泡沫)作为缓;中包装材料被大量使用。由于回收利用的可操作性差以及价格等方面的原因,绝大部分使用过的泡沫包装材料被作为废弃物处理掉的。这些泡沫材料质量轻、体积大而且难于腐烂降解,给环境带来了严重的冲击。采用生物降解材料是解决这一问题的有效途径之一。淀粉作为一种天然高分子,既可再生,又能完全降解。其低廉的价格和广泛的来源,使得淀粉成为制备生物降解塑料的主要原料之一[1-2]。以淀粉为原料研制开发的生物降解泡沫材料,在某些领域已经开始取代聚苯乙烯泡沫材料,它既可以抑制废弃的塑料泡沫包装材料造成的环境污染,又能节约有限的石油资源,对于解决目前全球面临的环境危机和资源危机无疑具有重要的意义。本文综述了这方面研究工作的最新进展并对淀粉泡沫材料在包装领域的应用前景进行了介绍。 1 淀粉材料的发泡 淀粉材料的发泡方法可分为2类:1)升温发泡,即在常压下迅速加热材料使得其中的水分汽化蒸发,从而在淀粉材料中形成多孔结构;2)降压发泡,即在一定的压力下加热材料,使得材料中的水成为过热液体,然后快速释放外部压力造成其中过热的水汽化蒸发,从而使淀粉材料发泡。在淀粉材料的发泡过程中,水的作用是非常特殊和重要的。在发泡前,水是淀粉材料的增塑剂,起着促进淀粉塑化的作用;在发泡过程中它又变成发泡剂,是泡体长大的动力。 淀粉材料的粘弹性是影响泡体长大的主要因素。而淀粉材料的粘弹性不但与温度有关,而且与淀粉的塑化程度及其水含量(或其它增塑剂)有关。为了使淀粉材料发泡,首先必须提供足够的热量,使淀粉材料的温度高于其玻璃化转变温度而处在橡胶态。水的存在将有效地降低淀粉材料的玻璃化转变温度。在发泡过程中,随着水的蒸发消失,材料的玻璃化转变温度不断升高,最终从橡胶态回到玻璃态,从而将体内的孔洞结构保持下来。如果材料的最终状态仍然是橡胶态,则体内的孔洞结构将逐渐塌陷萎缩。 2 淀粉材料发泡工艺 2.1 挤出发泡 挤出发泡技术是利用降压发泡的原理,通过挤出机实现的。淀粉和水以及其它添加剂进入挤出机后,在热和剪切的共同作用下,颗粒淀粉的结晶结构被破坏,并形成淀粉高分子的无序化熔体,即所谓的热塑性淀粉。由于螺杆的挤压和挤出机腔体的限制,加热的淀粉熔体中将建立起很高的压力,使得其中的水成为过热的液体(温度可高达220℃)而不汽化蒸发。当淀粉熔体从挤出机机头挤出后,物料中的压力被释放,过热的水瞬间汽化蒸发,在淀粉熔体中形成多孔结构。同时,物料温度的下降和由于水蒸发造成的材料玻璃化温度的上升,使得热塑性淀粉从高弹态回到玻璃态,从而将其中的多孔结构冻结而形成泡沫材料。用挤出发泡技术制备淀粉泡沫包装材料始于20世纪80年代末期,随后又有多项用挤出发泡技术制备淀粉泡沫材料的专利问世。该方法是目前生产缓冲包装使用的淀粉泡沫松散填充材料(loose fill)的主要方法。 2.2 烘焙发泡 Shogren等人利用食品工业中的烘焙技术,在封闭的模具中加热淀粉糊(温度范围175~235℃)制备出淀粉泡沫材料。与挤出发泡技术相比,用烘焙技术得到的淀粉泡沫材料一般在表明层有较

淀粉物理性能的研究进展

淀粉物理性能的研究进展 摘要:本文介绍了淀粉的分类、淀粉的组成、淀粉颗粒的性质以及淀粉的凝沉性和粘度等性质。比较了玉米淀粉、马铃薯淀粉、木薯淀粉以及小麦淀粉之间等各种淀粉的各组分组成含量及其目前各淀粉的发展研究情况。 关键词:淀粉组分含量性质影响因素 正随着国民经济的高速发展,我国淀粉工业也得到了相应的发展。我国拥有丰富的淀粉工业原料,玉米产量9000多万吨,居世界第二,薯类居第一,这些是我国发展点淀粉工业的基础[1]。淀粉是植物的重要储藏物质,随着淀粉工业的发展,淀粉深加工产品的数量不断增加,淀粉的应用范围不断扩大,对淀粉品质的要求也越来越高。 一、淀粉的分类 淀粉根据其分子形状可分为直链淀粉和支链淀粉,支链淀粉是由α-1,4 葡萄糖苷键连接的线性葡聚糖,二支链淀粉是由α-1,4 和α-1,6 糖苷键连接的具有分支结构的葡聚糖。直链淀粉在水溶液中并不是线性分子,而在分子内氢键的作用下分子链卷曲成螺旋状,每个螺旋含有6个葡萄糖残基。在显微镜下,淀粉都是形状和大小不同的透明颗粒,其形状有圆形、卵形(椭圆形)、多角形等三种[2]。不同淀粉粒平均颗粒大小不同:马铃薯淀粉粒65μm,小麦淀粉粒20μm,甘薯淀粉粒15μm,玉米淀粉粒16μm,稻米淀粉粒5μm。就同一种淀粉而言,淀粉粒的大小也不均匀,如玉米淀粉粒中最大的为26μm,最小的为5μm。在常见的淀粉中马拉松淀粉的颗粒最大,稻米淀粉的颗粒最小。支链淀粉易分散在冰水中,而直链淀粉不易分散在冰水中。天然淀粉粒完全不溶于冷水。在68-80℃时,直链淀粉在水中溶胀而形成胶体,支链淀粉则仍为颗粒,但是,一旦支链淀粉溶解后冷却则不易析出。 二、淀粉的组成 1.水分 淀粉中的含水量取决于储存环境的温度和相对湿度,一般在10-20%范围内。在相同条件下,马铃薯淀粉的含量较高。淀粉的含水量随环境条件的变化而变化,环境的相对湿度越大,淀粉的含水量越高。在饱和湿度条件下,吸水量多,并引起淀粉颗粒膨胀。玉米,马铃薯,木薯淀粉的吸水量分别为39.9%、50.9%、47.9%(干基淀粉计)颗粒直径分别增大9.1%、12.7%、28.4%。淀粉的这种吸水性表明淀粉颗粒具有渗透性,水及水溶液能自由渗入颗粒内部,淀粉与稀碘溶液很快变蓝,再与硫代硫酸钠溶液蓝色消失就说明这点。 2.脂类化合物

淀粉在肉质中的应用特性比较及其新研究发展

几种常见淀粉在肉质品 中的应用特性比较及其研究新进展 姓名:陈东锋 班级:食工 09(4)班 学号:090107714 2012年3月24日 几种常见淀粉在肉质品中的应用特性比较及其研究新进展 陈东锋 (武汉工业学院食品学院食工094班 090107714) 【摘要】在肉制品的加工中添加一定量的淀粉,可以起到填充、粘着和增稠的作用。淀粉作为一种价格低廉而对产品又具有明显良性作用的填充料,研究它在肉制品中的性能和应用,具有重要的现实意义和应

用价值。本文主要是对几种在肉制品中常见淀粉的性能和应用进行了比较和分析,并概述了其在当前的一些新的研究进展。 【关键词】淀粉肉制品应用进展 淀粉为肉类食品中最常用的增稠剂,在肉制品中主要起改善产品的组织状态及口感,提高出品率的作用。淀粉在肉制品添加量一般为 3%-12%之间,添加量不宜过大,过大会影响产品的质量,如产品口感发粘、组织结构状态差等【1】。肉制品中常见的淀粉主要分为两类,一类是原淀粉,另一类是变性淀粉。这类淀粉主要用于勾芡,如:绿豆淀粉、马铃薯淀粉、小麦淀粉、甘薯淀粉等。变性淀粉是原淀粉经处理后的淀粉,质量优于原淀粉,具有吸水量大、口感不发粘、不回生等特点,常见的有:预糊化淀粉、磷酸酯淀粉、交联淀粉、酸变性淀粉等。近几年变性淀粉使用量正逐年增大。 1. 原淀粉与变性淀粉的在肉制品中的应用效果的比较表 【2】 原淀粉变性淀粉 持水性持水性较差,在使用中一 般与卡拉胶配合使用 持水性强,取代卡拉胶, 并且与原淀粉相比持水性 增加20%-30%。 乳化性没有乳化作用,保油性 差,应与大豆蛋白结合使 用 保油、水性能好,代替部 分大豆蛋白作为乳化剂, 具有良好的乳化性。 切面性能切面无光泽,透明度较 差,组织松散粗糙 切面光亮,组织细腻,透 明度好,结构紧密,久 置。 货架期产品在贮运、销售中易回 生,低温贮存析水、货架 期短 产品不回生,低温 贮存不析水,延长货架期 感官指标产品质地硬、弹性 差、发粘、易变色 产品质地柔软、弹性好、 色泽稳定,口感又韧性 出品率150%-160%180%-200% 2. 原淀粉在肉制品中应用的利弊 2.1优点:以西式火腿为例

铋基材料的发展综述汇总

环境友好型铋基材料的制备及其性能研究 1 概述 能源危机和环境问题的日益加重已成为影响全人类可持续发展的重要问题。近年来,可再生与不可再生资源日益枯竭,使得人们不得不高度重视排放物、废弃物的妥善处理和循环再生,减少不可再生资源的消耗和环境的污染,同时寻求绿色环保、可持续发展的新能源就逐渐受到世界各国的广泛关注。 光催化实际上是光催化剂在某些波长光子能量的驱动下,体内的空穴电子对分离,后又引发了一系列氧化还原反应的过程。光催化氧化技术由于其具有环境友好,能有效去除环境中尤其是废水中的污染物,且能耗少,无二次污染等优点已被慢慢重视起来。 自1972 年Fujishima等[1]在《Nature》报道了TiO2在紫外光照射下可以催化水的分解后,半导体光催化剂一直是广大学者们研究的热点。光催化被认为是解决能源问题的关键有效方法之一,近年来受到广大研究者的不断探究。 为了充分利用太阳光,人们对光催化材料进行了众多研究:一方面是对TiO2半导体进行改性,另一方面是寻求新型的非TiO2半导体光催化材料。含铋光催化材料属于非TiO2半导体光催化材料中的一种,电子结构独特,价带由Bi-6s和O-2p轨道杂化而成。这种独特的结构使其在可见光范围内有较陡峭的吸收边,阴阳离子间的反键作用更有利于空穴的形成与流动,使得光催化反应更容易进行。 本文将对近年来含铋光催化剂的研究进展进行综述。 2 铋类光催化剂的制备 2.1铋氧化物光催化剂

铋氧化物是很重要的功能材料,在光电转化、医药制药材料等方面有着很广泛的运用。其中,纯相还具有折射率高、能量带隙低和电导率高的特点。 Bi 2O 3有单斜、四方、体立方和面立方四种结构,只有单斜结构室温下可稳定存在,其他结构在室温下均会转变成单斜结构。 化学沉积法、声化学方法、溶胶-凝胶法、微波加热法等都是制备纳米Bi 2O 3的方法。产品的形态也可根据方法不同而不同,如颗粒状、薄膜状、纤维状等。Wang 等[2] 利用沉积法合成钙铋酸盐(CaBi 6O 10/Bi 2O 3)复合光催化剂,在可见光下(波长大于420nm )降解亚甲基蓝,催化效果显著。反应过程见下图,CaBi 6O 10的导带边比Bi 2O 3更接近阴极,当CaBi 6O 10受到太阳光照射后,产生的光生电子迅速转移到Bi 2O 3的导带边上,Bi 2O 3的光生空穴转移到CaBi 6O 10的价带上,有效实现了光生电子-空穴对的分离,减少了复合率,光催化活性大大提高。 2.2 卤氧化铋光催化剂 卤氧化铋BiO X (X=Cl 、Br 、I )因其较高的稳定性和光催化活性受到研究者的关注,发现光催化活性明显高于P25,并且随着卤素原子序数的增加,卤氧化物BiO X (X=Cl 、Br 、I )的光催化活性逐渐增大,表2.1列出了卤氧化铋光催化剂几种典型制备方法[3-6]。 表2.1 卤氧化铋光催化剂的制备方法与形貌 BiO X (X=Cl 、Br 、I )的晶型为PbFCl 型,是一种高度各向异性的层状结构半导体,属于四方晶系[7]。以BiOCl 为例,Bi 3+周围的O 2?和Cl ?成反四方柱配位,Cl ?层为正方配位,其下一层为正方O 2?层,Cl ?层和O 2?层交错 BiOX 制备方法 形貌和尺寸 BiOCl 水解法 珠光皮状,粒度5~10μm BiOBr 水热合成法 球状颗粒,2~10μm 软模板法 200~300nm 的纳米颗粒 BiOI 快速放热固态复 分解法 粒径约为70nm 复合而成的微米层

淀粉的糊化、老化

淀粉的糊化、老化 对烹饪科学化发展的重要性 一、概述 1、淀粉的一般特性: 众所周知,淀粉属于天然高分子碳水化合物,根据其分子中含有的α-1,4糖苷键和α-1,6糖苷键的不同而分为两种性质差异很大的直链淀粉和支链淀粉。直链淀粉在水中加热糊化后,是不稳定的,会迅速老化而逐步形成凝胶体,这种胶体较硬,在115-120度的温度下才能向反方向转化。支链淀粉在水溶液中稳定,发生凝胶作用的速率比直链淀粉缓慢的多,且凝胶柔软。 2、淀粉的糊化: 淀粉在常温下不溶于水,但当水温升至53℃以上时,发生溶胀,崩溃,形成均匀的粘稠糊状溶液。本质是淀粉粒中有序及无序态的淀粉分子间的氢键断开,分散在水中形成胶体溶液。 淀粉在高温下溶胀、分裂形成均匀糊状溶液的特性,称为淀粉的糊化。 3、淀粉的老化: 淀粉的老化是指经过糊化的淀粉在室温或低于室温下放置后,会变得不透明甚至凝结而沉淀。老化是糊化的逆过程,实质是在糊化过程中,已经溶解膨胀的淀粉分子重新排列组合,形成一种类似天然淀粉结构的物质。 二、淀粉的糊化、老化的影响因素 (一)、糊化 1、淀粉自身:支链淀粉因分支多,水易渗透,所以易糊化,但它们抗热性能差,加热过度后会产生脱浆现象。而直链淀粉较难糊化,具有较好“耐煮性”,具有一定的凝胶性,可在菜品中产生具有弹性、韧性的凝胶结构。 2、温度:淀粉的糊化必须达到其溶点,即糊化温度,各种淀粉的糊化温度不同,一般在水温升至53度时,淀粉的物理性质发生明显的变化。 3、水:淀粉的糊化需要一定量的水,否则糊化不完全。常压下,水分30%以下难完全糊化。 4、酸碱值:当PH值大于10时,降低酸度会加速糊化,添加酸可降低淀粉粘度,碱有利于淀粉糊化,例如,熬稀饭时加入少量碱可使其粘稠。 5、共存物:高浓度的糖可降低淀粉的糊化程度,脂类物质能与淀粉形成复合物降低糊化程度等。 (二)、老化 1、淀粉的种类:直链淀粉比支链淀粉易于老化,例如,糯米、粘玉米中的支链多,不易老化。 2、水:含水量在30%-60%之间,易发生老化现象,含水量低于10%或高于60%

相关文档
最新文档