水平轴风力机组成与形式

水平轴风力机组成与形式
水平轴风力机组成与形式

水平轴风力机组成与形式

水平轴风力机的组成

水平轴风力机的风轮旋转轴是水平方向的,这是为了区别于垂直轴风力机,水平轴风力机主要由叶片、轮毂、机舱、塔架构成。常见的风力机有由三个叶片,叶片安装在轮毂上构成风轮,风吹风轮旋转带动机舱内的发电机发电,塔架是整个风力机的支撑。

什么是升力式风力机

在“风力机基础知识”已介绍过升力与阻力知识,水平轴风力机则是利用升力推动风机旋转做功的,是升力式风力机。下图中表示的是一个叶片的截面的受力图,叶片弦线与风轮旋转平面的夹角为β,风是向上吹,风速为v;叶片向左方运动,线速度为u;叶片实际受到的是相对风速w。风速w与叶片弦线的夹角为α(攻角),在风w的作用下,叶片受到升力Fl与阻力Fd,Fl与Fd的合力为F1,F1在风轮旋转平面上的投影为F,F就是推动风轮旋转的力。

关于叶片的升力与阻力的更多知识在“叶片的气动特性”一节中有介绍。

风力机的对风形式

风轮要正面对着来风方向才能最好的接受风能,风轮在塔架前方的称为迎风式风力机,风轮在塔架背风方向的称为顺风式风力机,见下图。

使风力机自动朝向风向称为对风(偏航)功能。小型风力机普遍采用尾舵来对风,风把尾舵吹向风力机后方使风轮面向风,上图中的迎风式风力机就是带尾舵的风力机。顺风式风力机勿需任何装置即可自动对风,称之为自由偏航。

大中型风力机采用专门的偏航装置对风,在后面的章节有相关介绍。

风力机的叶片数目

风轮除了三叶的还有双叶的,甚至单叶片的。

在许多农用风力机中采用多叶片结构的风轮。

机舱主要组成

在风力机的机舱里主要有发电机、齿轮箱、偏航装置、风向标、控制柜等,发电机是风力机产生电能的设备,由于发电机转速高,风轮转速低,风轮需通过齿轮箱增加转速后才能使发电机以正常转速工作;控制柜控制风力机的对风、风轮转速等;风向标测量风向发出信号给控制柜;偏航装置按控制柜的信号推动风力机对风。

风力发电机工作原理图解析

风力发电,是能源业又一突破,其中风力发电机功不可没。通过风力发电机工作原理图,我们可以清晰了解各种奥妙。其实,风力发电机工作原理图并不是那么难懂。下面,我们一起来对风力发电机工作原理图进行详细的剖析和解读吧! 风力发电机为一由转动盘、固定盘、风轮叶片、固定轮、立竿、集电环盘、舵杆、尾舵和逆变器组成的系统。转动盘和固定盘构成该系统的发电机,逆变器包括50赫正弦波振荡器、整形电路、低压输出电路和倒相推挽电路。 风力发电机工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。 最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机。最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值。为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等。 齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。同时也使得发电机易于控制,实现稳定的频率和电压输出。偏航系统可以使风轮扫掠面积总是垂直于主风向。要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度。 风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。在停机时,叶片要顺桨,以便形成阻尼刹车。 早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距。 就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率。然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。 现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏。理论上的12级飓风,其风速范围也仅为32。7-36。9米/秒。 风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时*齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机,属于无人值守独立发电系统单元。

风力发电机结构图分析风力发电机原理

风力发电机结构图分析风力发电机原理 风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。风力研究报告显示:依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。下面先看风力发电机结构图。 风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。

风力发电机结构图指出:风力发电机因风量不稳定,故其输出的是13~25v变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220v市电,才能保证稳定使用。 通常人们认为,风力发电的功率完全由风力发电机的功率决定,总想选购大一点的风力发电机,而这是不正确的。风力发电机结构图显示:目前的风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系。功率的大小更主要取决于风量的大小,而不仅是机头功率的大小。在内地,小的风力发电机会比大的更合适。因为它更容易被小风量带动而发电,持续不断的小风,会比一时狂风更能供给较大的能量。当无风时人们还可以正常使用风力带来的电能,也就是说一台200w风力发电机也可以通过大电瓶与逆变器的配合使用,获得500w甚至1000w乃至更大的功率出。 现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。 最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机。最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值。为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等。 齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。同时也使得发电机易于控制,实现稳定的频率和电压输出。偏航系统可以使风轮扫掠面积总是垂直于主风向。要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度。 风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。在停机时,叶片要顺桨,以便形成阻尼刹车。 早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距。 就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率。然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。 现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏。理论上的12级飓风,其风速范围也仅为32.7-36.9米/秒。 风力发电机结构图显示:风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时监视齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机,属于无人值守独立发电系统单元

垂直轴风力发电机和水平轴风力发电机对比

垂直轴风力发电机和水平轴风力发电机 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。其蕴藏量巨大,全球风能资源总量约为2.74×109兆瓦,其中可利用的风能为2×107兆瓦。中国风能储量很大、分布面广,开发利用潜力巨大。 中国风力装机容量达到1000万千瓦的速度令人惊叹。如果中国能够利用其土地上大约30亿千瓦的风能的话,将能够满足几乎所有中国当前的电力需求,短时期内这是不可能的,不过中国有可能将2020年风电总装机目标由3000万千瓦调高至1亿千瓦。在国际效率标准下运行的话,这能够满足5%的中国电力需求,并且使中国成为世界最大的风能发电国,只要中国采取更进取而有理智的方针,就能最大限度地利用其国家的风能。 当然风能的利用离不开风力发电机,风力发电机的品质和价格成为了人们关注的焦点。 当前风力发电机有两种形式:1 水平轴风力发电机(大、中、小型);2 垂直轴风力发电机(大、中、小型)。 水平轴风力发电机技术发展的比较快,在世界各地人们已经很早就认识了,大型的水平轴风力发电机已经可以做到3-5兆瓦,一般由国有大型企业研发生产,应用技术也趋于成熟。小型的水平轴风力发电机一般是一些小型民营企业生产,对研发生产的技术要求比较低,其技术水平也是参差不齐。 小型水平轴风力发电机的额定转速一般在500-800r/min,转速高,产生的噪音大,启动风速一般在3-5m/s,由于转速高,噪音大,故障频繁,容易发生危险,不适宜在有人居住或经过的地方安装。 垂直轴风力发电机技术发展的较慢一些,因为垂直轴风力发电机对研发生产的技术要求比较高,尤其是对叶片和发电机的要求。近几年垂直轴风力发电机的技术发展很快,尤其小型的垂直轴风力发电机已经很成熟。 小型的垂直轴风力发电机的额定转速一般在60-200r/min,转速低,产生的噪音很小(可以忽略不计),启动风速一般在1.6-4m/s。 由于转速的降低,大大提高了风机的稳定性,没有噪音,启动风速低等优点,使其更适合在人们居住的地方安装,提高了风力发电机的使用范围。 参数对比: 序号性能水平轴风力发电机垂直轴风力发电机 1 发电效率50-60% 70%以上 2 电磁干扰(碳刷)有无 3 对风转向机构有无 1

垂直轴风力发电机研究报告

垂直轴风力发电机研究报告 1.垂直轴与水平轴对比 垂直轴风力发电机与水平轴风力发电机相比,有其特有的优点: ①水平轴风力发电机组的机舱放置在高高的塔顶,而且是一个可旋转360 度的活动联接机构,这就造成机组重心高,不稳定,而且安装维护不便。垂直轴风力发电机组的发电机,齿轮箱放置在底部,重心低,稳定,维护方便,并且降低了成本。 ②风力发电机的客户越来越需要使用寿命长、可靠性高、维修方便的产品。垂直轴风轮的翼片在旋转过程中由于惯性力与重力的方向恒定,因此疲劳寿命要长于水平轴风轮;垂直轴风力发电机的构造紧凑,活动部件少于水平轴风力机,可靠性较高;垂直轴系统的发电机可以放在风轮下部甚至地面上,因而便于维护。 ③风力发电机由于高度限制和周围地貌引发的乱流,常常处于风向和风强变化剧烈的情况,垂直轴风力发电机有克服“对风损失”和“疲劳损耗”上有水平轴风力发电机不可比的优点,且理论风能利用率可达40%以上.因此在考虑了较小的启动风速和对风力机影响较大的“对风损失”之后,从而提高垂直轴风轮的风能实际利用率。 ④水平轴风力发电机组机仓需360度旋转,达到迎风目的。这个调节系统包含有旋转机构,风向检测,角位移发送,角位移跟踪等系统。垂直轴风力机不要迎风调节系统,可以接受360度方位中任何方向来风,主轴永远向设计方向转动。 ⑤水平轴风力发电机的翼片受到正面风载荷力,离心力,翼片结构相似悬臂梁。翼片根部受到很大弯矩产生的应力。而且翼片在旋转一周的过程中,受惯性力和重力的综合作用,惯性力的方向是随时变化的,而重力的方向始终不变,这样翼片所受的就是一个交变载荷,这就要求翼片有很高的的疲劳强度,因此大量事故都是翼片根部折断。而垂直轴风机的翼片主要承受拉应力,不易折断,寿命长。 ⑥水平轴风力发电机组翼片的尖速比高,一般在5~7左右,在这样的高速下翼片切割气流将产生很大的气动噪音,导致噪声污染。垂直轴风力机翼片的尖速比较水平轴的要小的多,这样的低转速基本上不产生气动噪音,无噪音带来的好处是显而易见的,以前因为噪音问题不能应用风力发电机的场合(城市公共设

风力发电机原理及结构

风力发电机原理及结构 风力发电机是一种将风能转换为电能的能量转换装置,它包括风力机和发电机两大部分。空气流动的动能作用在风力机风轮上,从而推动风轮旋转起来,将空气动力能转变成风轮旋转机械能,风轮的轮毂固定在风力发电机的机轴上,通过传动系统驱动发电机轴及转子旋转,发电机将机械能变成电能输送给负荷或电力系统,这就是风力发电的工作过程。 1、风机基本结构特征 风力机主要有风轮、传动系统、对风装置(偏航系统)、液压系统、制动系统、控制与安全系统、机舱、塔架和基础等组成。 (1)风轮 风力机区别于其他机械的主要特征就是风轮。风轮一班有2~3个叶片和轮毂所组成,其功能是将风能转换为机械能。 风力发电厂的风力机通常有2片或3片叶片,叶尖速度50~70m/s,3也片叶轮通常能够提供最佳效率,然而2叶片叶轮及降低2%~3%效率。更多的人认为3叶片从审美的角度更令人满意。3叶片叶轮上的手里更平衡,轮毂可以简单些。 1)叶片叶片是用加强玻璃塑料(GRP)、木头和木板、碳纤维强化塑料(CFRP)、钢和铝职称的。对于小型的风力发电机,如叶轮直径小于5m,选择材料通常关心的是效率而

不是重量、硬度和叶片的其他特性,通常用整块优质木材加工制成,表面涂上保护漆,其根部与轮毂相接处使用良好的金属接头并用螺栓拧紧。对于大型风机,叶片特性通常较难满足,所以对材料的选择更为重要。 目前,叶片多为玻璃纤维增强负荷材料,基体材料为聚酯树脂或环氧树脂。环氧树脂比聚酯树脂强度高,材料疲劳特性好,且收缩变形小,聚酯材料较便宜它在固化时收缩大,在叶片的连接处可能存在潜在的危险,即由于收缩变形,在金属材料与玻璃钢之间坑能产生裂纹。 2)轮毂轮毂是风轮的枢纽,也是叶片根部与主轴的连接件。所有从叶片传来的力,都通过轮毂传到传动系统,在传到风力机驱动的对象。同时轮毂也是控制叶片桨距(使叶片作俯仰转动)的所在。 轮毂承受了风力作用在叶片上的推理、扭矩、弯矩及陀螺力矩。通常安装3片叶片的水平式风力机轮毂的形式为三角形和三通形。 轮毂可以是铸造结构,也可以采用焊接结构,其材料可以是铸钢,也可以采用高强度球墨铸铁。由于高强度球墨铸铁具有不可替代性,如铸造性能好、容易铸成、减振性能好、应力集中敏感性低、成本低等,风力发电机组中大量采用高强度球墨铸铁作为轮毂的材料。 轮毂的常用形式主要有刚性轮毂和铰链式轮毂(柔性轮毂

水平轴风力发电机设计

目录 摘要 (Ⅰ) Abstract (Ⅱ) 1 绪论 (1) 1.1风能资源的概述 (1) 1.2风能资源的利用 (1) 1.3风能资源利用的原理 (1) 1.4风力发电的输出 (3) 1.5风力发电机的种类 (3) 1.5.1水平轴风力发电机 (3) 1.5.2垂直轴风力发电机 (4) 2 水平轴发电机的基本功能构成及工作原理 (5) 2.1水平轴风力发电机的结构简介 (5) 2.2水平轴发电机关键部件详细介绍认知 (6) 2.2.1风轮叶片介绍 (6) 2.2.2发电机 (6) 2.2.3调速机构 (8) 2.2.4调向机构 (9) 2.2.5手刹车机构 (9) 2.2.6塔架 (10) 3 小型风力发电机叶轮和发电机装置的选择确定 (11) 3.1设计风速的确定 (11) 3.2风轮外形的计算 (12) 3.2.1风能利用系数Cp (12) 3.2.2风轮的扫掠面积确定 (12) 3.2.3风轮直径的确定 (13) 3.2.4回转体水平轴向力的计算 (14)

3.2.5发电机的选择确定 (14) 4 水平轴风力发电机回转体的设计与计算 (16) 4.1回转体结构设定 (16) 4.2轴承的计算与选用 (16) 4.2.1轴承的功能与作用 (16) 4.2.2轴承的查表选用 (16) 5 塔架 (22) 5.1塔架高度的确定 (22) 5.2塔架材料的确定 (22) 5.3整体建模效果图 (23) 总结 (24) 参考文献 (25) 致谢 (26)

风能是清洁绿色的动力,风力能源目前相对于我国来说还是相当充裕的。风力发电就是获取风能最主要的一种方法。风力发电的根本工作原理,是通过风力使其叶片转动,然后经过增速机把风轮转动的速度提高到一定的值,继而使发电机正常工作然后发电。现在风力发电技术已经达到了一定的地步,基本风速达到3m/s的速度后,发电机就可以开使正常工作继而发电。该课题是设计一台小型水平轴风力发电机,它的基本组成部件主要有以下五种①叶片②发电机③回转体④塔架⑤控制系统等。本课题对风力发电机进行了基本的讲述,首先计算风轮的扫掠面积,继而确定风轮的直径,选定发电机,然后通过以上计算查表选择轴承等部件,确定塔架的高度及材料,并绘制了图纸。 关键词:风力发电机;回转体;风轮

风力发电机的组成部件其功用

风力发电机的组成部件及其功用 风力发电机是将风能转换成机械能,再把机械能转换成电能的机电设备。风力发电机通常由风轮、对风装置、调速装置、传动装置、发电机、塔架、停车机构等组成。下面将以水平轴升力型风力发电机为主介绍它的各主要组成部件及其工作情况。图3-3-4和3-3-5是小型和中大型风力发电机的结构示意图。 图3-3-4 小型风力发电机示意图 1—风轮2—发电机3—回转体4—调速机构5—调向机构6—手刹车机构7—塔架8—蓄电池9—控制/逆变器 图3-3-5 中大型风力发电机示意图 1—风轮;2—变速箱;3—发电机;4—机舱;5—塔架。 1 风轮 风轮是风力机最重要的部件,它是风力机区别于其它动力机的主要标志。其作用是捕捉和吸收风能,并将风能转变成机械能,由风轮轴将能量送给传动装置。

风轮一般由叶片(也称桨叶)、叶柄、轮毂及风轮轴等组成(见图3-3-6)。叶片横截面形状基本类型有3种(见图第二节的图3-2-3):平板型、弧板型和流线型。风力发电机的叶片横截面的形状,接近于流线型;而风力提水机的叶片多采用弧板型,也有采用平板型的。图3-3-7所示为风力发电机叶片(横截面)的几种结构。 图3-3-6 风轮 1.叶片 2.叶柄 3.轮毂 4.风轮轴 图3-3-7 叶片结构 (a)、(b)—木制叶版剖面; (c)、(d)—钢纵梁玻璃纤维蒙片剖面; (e) —铝合金等弦长挤压成型叶片;(f)—玻璃钢叶片。 木制叶片(图中的a与b)常用于微、小型风力发电机上;而中、大型风力发电机的叶片常从图中的(c)→(f)选用。用铝合金挤压成型的叶片(图中之e),基于容易制造角度考虑,从叶根到叶尖一般是制成等弦长的。叶片的材质在不

1kw-10kw水平轴风力发电机参数

新能源科技有限公司 产品特点 1、起动风速低,风能利用率高。 2、风叶采用增强型玻璃钢,配以优化的气动外形设计和结构设计,风能利用系数高,增加了年发电量。 3、发电机采用专利技术的永磁转子交流发电机,配以特殊的定子设计,有效地降低发电机 的阻转矩,同时使风轮与发电机具有更为良好的匹配特性,机组运行的可靠性。 4、采用先进的机械偏航技术,大风时尾翼自动偏折,有效保护风机设备! 型号FY-1KW FY-2KW FY-3KW FY-5KW FY-10K 额定功率1000W 2000W 3000W 5000W 10000W 最大功率1500W 2500W 4000W 7000W 13000W 额定电压48V 96V 120V 220V 380V 启动风速3m/s 3m/s 3m/s 3m/s 3m/s 额定风速10m/s 10m/s 10m/s 10m/s 10m/s 转速400r/m 350r/m 300r/m 250r/m 180r/m 最大风速35m/s 35 m/s 35m/s 35m/s 35m/s 顶部重量37kg 48kg 185kg 250kg 400kg 风轮直径 2.8m 3.2m 5.3m 6m 7.8m 塔架高度6m 6m 9m 9m 12m 建议蓄电池150Ah*4 100Ah*8 150Ah*10 100Ah*18 150Ah*31 风叶数量 3 叶片材质玻璃钢 电机三相交流永磁同步发电机 保护方式电磁/自动调整迎风角度/机械偏航 工作温度-40℃-80℃ Product Features 1.Low start-up speed, low vibration 2.Reinforced glass fiber blades, together with the aerodynamic design and structural design,effectively enhance annual output 3.permanent magnet generator rotor using patented alternator,with the special stator design, effectively reduce the resistance torque and improve performance https://www.360docs.net/doc/fd2225093.html,ing advanced mechanic yaw technique,tail auto furls in strong wind ,thus well protect

水平轴风力发电机组空气动力学理论

第三章 水平轴风力发电机组空气动力学理论 研究风能工程中的空气动力问题的方法有理论计算,风洞实验和风场测试,它们相互补充,相互促进。由于绕风力机的流动十分复杂,目前,理论计算还有一定的局限性,因此,还需要通过风洞实验和风场测试的方法来加以补充和完善。 本章主要围绕水平轴风力发电机组空气动力学理论进行阐述,内容包括动量理论,叶素理论,叶素-动量理论等基本理论,风轮的气动特性,叶片设计,叶尖损失,翼型升力和阻力等内容; 研究风力发电机的气东理论需要具备一定的流体动力学的知识,诸如不可压缩气流静态贝努利(Bernoulli )方程和连续性概念。Biot-Savart 法则,类似于电磁场来确定涡流速度,Kutta-Joukowski 确定边界涡流等。 3.1 基本理论 3.1.1动量理论 动量理论可用来描述作用在风轮上的力与来流速度之间的关系。 流经转动盘面的整个气体流速的变化 ()a U U d -=∝1乘以质量流率,即是整个气体流动量的改变: ()d d w U A U U ρ-=∝动量变化率 (3- 1) 动量的变化完全来自于制动桨盘的静压的改变,而且整个流管周围都被大气包围,上下静压差为0,所以有: ()()()a U A U U A p p d w d d d --=-∝∝-+ 1ρ (3- 2) 通过贝努利方程可以获得此压力差-+-d d p p ,因为上风向和下风向的能量不 同,贝努利方程表示在稳定条件下,流体中的整个能量由动能、静压能和位能组成。不对流体做功或流体不对外做功的情况下,总能量守恒,因此对单位气流,有下式成立: .tan 2 12t cons gh p U =++ρρ (3- 3) 上风向气流有: d d d d d gh p U p gh U ρρρρ++=+++∝∝∝∝∝222 121 (3- 4) 假设气体未压缩d ρρ=∝,并且在水平方向d h h =∝ 则 +∝∝+=+d d p U p U 222 121ρρ (3- 4a) 同样下风向气流有: -∝+=+d d w p U p U 222 121ρρ ( 3- 4b) 两方程相减得到:

风力发电机介绍

风力发电机介绍 目录 1. 风力发电发展的推动力 2.风力发电的相关参数 2.1.风的参数 2.2.风力机的相关参数(以水平轴风力机为例) 3.风力机的种类 3.1.水平轴风力机 3.2.垂直轴风力机 4.水平轴风力机详细介绍 4.1.风轮机构 4.2.传动装置 4.3.迎风机构 4.4.发电机 4.5.塔架 4.6.避雷系统 4.7.控制部分 5.风力发电机的变电并网系统 5.1.(恒速)同步发电机变电并网技术

5.2.(恒速)异步发电机变电并网技术 5.3.交—直—交并网技术 5.4.风力发电机的变电站的布置 6.风力发电场 7.风力机发展方向 1. 风力发电发展的推动力: 1) 新技术、新材料的发展和运用; 2) 大型风力机制造技术及风力机运行经验的积累; 3) 火电发电成本(煤的价格)上涨及环保要求的提高(一套脱硫装置价格相当 一台锅炉价格)。 2. 风力发电的相关参数: 2.1. 风的参数: 2.1.1. 风速: 在近300m的高度内,风速随高度的增加而增加,公式为: V:欲求的离地高度H处的风速; V0:离地高度为H0处的风速(H0=10m为气象台预报风速的高度); n:与地面粗糙度等因素有关的指数,平坦地区平均值为0.19~0.20。 2.1.2. 风速频率曲线:

在一年或一个月的周期中,出现相同风速的小时数占这段时间总小时数的百分比称风速频率。 图1:风速频率曲线 2.1. 3. 风向玫瑰图(风向频率曲线): 在一年或一个月的周期中,出现相同风向的小时数占这段时间总小时数的百分比称风向频率。以极座标形式表示的风向频率图叫风向玫瑰图。 图2:风向玫瑰图

风力发电机结构和原理

风力发电机结构原理 杜容熠 太阳辐射到地球的热能中有约2%被转变成风能,全球大气中总的风能量约为1014MW(10亿亿千瓦)。其中可被开发利用的风能理论值约有3.5×109MW(3.5万亿千瓦),比世界上可利用的水能大10倍。 把风能转变为电能是风能利用中最基本的一种方式。风力发电机一般有叶轮、发电机(包括装置)、调向器(尾翼)、塔架、限速安全机构和储能装置等构件组成。风力发电机的工作原理比较简单,叶轮在风力的作用下旋转,它把风的动能转变为叶轮轴的机械能,发电机在叶轮轴的带动下旋转发电。 1.风力发电原理: 1.1 风能的概念: 风能:空气因为太阳能辐射,造成压力差,而发生运动的动能称为“风能”,风能的计算公式为: E=0.5ρsV3 式中: E-风能(W) ρ-空气密度(kg/m3) S-气流截面积(m2) V-风速(m/s) 风能密度(W):单位时间内通过单位面积的风能,W=0.5ρV3。 有效风能密度:指风机可利用的风速范围内的风能密度(对应的风速范围大约是3~25m/s)。 1.2 风能发电的动力学原理 风力发电采用空气动力学原理,并非风推动叶轮叶片,而是风吹过叶片形成叶片正反面的压力差,这种压力差会产升力,令叶轮旋转并不断横切风流。该原理类似于飞机上升时的原理,空气通过机翼,产生向上的升力和向前的阻力。

如果将一块薄板放在气流中,则在沿气流方向将产生一正面阻力F D和一垂直于气流方向的升力F L其值分别由下式确定L: F D=0.5CdρSV2 F L=0.5C LρSV2 式中:CD-阻力系数 C-升力系数 L S-薄板的面积 ρ-空气的密度阻力型叶轮 V -气流速度 如果把薄片当作叶片,将其装在轮毂上组成叶轮,那么风的作用力旋转中心线就会使叶轮转动。由作用于叶片上的阻力FD而使其转动的叶轮,称为阻力型叶轮;而由升力FL而使其转动的叶轮,称为升力型叶轮。目前为止现代风力机绝大多数采用升力型叶轮。 2.风力发电机的组成部分及特点:

水平轴与垂直轴风力发电机的比较

水平轴与垂直轴风力发电机的比较 班级:学号:姓名: 摘要:本文主要对水平轴风力发电机与垂直轴风力发电机在设计方法、结构等多方面进行了比较,最终得出垂直轴风力发电机大有可为的结论。 关键词:风力发电机;垂直轴;水平轴;设计; 1 引言 风能是一种取之不尽,无任何污染的可再生能源。地球上的风能资源极其丰富,据专家估计,仅1%的地面风力就能满足全世界对能源的需求。人类利用风能已有数千年历史,在蒸汽机发明以前风能曾作为重要的动力,应用于人类生活的众多方面。风力发电的探索,则起源于19世纪末的丹麦,但是直到20世纪70年代以前,还只有小型充电用风力发电机达到实用阶段。1973年爆发石油危机以后,美国、西欧等发达国家为寻求替代石油燃料的能源,投入了大量经费,动员高科技产业,利用计算机、空气动力学、结构力学和材料科学等领域的新技术研制风力发电机组,开创了风能利用的新时代。由于风力发电技术的不断发展,风力发电越来越受到世界各国的重视。 垂直轴风车很早就被应用于人类的生活领域中,中国最早利用风能的形式就是垂直轴风车。但是垂直轴风力发电机的发明则要比水平轴的晚一些,直到20世纪20年代才开始出现(Savonius式风轮——1924年,Darrieus式风轮——1931年)。由于人们普遍认为垂直轴风轮的尖速比不可能大于1,风能利用率低于水平轴风力发电机,因而导致垂直轴风力发电机长期得不到重视。 随着科技的发展和人类认识水平的不断提高,人们逐渐认识到垂直轴风轮的尖速比不能大于1仅仅适用于阻力型风轮(Savonius式风轮),而升力型风轮(Darrieus式风轮)的尖速比甚至可以达到6,并且其风能利用率也不低于水平轴。近年来,越来越多的机构和个人开始研究垂直轴风力发电机,并取得了长足的发展。

风力发电机的原理及应用前景

风力发电机的原理及应用前景 摘要:许多世纪以来,风力发电机同水力机械一样,作为动力源替代人力、畜力,对生产力的发展发挥过重要作用。70年代初期,由于“石油危机”,出现了能源紧张的问题,人们认识到常规矿物能源供应的不稳定性和有限性,于是寻求清洁的可再生能源遂成为现代世界的一个重要课题。风能作为可再生的、无污染的自然能源又重新引起了人们重视。 关键词:风力发电,原理,应用前景,自然能源 随着科技的不断进步,社会的不断发展,能源问题将会成为未来人类必须解决的问题之一,同时可再生能源结构会成为未来能源的倾向之一。现如今风能作为一种无污染的可再生能源备受人们的关注,风力发电正在世界上形成一股热潮,因为风力发电没有燃料问题,也不会产生辐射或空气污染。在一定程度上,风力发电将会成为未来最具潜力的新能源之一。 一、风力发电机原理 风力发电机是将风能转换为机械功的动力机械,又称风车。广义地说,它是一种以太阳为热源,以大气为工作介质的热能利用发动机。风力发电利用的是自然能源。相对柴油发电要好的多。但是若应急来用的话,还是不如柴油发电机。风力发电不可视为备用电源,但是却可以长期利用。 风力发电是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约

是每秒三公尺的微风速度(微风的程度),便可以开始发电。 小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。 风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。 机械连接与功率传递水平轴风机桨叶通过齿轮箱及其高速轴与万能弹性联轴节相连,将转矩传递到发电机的传动轴,此联轴节应按具有很好的吸收阻尼和震动的特性,表现为吸收适量的径向、轴向和一定角度的偏移,并且联轴器可阻止机械装置的过载。另一种为直驱型风机桨叶不通过齿轮箱直接与电机相连风机电机类型 二、风力发电机结构 机舱,转子叶片,轴心,低速轴,齿轮箱,发电机,电子控制器,液压系统,冷却元件,塔,风速计及风向标,尾舵 三、风力发电机类型

垂直轴风力发电机研究报告

垂直轴风力发电机研究 报告 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

垂直轴风力发电机研究报告 1.垂直轴与水平轴对比 垂直轴风力发电机与水平轴风力发电机相比,有其特有的优点: ①水平轴风力发电机组的机舱放置在高高的塔顶,而且是一个可旋转360度的活动联接机构,这就造成机组重心高,不稳定,而且安装维护不便。垂直轴风力发电机组的发电机,齿轮箱放置在底部,重心低,稳定,维护方便,并且降低了成本。 ②风力发电机的客户越来越需要使用寿命长、可靠性高、维修方便的产品。垂直轴风轮的翼片在旋转过程中由于惯性力与重力的方向恒定,因此疲劳寿命要长于水平轴风轮;垂直轴风力发电机的构造紧凑,活动部件少于水平轴风力机,可靠性较高;垂直轴系统的发电机可以放在风轮下部甚至地面上,因而便于维护。 ③风力发电机由于高度限制和周围地貌引发的乱流,常常处于风向和风强变化剧烈的情况,垂直轴风力发电机有克服“对风损失”和“疲劳损耗”上有水平轴风力发电机不可比的优点,且理论风能利用率可达40%以上.因此在考虑了较小的启动风速和对风力机影响较大的“对风损失”之后,从而提高垂直轴风轮的风能实际利用率。 ④水平轴风力发电机组机仓需360度旋转,达到迎风目的。这个调节系统包含有旋转机构,风向检测,角位移发送,角位移跟踪等系统。垂直轴风力机不要迎风调节系统,可以接受360度方位中任何方向来风,主轴永远向设计方向转动。 ⑤水平轴风力发电机的翼片受到正面风载荷力,离心力,翼片结构相似悬臂梁。翼片根部受到很大弯矩产生的应力。而且翼片在旋转一周的过程中,受惯性力和重力的综合作用,惯性力的方向是随时变化的,而重力的方向始终不变,这样翼片所受的就是一个交变载荷,这就要求翼片有很高的的疲劳强度,因此大量事故都是翼片根部折断。而垂直轴风机的翼片主要承受拉应力,不易折断,寿命长。

风力发电机结构及原理

风力发电机结构及原理 机舱:机舱包容着风电机的关键设备,包括齿轮箱、发电机。维护人员可以通过风电机塔进入机舱。机舱左端是风电机转子,即转子叶片及轴。 转子叶片:捉获风,并将风力传送到转子轴心。现代600 千瓦风电机上,每个转子叶片的测量长度大约为20 米,而且被设计得很象飞机的机翼。 轴心:转子轴心附着在风电机的低速轴上。 低速轴:风电机的低速轴将转子轴心与齿轮箱连接在一起。在现代600 千瓦风电机上,转子转速相当慢,大约为19 至30 转每分钟。 轴中有用于液压系统的导管,来激发空气动力闸的运行。 齿轮箱:齿轮箱左边是低速轴,它可以将高速轴的转速提高至低速轴的50 倍。 高速轴及其机械闸:高速轴以1500 转每分钟运转,并驱动发电机。它装备有紧急机械闸,用于空气动力闸失效时,或风电机被维修时。 发电机:通常被称为感应电机或异步发电机。在现代风电机上,最大电力输出通常为500 至1500 千瓦。 偏航装置:借助电动机转动机舱,以使转子正对着风。偏航装置由电子控制器操作,电子控制器可以通过风向标来感觉风向。图中显示了风电机偏航。通常,在风改变其方向时,风电机一次只会偏转几度。 电子控制器:包含一台不断监控风电机状态的计算机,并控制偏航装置。为防止任何故障(即齿轮箱或发电机的过热),该控制器可以自动停止风电机的转动,并通过电话调制解调器来呼叫风电机操作员。 液压系统:用于重置风电机的空气动力闸。 冷却元件:包含一个风扇,用于冷却发电机。此外,它包含一个油冷却元件,用于冷却齿轮箱内的油。一些风电机具有水冷发电机。 塔:风电机塔载有机舱及转子。通常高的塔具有优势,因为离地面越高,风速越大。现代600 千瓦风汽轮机的塔高为40 至60 米。它可以为管状的塔,也可以是格子状的塔。管状的塔对于维修人员更为安全,因为他们可以通过内部的梯子到达塔顶。格状的塔的优点在于它比较便宜。 风速计及风向标:用于测量风速及风向。

垂直轴磁悬浮风力发电机与水平轴风力发电机的对比

一、尚特光电公司简介: 深圳尚特绿色能源股份有限公司,德国慕尼黑工业大学新能源技术、澳大利亚新南威尔士大学太阳能研究所、清华大学深圳低碳节能研究院合作伙伴,是一家专门从事太阳能、风能发电与控制技术研发、生产、销售、服务为一体的高新科技企业,凝聚着一批国际新能源领域顶尖的科研人才,拥有多项国家发明专利,公司组织机构完善,管理严格,已建立完善的品质管理体系,顺利通过了ISO09001: 2008质量管理体系认证和产品的CE、ROSH、UL认证等。 核心技术为:磁悬浮风力发电与控制技术、跟踪式太阳能发电系统、高倍聚光太阳能发电系统、风光互补发电与控制系统;产品广泛应用于城市、农村道路照明,家庭别墅、通信基站、交通监控、部队边防用电等中小离网型发电站,以及大型光伏并网发电站等,其中磁悬浮风力发电机能微风启动、轻风发电,解决了世界大部分低风速地区无法发电的技术难题,太阳能跟踪式发电系统比固定式的太阳能发电系统提高40~80%的发电量,高倍聚光太阳能发电系统比固定式的太阳能发电系统提高80~150%的发电量,大大降低了中大型光伏发电厂的发电成本,是目前世界上领先的第三代太阳能发电技术。 尚特不仅提供高品质的追日式太阳能跟踪系统、磁悬浮风力发电机、控制与逆变器等系列产品,同时在太阳能、风能项目的立项咨询、方案设计、施工安装、运行维护方面提供国际化高水准的强大服务团队,服务于全球商用或民用光伏电站建设和各类太阳能、风能应用项目的咨询、设计、系统集成、工程承包等一站式解决方案,保证产品长期稳定运行、最大限度降低用户的建设与维护成本。 “为人类能源可持续发展提供专业高效的解决方案”,一直是尚特的崇高使命;“精益求精、诚臻服务”始终是尚特对客户的永久承诺,我们也必将长期置身于清洁能源技术应用的领先行列,引领绿色节能时代的革命! 二、SUNTOP产品技术特点 ·SUNTOP磁悬浮微风发电机由深圳尚特绿色能源有限公司与德国幕尼黑工业大学历时四年共同研发创造,技术处于世界领先地位,并在全球范围内申请多项专利。 ·SUNTOP磁悬浮微风发电机集磁悬浮技术、电机工程、动力机械、航空大气工程、外观设计、实用设计、风洞测验、电脑模拟分式等学科于一体,采用轻型铝合金、钛金、不锈钢紧固件等轻型特殊材料制造。 ·SUNTOP磁悬浮风力发电机,由磁悬浮风力发电电机、垂直式万向受风装置(风叶)与法兰组成。 (一)、电机部分工作原理是:采用磁悬浮技术理论、将电机线圈悬浮于一 定的空间,在没有任何机械摩擦阻力以及在风力驱动作用下,使电机转动并 切割磁力线发出三相交流电;电机外壳由高强度铝合金模具成型,转动轴材 料为不锈钢,电机内部由定子、外转子、磁缸、稀土磁铁、高纯度铜线圈,通过 磁悬浮技术组合而成。

风力发原理及风力发电的工艺流程(DOC)

生产工艺流程 申华协合贡宝拉格风电场

发电风力发电机最初出现在十九世纪末。自二十世纪八十年代起,这项技术不断发展并日渐成熟,适合工业应用。近二三十年,典型的风力发电机的风轮直径不断增大,而额定功率也不断提升。 在二十一世纪00 年代初,风力发电机最具经济效益的额定输出功率范围在600 千瓦至750 千瓦之间,而风轮直径则在40 米至47 米之间。当时所有制造商都有生产这类风力发电机。新一代的兆瓦级风力发电机是以这类机种作为基础发展出来的。 二零零七年初,有一些制造商开始生产额定功率为几兆瓦而风轮直径达到约90 米的风力发电机(例如Vestas V90 3.0 兆瓦风电机,Nordex N90 2.5 兆瓦风电机等等),甚至有些直径达100 米( 如GE 3.6 兆瓦风电机) 。这些大型风力发电机主要市场是欧洲。在欧洲,适合风电的地段日渐减少,因此有逼切性安装发电能力尽量高的风力发电机。

另一类更大型的为海上应用而设计的风力发电机,已经完成设计并制成原型机。例如RE Power 公司设计的风力发电机风 轮直径达126 米,功率达 5 兆瓦。 1) 风的功率 风的能量指的是风的动能。特定质量的空气的动能可以用下列公式计算。 能量= 1/2 X 质量X ( 速度)^2 吹过特定面积的风的的功率可以用下列公式计算。 功率= 1/2 X 空气密度X 面积X ( 速度)^3 其中, 功率单位为瓦特; 空气密度单位为千克/ 立方米; 面积指气流横截面积,单位为平方米; 速度单位为米/ 秒。 在海平面高度和摄氏15 度的条件下,乾空气密度为 1.225 千 克/ 立方米。空气密度随气压和温度而变。随著高度的升高,空气密度也会下降。 於上述公式中可以看出,风的功率与速度的三次方〔立方〕成正比,并与风轮扫掠面积成正比。不过实际上,风轮只能提取风的能量中的一部分,而非全部。 2) 风力发电机的工作原理 现代风力发电机采用空气动力学原理,就像飞机的机翼一样。风并非" 推" 动风轮叶片,而是吹过叶片形成叶片正反面的压差,这种压差会产生升力,令风轮旋转并不断横切风流。 风力发电机的风轮并不能提取风的所有功率。根据Betz 定律,理论上风电机能够提取的最大功率,是风的功率的59.6% 。大多数风电机只能提取风的功率的40% 或者更少。 风力发电机主要包含三部分∶风轮、机舱和塔杆。大型与电网接驳的风力发电机的最常见的结构,是横轴式三叶片风轮,并安装在直立管状塔杆上。

论水平轴风力发电机效率

论水平轴风力发电机效率
严强 蒋超奇 (上海麟风风电设备有限公司https://www.360docs.net/doc/fd2225093.html,,上海,200063) 摘要:本文主要探讨了水平轴风力发电机效率计算中的方法缺陷,指出了产生计算误差的理论原因。通过对 某型水平轴风力发电机的效率修正,证明了其实际效率值要比计算效率值小很多。
V 水平轴 风V1
测风仪
风V2
实度比:叶片受风面积之和与风轮扫风面积之比。 尖速比:叶尖处的线速度和风速之比。 V1 P1 Pa V
ww
a
名词解释
w.
A
V2 P2 Pb
图 2 贝兹理论示意图 1
1
贝兹理论
sim
图1
水平轴风力发电机示意图
os
ol
ar .c
om

b
假设条件:
1)风轮没有锥角、倾角、偏角 2)风没有粘性 3)风轮流动模型可以简化为一个单元流管 4)风轮前、后的气流静压相等P1=P2 5)作用在风轮上的推力是均匀的
c 计算公式
作用在风轮上的推力T为:T=m(V1-V2) 式中V1为来流风速,V2为风流过风轮后无穷远处的风速,m=ρSV,是单位时间内的质量流量。 根据风轮前后的压力差,作用在风轮上的推力可以表达成T=S(Pa-P b),式中Pa是风轮前的风压,Pb是风流过
根据伯努力方程可得: 1/2ρV1 +P1= 1/2ρV +Pa 1/2ρV2 +P2= 1/2ρV +Pb V=1/2(V1+V2) 令 V=V1(1-a) 则 V2=V1(1-2a)
2 2 2 2
V2/V1=(1-2a)为流过风轮后无穷远处的风速与来流风速之比, a=(1-V2/V1)/2 为扰流因子, 则水平轴风轮的轴功率为: P=m(V1 /2-V2 /2) P=2ρSV1 a(1-a)
3 2 2 2
风轮最大轴功率发生在 dp/da=0 时,即 dp/da=2ρSV1 (1-4a+3a )=0,当 a=1/3 时,即(V2/ V1=1/3 时) Pmax=16/27(0.5ρSV1 ) Cp=P/0.5ρSV1
3 3 3 2
Cpmax=16/27=0.593 Cp=4a(1-a)
2
ww
w.
sim
os
ol
ar .c
om
风轮后的风压
(1)
a=(1-V2/V1)/2 当V2 / V1为 1/2 时,即a=1/4,Cp1/2 =0.563
2

双馈风力发电机工作原理

双馈风力发电机工作原理标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

双馈异步风力发电机工作原理 我们通常所讲的双馈异步发电机实质上是一种绕线式转子电机,由于其定、转子都能向电网馈电,故简称双馈电机。双馈电机虽然属于异步机的范畴,但是由于其有独立的励磁绕组,可以像同步电机一样施加励磁,调节功率因数,所以又称为交流励磁电机,也有称为异步化同步电机。 同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以同步电机一般只能对无功功率进行调节。交流励磁电机的可调量有三个:一是可调节励磁电流幅值;二是可改变励磁频率;三是可改变相位。这说明交流励磁电机比同步电机多了两个可调量,通过改变励磁频率,可改变电机的转速,达到调速的目的。这样,在负荷突变时,可通过快速控制励磁频率来改变电机转速,充分利用转子的动能,释放或者吸收负荷,对电网扰动远比常规电机小。改变转子励磁的相位时,由转子电流产生的转子磁场在气隙空间的位置上有一个位移,这就改变了发电机电势与电网电压相量的相对位置,也就改变了电机的功率角。这说明电机的功率角也可以进行调节。所以交流励磁不仅可以调节无功功率,也可以调节有功功率。 双馈电机的定转子绕组均为对称绕组,电机的极对数为 p,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的气隙中形成一个旋转的磁场,这个旋转磁场的转速 n1称为同步转速,它与电网频率 f1 及电机的极对数 p的关系如下:

P f n 1 160= 同样在转子三相对称绕组上通入频率为f 2 的三相对称电流,所产生的旋转磁场相对于转子本身的旋转速度为: P f n 2260= 由上式可知,改变频率 f 2,即可改变 n 2,而且若改变通入转子三相电流的相序,还可以改变此转子旋转磁场的转向。因此,若设n 1 为对应于电网频率为50Hz 时双馈发电机的同步转速,而n 为电机转子本身的旋转速度,则只要维持n ±n2=n1=常数,则双馈电机定子绕组的感应电势,如同在同步发电机时一样,其频率将始终维持为f 1 不变。 n ±n2=n1=常数 双馈电机的转差率 11n n n S -= ,则双馈电机转子三相绕组内通入的电流频率应为: 11 11122606060sf n n n Pn n n P Pn f =-=-==)( 根据上式表明:在异步电机转子以变化的转速转动时,只要在转子的三相对称绕组中通入转差频率(即f 1S )的电流,则在双馈电机的定子绕组中就能产生50Hz 的恒频电势。所以根据上述原理,只要控制好转子电流的频率就可以实现变速恒频发电了。 根据双馈电机转子转速的变化,双馈发电机可有以下三种运行状态:

相关文档
最新文档