介质损耗试验

介质损耗试验
介质损耗试验

电容和介质损耗测量

一试验目的

测量介质损耗的目的是判断电气设备的绝缘状况。测量介质损耗因数在预防性试验中是不可缺少的项目。因为电气设备介质损耗因数太大,会使设备绝缘在交流电压作用下,许多能量以热的形式损耗,产生的热量将升高电气设备绝缘的温度,使绝缘老化,甚至造成绝缘热击穿。绝缘能力的下降直接反映为介质损耗因数的增大。进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。所以,在出厂试验时要进行介质损耗的试验,运行中的电气设备亦要进行此种试验。测量介质损耗的同时,也能得到试品的电容量。电容量的明显变化,反映了多个电容中的一个或几个发生短路、断路。

二概念及原理

介质损耗是绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。也叫介质损失,简称介损。

在交流电压作用下,电介质内流过的电流相量和电压相量之间的夹角为功率因数角(Φ),而余角(δ)简称介损角。

介质损耗正切值δ

tg又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。

介质损耗因数(δ

tg)的测量在电气设备制造、绝缘材料电气性能的鉴定、绝缘的试验等都是不可缺少的。因为测量绝缘介质的δ

tg值是判断绝缘情况的一个较灵敏的试验方法。在交流电压作用下,绝缘介质不仅有电导的损耗,还有极化损耗。介质损耗因数的定义如下:

如果取得试品的电流相量和电压相量,则可以得到如下相量图:

合成,因此:

总电流可以分解为电容电流Ic和电阻电流I

R

这正是损失角δ=(90°-Φ)的正切值。因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。有的介损测试仪习惯显示功率因数(PF:cos Φ),而不是介质损耗因数(DF:tgδ)。一般cosΦ

三试验方法

根据试品的具体情况确定试验接线方式方法。

试验方法有外施和内施两种。外施是使用外部高压试验电源和标准电容器进行试验,对介损仪的示值按一定的比例关系进行计算得到测量结果的方法。内施是使用介损仪内附高压电源和标准器进行试验,直接得到测量结果的方法。

试验的接线方式有正接线和反接线两种。正接线是用于测量不接地试品的方法,测量时介损仪测量回路处于地电位,而反接线是用于测量接地试品的方法,测量时介损仪测量回路处于高电位,他与外壳之间承受全部试验电压。

参考接线方式:

1正接线、内标准电容、内高压(常规正接线):

2反接线、内标准电容、内高压(常规反接线):

3 正接线、外标准电容、内高压:

4 反接线、外标准电容、内高压:

5 正接线、内标准电容、外高压:

6 反接线、内标准电容、外高压:

四使用仪器及工作原理

高压介质损耗测量仪(简称介损仪)是指采用电桥原理,应用数字测量技术,对介质损耗角正切值和电容量进行自动测量的一种新型仪器。一般包含高压电桥、高压试验电源和高压标准电容器三部分。现常用介损仪有西林型和M型两种。(1)西林电桥

调节R3、C4使电桥平衡,此时a、b

两点电压相等,即R3、C4两端电压相等。

因为交流电路中电容阻抗为。

电路中R4、C4的并联阻抗为两者倒

数和的倒数

按阻抗元件分压原理,不难得到:

两边取倒数得:

按复数相等实部、虚部分别相等的规定得到

按串连模型介损定义:

由于R4是固定的可以从C4刻度盘上读出介损,通过R3、R4、Cn可以计算Cx。

(2)M型电桥

将试品改为并联模型。注意到Ir与

Icx、Icn差90度:

调节R4使Uw最小。这时IcnR4=IcxR3,

Uw=IrR3,因此:

由于a、b间电压没有完全抵消,因此M型电桥也称为不平衡电桥。Uw测量的是绝对值,小介损时电压很低,难以保证测量精度。

本公司使用的介损仪AI-6000型。AI-6000使用西林电桥,利用变频抗干扰原理,采用傅立叶变化数字波形分析技术,对标准电流和试品电流进行计算,抑制干扰能力强,测量结果准确稳定。

AI-6000介损仪的主要技术指标准确度:

电容量CX:±(读数×1%+1pF)

介质损耗因数tgδ:±(读数×1%+0.00040)

CX范围:内置高压3pF~60000pF/10kV 60pF~1μ

F/0.5kV

外加高压3pF~0.3μF/10kV

分辨率:最高0.001pF,4 位有效数字

tgδ范围:不限,

分辨率:0.001%

电容、电感、电阻三种试品自动识别。

试验电流范围:10μA~1A

内施高压:设定范围:0.5~10kV

最大输出电流:200mA

测量时间:约30 秒(与测量方式有关)

输入电源:180V~270VAC ,50Hz/60Hz ±1%(市电或发电机供电)

抗干扰指标:在200%干扰(即I 干扰/I 试品≤2)下仍能达到上述准确度 注: 抗干扰指标为满足仪器准确度的前提下,干扰电流与试验电流的最大比例,比例越大,

抗干扰性能越好。在介质损耗测量中常见抗干扰方法有三种: 倒相法、移相法和变频法。AI-6000采用变频法抗干扰,同时支持倒相法测量。

五:试验过程

1 施加测量电压前准备工作:

1.1 按该测量设备的使用说明书进行接线,并检查是否正确。

1.2 检查主桥与放大器及自动跟踪联线,是否正确。

1.3 CX 试品及CN 标准,电缆长度,由测量电压决定。

1.4 电桥要有良好的接地线。

1.5 指示表调好机械指零。

1.6 指示器灵敏度拨段开关旋转到最小位置。

1.7 检查桥臂电阻器与试品的电容及测量电压是否适应。

1.8 桥臂电阻测量电流不得超过电路规定的最大电流强度。

1.9 电桥C4、R3,R4旋钮放在试样估算的位置上。

2 试验操作步骤:

2.1 接通电源,观察放电管有无放电现象,如有放电现象则必须切除电源,

检查原因,消除故障。

2.2 接通电源开关,将放大器与自动跟踪器予热5-10分钟。

2.3 稍加电压及低灵敏度下,电桥进行予平衡。

2.4 在工作电压下,将变换开关置桥体位置,从高档开始反复调整R4、C4

旋钮,使指零仪指示趋零,顺时针旋转灵敏度开关,逐渐增高灵敏度,细调R4及C4,使指零仪归零,然后将变换开关置到屏蔽位置,观察辅助

支路归零情况。

2.5 通过以上测量步骤后,指示仪在较高的灵敏率为零时,读取数值,并记

录。并且测量不用分流器时,

介质损耗率δtg 计算公式为: ωδ*=44C R tg 电容公式为:3

4R CnR C x =

3 试品测量完毕后将电压降到零并分闸,试验人员进入试验场地对试品放电后,方可接触试品。

六结果评判

在排除外界干扰,正确地测出δtg 值后,还需对δtg 的数值进行正确的分析。δtg 值与介质的温度、湿度、内部有无气泡、缺陷部分体积等有关。δtg 以及电容量的合格范围参看有关产品试验标准或运行规程。

1 温度的影响

温度对δtg 有直接影响。一般情况,δtg 随温度上升而增加。因此为便于比较,应将各种温度下测量结果都换算至20℃下的数值。应当指出,由于试品的真实的平均温度是很难准确测定的,换算系数也是近似的,仍有很大的误差。因此,尽可能在10~30℃的温度下进行测量。有些绝缘材料的温度低于某一临界值时,其δtg 可能随温度的降低而上升。故过低的温度下测出的δtg 不能反映真实的绝缘情况。测量δtg 应在不低于5℃时进行。

2 试验电压影响

良好绝缘的δtg 不遂电压的变化而明显变化,若绝缘中确有缺陷,则其δtg 将随电压的升高而明显增加。

3 测量δtg 与试品电容的关系

对电容较小的设备,测δtg 能有效地发现局部集中性和整体分布性的缺陷。但对于大电容量的设备,测δtg 只能发现绝缘整体分布性缺陷。事实上,设备绝缘结构总是由许多部件构成并包含多种材料,可看成是由许多串并联回路所组成。

七 常见问题和注意事项

⒈常见问题:

① 试品尺寸较大,各部分开用分别试验时,应单独测量各部分的介质损耗,以提高发现缺陷的灵敏度。

② 现场试验时,若没有高压标准电容器,可用δtg 较小、数值已知、且电容量合适的其它高压电气设备来代替,这时被试品的δtg 值为数值已知的δtg 与电桥上读数之和。

③外界有电场干扰时,将使电桥无法平衡或带来严重误差。在现场试验时,应尽量远离漏磁大的设备。检流计要注意磁屏蔽,必要时可将检流计的极性转换开关倒换一下,取两次读数的平均值。

④被试品和标准电容器的高压连接线不应出现电晕,否则tgδ增高;被试品的测量极的外部绝缘有脏污或受潮,将分流流过桥体的电流,导致tgδ偏小甚至出现负值。

⒉注意事项:

①检查各种接线是否正确,绝缘距离一定要能耐受试验电压值。

②仪器测量电缆通用,建议用高压线连接此插座。高压插座和高压线有危险电压,绝对禁止碰触高压插座、电缆、夹子和试品带电部位!确认断电后接线,测量时务必远离!

③应保证高压线与试品高压端零电阻连接,否则可能引起误差或数据波动,也可能引起仪器保护。

④强干扰下拆除接线时,应在保持电缆接地状态下断开连接,以防感应电击。

⑤测量中严禁拔下插头,防止试品电流经人体入地!

⑥尽管仪器有接地保护,但无论何种测量,仪器都应可靠独立接地。

⑦保证零电阻接地。应仔细检查接地导体不能有油漆或锈蚀,否则应将接地导体刮干净。轻微接地不良可能引起误差或数据波动,严重接地不良可能引起危险!

变压器介损

FS3001抗干扰介质损耗测试仪 一、产品简介 FS3001抗干扰介质损耗测试仪用于现场抗干扰介损测量,或试验室精密介损测量。仪器为一体化结构,内置介损电桥、变频电源、试验变压器和标准电容器等。采用变频抗干扰和傅立叶变换数字滤波技术,全自动智能化测量,强干扰下测量数据非常稳定。测量结果由大屏幕液晶显示,自带微型打印机可打印输出。 二、产品别称 介损测试仪、抗干扰介损测试仪、全自动介损测试仪、异频介损测试仪、异频介质损耗测试仪、抗干扰介质损耗测试仪、全自动介质损耗测试仪 三、产品特征 1、变频抗干扰 采用变频抗干扰技术,在200%干扰下仍能准确测量,测试数据稳定,适合在现场做抗干扰介损试验。 2、高精度测量 采用数字波形分析和电桥自校准等技术,配合高精度三端标准电容器,实现高精度介损测量。 仪器所有量程输入电阻低于2Ω,消除了测量电缆附加电容的影响。 3、多级安全保护,确保人身和设备安全

高压保护:试品短路、击穿或高压电流波动,能以短路方式高速切断输出。 低压保护:误接380V、电源波动或突然断电,启动保护,不会引起过电压。 接地保护:仪器接地不良使外壳带危险电压时,启动接地保护。 C V T:高压电压和电流、低压电压和电流四个保护限,不会损坏设备;误选菜单不会输出激磁电压。CVT测量时无10kV高压输出。 防误操作:两级电源开关;电压、电流实时监示;多次按键确认;接线端子高/低压分明;缓速升压,可迅速降压,声光报警。 防“容升”:测量大容量试品时会出现电压抬高的“容升”效应,仪器能自动跟踪输出电压,保持试验电压恒定。 抗震性能:仪器采用独特抗震设计,可耐受强烈长途运输震动、颠簸而不会损坏。 高压电缆:为耐高压绝缘导线,可拖地使用。 四、技术指标 准确度:Cx: ±(读数×1%+1pF) tgδ: ±(读数×1%+0.00040) 抗干扰指标:变频抗干扰,在200%干扰下仍能达到上述准确度 电容量范围:内施高压:3pF~60000pF/10kV 60pF~1μF/0.5kV 外施高压:3pF~1.5μF/10kV 60pF~30μF/0.5kV 分辨率:最高0.001pF,4位有效数字 tgδ范围:不限,分辨率0.001%,电容、电感、电阻三种试品自动识别。 试验电流范围:10μA~1A 内施高压:设定电压范围:0.5~10kV 最大输出电流:200mA 升降压方式:连续平滑调节 试验频率:45、50、55单频 45/55Hz自动双变频 频率精度:±0.01Hz 外施高压:正接线时最大试验电流1A,工频或变频40-70Hz 反接线时最大试验电流10kV/1A,工频或变频40-70Hz CVT自激法低压输出:输出电压3~50V,输出电流3~30A

电流互感器介质损耗试验作业指导书

电流互感器介质损耗试验作业指导书 试验目的: 能有效发现绝缘受潮、劣化以及套管绝缘损坏等缺陷;测量电容型电流互感器末屏对地的tanδ主要是检查电流互感器底部和电容芯子表面的绝缘状况。 试验仪器: 泛华AI-6000E 自动抗干扰精密介损测试仪 试验接线: (1)一次绕组对末屏tanδ 1K1 N L1L2 HV Cx CT 介损仪1K22K12K23K13K2 4K14K2CT (2)末屏对地tanδ

1K1 N L1L2 HV Cx CT 介损仪1K22K12K23K13K2 4K14K2CT 屏蔽线 试验步骤: 1) 办理工作许可手续; 2) 向工作人员交代工作内容、人员分工、带电部位,进行危险点告知,并履行确认手续后开工; 3) 准备试验用的仪器、仪表、工具,所用仪器、仪表、工具应良好并在合格周期内; 4) 在试验现场周围装设围栏,打开高压警示灯,摆放温湿度计,必要时派专人看守; 5) 抄录被试电流互感器的铭牌参数; 6) 检查被试电流互感器的外观是否完好,必要时对套管进行擦拭和烘干处理; 7) 两人对电源盘进行验电,同时检测电源盘的漏电保护装置是否可靠动作;

8)将介损测试仪水平放稳; 9)按试验接线图进行接线; 10)确认接线正确后,试验人员撤到绝缘垫上,相关人员远离被试品; 11)大声呼唱,确认相关人员都在安全距离外,接通电源,打开仪器开关; 12)正确设置仪器的参数,一次绕组对末屏采用正接线,试验电压10kV,末屏对地采用反接线,试验电压2kV; 13)得到工作负责人许可后,按下“启动”按钮开始测量,测量完毕后记录测量数据; 14)关闭仪器开关,断开电源; 15)用放电棒对电流互感器充分放电; 16)拆除试验接线(先拆测量线,再拆接地线,拆接地线时先拆设备端,再拆接地端); 17)整理仪器,记录温度和湿度,把仪器放回原位; 18)测量数值与标准或历史数据比较,判断是否合格,撰写试验报告。 试验标准: 交接标准: 1)互感器的绕组tanδ测量电压应为10 kV,末屏tanδ测量电压为2 kV;

介质损耗因数(tanδ)试验

align="center"> 图5-2 绝缘介质的等效电路 表5-2 绝缘电阻测量结果 绝缘电阻/MΩ(每隔60s测一次)

tanδ与施加电压的关系决定于绝缘介质的性能、绝缘介质工艺处理的好坏和产品结构。当绝缘介质工艺处理良好时,外施电压与tanδ之间的关系近似一水平直线,且施加电压上升和下降时测得的tanδ值是基本重合的。当施加电压达到某一极限值时,tanδ曲线开始向上弯曲,见图5-8曲线1。 如果绝缘介质工艺处理得不好或绝缘介质中残留气泡等,则绝缘介质的tanδ比良好绝缘时要大。另外,由于工艺处理不好的绝缘介质在极低电压下就会发生局部放电,所以,tanδ曲线就会较早地向上弯曲,且电压上升和下降时测得的tanδ值是不相重合的,见图5-8曲线2。 当绝缘老化时,绝缘介质的tanδ反而比良好绝缘时要小,但tanδ开始增长的电压较低,即tanδ曲线在较低电压下即向上弯曲,见图5-8曲线3。另外,老化的绝缘比较容易吸潮,一旦吸潮,tanδ就会随着电压的上升迅速增大,且电压上升和下降时测得的tanδ 值不相重合,见图5-8曲线4。 2.2 温度特性 图5-6 绝缘介质等值电流相量图 I C—吸收电流的无功分量I R—吸收电流的有功分量 —功率因数角δ—介质损失角

图5-7 绝缘介质简化等效电路和等值电流相量图 (a)等效电路(b)等值电流相量图 C x—绝缘介质的总电容R x—绝缘介质的总泄漏电阻I Cx—绝缘介质的总电容电流I Rx—绝缘介质的总泄漏电流 图5-8 绝缘介质tanδ的电压特性 tanδ随温度的上升而增加,其与温度之间的关系与绝缘材料的种类、性能和产品的绝缘结构等有关,在同样材料、同样绝缘结构的情况下与绝缘介质的工艺干燥、吸潮和老化程度有关。 对于油浸式变压器,在10℃~40℃范围内,干燥产品的tanδ增长较慢;温度高于40℃,则tanδ的增长加快,温度特性曲线向上逐渐弯曲。为了比较产品不同温度下的tanδ,GB/T6451—1999国家标准规定了不同温度t下测量的tanδ的换算公式。 tanδ2=tanδ1·1.3(t1-t2)/10 (5-2) 式中tanδ2——油温为t2时的tgδ值,%; tanδ1——油温为t1时的tgδ值,%。 3 tanδ测量方法 3.1 测量仪器及测量电压

介质损耗详解

1、介质损耗 什么就是介质损耗:绝缘材料在电场作用下,由于介质电导与介质极化得滞后效应,在其内部引起得能量损耗。也叫介质损失,简称介损。 2、介质损耗角δ 在交变电场作用下,电介质内流过得电流相量与电压相量之间得夹角(功率因数角Φ)得余角(δ)。简称介损角。 3、介质损耗正切值tgδ 又称介质损耗因数,就是指介质损耗角正切值,简称介损角正切。介质损耗因数得定义如下: 如果取得试品得电流相量与电压相量,则可以得到如下相量图: 总电流可以分解为电容电流Ic与电阻电流IR合成,因此: 这正就是损失角δ=(90°-Φ)得正切值。因此现在得数字化仪器从本质上讲,就是通过测量δ或者Φ得到介损因数。 测量介损对判断电气设备得绝缘状况就是一种传统得、十分有效得方法。绝缘能力得下降直接反映为介损增大。进一步就可以分析绝缘下降得原因,如:绝缘受潮、绝缘油受污染、老化变质等等。 测量介损得同时,也能得到试品得电容量。如果多个电容屏中得一个或几个发生短路、断路,电容量就有明显得变化,因此电容量也就是一个重要参数。 4、功率因数cosΦ 功率因数就是功率因数角Φ得余弦值,意义为被测试品得总视在功率S中有功功率P所占得比重。功率因数得定义如下: 有得介损测试仪习惯显示功率因数(PF:cosΦ),而不就是介质损耗因数(DF:tgδ)。一般cosΦ

(1) 容量与误差:实际电容量与标称电容量允许得最大偏差范围、一般使用得容量误差有:J级±5%,K 级±10%,M级±20%、 精密电容器得允许误差较小,而电解电容器得误差较大,它们采用不同得误差等级、 常用得电容器其精度等级与电阻器得表示方法相同、用字母表示:D级—±0、5%;F级—±1%;G级—±2%;J级—±5%;K级—±10%;M级—±20%、 (2) 额定工作电压:电容器在电路中能够长期稳定、可靠工作,所承受得最大直流电压,又称耐压、对于结构、介质、容量相同得器件,耐压越高,体积越大、 (3) 温度系数:在一定温度范围内,温度每变化1℃,电容量得相对变化值、温度系数越小越好、 (4) 绝缘电阻:用来表明漏电大小得、一般小容量得电容,绝缘电阻很大,在几百兆欧姆或几千兆欧姆、电解电容得绝缘电阻一般较小、相对而言,绝缘电阻越大越好,漏电也小、 (5) 损耗:在电场得作用下,电容器在单位时间内发热而消耗得能量、这些损耗主要来自介质损耗与金属损耗、通常用损耗角正切值来表示、 (6) 频率特性:电容器得电参数随电场频率而变化得性质、在高频条件下工作得电容器,由于介电常数在高频时比低频时小,电容量也相应减小、损耗也随频率得升高而增加、另外,在高频工作时,电容器得分布参数,如极片电阻、引线与极片间得电阻、极片得自身电感、引线电感等,都会影响电容器得性能、所有这些,使得电容器得使用频率受到限制、 不同品种得电容器,最高使用频率不同、小型云母电容器在250MHZ以内;圆片型瓷介电容器为300MHZ;圆管型瓷介电容器为200MHZ;圆盘型瓷介可达3000MHZ;小型纸介电容器为80MHZ;中型纸介电容器只有8MHZ、 不同材质电容器,最高使用频率不同、COG(NPO)材质特性温度频率稳定性最好,X7R次 之,Y5V(Z5U)最差、 贴片电容得材质规格 贴片电容目前使用NPO、X7R、Z5U、Y5V等不同得材质规格,不同得规格有不同得用途、下面我们仅就常用得NPO、X7R、Z5U与Y5V来介绍一下它们得性能与应用以及采购中应注意得订货事项以引起大家得注意、不同得公司对于上述不同性能得电容器可能有不同得命名方法,这里我们引用得就是敝司三巨电子公司得命名方法,其她公司得产品请参照该公司得产品手册、

变压器绝缘介质损耗检测

绝缘介质损耗检测 绝缘介质在交流电压作用下,会在绝缘介质内部产生损耗,这些损耗包括绝缘介质极化产生的损耗、绝缘介质沿面放电产生的损耗和绝缘介质内部放电产生的损耗等。 绝缘介质内部产生损耗,造成施加在绝缘介质上的交流电压和电流之间的功率因数角不再是90°。功率因数角的余角称为介质损失角,并用tgδ来表示绝缘系统电容的介质损耗特性。用tgδ来表示相对的介质损耗因数的大小,它与绝缘介质几何尺寸无关,便于比较和判断不同结构变压器的绝缘性能。 1、变压器tgδ绝缘测试的特性 1)变压器绝缘良好时,外施电压与tgδ之间的关系近似一水平直线,且施加电压上升和下降时测得的tgδ值是基本重合的。当施加电压达到某一极限值时,tgδ曲线开始向上弯曲。 2)如果绝缘介质工艺处理得不好或绝缘介质中残留气泡等,则绝缘介质的tgδ比良好绝缘时要大。同时,由于工艺处理不好的绝缘介质在很低电压下就可能发生局部放电,所以,tgδ曲线便会较早地向上弯曲,且电压上升和下降时测得的tgδ值是不相重合的。 3)当绝缘老化时,绝缘介质在低电压下的tgδ也有可能比良好绝缘时要小,但tgδ开始增长的电压较低,即tgδ曲线在较低电压下即向上弯曲。 4)绝缘比较容吸潮,一旦吸潮,tgδ就会随着电压的上升迅速增大,且电压上升和下降时测得tgδ值不相重合。 5)当绝缘存在离子性缺陷时,tgδ曲线随电压升高曲线向下弯曲,即tgδ随电压升高反而变小。 2、变压器油tgδ增大的原因及绝缘受潮的判断 1)油中浸入溶胶杂质。变压器在出厂前残油或固体绝缘材料中存在着溶胶杂质;在安装过程中也可能再次浸入溶胶杂质;在运行中还可能产生溶胶杂质。油的介质损耗因数正比于电导系数,油中存在溶胶粒子后,由电泳现象(带电的溶胶粒子在外电场作用下有定向移动的现象,叫做电泳现象)引起电导系数,可能超过介质正常电导的几倍或几十倍,因此,tgδ值增大。

固体绝缘材料介电常数、介质损耗试验方法

固体绝缘材料在工频、音频、高频(包括米波长在内)下相对介电常数和介质损耗因数的试验方法 本标准等效采用国际标准 IEC 250(1969)《测量电气绝缘材料在工频、音频、高频(包括米波长在内)下相对介电常数和介质损耗因数的推荐方法》,只是去掉其中液体试样及其试验部分。 1主题内容与适用范围 本标准规定了固体绝缘材料在工频、音频、高频(包括米波长在内)下相对介电常数和介质损耗因数的试验方法。 本标准适用于 15 HZ~300 MHZ频率范围内测量固体绝缘材料的相对介电常数、介质损耗因数,并由此计算某些数值,如损耗指数。 测量所得的数值与一些物理条件,例如频率、温度、湿度有关,在特殊情况下也与场强有关。 2定义 2.1相对介电常数 绝缘材料的相对介电常数。r是电极间及其周围的空间全部充以绝缘材料时,其电容 Cx与同样构型的真空电容器的电容C0之比: Er=CX/C0………………………………………( 1) 在标准大气压下,不含二氧化碳的干燥空气的相对介电常数等于 1. 000 53。因此,用这种电极构型在空气中的电容C。来代替C。测量相对介电常数时,有足够的精确度。在一个给定的测量系统中,绝缘材料的介电常数是该系统中绝缘材料的相对介电常数。与真空介电常数的乘积。 真空介电常数: E0=8.854×10-12F/m≈1×10-9F/36πm………………………( 2) 在本标准中用PF/cm来计算,真空介电常数为: E0=0.08854pF/cm 2. 2介质损耗角 6 绝缘材料的介质损耗角a,是由该绝缘材料作为介质的电容器上所施加的电压与流过该电容器的 电流之间的相位差的余角。 2.3介质损耗因数tanδ 绝缘材料的介质损耗因数是介质损耗角E的正切tanE。 2.4损耗指数E n 绝缘材料的损耗指数E n,等于该材料的介质损耗因数不清tanE与相对介质常数e的乘积。 2.5相对复介电常数E 绝缘材料的相对复介电常数是由相对介电常数和损耗指数结俣而得出的。 Er=Er-JEr Er=Er 式中:Er是2.1条中所定义的相对介电常数。 E=Etane 有介质损耗的电容量,在任何经定的频率下既可用电容Cs和电阻Rs的串联回路来表示:

关于介质损耗的一些基本概念

关于介质损耗的一些基本概念 (泛华电子) 1、介质损耗 什么是介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。也叫介质损失,简称介损。 2、介质损耗角δ 在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角(δ)。简称介损角。 3、介质损耗正切值tgδ 又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。介质损耗因数的定义 如下: 如果取得试品的电流相量和电压相量,则可以得到如下相量图: 总电流可以分解为电容电流Ic和电阻电流IR合成,因此: 这正是损失角δ=(90°-Φ)的正切值。因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。 测量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法。绝缘能力的下降直接反映为介损增大。进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。

测量介损的同时,也能得到试品的电容量。如果多个电容屏中的一个或几个发生短路、断路,电容量就有明显的变化,因此电容量也是一个重要参数。 4、功率因数cosΦ 功率因数是功率因数角Φ的余弦值,意义为被测试品的总视在功率S中有功功率P所占的比重。功率因数的定义如下: 有的介损测试仪习惯显示功率因数(PF:cosΦ),而不是介质损耗因数(DF:tgδ)。一般cosΦ

介质损耗试验

电容和介质损耗测量 一试验目的 测量介质损耗的目的是判断电气设备的绝缘状况。测量介质损耗因数在预防性试验中是不可缺少的项目。因为电气设备介质损耗因数太大,会使设备绝缘在交流电压作用下,许多能量以热的形式损耗,产生的热量将升高电气设备绝缘的温度,使绝缘老化,甚至造成绝缘热击穿。绝缘能力的下降直接反映为介质损耗因数的增大。进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。所以,在出厂试验时要进行介质损耗的试验,运行中的电气设备亦要进行此种试验。测量介质损耗的同时,也能得到试品的电容量。电容量的明显变化,反映了多个电容中的一个或几个发生短路、断路。 二概念及原理 介质损耗是绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。也叫介质损失,简称介损。 在交流电压作用下,电介质内流过的电流相量和电压相量之间的夹角为功率因数角(Φ),而余角(δ)简称介损角。 介质损耗正切值δ tg又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。 介质损耗因数(δ tg)的测量在电气设备制造、绝缘材料电气性能的鉴定、绝缘的试验等都是不可缺少的。因为测量绝缘介质的δ tg值是判断绝缘情况的一个较灵敏的试验方法。在交流电压作用下,绝缘介质不仅有电导的损耗,还有极化损耗。介质损耗因数的定义如下:

如果取得试品的电流相量和电压相量,则可以得到如下相量图: 合成,因此: 总电流可以分解为电容电流Ic和电阻电流I R 这正是损失角δ=(90°-Φ)的正切值。因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。有的介损测试仪习惯显示功率因数(PF:cos Φ),而不是介质损耗因数(DF:tgδ)。一般cosΦ

介质损耗

电介质在交变电场作用下,所积累的电荷有两种分量:(1)有功功率。一种为所消耗发热的功率,又称同相分量;(2)无功功率,又称异相分量。异相分量与同相分量的比值即称为介质损耗。 通常用正切tanδ表示。tanδ=1/WCR(式中W为交变电场的角频率;C为介质电容;R为损耗电阻)。介电损耗角正切值是无量纲的物理量。可用介质损耗仪、电桥、Q表等测量。对一般陶瓷材料,介质损耗角正切值越小越好,尤其是电容器陶瓷。仅仅只有衰减陶瓷是例外,要求具有较大的介质损耗角正切值。橡胶的介电损耗主要来自橡胶分子偶极化。在橡胶作介电材料时,介电损耗是不利的;在橡胶高频硫化时,介电损耗又是必要的,介质损耗与材料的化学组成、显微结构、工作频率、环境温度和湿度、负荷大小和作用时间等许多因素有关。 电介质损耗(dielectric losses ):电介质中在交变电场作用下转换成热能的能量。这些热会使电介质升温并可能引起热击穿,因此,在电绝缘技术中,特别是当绝缘材料用于高电场强度或高频的场合,应尽量采用介质损耗因数(即电介质损耗角正切tgδ,它是电介质损耗与该电介质无功功率之比)较低的材料。但是,电介质损耗也可用作一种电加热手段,即利用高频电场(一般为0.3~300 兆赫)对电介质损耗大的材料(如木材、纸、陶瓷等)进行加热。这种加热由于热量产生在介质内部,比外部加热的加热速度快、热效率高,且加热均匀。频率高于300兆赫时,达到微波波段,即为微波加热(家用微波炉即据此原理)。 电介质损耗按其形成机理可分为弛豫损耗、共振损耗和电导损耗。前两者分别与电介质的弛豫极化和共振极化过程有关。对于弛豫损耗,当交变电场的频率ω=1/τ时,介质损耗达到极大值,τ为组成电介质的极性分子和热离子的弛豫时间。对于共振损耗,当电场频率等于电介质振子固有频率(共振)时,损失能量最大。电导损耗则是由贯穿电介质的电导电流引起,属焦耳损耗,与电场频率无关。 电容介质损耗和电流电压相位角之间的关系 又称介电相位角。反映电介质在交变电场作用下,电位移与电场强度的位相差。在交变电场作用下,根据电场频率、介质种类的不同,其介电行为可能产生两种情况。对于理想介质电位移与电场强度在时间上没有相位差,此时极化强度与交变电场同相位,交流电流刚好超前电压π/2。对于实际介质而言,电位移与电场强度存在位相差。此时介质电容器交流电流超前电压的相角小于π/2。由此,介质损耗角等于π/2与介质电容器交流电流超差电压的相角之差。 介质损耗角是在交变电场下,电介质内流过的电流向量和电压向量之间的夹角(即功率向量角ф)的余角δ,简称介损角。介质损耗角(介损角)是一项反映高压电气设备绝缘性能的重要指标。介损角的变化可反映受潮、劣化变质或绝缘中气体放电等绝缘缺陷,因此测量介损角是研究绝缘老化特征及在线监测绝缘状况的一项重要内容。 介质损耗检测的意义及其注意问题 (1)在绝缘设计时,必须注意绝缘材料的tanδ 值。若tanδ 值过大则会引起严重发热,使绝缘加速老化,甚至可能导致热击穿。而在直流电压下,tanδ 较小而可用于制造直流或脉冲电容器。

变压器试验之高压介损试验

https://www.360docs.net/doc/fd2502494.html, 变压器试验之高压介损试验 高压介损试验 2.1 做额定电压下介损的必要性 (1)常规10kV试验方法存在的问题 目前,在电气试验中主要都是通过10kV下的介损试验测量(tanδ)的大小来发现设备的缺陷。可是,10kV的试验电压远低于设备的运行电压,不能真实反映设备运行时的状况。良好的绝缘在允许的电压范围内,无论电压上升或下降,其介损值均无明显变化。但现场试验数据显示,不同绝缘介质设备的介质损耗(tanδ)值会随着电压的升高而变大或变小。所以在设备运行电压下做介质损耗测试才能真实反映设备的绝缘情况。 - 2.2 额定电压下做高压介损的升压方式 装置概述 通常进行高压介损测量时都是采用工频试验变压器升压的方式来得到试验高压。试验时需要电源控制箱、高压试验变压器、高于标准电容高压介损电桥等设备。当试验设备容量较大且电压很高时,要求电源的输出功率很大,所以电源部分的设备十分的笨重,对现场试验造成很多的不便。利用串联谐振方式升压就可以成倍地降低对输入电源功率的要求。只要我们适当地选择串联回路的参数,就能使谐振频率在工频范围内,满足介损测量的要求。 1)高压介损测试仪主机 HV9003E 型,能实现现场多点测试、自动升压、自动画出介损-电压曲线。它集高压介损电桥和变频电源于一体。只需外部配置励磁变压器、高压标准电容器、谐振电抗器、补偿电容器就可以实现高压介损的测试。

https://www.360docs.net/doc/fd2502494.html, 测量时试验电压先连续升压测量、后再连续降压,自动完成被试设备电容量、tgδ、试验电压值的多点连续测量、并显示、绘制相应曲线。同时还可实现数据的存储、打印、USB 接口输出。又具有装置体积小重量轻,适合现场使用。 2)励磁变压器 利用变频串联谐振装置工作原理通过调频控制器提供供电电源,试验电压由励磁变压器经过初步升压后,使高电压加在电抗器L和被试品CX上,通过改变调频控制器的输出频率,使回路处于串联谐振状态;调节变频控制器的输出电压,使试品上高压达到所需要的电压值。 3)谐振电抗器 通过调节变频控制器的输出频率,使得回路中的电抗器电感L和试器电容C发生串联谐振。既是感抗等于容抗,来减少励磁变压器的容量。,谐振电压即为试品上所加电压。 4)高压标准电容器 因为被试品所加电压高,采用外接标准电容器是为了保护仪器和人身安全。 5)补偿电容器 回路的谐振频率取决于被试品电容CX和电抗器的电感L,谐振频率。装置试验频率是采用接近工频的交流电压,通过补偿电容器来改变试验的总电容量,使谐振频率在 45Hz-55Hz范围内,近似工频保证了试验结果的可靠性和真实性。 6)测量原理

变压器直流电阻和介质损耗试验word版本

变压器直流电阻和介质损耗试验

讲 义 变压器泄露电流试验 1、工作目的 检查变压器绝缘整体受潮,部件表面受潮或脏污,以及贯穿性的集中缺陷。 2、工作器材准备 温度计、湿度计、放电棒、万用表、直流发生器。 3、工作接线图

4、工作步骤 (1)将变压器各绕组引线断开,将试验高压引线接至被测绕组,其他非被测的绕组短路接地。 (2)按接线图(如图1所示)准备试验,保证所有试验设备、仪表仪器接线正确、指示正确。 (3)记录顶层油温及环境温度和湿度。 (4)将直流电源输出加在被试变压器绕组上,测量时,加压到试验电压,待1 min后读取泄漏电流值。 (5)被测绕组试验完毕,将电压降为零,切断电源,必须充分放电后再进行拆线操作。 5、工作标准 现的缺陷也基本一致,只是由于直流泄漏电流测量所加电压高,因而能发现在较高电压作用下才暴露的缺陷,故由泄漏电流换算成的绝缘电阻值应与兆欧表所测值相近。 (3)500 kV变压器的泄漏电流一般不大于30μA。 (4)任一级试验电压时,泄漏电流的指示不应有剧烈摆动。 6、综合分析方法及注意事项 (1)工作危险点分析 1)测量前应断开变压器与引线的连接,并应有明显断开点。 2)变压器试验前应充分放电,防止残余电荷对试验人员的伤害。 3)为保证人身和设备安全,要求必须在试验设备周围设围栏并有专人监护。负责升压的人要随时注意周围的情况,一旦发现异常应立刻断开电源停止试验,查明原因并排除后方可继续试验。 4)接地线应牢固可靠。 5)注意对试验完毕的变压器绕组必须充分放电。 6)进行直流泄漏电流试验过程中,如发现泄漏电流随时间急剧增长或有异常放电现象时,应立即停止试验,并断开电源,将被测变压器绕组接地,充分放电后,再进行检查。

介质损耗详解

1、介质损耗 什么是介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。也叫介质损失,简称介损。 2、介质损耗角δ 在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角(δ)。简称介损角。 3、介质损耗正切值tgδ 又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。介质损耗因数的定义如下: 如果取得试品的电流相量和电压相量,则可以得到如下相量图: 总电流可以分解为电容电流Ic和电阻电流IR合成,因此: 这正是损失角δ=(90°-Φ)的正切值。因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。 测量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法。绝缘能力的下降直接反映为介损增大。进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。 测量介损的同时,也能得到试品的电容量。如果多个电容屏中的一个或几个发生短路、断路,电容量就有明显的变化,因此电容量也是一个重要参数。 4、功率因数cosΦ 功率因数是功率因数角Φ的余弦值,意义为被测试品的总视在功率S中有功功率P所占的比重。功率因数的定义如下:

有的介损测试仪习惯显示功率因数(PF:cosΦ),而不是介质损耗因数(DF:tgδ)。一般 cosΦ

变压器介质损耗讲义

变压器介质损耗讲义-CAL-FENGHAI.-(YICAI)-Company One1

变压器绕组连同套管介质损耗试验 一、介质损耗的定义及意义 电介质就是绝缘材料。当研究绝缘物质在电场作用下所发生的物理现象时,把绝缘物质称为电介质;而从材料的使用观点出发,在工程上把绝缘物质称为绝缘材料。既然绝缘材料不导电,怎么会有损失呢我们确实总希望绝缘材料的绝缘电阻愈高愈好,即泄漏电流愈小愈好,但是,世界上绝对不导电的物质是没有的。任何绝缘材料在电压作用下,总会流过一定的电流,所以都有能量损耗。把在电压作用下电介质中产生的一切损耗称为介质损耗或介质损失。 如果电介质损耗很大,会使电介质温度升高,促使材料发生老化(发脆、分解等),如果介质温度不断上升,甚至会把电介质熔化、烧焦,丧失绝缘能力,导致热击穿,因此电介质损耗的大小是衡量绝缘介质电性能的一项重要指标。 然而不同设备由于运行电压、结构尺寸等不同,不能通过介质损耗的大小来衡量对比设备好坏。因此引入了介质损耗因数tgδ(又称介质损失角正切值)的概念。 介质损耗因数的定义是:被试品的有功功率比上被试品的无功功率所得数值。 介质损耗因数tgδ只与材料特性有关,与材料的尺寸、体积无关,便于不同设备之间进行比较。 当对一绝缘介质施加交流电压时,介质上将流过电容电流I1、吸收电流I2和电导电流I3,如图所示。其中反映吸收过程的吸收电流,又可分解为有功分量和无功分量两部分。电容电流和反映吸收过程的无功分量是不消耗能量的,只有电导电流和吸收电流中的有功分量才消耗能量。

为了讨论问题方便,可进一步将等值电路简化为由纯电容和纯电阻组成的并联和串联电路。我们就采用它的并联电路来分析。 当绝缘物上加交流电压时,可以把介质看成为一个电阻和电容并联组成的等值电路,如图21(a )所示。根据等值电路可以作出电流和电压的相量图,如图2(b )所示。 U I I R I (a)(b) 图 2 在绝缘物上加交流电压时的等值电路及相量图 (a )介质等值电路 (b )等值电路电流、电压相量 由相量图可知,介质损耗由 产生,夹角 大时, 就越大,故称 为介质损失角,其正切值为 介质损耗为 由上式可见,当U 、f 、C 一定时,P 正比于 ,所以用 来表征介质损耗。 测量的 灵敏度较高,可以发现绝缘的整体受潮、劣化、变质及小体积设备 的局部缺陷。 二、变压器介质损耗的目的 测量变压器绕组连同套管的介质损耗角正切tg δ时,主要用于更进一步检查变压器整体是否受潮、绝缘油及纸是否劣化等严重的局部缺陷,以及绕组上是否附着油泥等杂质。 三、变压器介质损耗的测量方法 常用的方法有QS1西林电桥测量法、数字式介质损耗测试仪等。 1. QS1西林电桥法 R C I U/R 1tg I U/C CR δωω== =2 2U P=U Ctg R ωδ=δ R I R I δtg δtg δtg δ

介质损耗角

介质损耗角是在交变电场下,电介质内流过的电流向量和电压向量之间的夹角(即功率向量角ф)的余角δ,简称介损角。 介质损耗角(介损角)是一项反映高压电气设备绝缘性能的重要指标。介损角的变化可反映受潮、劣化变质或绝缘中气体放电等绝缘缺陷,因此测量介损角是研究绝缘老化特征及在线监测绝缘状况的一项重要内容。 介质损耗检测的意义及其注意问题 (1)在绝缘设计时,必须注意绝缘材料的tanδ 值。若tanδ 值过大则会引起严重发热,使绝缘加速老化,甚至可能导致热击穿。而在直流电压下,tanδ 较小而可用于制造直流或脉冲电容器。 (2)值反映了绝缘的状况,可通过测量tanδ=f(ф)的关系曲线来判断从良状态向劣化状态转化的进程,故tanδ的测量是电气设备绝缘试验中的一个基本项目。 (3)通过研究温度对tanδ值的影响,力求在工作温度下的tanδ值为最小值而避开最大值。 (4)极化损耗随频率升高而增大,尤其电容器采用极性电介质时,其极化损耗随频率升高增加很快,当电源中出现高次(如3次、5次)谐波时,就很容易造成电容器绝缘材料因过热而击穿。 (5)用于冲击测量的连接电缆,其绝缘的tanδ必须很小,否则所测冲击电压通过电缆后将发生严重的波形畸变,影响到测量的准确性。 数字化测量介质损耗角的方法 新闻出处:谢家琪发布时间: 2007年03月12日 摘要:总结了介损模拟测量方法存在的不足。 对当前几种典型的介质损耗数字化测量方法进 行了介绍,讨论了每种方法的优缺点和实际应用中出现的一些问题,并对介损数字化测量的发展前景进行了展望。 关键词:介质损耗数字化测量 1 引言 高压电气设备中,对绝缘介质损耗的测试具有很重要的意义。在高压预防性试验中,介质损耗因素的测量属于高准确度测量,通常是在被测试品两端加以工频50Hz的高电压(10kV),使被测试品流过一个极其微小的电流,利用电压与电流之间夹角的余角δ的正切值来反映被测试品的介质损耗大小。这种高电压、微电流、小角度的精密测量要求测量系统应具有很高的灵敏度和准确性,在现场条件下还需要具有较强的抗干扰能力。 过去介质损耗角的测量采用模拟测量方法,主要有谐振法、瓦特表法和电桥法,谐振法只适用于低压高频状态下的测量。瓦特表法是由介质损失的功率和经过的电流计算求得,瓦特表法由于测量准确度低,现已基本淘汰。电桥法是采用交流电桥差值比较原理,准确度相对较高,其典型代表是西林电桥,见图1所示。由电桥平衡条件可得出被试品的电容值Cx及tanδ: CX=(R4/R3)CN tanδ=ωC4R4

变压器绕组连同套管的介质损耗因数测量

变压器绕组连同套管的介质损耗因数测量一、工作目的 发现变压器绕组绝缘整体受潮程度。 二、工作对象 SL7-1000/35型电力变压器变压器一次绕组连同套管三、知识准备 见第一篇第四章、第二篇第七章第三节 四、工作器材准备 序号名称数量 1 介质损耗测试仪1套 2 试验警示围栏4组 3 标示牌2个 4 安全带2个 5 绝缘绳2根 6 低压验电笔1支 7 拆线工具2套 8 湿温度计1支 9 计算器1个 10 放电棒1支 11 接地线2根 12 短路铜导线2根 13 高压引线1根

14 低压引线1根 五、工作危险点分析 (1)实验前后充分放电; (2)介质损耗测试仪一定要接地; (3)禁止湿手触摸开关或带电设备; (4)注意与其他相邻带电间隔的协调。 六、工作接线图 图1介质损耗因数测试试验接线示意图 七、工作步骤 1. 试验前准备工作。 1)布置安全措施; 2)对变压器一、二次绕组充分放电; 3)试验前应将变压器套管外绝缘清扫干净; 4)测量并记录顶层油温及环境温度和湿度。 2.试验接线。 1)将介质损耗测试仪接地端接地。

2)二次绕组短路接地、非测量绕组套管末屏接地; 3)高压绕组短路接高压芯线; 4)两人接取电源线,并用万用表测量电压是否正常,测试电源 盘继电器是否正常工作; 5)复查接线; 6)接通电源。 3.试验测试过程,参数设定。 1)打开介质损耗测试仪,在菜单中选取反接法; 2)对于额定电压10KV及以上的变压器为10KV,对于额定电 压10KV及以上的变压器,试验电压不超过绕组的额定电 压; 3)打开高压允许开关,进行升压, 4)测试介质损耗, 5)填写试验报告。 4.测量结束的整理工作。 1)关闭高压允许开关,抄录数据; 2)关闭介质损耗测试仪,切断试验电源; 3)用放电棒对变压器一次绕组充分放电; 4)收线,整理现场。 八、工作标准 1)当变压器电压等级为35kV 及以上且容量在8000kV A及以上时,应测量介质损耗角正切值tanδ ;

电容型电流互感器末屏介质损耗因数

浅谈电容型电流互感器末屏介质损耗因数测量 电力系统中运行着大量的110kV及以上的电容式电流互感器,我们管理处淮安站室外变电所就运行着着这样的设备,在平时的预防性试验中我们需要做电容式电流互感器末屏对地介质损耗因数的测量,而这个试验项目是反映电容型电流互感是否受潮的非常有用的办法。它在发现绝缘受潮、老化等分布性缺陷方面比较有效,主要是检查电流互感器底部和电容芯子表面的绝缘状况。下面首先通过电容型电流互感器的原理结构图来具体分析电容型电流互感器末屏介质损耗因数测量的必要性。原理结构图如下图: 根据这种电容式电流互感器的结构我们不难发现,若互感器进水受潮后,水分多数情况下不会先渗透进电容屏层间使其受潮,而是慢慢沉积到电流互感器油箱的底部。而不管是测量一次对末屏或者是一

次对末屏、二次绕组及地的介损,都不能有效的发现电流互感器端部进水受潮的情况。而测量末屏对二次及地之间的介损则能有效的发现电流互感器端部进水受潮的缺陷。 电流互感器末屏对二次及地之间,可以看作一个等效电容,它是由油纸、变压器油与末屏引出线对地电容并联组成。末屏的介质损耗因素的大小与以上所述的并联绝缘介质的性能有很大关系,包括它们各自的电容量和介损。即: 212211tg C C tg C tg C ++δδδ=总 其中11δtg C 是末屏对二次及地的真实电容值和损耗值,22δtg C 是末屏引出线对地的电容值和损耗值,可见末屏引出线的对地电容对末屏的实际介质损耗因素的影响是存在的。当22δtg C 很大时,其影响不能忽略不计,所以末屏引出线的结构不同对末屏介损测量影响也是很大的。 我们平时测量末屏对地介质损耗因数tg δ及电容量使用智能型全自动电桥。采用反接线加压在末屏与油箱座之间,试验电压2kV 。现场试验时存在三种不同的试验接线方式: 第一种:电流互感器一次侧悬空,二次侧短路接地,电桥的Cx 线接末屏,自动电桥的Cx 线的屏蔽端悬空(一次悬空)。 第二种:电流互感器的一次侧L1-L2短接然后接地,二次侧短路接地,电桥的Cx 线接末屏,自动电桥的Cx 线的屏蔽端悬空(一次接地)。

绝缘油介质损耗因数测定作业指导书

绝缘油介质损耗因数测定作业指导书 1.范围 本指导书适用于绝缘油(包括新油和运行油)介质损耗因数测定,规定了试验引用标准、仪器设备要求、作业程序、试验结果判断方法和试验注意事项等。制定本指导书的目的是规范操作、保证试验结果的准确性,为设备运行、监督、检修提供依据。除介质损耗因数测定的绝缘油其它相关试验不在本作业指导书范围内,参阅相应作业指导书。 2.规范性引用文件 下列文件中的条款通过本作业指导书的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单或修订版均不适用于本作业指导书,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本作业指导书。 GB5654 液体绝缘材料工频相对介电常数介质损耗因数和体积电阻率的试验方法 3.工作程序 3.1试验设备 绝缘油自动介质损耗测量仪。 3.2作业程序 3.2.1清洗油杯 试验前(必要时:当试验结果发现异常时,如数据分散性大或不合格)将油杯先用石油醚或清洗剂清洗干净,并在烘干箱烘干,温度设为105℃—110℃,时间为2h。 3.2.2空杯试验 将空杯升温至90℃,介质损耗角正切值应小于0.0001,即确认干净。 3.2.3装取油样 空杯先用被试油样冲洗两次以上,再装油样,静置10min。 3.2.4介质损耗角正切值测量 对被试油样升温至90℃,进行介质损耗角正切值测量。 3.2.5废油处理 1

试验完毕后,妥善处理好废油。应有专门容器存放废油,并定期进行集中处理,避免环境污染。 3.3试验结果判断依据 试验结果应满足表1要求。 表1 绝缘油介质损耗值 3.4 注意事项 a)测量仪器放置地点应无强大电磁干扰和机械震动并有可靠接地。 b)油杯要干燥和清洁,试样要有代表性,装入油时不能有气泡和杂质。 c)绝缘油自动介质损耗测量仪应定期校验。 4.原始记录与正式报告的要求 a)原始记录的填写要字迹清晰、完整、准确,不得随意涂改,不得留有空白,并在 原始记录上注明使用的仪器设备名称及编号。 b)当记录表格出现某些“表格”确无数据记录时,可用“/”表示此格无数据。 c)若确属笔误,出现记录错误时,允许用“单线划改”,并要求更改者在更改旁边签 名。 d)原始记录应由纪录人员和审核人员二级审核签字;试验报告应由拟稿人员、审核 人员、批准人员三级审核签字。 e)原始记录的记录人与审核人不得是同一人,正式报告的拟稿人与审核/批准人不得 是同一人。 f)原始记录及试验报告应按规定存档。 2

变压器介质损耗测试仪使用说明书

一、变压器介质损耗测试仪概说 变压器介质损耗测试仪是一种先进的测量介质损耗(tgδ)和电容容量(Cx)的仪器,用于工频高压下,测量各种绝缘材料、绝缘套管、电力电缆、电容器、互感器、变压器等高压设备的介质损耗(tgδ)和电容容量(Cx )。它淘汰了QSI高压电桥,具有操作简单、中文显示、打印,使用方便、无需换算、自带高压,抗干扰能力强等优点。JSY—03体积小、重量轻,是我厂的第三代智能化介质损耗测试仪。 二、变压器介质损耗测试仪技术指标 1.环境温度:0~40℃(液晶屏应避免长时日照) 2.相对湿度:30%~70% 3.供电电源:电压:220V±10%,频率:50±1Hz 5.输出功率:1KVA 6.显示分辨率:4位 7.测量范围: 介质损耗(tgδ):0-50% 电容容量(Cx)和加载电压: 2.5KV档:≤300nF(300000pF) 3KV档:≤200nF(200000pF) 5KV档:≤76nF(76000pF) 7.5KV档:≤34nF(34000pF) 10KV档:≤20nF(20000pF) 8.基本测量误差: 介质损耗(tgδ):1%±0.07%(加载电流20μA~500mA)正接 介质损耗(tgδ):2%±0.09%(加载电流5μA~20μA)反接 电容容量(Cx):1.5%±1.5pF 三、变压器介质损耗测试仪结构 仪器为升压与测量一体化结构,输出电压2.5KV~10KV五档可调,以适应各种需要,在测量时无需任何外部设备。接线与QSI电桥相似,但比其方便。 图一为仪器操作面板图,图二为仪器接线端面图。 ⑴显示窗————————液晶显示屏。 ⑵试验电压选择开关———当开关置于“关”时,仪器无高压输出。 ⑶操作键盘———————选择测量方式、起动、停止、打印等操作。 ⑷电源插座———————保险丝用5A。 ⑸电源开关———————电源通断。 ⑹起动灯————————指示高压输出。 ⑺打印机————————打印测试结果。 ★★★★⑻接地端子——————使用前,必须将该端子可靠接地!!! ★⑼测量电流输入端IX———有两个出线头,中心头(红色,有CX标记)应与被试品一端相接,屏蔽头(黑色,有E标记)是仪器内部高压输出一个参考端,在正接法测量时应接地;在反接法测量时应浮空;外接法参见“外接高压法”。 ★⑽标准电流输入端IN———仅当外接标准电容器进行测量时才用,该端应与外接标准电容器一端相连。IN必须小于100mA!!! ⑾测量高压输出端UH——只有一个大铁夹出线头(有UH标记),与被试品一端相接。

相关文档
最新文档