立体几何练习题精

立体几何练习题精
立体几何练习题精

立体几何练习题精 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

立体几何练习题1.设α、β、γ为两两不重合的平面,l、m、n为两两不重合的直线,给出下列四个命题:

若α⊥γ,β⊥γ,则α∥β;②若mα,nα,m∥β,n∥β,则α∥β;

③若α∥β,lα,则l∥β;④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.

其中真命题的个数是( )

A.1 B.2 C.3 D.4

2.正方体ABCD﹣A1B1C1D1中,BD1与平面ABCD所成角的余弦值为()

A. B. C D.

3.三棱柱ABC﹣A1B1C1中,AA1=2且AA1⊥平面ABC,△ABC是

边长为的正三角形,该三棱柱的六个顶点都在一个球面上,则这个

球的体积为()

A.8πB.C.D.8π

4.三个平面两两垂直,它们的三条交线交于点O,空间一点P到三个平面的距离分别为3、4、5,则OP长为()

A.5B.2C.3D.5

5.如图,四棱锥S﹣ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A.AC⊥SB

B.AB∥平面SCD

C.SA与平面SBD所成的角等于SC与平面SBD所成的角

D.AB与SC所成的角等于DC与SA所成的角

6.如图,四棱锥P﹣ABCD的底面为正方形,PD⊥底面ABCD,PD=AD=1,

设点CG到平面PAB的距离为d1,点B到平面PAC的距离为d2,则有

()

A. 1<d1<d2B. d1<d2<1

C. d1<1<d2D. d2<d1<1

7.在锐角的二面角βα--EF ,A EF ∈,AG α?, 45=∠GAE ,若AG 与β所成角为

30,则二面角βα--EF 为__________.

8.给出下列四个命题:

(1)若平面α上有不共线的三点到平面β的距离相等,则βα//; (2)两条异面直线在同一平面内的射影可能是两条平行直线;

(3)两条异面直线中的一条平行于平面α,则另一条必定不平行于平面α; (4)b ,a 为异面直线,则过a 且与b 平行的平面有且仅有一个. 其中正确命题的序号是_______________________

9.已知正方体 1111ABCD A B C D -中,点E 是棱 11A B 的中点,则直线AE 与平而 11BDD B 所成角的正弦值是_________.

10.已知直三棱柱111ABC A B C -中,090ABC ∠=,122AC AA ==,2AB =,M 为1BB 的中点,则1B 与平面ACM 的距离为______

11.边长分别为a 、b 的矩形,按图中所示虚线剪裁后,可将两个小矩形拼接成一个正四棱锥的底面,其余恰好拼接成该正四棱锥的4个侧面,则b

a

的取值范围是 . 12.已知矩形ABCD 的长4AB =,宽3AD =,将其沿对角线BD 折起,得到四面体A BCD -,如图所示,

给出下列结论:

①四面体A BCD -体积的最大值为72

5

②四面体A BCD -外接球的表面积恒为定值;

③若E F 、分别为棱AC BD 、的中点,则恒有EF AC ⊥且EF BD ⊥; ④当二面角A BD C --为直二面角时,直线AB CD 、所成角的余弦值为1625

; ⑤当二面角A BD C --的大小为60?时,棱AC 的长为

145

. 其中正确的结论有 (请写出所有正确结论的序号). 13.如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠BAC=90°,AB=BB 1,直线B 1C 与平面ABC 成30°角.

E

F A G

4

34

3

A

B C

D

4

3

3

4

D

C

B

A

(I)求证:平面B1AC⊥平面ABB1A1;

(II)求直线A1C与平面B1AC所成角的正弦值.

14.如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=AB=6,BC=8,DF=5.

(1)若PB⊥BC,证明平面BDE⊥平面ABC.

(2)求直线BD与平面ABC所成角的正切值.

15.如图,长方体ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中

点.

(1)求证:直线BD1∥平面PAC;

(2)求证:平面PAC⊥平面BDD1B1;

(3)求CP与平面BDD1B1所成的角大小.

16.如图,四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,点E在棱

PB上

(1)求证:AC⊥平面PDB

(2)当PD=AB且E为PB的中点时,求AE与平面PDB所成的角的大小.

17.在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.

(Ⅰ)求证:PB∥平面ACM;

(Ⅱ)求证:AD⊥平面PAC;

(Ⅲ)求二面角M﹣AC﹣D的正切值.

18.如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.

(1)证明:BD⊥平面PAC;

(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.

19.如图,直三棱柱ABC﹣A1B1C1中,CA⊥CB,AA1=AC=CB=2,D

是AB的中点.

(1)求证:BC 1∥平面A1CD;

(2)求证:A1C⊥AB1;

(3)若点E在线段BB1上,且二面角E﹣CD﹣B的正切值是,求此时三棱锥C﹣A1DE的体积.20.如图,四棱锥S﹣ABCD的底面是正方形,每条侧棱的长都是底面边长

的倍,P为侧棱SD上的点.

(1)求证:AC⊥SD;

(2)若SD⊥平面PAC,求二面角P﹣AC﹣D的大小;

(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面

PAC.若存在,求SE:EC的值;若不存在,试说明理由.

试卷答案

:解:若α⊥γ,β⊥γ,则α与β可能平行也可能相交,故①错误;

由于m,n不一定相交,故α∥β不一定成立,故②错误;

由面面平行的性质定理,易得③正确;

由线面平行的性质定理,我们易得④正确;

故选B

考点:棱柱的结构特征.

专题:空间角.

分析:找出BD1与平面ABCD所成的角,计算余弦值.

解答:解:连接BD,;

∵DD1⊥平面ABCD,∴BD是BD1在平面ABCD的射影,

∴∠DBD1是BD1与平面ABCD所成的角;

设AB=1,则BD=,BD1=,

∴cos∠DBD1===;

故选:D.

点评:本题以正方体为载体考查了直线与平面所成的角,是基础题.

考点:球的体积和表面积.

专题:计算题;空间位置关系与距离.

分析:根据题意,正三棱柱的底面中心的连线的中点就是外接球的球心,求出球的半径即可求出球的体积.

解答:解:由题意可知:正三棱柱的底面中心的连线的中点就是外接球的球心,

因为△ABC是边长为的正三角形,所以底面中心到顶点的距离为:1;

因为AA1=2且AA1⊥平面ABC,所以外接球的半径为:r==.

所以外接球的体积为:V=πr3=π×()3=.

故选:C.

点评:本题给出正三棱柱有一个外接球,在已知底面边长的情况下求球的体积.着重考查了正三棱柱的性质、正三角形的计算和球的体积公式等知识,属于中档题.

考点:平面与平面垂直的性质.

专题:计算题;空间位置关系与距离.

分析:构造棱长分别为a,b,c的长方体,P到三个平面的距离即为长方体的共顶点的三条棱的长,OP为长方体的对角线,求出OP即可.

解答:构造棱长分别为a,b,c的长方体,P到三个平面的距离即为长方体的共顶点的三条棱的长,

则a2+b2+c2=32+42+52=50

因为OP为长方体的对角线.

所以OP=5.

故选:D.

点评:本题考查点、线、面间的距离计算,考查计算能力,是基础题.

考点:直线与平面垂直的性质.

专题:综合题;探究型.

分析:根据SD⊥底面ABCD,底面ABCD为正方形,以及三垂线定理,易证AC⊥SB,根据线面平行的判定定理易证AB∥平面SCD,根据直线与平面所成角的定义,可以找出∠ASO是SA与平面SBD 所成的角,∠CSO是SC与平面SBD所成的角,根据三角形全等,证得这两个角相等;异面直线所成的角,利用线线平行即可求得结果.

解答:解:∵SD⊥底面ABCD,底面ABCD为正方形,

∴连接BD,则BD⊥AC,根据三垂线定理,可得AC⊥SB,故A正确;

∵AB∥CD,AB平面SCD,CD平面SCD,

∴AB∥平面SCD,故B正确;

∵SD⊥底面ABCD,

∠ASO是SA与平面SBD所成的角,∠DSO是SC与平面SBD所成的,

而△SAO≌△CSO,

∴∠ASO=∠CSO,即SA与平面SBD所成的角等于SC与平面SBD所成的角,故C正确;

∵AB∥CD,∴AB与SC所成的角是∠SCD,DC与SA所成的角是∠SAB,

而这两个角显然不相等,故D不正确;

故选D.

点评:此题是个中档题.考查线面垂直的性质定理和线面平行的判定定理,以及直线与平面所成的角,异面直线所成的角等问题,综合性强.

考点:点、线、面间的距离计算.

专题:综合题;空间位置关系与距离;空间角.

分析:过C做平面PAB的垂线,垂足为E,连接BE,则三角形CEB为直角三角形,根据斜边大于直角边,再根据面PAC和面PAB与底面所成的二面角,能够推导出d2<d1<1.

解答:解:过C做平面PAB的垂线,

垂足为E,连接BE,

则三角形CEB为直角三角形,其中∠CEB=90°,

根据斜边大于直角边,得CE<CB,即d2<1.

同理,d1<1.

再根据面PAC和面PAB与底面所成的二面角可知,前者大于后者,

所以d2<d1.

所以d2<d1<1.

故选D.

点评:本题考查空间距离的求法,解题时要认真审题,仔细解答,注意空间角的灵活运用.

7.

4

π

8.(2)(4)

11.

1 (,) 2

+∞

12.②③④

13.

考点:平面与平面垂直的判定;直线与平面所成的角.

专题:证明题.

分析:(I)欲证平面B1AC⊥平面ABB1A1,关键是寻找线面垂直,而AC⊥平面ABB1A1,又AC平面B1AC,满足面面垂直的判定定理;

(II)过A1做A1M⊥B1A1,垂足为M,连接CM,∠A1CM为直线A1C与平面B1AC所成的角,然后在三角形A1CM中求出此角的正弦值即可.

解答:解:

(I)证明:由直三棱柱性质,B1B⊥平面ABC,

∴B1B⊥AC,又BA⊥AC,B1B∩BA=B,

∴AC⊥平面ABB1A1,又AC平面B1AC,

∴平面B1AC⊥平面ABB1A1.

(II)解:过A1做A1M⊥B1A1,垂足为M,连接CM,

∵平面B1AC⊥平面ABB1A,且平面B1AC∩平面ABB1A1=B1A,

∴A1M⊥平面B1AC.

∴∠A1CM为直线A1C与平面B1AC所成的角,

∵直线B1C与平面ABC成30°角,∴∠B1CB=30°.

设AB=BB1=a,可得B1C=2a,BC=,

∴直线A1C与平面B1AC所成角的正弦值为

点评:本题主要考查了平面与平面垂直的判定,以及直线与平面所成的角,考查空间想象能力、运算能力和推理论证能力.

14.

考点:直线与平面所成的角;平面与平面垂直的判定.

专题:空间位置关系与距离;空间角.

分析:(1)由已知得DE⊥AC,DE2+EF2=DF2,从而DE⊥平面ABC,由此能证明平面BDE⊥平面ABC.

(2)由DE⊥平面ABC,得∠DBE是直线BD与平面ABC所成的角,由此能求出直线BD与平面ABC 所成角的正切值.

解答:(1)证明:∵在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点.

PA⊥AC,PA=AB=6,BC=8,DF=5,

∴DE⊥AC,DE=3,EF=4,DF=5,

∴DE2+EF2=DF2,∴DE⊥EF,

又EF∩AC=F,∴DE⊥平面ABC,

又DE平面BDE,∴平面BDE⊥平面ABC.

(2)∵DE⊥平面ABC,∴PA⊥平面ABC,∴PA⊥AB,

∵PB⊥BC,∴AB⊥BC,

∴AC==10,∴,

由DE⊥平面ABC,得∠DBE是直线BD与平面ABC所成的角,

tan∠DBE==.

∴直线BD与平面ABC所成角的正切值为.

点评:本题考查平面与平面垂直的证明,考查直线与平面所成角的正切值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

15.

考点:直线与平面平行的判定;平面与平面垂直的判定;直线与平面所成的角.

专题:证明题.

分析:(1)设AC和BD交于点O,由三角形的中位线的性质可得PO∥BD1,从而证明直线BD1∥平面PAC.

(2)证明AC⊥BD,DD1⊥AC,可证AC⊥面BDD1B1,进而证得平面PAC⊥平面BDD1B1 .

(3)CP在平面BDD1B1内的射影为OP,故∠CPO是CP与平面BDD1B1所成的角,在Rt△CPO中,利用边角关系求得∠CPO的大小.

解答:(1)证明:设AC和BD交于点O,连PO,由P,O分别是DD1,BD的中点,故PO∥BD1,∵PO平面PAC,BD1平面PAC,所以,直线BD1∥平面PAC.

(2)长方体ABCD﹣A1B1C1D1中,AB=AD=1,底面ABCD是正方形,则AC⊥BD,又DD1⊥面ABCD,则DD1⊥AC.

∵BD平面BDD1B1,D1D平面BDD1B1,BD∩D1D=D,∴AC⊥面BDD1B1.∵AC平面PAC,∴平面PAC⊥平面BDD1B1 .

(3)由(2)已证:AC⊥面BDD1B1,∴CP在平面BDD1B1内的射影为OP,∴∠CPO是CP与平面BDD1B1所成的角.

依题意得,,在Rt△CPO中,,∴∠CPO=30°

∴CP与平面BDD1B1所成的角为30°.

点评:本题考查证明线面平行、面面垂直的方法,求直线和平面所称的角的大小,找出直线和平面所成的角是解题的难点,属于中档题.

16.

考点:直线与平面所成的角;直线与平面垂直的判定.

专题:综合题;空间位置关系与距离;空间角.

分析:(1)根据题意证明AC⊥BD,PD⊥AC,可得AC⊥平面PDB;

(2)设AC∩BD=O,连接OE,根据线面所成角的定义可知∠AEO为AE与平面PDB所的角,在

Rt△AOE中求出此角即可.

解答:(1)证明:∵四边形ABCD是正方形,∴AC⊥BD,

∵PD⊥底面ABCD,

∴PD⊥AC,

又BD∩PD=D∴AC⊥平面PDB,(3分)

(2)设AC∩BD=O,连接OE,由(1)知AC⊥平面PDB于O,

∴∠AEO为AE与平面PDB所的角,(5分)

又O,E分别为DB、PB的中点,

∴OE∥PD,OE=PD,

在Rt△AOE中,OE=PD=AB=AO,

∴∠AEO=45°,(7分)

即AE与平面PDB所成的角的大小为45°.(8分)

点评:本题主要考查了直线与平面垂直的判定,以及直线与平面所成的角,考查空间想象能力、运算能力和推理论证能力,属于中档题.

17.

考点:与二面角有关的立体几何综合题;直线与平面平行的判定;直线与平面垂直的判定.

专题:计算题.

分析:(Ⅰ)连接OM,BD,由M,O分别为PD和AC中点,知OM∥PB,由此能够证明PB∥平面ACM.

(Ⅱ)由PO⊥平面ABCD,知PO⊥AD,由∠ADC=45°,AD=AC=1,知AC⊥AD,由此能够证明AD⊥平面PAC.

(Ⅲ)取DO中点N,连接MN,由MN∥PO,知MN⊥平面ABCD.过点N作NE⊥AC于E,由E为AO 中点,连接ME,由三垂线定理知∠MEN即为所求,由此能求出二面角M﹣AC﹣D的正切值.

解答:(Ⅰ)证明:连接OM,BD,

∵M,O分别为PD和AC中点,

∴OM∥PB,

∵OM平面ACM,PBACM平面,

∴PB∥平面ACM….(4分)

(Ⅱ)证明:由已知得PO⊥平面ABCD

∴PO⊥AD,

∵∠ADC=45°,AD=AC=1,

∴AC⊥AD,

∵AC∩PO=O,AC,PO平面PAC,

∴AD⊥平面PAC.…..(8分)

(Ⅲ)解:取DO中点N,连接MN,则MN∥PO,

∴MN⊥平面ABCD

过点N作NE⊥AC于E,则E为AO中点,

连接ME,由三垂线定理可知∠MEN即为二面角M﹣AC﹣D的平面角,

∵MN=1,NE=

∴tan∠MEN=2…..(13分)

点评:本题考查直线与平面平行、直线现平面垂直的证明,考查二面角的正切值的求法,解题时要认真审题,仔细解答,注意三垂直线定理的合理运用.

18.

考点:二面角的平面角及求法;直线与平面垂直的判定.

专题:空间位置关系与距离;空间角;立体几何.

分析:(1)由题设条件及图知,可先由线面垂直的性质证出PA⊥BD与PC⊥BD,再由线面垂直的判定定理证明线面垂直即可;

(2)由图可令AC与BD的交点为O,连接OE,证明出∠BEO为二面角B﹣PC﹣A的平面角,然后在其所在的三角形中解三角形即可求出二面角的正切值.

解答:(1)∵PA⊥平面ABCD

∴PA⊥BD

∵PC⊥平面BDE

∴PC⊥BD,又PA∩PC=P

∴BD⊥平面PAC

(2)设AC与BD交点为O,连OE

∵PC⊥平面BDE

∴PC⊥平面BOE

∴PC⊥BE

∴∠BEO为二面角B﹣PC﹣A的平面角

∵BD⊥平面PAC

∴BD⊥AC

∴四边形ABCD为正方形,又PA=1,AD=2,可得BD=AC=2,PC=3

∴OC=

在△PAC∽△OEC中,

又BD⊥OE,

∴二面角B﹣PC﹣A的平面角的正切值为3

点评:本题考查二面角的平面角的求法及线面垂直的判定定理与性质定理,属于立体几何中的基本题型,二面角的平面角的求法过程,作,证,求三步是求二面角的通用步骤,要熟练掌握

19.

考点:棱柱、棱锥、棱台的体积;空间中直线与直线之间的位置关系;直线与平面平行的判定.专题:综合题;空间位置关系与距离;空间角.

分析:(1)连接AC1交A1C于点F,由三角形中位线定理得BC1∥DF,由此能证明BC1∥平面

A1CD.

(2)利用线面垂直的判定定理证明A1C⊥平面AB1C1,即可证明A1C⊥AB1;

(3)证明∠BDE为二面角E﹣CD﹣B的平面角,点E为BB1的中点,确定DE⊥A1D,再求三棱锥C﹣A1DE的体积.

解答:(1)证明:连结AC1,交A1C于点F,则F为AC1中点,

又D是AB中点,连结DF,则BC1∥DF,

因为DF平面A1CD,BC1平面A1CD,

所以BC1∥平面A1CD.…(3分)

(2)证明:直三棱柱ABC﹣A1B1C1中,

因为AA1=AC,所以AC1⊥A1C…(4分)

因为CA⊥CB,B1C1∥BC,

所以B1C1⊥平面ACC1A1,所以B1C1⊥A1C…(6分)

因为B1C1∩AC1=C1,所以A1C⊥平面AB1C1

所以A1C⊥AB1…(8分)

(3)在直三棱柱ABC﹣A1B1C1中,AA1⊥CD,

因为AC=CB,D为AB的中点,所以CD⊥AB,CD⊥平面ABB1A1.

所以CD⊥DE,CD⊥DB,

所以∠BDE为二面角E﹣CD﹣B的平面角.

在Rt△DEB中,.

由AA1=AC=CB=2,CA⊥CB,

所以,.

所以,得BE=1.所以点E为BB1的中点.…(11分)

又因为,,,A 1E=3,

故,故有DE⊥A1D

所以…(14分)

点评:本题主要考查直线与平面平行、垂直等位置关系,考查线面平行、二面角的概念、求法、三棱锥C﹣A1DE的体积等知识,考查空间想象能力和逻辑推理能力,是中档题.

20.

考点:直线与平面平行的判定;直线与平面垂直的判定;与二面角有关的立体几何综合题.

专题:计算题;证明题;压轴题.

分析:(1)连BD,设AC交于BD于O,由题意知SO⊥平面ABCD.以O为坐标原点,

分别为x轴、y轴、z轴正方向,建立坐标系O﹣xyz,设底面边长为a,求出高SO,从而得到点S与点C和D的坐标,求出向量与,计算它们的数量积,从而证明出

OC⊥SD,则AC⊥SD;

(2)根据题意先求出平面PAC的一个法向量和平面DAC的一个法向量,设所求二面角为θ,则,从而求出二面角的大小;

(3)在棱SC上存在一点E使BE∥平面PAC,根据(Ⅱ)知是平面PAC的一个法向量,设,求出,根据可求出t的值,从而即当SE:EC=2:1时,,而BE 不在平面PAC内,故BE∥平面PAC

解答:证明:(1)连BD,设AC交于BD于O,由题意知SO⊥平面ABCD.

以O为坐标原点,

分别为x轴、y轴、z轴正方向,建立坐标系O﹣xyz如图.

设底面边长为a,则高.

于是,

,,

故OC⊥SD

从而AC⊥SD

(2)由题设知,平面PAC的一个法向量,

平面DAC的一个法向量.

设所求二面角为θ,则,

所求二面角的大小为30°.

(3)在棱SC上存在一点E使BE∥平面PAC.

由(Ⅱ)知是平面PAC的一个法向量,

设,

即当SE:EC=2:1时,

而BE不在平面PAC内,故BE∥平面PAC

点评:本题主要考查了直线与平面平行的判定,以及空间两直线的位置关系的判定和二面角的求法,涉及到的知识点比较多,知识性技巧性都很强.

高中数学空间立体几何讲义

第1讲 空间几何体 高考《考试大纲》的要求: ① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. ② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图. ③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. ④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). ⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). (一)例题选讲: 例1.四面体ABCD 的外接球球心在CD 上,且CD =2,AB =3,在外接球面上两点A 、B 间的球面距离是( ) A . 6π B .3 π C .32π D .65π 例2.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为( ) A .π2 B .π2 3 C .π332 D .π2 1 例3.在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角 是 . 例4.如图所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积. (1)求V (x )的表达式; (2)当x 为何值时,V (x )取得最大值? (3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值。 (二)基础训练: 1.下列几何体各自的三视图中,有且仅有两个视图相同的是( ) A .①② B .①③ C .①④ D .②④ 2.设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度0 75东经0120,则甲、乙两地球面距离为( ) (A )3R (B) 6 R π (C) 56 R π (D) 23R π ①正方形 ②圆锥 ③三棱台 ④正四棱锥

高中立体几何典型题及解析

高中立体几何典型500题及解析(二)(51~100题) 51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 及CN 所成的角的余弦值; 解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。 ∵N 为AD 的中点, NE∥AM 省 ∴NE=2 1AM 且E 为MD 的中点。 设正四面体的棱长为1, 则NC=21·23= 4 3且ME=2 1MD= 4 3 在Rt△MEC 中,CE 2=ME 2+CM 2= 163+41=16 7 ∴cos ∠CNE= 324 3 432167)43()43( 2222 22-=??-+=??-+NE CN CE NE CN , 又∵∠CNE ∈(0, 2 π) ∴异面直线AM 及CN 所成角的余弦值为3 2. 注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。 2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。最后作答时,这个角的余弦值必须为正。

52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 3 1 ==EC BE FD AF 。求异面直线AB 及CD 所成的角。 解析:在BD 上取一点G ,使得3 1 =GD BG ,连结EG 、FG 在ΔBCD 中,GD BG EC BE = ,故EG//CD ,并且4 1==BC BE CD EG , 所以,EG=5;类似地,可证FG//AB ,且 4 3 ==AD DF AB FG , 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠ FGE= 2 1 5327532222222- =??-+=??-+GF EG EF GF EG ,故∠FGE=120°。 另一方面,由前所得EG//CD ,FG//AB ,所以EG 及FG 所成的锐角等于AB 及CD 所成的角,于是AB 及CD 所成的角等于60°。 53. 在长方体ABCD -A 1B 1C 1D 1中,AA 1=c ,AB=a ,AD=b ,且a >b .求AC 1及BD 所成的角的余弦. A B C D E F G E D 1 C 1 B 1 A 1 A B D C O

高中空间立体几何典型例题

高中空间立体几何典型 例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1 如图所示,正方体ABCD —A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E=C 1F. 求证:EF ∥平面ABCD. 证明 方法一 分别过E ,F 作EM ⊥AB 于M ,FN ⊥BC 于N ,连接MN. ∵BB 1⊥平面ABCD , ∴BB 1⊥AB ,BB 1⊥BC , ∴EM ∥BB 1,FN ∥BB 1, ∴EM ∥FN. 又∵B 1E=C 1F ,∴EM=FN , 故四边形MNFE 是平行四边形,∴EF ∥MN. 又MN ?平面ABCD ,EF ?平面ABCD , 所以EF ∥平面ABCD. 方法二 过E 作EG ∥AB 交BB 1于G , 连接GF ,则B B G B A B E B 1111=, ∵B 1E=C 1F ,B 1A=C 1B , ∴B B G B B C E C 1111=,∴FG ∥B 1C 1∥BC , 又EG ∩FG =G ,AB ∩BC =B , ∴平面EFG ∥平面ABCD ,而EF ?平面EFG , ∴EF ∥平面ABCD . 2 已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC 的重心.

(1)求证:平面G 1G 2G 3∥平面ABC ; (2)求S △3 21G G G ∶S △ABC . (1)证明 如图所示,连接PG 1、PG 2、PG 3并延长分别与边AB 、BC 、AC 交于点D 、E 、F , 连接DE 、EF 、FD ,则有PG 1∶PD =2∶3, PG 2∶PE =2∶3,∴G 1G 2∥DE . 又G 1G 2不在平面ABC 内, ∴G 1G 2∥平面ABC .同理G 2G 3∥平面ABC . 又因为G 1G 2∩G 2G 3=G 2, ∴平面G 1G 2G 3∥平面ABC . (2)解 由(1)知PE PG PD PG 21 =32,∴G 1G 2=32DE . 又DE =21AC ,∴G 1G 2=31 AC . 同理G 2G 3=31AB ,G 1G 3=3 1BC . ∴△G 1G 2G 3∽△CAB ,其相似比为1∶3, ∴S △3 21G G G ∶S △ABC =1∶9. 3如图所示,已知S 是正三角形ABC 所在平面外的一点,且SA =SB =SC ,SG 为△SAB 上的高, D 、 E 、 F 分别是AC 、BC 、SC 的中点,试判断S G 与平面DEF 的位置关系,并给予证明. 解 SG ∥平面DEF ,证明如下: 方法一 连接CG 交DE 于点H , 如图所示.

数学竞赛之立体几何专题精讲(例题+练习)

数学竞赛中的立体几何问题 立体几何作为高中数学的重要组成部分之一,当然也是每年的全国联赛的必然考查内容.解法灵活而备受人们的青睐,竞赛数学当中的立几题往往会以中等难度试题的形式出现在一试中,考查的内容常会涉及角、距离、体积等计算.解决这些问题常会用到转化、分割与补形等重要的数学思想方法. 一、求角度 这类题常以多面体或旋转体为依托,考查立体几何中的异面直线所成角、直线与平面所成角或二面角的大小 解决这类题的关键是 ,根据已知条件准确地找出或作出要求的角. 立体几何中的角包括异面直线所成的角、直线与平面所成的角、二面角三种.其中两条异面直线所成的角通过作两条异面直线的平行线找到表示异面直线所成角的相交直线所成的角,再构造一个包含该角的三角形,解三角形即可以完成;直线和平面所成的角则要首先找到直线在平面内的射影,一般来讲也可以通过解直角三角形的办法得到,其角度范围是[]0,90??;二面角在求解的过程当中一般要先找到二面角的平面角,三种方法:①作棱的垂面和两个半平面相交;②过棱上任意一点分别于两个半平面内引棱的垂线;③根据三垂线定理或逆定理.另外还可以根据面积射影定理cos S S θ'=?得到.式中S '表示射影多边形的面积,S 表示原多边形的面积,θ即为所求二面角. 例1 直线OA 和平面α斜交于一点O ,OB 是OA 在α内的射影,OC 是平面α内过O 点的任一直线,设,,.AOC AOB BOC αβγ∠=∠=∠=,求证:cos cos cos αβγ=?. 分析:如图,设射线OA 任意一点A ,过A 作 AB α⊥于点B ,又作BC OC ⊥于点C ,连 接AC .有: cos ,cos ,cos ;OC OB OC OA OA OB αβγ=== 所以,cos cos cos αβγ=?. 评注:①上述结论经常会结合以下课本例题一起使用.过平面内一个角的顶点作平面的一条斜线,如果斜线和角的两边所成的角相等,那么这条斜线在平面内的射影一定会落在这个角的角平分线上.利用全等三角形即可证明结论成立. ②从上述等式的三项可以看出cos α值最小,于是可得结论:平面的一条斜线和平面内经过斜足的所有直线所成的角中,斜线与它的射影所成的角最小. 例、(1997年全国联赛一试)如图,正四面体ABCD 中,E 在棱AB 上, α O C B A E A

立体几何空间直角坐标系解法典型例题

立体几何坐标解法典型例题 1、如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 2、如图,在Rt AOB △中, π6 OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (1)求证:平面COD ⊥平面AOB ; (2)求异面直线AO 与CD 所成角的大小. A B C D

3.(2010·上海松江区模拟)设在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,E ,F 依次为C 1C ,BC 的中点. (1)求异面直线A 1B 、EF 所成角θ的正弦值; (2)求点B 1到平面AEF 的距离. 4.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. D B C A S

5.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB → 的值为( ) A .0 B .1 C .0或1 D .任意实数 5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值等于( ) A.32 B.1010 C.35 D.25 <二>选择题辨析 [注]: ①两条异面直线在同一平面内射影一定是相交的两条直线.(×) ②直线在平面外,指的位置关系:平行或相交 ③若直线a 、b 异面,a 平行于平面,b 与的关系是相交、平行、在平面内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×) ⑥在同一平面内的射影长相等,则斜线长相等.(×) ⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面. [注]: ①直线与平面内一条直线平行,则∥. (×) ②直线与平面内一条直线相交,则与平面相交. (×) ③若直线与平面平行,则内必存在无数条直线与平行. (√) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×) ⑤平行于同一直线的两个平面平行.(×) ⑥平行于同一个平面的两直线平行.(×) ⑦直线与平面、所成角相等,则∥.(×) [注]: ①垂直于同一平面....的两个平面平行.(×) ②垂直于同一直线的两个平面平行.(√) ③垂直于同一平面的两条直线平行.(√) αααb a ,b a =b a ,a αa αa αa αa ααa l αβαβ

高中数学立体几何习题精选精讲

例谈立体几何中的转化 立体几何中所蕴含的数学思想方法非常丰富,其中最重要的就是转化的思想方法,它贯穿立体几何教学的始终,在立体几何教学中占有很重要的地位。立体几何中的转化主要是空间问题向平面问题的转化,具体从以下几个方面入手。 1、 位置关系的转化 线线、线面、面面平行与垂直的位置关系是立体几何中的一个重点内容,其精髓就是平行与垂直位置关系的相互依存及转化,平行与垂直问题不但能横向转化,而且可以纵向转化。 例1 已知三棱锥S -ABC 中,∠ABC =90°,侧棱SA ⊥底面ABC ,点A 在棱SB 和SC 上的射影分别是点E 、F 。求证EF ⊥SC 。 分析:∵A 、E 、F 三点不共线,AF ⊥SC , ∴要证EF ⊥SC ,只要证SC ⊥平面AEF , 只要证SC ⊥AE (如图1)。 又∵BC ⊥AB ,BC ⊥SA ,∴BC ⊥平面SAB , ∴SB 是SC 在平面SAB 上的射影。 ∴只要证AE ⊥SB (已知),∴EF ⊥SC 。 例2 设矩形ABCD ,E 、F 分别为AB 、CD 的中点,以EF 为棱将矩形 折成二面角A -EF -C 1(如图-2)。求证:平面AB 1E ∥平面C 1DF 。 分析一(纵向转化): ∵AE ∥DF ,AE ?平面C 1DF , ∴ AE ∥平面C 1DF.同理,B 1E ∥平面C 1DF , 又AE ∩B 1E =E ,∴平面AB 1E ∥平面C 1DF 。 分析二(横向转化): ∵AE ∥EF ,B 1E ⊥EF ,且AE ∩B 1E =E ,∴EF ⊥平面C 1DF 。 同理,EF ⊥平面C 1DF 。平面AB1E ∥平面C 1DF 。 2、降维转化 由三维空间向二维平面转化,是研究立体几何问题的重要数学方法之一。降维转化的目的是把空间的基本元素转化到某一 个平面中去,用学生们比较熟悉的平面几何知识来解决问题。如线面垂直的判定定理的证明就是转化为三角形全等的平面问题。 例3 如图-3,在直三棱柱ABC —A 1B 1C 1中,AB=BC= 2,BB 1=2, ο90=∠ABC ,E 、F 分别为AA 1、C 1B 1的中点,沿棱柱的表面从E 到F 两点的最短路径的长度为 . 22 3 分析:这类问题通常都是将几何体的侧面展开成平面图形来解决。 又如异面直线所成的角、线面角、面面角的计算,最终都是转化为平面上两 相交直线成的角来进行的。 B E A D1 C F C 1 图-2 D 图-1 E S F C B A 图-3

2013高中数学精讲精练第七章立体几何初步

2013高中数学精讲精练第七章立体几何初步

2013高中数学精讲精练第七章立体几何初步 【知识图解】 【方法点拨】 立体几何研究的是现实空间,认识空间图形,可以培养学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力。空间的元素是点、线、面、体,对于线线、线面、面面的位置关系着重研究它们之间的平行与垂直关系,几何体着重研究棱柱、棱锥和球。在复习时我们要以下几点: 1.注意提高空间想象能力。在复习过程中要注意:将文字语言转化为图形,并明确已知元素之间的位置关系及度量关系;借助图形来反映并思考未知的空间形状与位置关系;能从复杂图形中逻辑的分析出基本图形和位置关系,并借助直观感觉展开联想与猜想,进行推理与计算。 2.归纳总结,分门别类。从知识上可以分为:平面的基本性质、线线、线面、面面的平行与垂直、空间中角与距离的计算。 3.抓主线,攻重点。针对一些重点内容加以训练,平行和垂直是

(2)如图,E 、F 分别为正方体的面ADD 1A 1、面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的射影可能是图的 ②③ (要求:把可能的图的序号都. 填上). 【范例导析】 例1.下列命题中,假命题是 (1)(3) 。(选出所有可能的答案) (1)有两个面互相平行,其余各个面都是平行四边形的多面体是棱柱 (2)四棱锥的四个侧面都可以是直角三角形 (3)有两个面互相平行,其余各面都是梯形的多面体是棱台 (4)若一个几何体的三视图都是矩形,则这个几何体是长方体 分析:准确理解几何体的定义,真正把握几何体的结构特征是解决概念题的关键。 (1)中将两个斜棱柱对接在一起就是反例。(3)中是不是棱台还要看侧棱的延长线是否交于一点。 例2.C B A '''?是正△ABC 的斜二测画法的水平放置图形的直观图,若 C B A ' ''?的面积为3,那么△ABC 的面积为_______________。 解析:62。

高中数学空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B C D .23 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =. 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 13OA AB AO AB ?=u u u u r u u u r u u u r u u u r . 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D -- M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

高中数学立体几何经典常考题型

高中数学立体几何经典常考题型 题型一:空间点、线、面的位置关系及空间角的计算 空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解. 【例1】如图,在△ABC 中,∠ABC = π4 ,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平 面ABC ,2DA =2AO =PO ,且DA ∥PO. (1)求证:平面PBD ⊥平面COD ; (2)求直线PD 与平面BDC 所成角的正弦值. (1)证明 ∵OB =OC ,又∵∠ABC =π 4, ∴∠OCB =π4,∴∠BOC =π 2. ∴CO ⊥AB. 又PO ⊥平面ABC , OC ?平面ABC ,∴PO ⊥OC. 又∵PO ,AB ?平面PAB ,PO ∩AB =O , ∴CO ⊥平面PAB ,即CO ⊥平面PDB. 又CO ?平面COD , ∴平面PDB ⊥平面COD. (2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示. 设OA =1,则PO =OB =OC =2,DA =1. 则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).

设平面BDC 的一个法向量为n =(x ,y ,z ), ∴?????n ·BC →=0,n · BD →=0,∴???2x -2y =0,-3y +z =0, 令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=????? ? ??PD →·n |PD →||n | =??????1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=222 11. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标. 第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角. 第六步:反思回顾.查看关键点、易错点和答题规范. 【变式训练】 如图所示,在多面体A 1B 1D 1-DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C . (2)求二面角E -A 1D -B 1的余弦值. (1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ?面A 1DE ,B 1C ?面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ?面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.

必修二立体几何典型例题

必修二立体几何典型例题 【知识要点】 1.空间直线和平面的位置关系: (1)空间两条直线: ①有公共点:相交,记作:a∩b=A,其中特殊位置关系:两直线垂直相交. ②无公共点:平行或异面. 平行,记作:a∥b. 异面中特殊位置关系:异面垂直. (2)空间直线与平面: ①有公共点:直线在平面内或直线与平面相交. 直线在平面内,记作:a?α . 直线与平面相交,记作:a∩α =A,其中特殊位置关系:直线与平面垂直相交. ②无公共点:直线与平面平行,记作:a∥α . (3)空间两个平面: ①有公共点:相交,记作:α ∩β =l,其中特殊位置关系:两平面垂直相交. ②无公共点:平行,记作:α ∥β . 2.空间作为推理依据的公理和定理: (1)四个公理与等角定理: 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面. 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线互相平行. 定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补. (2)空间中线面平行、垂直的性质与判定定理: ①判定定理: 如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行. 如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行. 如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直. 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. ②性质定理: 如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线与该直线平行. 如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.垂直于同一个平面的两条直线平行. 如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直. (3)我们把上述判定定理与性质定理进行整理,得到下面的位置关系图: 【例题分析】

空间几何体复习知识与经典例题练习

第一章 空间几何体 一、知识点归纳 (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其 中,这条定直线称为旋转体的轴。 (2)柱,锥,台,球的结构特征 1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。 1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何 体叫圆柱. 2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。 3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台. 4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球. (二)空间几何体的三视图与直观图 1.投影:区分中心投影与平行投影。平行投影分为正投影和斜投影。 2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则: 长对齐、高对齐、宽相等 3.直观图:直观图通常是在平行投影下画出的空间图形。 4.斜二测法:在坐标系'''x o y 中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。 (三)空间几何体的表面积与体积 1、空间几何体的表面积 ①棱柱、棱锥的表面积: 各个面面积之和 ②圆柱的表面积 ③圆锥的表面积2S rl r ππ=+ ④圆台的表面积 22S rl r Rl R ππππ=+++ ⑤球的表面积24S R π= ⑥扇形的面积公式21 3602 n R S lr π==扇形(其中l 表示弧长,r 表示半径) 2、空间几何体的体积 ①柱体的体积 V S h =?底 ②锥体的体积 13 V S h =?底 ③台体的体积 1 )3 V S S h =+ +?下上( ④球体的体积 343 V R π= 222r rl S ππ+=

高中数学必修2空间几何典型例题和讲解

数学必修2第一章 一、学习目标: 1. 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。 2. 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图与直观图,能识别上述三视图与直观图所表示的立体模型。 二、重点、难点: 重点:空间几何体中的棱柱、棱锥、棱台、圆柱、圆锥、圆台、球的结构特征;空间几何体的三视图与直观图的画法。 难点:柱、锥、台、球结构特征的概括;识别三视图所表示的空间几何体;几何体的侧面展开图,计算组合体的表面积和体积。 三、考点分析: 三视图是新课程改革中出现的内容,是新课程高考的热点之一,几乎每年都考,同学们要予以足够的重视。在高考中经常以选择、填空题的形式出现,属于基础或中档题,但也要关注三视图以提供信息为目的,出现在解答题中。这部分知识主要考查学生的空间想象能力与计算求解能力。 1. 多面体 棱柱、棱锥、棱台 2. 旋转体 圆柱、圆锥、圆台、球 3. 三视图 (1)正视图、侧视图、俯视图 (2)三种视图间的关系 4. 直观图 水平放置的平面图形的直观图的斜二测画法 表中S表示面积,c′、c分别表示上、下底面的周长,h表示高度,h′表示斜高,l表示侧棱长。 5. 旋转体的面积和体积公式

名称 圆柱 圆锥 圆台 球 S 侧 2πrl πrl π(r 1+r 2)l S 全 2πr(l+r) πr(l+r) π(r 1+r 2)l+π(r 21+r 22) 4πR 2 V πr 2h (即πr 2l ) 31πr 2h 31 πh(r 21+r 1r 2+r 22) 3 4πR 3 表中l 、h 分别表示母线长、高,r 表示圆柱、圆锥与球冠的底面 半径,r 1、r 2分别表示圆台上、下底面的半径,R 表示半径。 知识点一 柱、锥、台、球的结构特征 例1. 下列叙述正确的是( ) ①有两个面平行,其余各面都是平行四边形的几何体叫棱柱。 ②两个底面平行且相似,其余各面都是梯形的多面体是棱台。 ③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台。 ④直角三角形绕其一条边旋转得到的旋转体是圆锥。 ⑤直角梯形以它的一条垂直于两底边的腰所在的直线为旋转轴,其余三边旋转形成的面围成的旋转体叫圆台。 ⑥用一个平面去截圆锥,底面和截面之间的部分是圆台。 ⑦通过圆锥侧面上一点,有无数条母线。 ⑧以半圆的直径所在直线为旋转轴,半圆面旋转一周形成球体。 A. ①②③④⑤⑥⑧ B. ①③④⑦⑧ C. ①②⑤⑧ D. ⑤ 思路分析:遇到概念判断问题,一定要在理解透彻相关概念的基础上,仔细分析,如果判断它是正确的,必须能紧扣定义,而不是模棱两可地去作判断;如果判断它是错误的,只需找到一个反例即可。 解答过程:如图所示,由图(1)可知①是错误的;由图(2)可知②③是错误的;由图(3)可知④是错误的;由图(4)可知⑥是错误的。 因为通过圆锥侧面上一点和圆锥的顶点只能连一条射线,所以“通过圆锥侧面上一点,有无数条母线。”是错误的,即⑦是不正确的。 以半圆的直径所在直线为旋转轴,半圆旋转一周形成的应该是球面,半圆面旋转一周形成的才是球体。所以⑧是错误的。 所以只有⑤是正确的。故应选D 。 解题后的思考:在作判断的时候没有严格的根据定义进行多角度分析,而是只抓住定义中的某一点就作出判断,容易导致错误。 知识点二 组合体

空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A. 13 D.2 3 1、解:C.由题意知三棱锥1A ABC -为正四面体,设棱长为a , 则1AB =, 棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =、 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 1OA AB AO AB ?=u u u u r u u u r u u u r u u u r 、 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D -- M N ,分别就是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1、答案: 1 6 、设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----, 1111(,,(,,)222222 M N ---,

高中数学立体几何讲义一

平面与空间直线 (Ⅰ)、平面的基本性质及其推论 图形 符号语言 文字语言(读法) 点A 在直线a 上。 点A 不在直线a 上。 点A 在平面α内。 点A 不在平面α内。 直线a 、b 交于A 点。 直线a 在平面α内。 直线a 与平面α无公共点。 直线a 与平面α交于点A 。 平面α、β相交于直线l 。 α(平面α外的直线)表示α或a A α=。 2、平面的基本性质 公理1: 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内 推理模式: A A B B ααα∈? ??∈? 。 如图示: 应用:是判定直线是否在平面内的依据,也是检验平面的方法。 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。 推理模式:A l A αα ββ∈? ?=?∈? 且A l ∈且l 唯一如图示: 应用:①确定两相交平面的交线位置;②判定点在直线上。 例1.如图,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面 α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线. 解:∵AB ∥CD , B A α D C B A

∴AB ,CD 确定一个平面β. 又∵AB α=E ,AB ?β,∴E ∈α,E ∈β, 即E 为平面α与β的一个公共点. 同理可证F ,G ,H 均为平面α与β的公共点. ∵两个平面有公共点,它们有且只有一条通过公共点的公共直线, ∴E ,F ,G ,H 四点必定共线. 说明:在立体几何的问题中,证明若干点共线时,常运用公理2,即先证明这些点都是某二平面的公共点,而后得出这些点都在二平面的交线上的结论. 例2.如图,已知平面α,β,且α β=l .设梯形ABCD 中,AD ∥BC ,且AB ?α,CD ?β,求证:AB ,CD ,l 共点(相交于一点). 证明 ∵梯形ABCD 中,AD ∥BC , ∴AB ,CD 是梯形ABCD 的两条腰. ∴ AB ,CD 必定相交于一点, 设AB CD =M . 又∵AB ?α,CD ?β,∴M ∈α,且M ∈β.∴M ∈α β. 又∵α β=l ,∴M ∈l , 即AB ,CD ,l 共点. 说明:证明多条直线共点时,一般要应用公理2,这与证明多点共线是一样的. 公理3: 经过不在同一条直线上的三点,有且只有一个平面。 推理模式:,, A B C 不共线?存在唯一的平面α,使得,,A B C α∈。 应用:①确定平面;②证明两个平面重合 。 例3.已知:a ,b ,c ,d 是不共点且两两相交的四条直线,求证:a ,b ,c ,d 共面. 证明 1o 若当四条直线中有三条相交于一点,不妨设a ,b ,c 相交于一点A , 但A ?d ,如图1. ∴直线d 和A 确定一个平面α. 又设直线d 与a ,b ,c 分别相交于E ,F ,G , 则A ,E ,F ,G ∈α. ∵A ,E ∈α,A ,E ∈a ,∴a ?α. 同理可证b ?α,c ?α. ∴a ,b ,c ,d 在同一平面α内. 2o 当四条直线中任何三条都不共点时,如图2. ∵这四条直线两两相交,则设相交直线a ,b 确定一个平面α. 设直线c 与a ,b 分别交于点H ,K ,则H ,K ∈α. 又 H ,K ∈c ,∴c ?α. 同理可证d ?α. ∴a ,b ,c ,d 四条直线在同一平面α内. α b a d c G F E A 图1 a b c d α H K 图2 α D C B A l 例2 β M

高中空间立体几何典型例题

1 如图所示,正方体ABCD —A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E =C 1F . 求证:EF ∥平面ABCD . 证明 方法一 分别过E ,F 作EM ⊥AB 于M ,FN ⊥BC 于N ,连接MN . ∵BB 1⊥平面ABCD , ∴BB 1⊥AB ,BB 1⊥BC , ∴EM ∥BB 1,FN ∥BB 1, ∴EM ∥FN . 又∵B 1E =C 1F ,∴EM =FN , 故四边形MNFE 是平行四边形,∴EF ∥MN . 又MN ?平面ABCD ,EF ?平面ABCD , 所以EF ∥平面ABCD . 方法二 过E 作EG ∥AB 交BB 1于G , 连接GF ,则B B G B A B E B 1111=, ∵B 1E =C 1F ,B 1A =C 1B , ∴B B G B B C E C 1111=,∴FG ∥B 1C 1∥BC , 又EG ∩FG =G ,AB ∩BC =B , ∴平面EFG ∥平面ABCD ,而EF ?平面EFG , ∴EF ∥平面ABCD . 2 已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC 的重心.

(1)求证:平面G 1G 2G 3∥平面ABC ; (2)求S △3 21G G G ∶S △ABC . (1)证明 如图所示,连接PG 1、PG 2、PG 3并延长分别与边AB 、BC 、AC 交于点D 、E 、F , 连接DE 、EF 、FD ,则有PG 1∶PD =2∶3, PG 2∶PE =2∶3,∴G 1G 2∥DE . 又G 1G 2不在平面ABC 内, ∴G 1G 2∥平面ABC .同理G 2G 3∥平面ABC . 又因为G 1G 2∩G 2G 3=G 2, ∴平面G 1G 2G 3∥平面ABC . (2)解 由(1)知PE PG PD PG 21 =32,∴G 1G 2=32DE . 又DE =21AC ,∴G 1G 2=31 AC . 同理G 2G 3=31AB ,G 1G 3=3 1BC . ∴△G 1G 2G 3∽△CAB ,其相似比为1∶3, ∴S △3 21G G G ∶S △ABC =1∶9. 3如图所示,已知S 是正三角形ABC 所在平面外的一点,且SA =SB =SC ,SG 为△SAB 上的高, D 、 E 、 F 分别是AC 、BC 、SC 的中点,试判断S G 与平面DEF 的位置关系,并给予证明. 解 SG ∥平面DEF ,证明如下: 方法一 连接CG 交DE 于点H , 如图所示.

空间立体几何典型例题分析讲解.doc

空间立体几何 考试范围: xxx ;考试时间: 100 分钟;命题人: xxx 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第 I 卷(选择题) 请点击修改第 I 卷的文字说明 评卷人 得分 一、选择题(题型注释) 1.如图,已知球 O 是棱长为 1 的正方体 ABCB-A 1B 1C 1D 1 的内切球,则平面 ACD 1截球 O 的 截面面积为( ) ( A ) ( B ) (C ) 6 3 6 ( D ) 6 3 3 2.一个几何体的三视图如图所示 , 且其侧视图是一个等边三角形 , 则这个几何的体积为 ( ) (A ) (4 ) 3 (B )(4 ) 3 3 (C ) (8 ) 3 (D ) (8 ) 3 3 6 3.某几何体的三视图及尺寸如图示,则该几何体的表面积为( )

2 2 2 侧视图 主视图 俯视图 A.3 B.10 C.6 D. 4 4.某简单几何体的三视图如图所示,其正视图.侧视图.俯视图均为直角三角形,面积分别是 1, 2, 4,则这个几何体的体积为 ( ) 正视图侧视图 俯 视 图 A.4 B. 8 C. 4 D. 8 3 3 5 .一个棱锥的三视图如图,则该棱锥的全面积(单位: c m2)为() (A) 48+12(C) 36+122 2 (B) 48+24 (D) 36+24 2 2 6.一个几何体的三视图如图所示,则该几何体的体积为()

1 1 1 1 1 正(主)视图 侧 俯视图 A . 2 B . 1 C . 2 D . 1 3 3 7.已知正方形 APP 1 2 P 3 的边长为 4,点 B, C 位边 PP 12, P 2 P 3 的中点,沿 AB, BC , CA 折 叠成一个三棱锥 P ABC (使 P 1 , P 2 , P 3 重合于点 P ),则三棱锥 P ABC 的外接球表 面积为 A. 24 B. 12 C. 8 D. 4 8.已知球的表面积为 20 ,球面上有 A 、 B 、 C 三点,如果 AB=AC=2,BC=2 3 ,则球 心 到平面 ABC 的距离为 ( ) A . 1 B . 2 C . 3 D . 2 4 S i 9.设四面体的四个面的面积分别为S ,S 2 ,S ,S ,它们的最大值为 S ,记 i 1 , 1 3 4 S 则有 ( ) A .2< ≤4 B .3< ≤4 C .< ≤ D .< ≤ 10.若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的 A 1 倍 B 2 倍 C 2 倍 D 2 倍 2 4 11.在 ABC 中, AB 2, BC 1.5, ABC 1200(如下图),若将 ABC 绕直线 BC 旋转一周,则所形成的旋转体的体积是 A. 9 B. 7 C. 5 D. 3 2 2 2 2 12 .在三棱锥 A BCD 中 , AC 底面 BCD , BD DC , BD DC , AC a ,

相关文档
最新文档