纳米二氧化钛薄膜光催化降解性能的研究

TiO2光催化原理及应用

TiO2光催化原理及应用 一.前言 在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界围每年大概有200 万人由于水传播疾病死亡。水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。包括我国在世界围广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。这些缺点限制了它们的应用围,迫切需要发展一种高效、绿色、简单的净化水技术。 自然界中,植物、藻类和某些细菌能在太的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。这种光合作用是一系列复杂代反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。光化学反应的过程与植物的光合作用很相似。光化学反应一般可以分为直接光解和间接光解两类。直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。 半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。与传统技术相比,光催化技术具有两个最显著的特征:第一,光催化是低温深度反应技术。光催化氧化可在室温下将水、空气和土壤中有机污染物等完全氧化二氧化碳和水等产物。第二,光催化可利用紫外光或太作为光源来活化光催化剂,驱动氧化-还原反应,达到净化目的,对净化受无机重金属离子污染的废水及回收贵金属亦有显著效果。 二.TiO2的性质及光催化原理 许多半导体材料(如TiO2,ZnO,Fe2O3,ZnS,CdS等)具有合适的能带结构可以作为光催化剂。但是,由于某些化合物本身具有一定的毒性,而且有的半导体在光照下不稳定,存在不同程度的光腐蚀现象。在众多半导体光催化材料中,TiO2以其化学性质稳定、氧化-还原性强、抗腐蚀、无毒及成本低而成为目前最为广泛使用的半导体光催化剂。 TiO2属于一种n型半导体材料,它有三种晶型——锐钛矿相、金红石相和板钛矿相,板

tio2光催化技术

纳米TiO2光催化剂安全环保性能研究 作者:北京化工大学徐瑞芬教授 纳米科技的发展为人类治理环境开辟了 一条行之有效的途径,我们可以合理利用 自然光资源,通过纳米TiO2半导体的光催化效应,在材料内部由吸收光激发电子,产生电子-空穴对,即光生载流子,迅速迁移到材料表面,激活材料表面吸附氧和水分,产生活性氢氧自由基(oOH)和超氧阴离子自由基(O2·-),从而转化为一种具有安全化学能的活性物质,起到矿化降解环境污染物和抑菌杀菌的作用。 纳米TiO2光催化应用技术工艺简单、成本低廉,利用自然光即可催化分解细菌和污染物,具有高催化活性、良好的化学稳定性和热稳定性、无二次污染、无刺激性、安全无毒等特点,且能长期有益于生态自然环境,是最具有开发前景的绿色环保催化剂之一。 本研究在用亚稳态氯化法合成纳米二氧化钛的技术基础上,根据光催化功能高效性的需要,进行掺杂和表面处理,制成特有的在室内自然光和黑暗区微光也能显著发挥光催化作用的纳米二氧化钛,将其作为功能粉体材料,复合到塑料、皮革、纤维、涂料等材料中,研制成无污染、无毒害的纳米TiO2光催化绿色复合材料,充分发挥抗菌、降解有机污染物、除臭、自净化的功能,这类环保型功能材料实施方便、应用性强,能实用到生活空间的多种场合,发挥其多功能效应,成为我们生活环境中起长期净化作用的环保材料。 2 纳米TiO2光催化剂对环境的净化功能研究 2.1室内环境的净化 随着建筑材料中各种添加物的使用,室内装饰材料和各种家用化学物质的使用,室内空气污染的程度越来越严重。调查表明,室内空气污染物浓度高于室外,甚至高于工业区。据有关部门测试,现代居室内空气中挥发性有机化合物高达300多种,其中对人体容易造成伤害、甚至致癌的就有20多种,极大地威胁着人类的健康生活。随着人们健康和环保意识的增强,人们对具有光催化净化室内外空气、抗菌杀毒等功能性绿色环保材料的需求日益迫切,纳米TiO2光催化剂的出现为环境净化材料的发展开辟了一片新天地,也为人们对健康环境需求的解决提供了有效的途径。

Ag@AgBr/Ni薄膜光催化降解RhB及其机理研究

第45卷第1期2017年1月 硅酸盐学报Vol. 45,No. 1 January,2017 JOURNAL OF THE CHINESE CERAMIC SOCIETY https://www.360docs.net/doc/fd3341861.html, DOI:10.14062/j.issn.0454-5648.2017.01.07 Ag@AgBr/Ni薄膜光催化降解罗丹明B及其机理 李爱昌,赵娣,张苹苹,孙莹莹 (廊坊师范学院化学与材料科学学院,河北廊坊 065000) 摘要:用电化学方法制备Ag@AgBr/Ni表面等离子体薄膜光催化剂。对薄膜的表面形貌、晶相结构、光吸收特性进行了表征,用罗丹明B (RhB)作为模拟污染物对薄膜的光催化活性和稳定性进行了测定,探索了薄膜光催化降解机理。结果表明:Ag@AgBr/Ni的优化制备工艺为:电解液中NaBr和(NH4)3PO4的浓度分别为0.3和1mol/L,pH值为8.0,电解电流密度为2.5mA/cm2,时间为18min,并在140℃后处理1h。优化工艺下制备的Ag@AgBr/Ni薄膜表面是由附着少量Ag粒子的AgBr 纳米晶构成。薄膜表现出明显的表面等离子共振效应、优异的光催化活性和良好的稳定性:可见光辐照15 min,薄膜光催化RhB的降解率(81.0%)是Ag3PO4/Ni薄膜的6倍,是P25 TiO2/ITO薄膜的14倍;光照射1h对RhB的降解率为99.5%,循环使用4次后的降解率仍为91.6%。薄膜的高光催化活性是由AgBr晶体在(111)晶面产生择优取向和薄膜表面纳米Ag发生等离子体共振效应引起的。讨论了可见光下薄膜光催化降解RhB的反应机理。 关键词:银@溴化银/镍薄膜;表面等离子体共振;电化学制备;光催化; 反应机理 中图分类号:TQ174; O643 文献标志码:A 文章编号:0454–5648(2017)01–0046–08 网络出版时间:2016–12–12 09:52:14 网络出版地址:https://www.360docs.net/doc/fd3341861.html,/kcms/detail/11.2310.TQ.20161212.0952.024.html Photocatalytic Degradation of Rhodamine B by Ag@AgBr/Ni Thin Film and Reaction Mechanism LI Aichang, ZHAO Di, ZHANG Pingping, SUN Yingying (Faculty of Chemistry and Material Science, Langfang Teachers College, Langfang 065000, Hebei, China) Abstract: Ag@AgBr/Ni thin films were prepared by an electrochemical method. The surface morphology, phase structure, optical characteristics of the thin films were characterized. The photocatalytic properties and stability were evaluated with Rhodamine B (RhB) as a model compound. The mechanism of photocatalytic degradation of the films was investigated. The results show that the Ag@AgBr/Ni thin films can be obtained under the optimized preparation conditions (i.e., concentrations of NaBr and (NH4)3PO4 in the electrolyte of 0.3 and 1mol/L, respectively, the pH value of the electrolyte of 8, the electrolytic current density of 2.5mA/cm2, the deposition time of 18min, and the films heat treated at 140℃ for 1 h). The Ag@AgBr/Ni thin films prepared under the optimized preparation conditions are composed of AgBr micron-sized particles coated with Ag nanocrystals, which have a significant surface plasmon resonance (SPR) effect. The thin film exhibits a maximum photocatalytic activity and a superior photocatalytic stability to decompose RhB. The photodegradation rate of the Ag@AgBr/Ni thin films under the visible light irradiation 15min (i.e., 81.0%) is 6 times greater than that of Ag3PO4/Ni thin film, and 14 times greater than that of P25 TiO2/ITO thin film. The degradation rate of the Ag@AgBr/Ni thin film for RhB under the visible light irradiation for 1h is 99.5%, and is still 91.6% after reused for four times. The improvement in photocatalytic activity for Ag@AgBr/Ni thin films could be mainly attributed to the AgBr crystal (111) preferred orientation and the plasmon resonance effect of Ag nanocrystals on the AgBr particles. In addition, the photodegradation mechanism of the films for RhB under the visible light was also discussed. Keywords: silver @ silver bromide/nickel thin film; surface plasmon resonance; electrochemical preparation; photocatalysis; reaction mechanism 半导体光催化技术能够有效去除水中难以降解的有机污染物,在环境净化特别是污水处理中具有明显的优势和广阔的应用前景[1–3]。在各种光催化材料中,TiO2以其优异的化学稳定性、抗光蚀性 收稿日期:2016–09–12。修订日期:2016–10–10。 基金项目:廊坊师范学院重点科学研究项目(LSLZ201501)资助。第一作者:李爱昌(1957—),男,教授。Received date:2016–09–12. Revised date: 2016–10–10. First author: LI Aichang(1957–), male, Professor. E-mail: aichangli@https://www.360docs.net/doc/fd3341861.html,

(完整版)纳米抗菌材料国内外研究现状

1.国内外研究现状和发展趋势 (1)多尺度杂化纳米抗菌材料的国内外研究进展 Ag+、Zn2+和Cu2+等金属离子具有抗菌活性,且毒性小、安全性高而被广泛用作抗菌剂使用。但是,由于其存在易变色、抗菌谱窄、长效性差、耐热性和稳定性不好等缺点而成为其进一步发展的障碍。相比而言,纳米银、纳米金、纳米铜、纳米氧化锌等纳米材料则可以在一定程度上克服这些问题。例如纳米银,在抗菌长效性和变色性方面均比银离子(多孔纳米材料负载银离子)抗菌剂有显著改善,而且其毒性也更低(Adv. Mater. 2010);关于其抗菌机理,被认为是纳米银释放出银离子而产生抗菌效果(Chem. Mater 2010,ACS Nano 2010)。纳米金也有类似的效果(Adv. Mater. Res.2012),尽管活性比纳米银稍差,但其对耐药菌株表现出良好的抗菌活性(Biomaterials 2012)。铜系抗菌材料可阻止“超级细菌”(NDM-1)的传播(Lancet Infec.Dis. 2010)。活性氧化物是使用时间最长、使用面最广泛的一类长效抗菌剂,其中氧化锌是典型代表,特别是近年来随着纳米技术的发展,一系列低维结构氧化锌的出现,为氧化锌系抗菌材料提供了极大的发展空间,由于其良好的安全性,氧化锌甚至可用于牙科等口腔材料(Wiley Znter Sci.,2010)。本项目相关课题组多年的研究发现,ZnO的形貌差异、结构缺陷和极化率等都会影响其抗菌活性(Phys. Chem. Chem. Phys. 2008);锌离子还可以与多种成分杂化,产生协同抗菌活性而提高其抗菌性能(Chin. J. Chem. 2008, J. Rare Earths 2011)。 利用杂化纳米材料结构耦合所带来的协同作用提高纳米材料的抗菌活性是近年来的研究热点。例如:纳米铜与石墨烯杂化体系中存在显著的协同抗菌作用(ACS Nano2010)。用络氨酸辅助制备的Ag-ZnO杂化纳米材料,表现出良好的抗菌和光催化性能(Nanotechnology 2008);但是Ag的沉积量过大,催化活性反而有所降低(J. Hazard. Mater. 2011)。以壳聚糖为媒质,通过静电作用合成得到均匀的ZnO/Ag纳米杂化结构,结果显示,ZnO/Ag纳米杂化结构比单独的ZnO 和单独纳米Ag的抗菌活性都高,表现出明显的协同抗菌作用(RSC Adv. 2012)。Akhavan等用直接等离子体增强化学气相沉积技术,结合溶胶-凝胶技术把锐钛

基于光催化原理的完全可降解塑料的研究

基于光催化原理的完全可降解塑 料的研究 Solid-phase Photocatalytic Degradation of Polyethylene Plastics (申请清华大学理学硕士学位论文) 培 养 单 位 :化学系 学 科 :分析化学 研 究 生 :李宗威 指 导 教 师 : 朱永法教授 : 二○○五年五月

基于光催化原理的完全可降解塑料的研究李宗威

关于学位论文使用授权的说明 本人完全了解清华大学有关保留、使用学位论文的规定,即: 清华大学拥有在著作权法规定范围内学位论文的使用权,其中包括:(1)已获学位的研究生必须按学校规定提交学位论文,学校可以采用影印、缩印或其他复制手段保存研究生上交的学位论文;(2)为教学和科研目的,学校可以将公开的学位论文作为资料在图书馆、资料室等场所供校内师生阅读,或在校园网上供校内师生浏览部分内容;(3)根据《中华人民共和国学位条例暂行实施办法》,向国家图书馆报送可以公开的学位论文。 本人保证遵守上述规定。 (保密的论文在解密后遵守此规定) 作者签名:导师签名: 日期:日期:

摘 要 塑料是当今世界最广泛应用的材料之一,由于其自身的难降解性,废弃塑料造成的“白色污染”已经成为世界性的环境难题。然而,目前的处理方法还存在塑料不能完全降解,具有二次污染,成本高等难以克服的缺点。 本论文研究的是基于光催化原理的完全可降解塑料。利用纳米薄膜的制备技术,制备了分别添加催化剂TiO2、TiO2/CuPc、TiO2/C60以及油酸表面修饰的TiO2的聚乙烯薄膜。对各种复合薄膜进行光催化降解研究,利用SEM、FT-IR、XPS等技术研究薄膜在光照前后的表面形貌、结构、成分的变化。利用色谱技术定性、定量跟踪测定反应体系中生成的挥发性有机物和最终产物CO2。通过UV-Vis、SPS等分析手段对催化剂的光电性质进行研究,提出了光催化反应机理。结果表明,添加了催化剂的复合薄膜表现出了高度增强的光降解性能,降解速率和降解程度均远远高于纯的聚乙烯薄膜。复合薄膜的光催化降解反应主要产物是CO2和H2O,降解过程是环境友好的。光催化反应起始于聚乙烯与催化剂的界面处,催化剂表面产生的活性氧物种扩散进入聚乙烯骨架内使其降解。影响复合薄膜的光催化降解性能的因素有催化剂的添加量、催化剂分散性能、催化剂光电性质等。PE-(TiO2/CuPc)和PE-(OA/TiO2)复合薄膜的降解性能要优于PE-TiO2复合薄膜,前者是由于提高了催化剂的电子空穴对分离,抑制载流子复合以提高量子效率;后者是由于改善了催化剂的分散性能,催化剂与聚乙烯的有效接触面积增加,从而提高了催化剂的光催化效率。由于C60的光敏化作用,TiO2/C60催化剂的光响应范围扩展到了可见光区域,因而PE-(TiO2/C60)薄膜具有可见光降解性能。 本论文的工作表明添加了适宜催化剂的聚乙烯塑料在自然环境中就表现出很好的降解性能,具有很强的应用前景。 关键词:光催化降解聚乙烯TiO2CuPc C60 I

偶联剂改性对纳米二氧化钛光催化活性的影响杨平霍瑞亭

卿胜兰等:高三阶光学非线性CdS–SiO2复合薄膜的电化学溶胶–凝胶制备及表征? 409 ?第41卷第3期 DOI:10.7521/j.issn.0454–5648.2013.03.23 偶联剂改性对纳米二氧化钛光催化活性的影响 杨平,霍瑞亭 (天津工业大学纺织学院,天津 300387) 摘要:为了提高纳米TiO2颗粒分散性和光催化活性,用醇解法在纳米TiO2颗粒表面接枝硅烷偶联剂和钛酸酯偶联剂。通过Fourier变换红外光谱表征样品表面的官能团,同时测定接枝改性样品表面的羟基数、亲油化度和在有机介质中的分散性能及光催化活性。结果表明:部分偶联剂分子以化学键的形式接枝在纳米TiO2颗粒表面。改性后的纳米TiO2颗粒呈亲油性,表面羟基数急剧减少,亲油化度显著提高。改性纳米TiO2颗粒在有机介质中团聚现象减小,分散稳定性提高,分散后的平均粒径最小可达50nm。改性纳米TiO2颗粒在有机介质中的光催化活性得到显著提高。 关键词:纳米二氧化钛;偶联剂;光催化活性 中图分类号:O643;X7 文献标志码:A 文章编号:0454–5648(2013)03–0409–07 Influence of Coupling Agents Modification on Photocatalysis Activity of Nano-TiO2 YANG Ping,HUO Ruiting (School of Textile, Tianjin Polyester University, Tianjin 300387, China) Abstract: In order to improve the dispersion stability and photocatalysis activity of TiO2 nano-particles, silane coupling agent and titanium coupling agent groups were grafted on the surface of TiO2 nano-particles by an alcolholysis method. The surface bonding property of the TiO2 nano-particles was characterized by Fourier transform infrared spectroscopy. The hydrophobic, content of surface hydroxyl, dispersion stability in the organic solvent and photocatalysis activity of the nano-particles were determined. The results indicate that the molecular of coupling agent are bonded on the surface of TiO2 nano-particles by chemical bonds. The TiO2 nano-particles were lipophilic, the content of surface hydroxyl decreased and the lipophilic degree improved. Also, the aggregation of the modified TiO2 nano-particles with the average size of 50nm was reduced and the dispersion stability was improved, leading to the enhancement of the photocatalysis activity. Key words: nano-titanium dioxide; coupling agent; photocatalysis activity 自Fujishima等[1]发现了锐钛矿型TiO2在光照条件下,可诱导水分子电离出氢氧自由基(?OH)以来,TiO2在光催化方面的研究与应用受到广泛的关注。纳米TiO2因其具有良好的抗紫外、抗菌除臭、催化降解等性能,并且TiO2无毒,具有较好的化学稳定性且廉价易得,因此广泛应用于建筑涂料、功能纺织品、防晒化妆品、污水处理等领域[2–5]。然而,纳米TiO2颗粒比表面积大、表面能高,在液相介质中受粒子间van der Waals力的作用而发生团聚;此外,纳米TiO2具有超亲水性,其在有机相溶液中不易分散,并且分散稳定性差,这成为纳米TiO2使用过程中亟待解决的问题。 提高纳米粉体在有机相介质中的分散性的常用方法是有机表面改性法,主要有聚合物包覆法[6–7]、表面活性剂法[8–9]和偶联剂法[10–11]等,其中,使用偶联剂对粉体进行改性的方法较为普遍。偶联剂是一种由亲水的极性基团和亲油的非极性基团两部分组成的双亲化合物,其分子中的亲水基团与纳米粉体表面的羟基反应,使纳米颗粒表面亲水性转变成亲油性,从而达到改善纳米粉体与有机相液体的相容 收稿日期:2012–10–21。修订日期:2012–11–22。第一作者:杨平(1986—),男,硕士研究生。 通信作者:霍瑞亭(1964—),男,博士,教授。Received date:2012–10–21. Revised date: 2012–11–22. First author: YANG Ping (1986–), male, Master candidate. E-mail: yahoo-xp@https://www.360docs.net/doc/fd3341861.html, Correspondent author: HUO Ruiting (1964–), male, Ph.D., Professor. E-mail: huort@https://www.360docs.net/doc/fd3341861.html, 第41卷第3期2013年3月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 41,No. 3 March,2013

Tio2的光催化性能研究

TiO2的光催化性能研究 摘要:主要介绍二氧化钛的光催化原理,基本途径,以及光催化剂的结构特性和影响因素,还讲述了关于二氧化钛的光催化应用。 关键字:二氧化钛光催化光催化剂 二氧化钛,化学式为TiO2,俗称钛白粉,多用于光触媒、化妆品,能靠紫外线消毒及杀菌,现正广泛开发,将来有机会成为新工业。二氧化钛可由金红石用酸分解提取,或由四氯化钛分解得到。二氧化钛性质稳定,大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑;它又具有锌白一样的持久性。二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。 1 TiO2的基本性质 1.1结晶特征及物理常数 物性:金红石型锐钛型 结晶系:四方晶系四方晶系 相对密度:3.9~4.2 3.8~4.1 折射率: 2.76 2.55 莫氏硬度:6-7 5.5-6 电容率:114 31 熔点:1858 高温时转变为金红石型 晶格常数:A轴0.458,c轴0.795 A轴0.378,c轴0.949 线膨胀系数:25℃/℃ a轴:7.19X10-6 2.88?10-6 c轴:9.94X10-6 6.44?10-6 热导率: 1.809?10-3 吸油度:16~48 18~30 着色强度:1650~1900 1200~1300 颗粒大小:0.2~0.3 0.3 功函数:5.58eV

2TiO2的光催化作用 2.1光催化作用原理 二氧化钛是一种N型半导体材料,锐钛矿相TiO2的禁带宽度Eg =3.2eV,由半导体的光吸收阈值λg与禁带宽度E g的关系式: λg (nm)=1240/Eg(eV) 可知:当波长为387nm的入射光照射到TiO2上时,价带中的电子就会发生跃迁,形成电子-空穴对,光生电子具有较强的还原性,光生空穴具有较强的氧化性。在半导体悬浮水溶液中,半导体材料的费米能级会倾斜而在界面上形成一个空间电荷层即肖特基势垒,在这一势垒电场作用下,光生电子与空穴分离并迁移到粒子表面的不同位置,还原和氧化吸附在表面上的物质。除了上述变化途径外,光激发产生的电子、空穴也可能在半导体内部或表面复合,如果没有适当的电子、空穴俘获剂,储备的能量在几个毫秒内就会通过复合而消耗掉,而如果选用适当的俘获剂或表面空位来俘获电子或空穴,复合就会受到抑制,随后的氧化还原反应就会发生。在水溶液中,光生电子的俘获剂主要是吸附在半导体表面上的氧,氧俘获电子形成O2-;OH-、水分子及有机物本身均可充当光生空穴俘获剂,空穴则将吸附在TiO2表面的OH-和H2O氧化成具有高度活性的?OH自由基,活泼的?OH 自由基可以将许多难以降解的有机物氧化为CO2和H2O。其反应机理如下: TiO2 + hv → h+ + e- h+ + e- →热量 H2O → H+ + OH- h+ + OH- → HO? h+ + H2O + O2- → HO?+ H+ + O2- h+ + H2O → HO?+ H+ e- + O2→ O2- O2- + H+ → HO2? 2HO2?→ O2 + H2O2 H2O2 + O2- → HO?+ OH- + O2 H2O2 + hv → 2HO? 从上述光催化作用原理分析可知道,光催化过程实际上同时包含氧化反应和还原反应两个过程,分别反映出光生空穴和光生电子的反应性能,同时二者又相互影响,相互制约。

纳米TiO2 再生纤维素复合薄膜的制备及光催化性能

纳米TiO2 /再生纤维素复合薄膜的制备及光催化性能 摘要 在1-烯丙基-3-甲基咪唑氯室温离子液体中, 将纳米TiO2粉末与纤维素浆粕进行溶液共混, 所得纤维素用水再生后, 经过超临界CO2干燥处理, 制备了不同TiO2含量的纳米TiO2/再生纤维素复合膜。通过扫描电子显微镜(SEM) 、X 射线衍射(XRD) 、傅立叶变换红外光谱( FTIR) 对所得薄膜的形貌、结构进行表征。利用PCC-2 型光催化活性检测仪测试薄膜在紫外光下光催化降解亚甲基蓝的能力, 评价薄膜的光催化活性。讨论了纳米TiO2 含量、超临界CO2干燥和真空干燥对薄膜性能的影响。结果表明: 复合膜的光催化活性达到所用TiO2粉体的90 %; 经超临界CO2干燥处理所得复合膜的光催化活性明显高于真空干燥所得复合膜的活性; 纳米复合膜的光催化活性随TiO2含量的增加先升高后降低, 含量为5 %时光催化活性最高。 关键词: 纳米TiO2 ; 再生纤维素; 复合膜; 室温离子液体; 光催化活性 前言 纤维素作为自然界中丰富的天然高分子材料,将它功能化或改性后可以用于纺织品、高吸水性材料、吸油剂、重金属吸附剂、催化剂载体和生物医用材料等领域, 其开发和利用受到广泛关注[1 ]。利用大自然中存在的纤维素, 加入一定的化学药剂使其溶解得到纺丝浴, 所纺出的丝即为再生纤维素。但纤维素的高聚合度以及分子间和分子内大量氢键的相互作用, 使其在常见的溶剂中很难溶解, 而可溶的溶剂或多或少存在着不稳定、有毒害、不易回收、价格昂贵等缺点, 这成为纤维素改性和功能化研究中的难题。室温离子液体作为一种室温下熔融的盐, 是一类具有很好应用前景的“环境友好型”溶剂, 以其特有的良溶剂性、强极性、不挥发、不氧化、对水和空气稳定等优良性能而被广泛应用[2 ]。最近, Swatloski 等[ 3 ] 发现1-丁基-3-甲基咪唑氯代( [BMIM]Cl) 离子液体可以溶解纤维素,为纤维素溶剂体系的开发研究开辟了一个新领域。本实验室合成了一种可溶解纤维素的新型室温离子液体———1-烯丙基-3-甲基咪唑氯( [AMIM]Cl) , 该液体在溶解纤维素方面具有很多优点, 为纤维素的功能化和纺丝提供了优良的溶剂[4 ]。超临界CO2流体因其价格低廉、无毒、不易燃烧、较低的临界温度和临界压力等优点而成为研究的主要超临界流体之一。在其临界点附近CO2的溶剂性能随温度、压力的变化特别敏感, 这就使得超临界CO2的性质可以通过改变温度和压力得到“调节”, 因此, 超临界CO2被广泛用于聚合物结构功能材料合成和加工[5 ,6 ] 。J in 等[7 ]分别利用冷冻干燥法和溶剂交换法制备了多孔网状结构的再生纤维素材料, 由于这种材料具有大的比表面积和独特的孔结构, 可以用于物质分离和催化剂载体。利用纳米TiO2的优异性能研发具有屏蔽紫外线、抗菌防臭和光催化自清洁等功能的纺织品是当前纺织领域的研究热点。Meilert 等[ 8 ]对棉纤维进行改性处理, 制备了具有光催化自清洁性能的纳米TiO2/棉纤维复合材料。Kemell等[9 ]利用原子层沉积技术, 以纤维素为基体制备了具有光催化活性的纳米TiO2/纤维素复合材料。本文作者尝试直接使用商品纳米TiO2粉体, 在[AMIM]Cl 中利用溶液共混法对纤维素进行功能化改性, 以期得到具有光催化功能的多孔或网状结构纳米TiO2/再生纤维素复合膜。这在功能纺织品开发和光催化材料等方面具有潜在的应用价值。

纳米材料的发展及研究现状

纳米材料的发展及研究现状 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。 纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。 纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单

元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。1研究形状和趋势纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基

第二节 二氧化钛光催化影响因素

第二节TiO2光催化影响因素 目前主要针对TiO 2 进行增加表面缺陷结构、减小颗粒大小增大比表面、贵金 属表面沉积、过渡金属离子掺杂、半导体复合、表面光敏化、以及改变TiO 2 形貌和晶型等方法来提高其量子效率以及扩展其光谱响应范围。研制具有高量子产率,能被太阳光谱中的可见光激发的高效半导体光催化剂,探索适合的光催化剂负载技术,是当前解决光催化技术中难题的重点和热点。 表面缺陷结构 通过俘获载流子可以明显压制光生电子与空穴的再结合。在制备胶体和多晶光催化是和制备化学催化剂一样,一般很难制得理想的半导体晶格。在制备过程中,无论是半导体表面还是体内都会出现一些不规则结构,这种不规结构和表面电子态密切相关,可是后者在能量上不同于半导体主体能带上的。这样的电子态就会起到俘获载流子的阱的作用,从而有助于压制电子和空穴的再结合[7]。 颗粒大小与比表面积 研究表明,溶液中催化剂粒子颗粒越小,单位质量的粒子数就越多,体系的比表面积大,越有利于光催化反应在表面进行,因而反应速率和效率也越高。催化剂粒径的尺寸和比表面积的一一对应直接影响着二氧化钛光催化活性的高低。粒径越小,单位质量的粒子数目越多,比表面积也就越大。比表面积的大小是决定反应物的吸附量和活性点多少的重要因素。比表面积越大,吸附反应物的能力就越强,单位面积上的活性点也就越多,发生反应的几率也随之增大,从而提高其光催化活性。当粒子大小与第一激子的德布罗意半径大小相当,即在1-10 nm 时,量子尺寸效应就会变得明显,成为量子化粒子,导带和价带变成分立的能级,能隙变宽,生成光生电子和空穴能量更高,具有更高的氧化、还原能力,而粒径减小,可以减小电子和空穴的复合几率,提到光产率。再者,粒径尺寸的量子化使得光生电子和空穴获得更大的迁移速率,并伴随着比表面积的加大,也有利于提高光催化反应效率。 贵金属沉积的影响 电中性的并相互分开的贵金属的Fermi能级小于TiO 2 的费米(Fermi)能级, 即贵金属内部与TiO 2相应的能级上,电子密度小于TiO 2 导带的电子密度,因此 当两种材料连接在一起时,载流子重新分布,电子就会不断地从TiO 2 向贵金属

tio2光催化技术

纳米TiO2光催化剂安全环保性能研究 作者:北京化工大学 徐瑞芬教授 纳米科技的发展为人类治理环境开辟了 一条行之有效的途径,我们可以合理利用自然光资源,通过纳米TiO2半导体的光催化效应,在材料内部由吸收光激发电子,产生电子-空穴对,即光生载流子,迅速迁移到材料表面,激活材料表面吸附氧和水分,产生活性氢氧自由基(oOH )和超氧阴离子自由基(O2·-),从而转化为一种具有安全化学能的活性物质,起到矿化降解环境污染物和抑菌杀菌的作用。 纳米TiO2光催化应用技术工艺简单、成本低廉,利用自然光即可催化分解细菌和污染物,具有高催化活性、良好的化学稳定性和热稳定性、无二次污染、无刺激性、安全无毒等特点,且能长期有益于生态自然环境,是最具有开发前景的绿色环保催化剂之一。 本研究在用亚稳态氯化法合成纳米二氧化钛的技术基础上,根据光催化功能高效性的需要,进行掺杂和表面处理,制成特有的在室内自然光和黑暗区微光也能显著发挥光催化作用的纳米二氧化钛,将其作为功能粉体材料,复合到塑料、皮革、纤维、涂料等材料中,研制成无污染、无毒害的纳米TiO2光催化绿色复合材料,充分发挥抗菌、降解有机污染物、除臭、自净化的功能,这类环保型功能材料实施方便、应用性强,能实用到生活空间的多种场合,发挥其多功能效应,成为我们生活环境中起长期净化作用的环保材料。 2 纳米TiO2光催化剂对环境的净化功能研究 2.1室内环境的净化 随着建筑材料中各种添加物的使用,室内装饰材料和各种家用化学物质的使用,室内空气污染的程度越来越严重。调查表明,室内空气污染物浓度高于室外,甚至高于工业区。据有关部门测试,现代居室内空气中挥发性有机化合物高达300多种,其中对人体容易造成伤害、甚至致癌的就有20多种,极大地威胁着人类的健康生活。随着人们健康和环保意识的增强,人们对具有光催化净化室内外空气、抗菌杀毒等功能性绿色环保材料的需求日益迫切,纳米TiO2光催化剂的出现为环境净化材料的发展开辟了一片新天地,也为人们对健康环境需求的解决提供了有效的途径。

二氧化钛光催化原理

TiO2光催化氧化机理 TiO2属于一种n型半导体材料,它的禁带宽度为3.2ev(锐钛矿),当它受到波长小于或等于387.5nm的光(紫外光)照射时,价带的电子就会获得光子的能量而越前至导带,形成光生电子(e-);而价带中则相应地形成光生空穴(h+),如图1-1所示。 如果把分散在溶液中的每一颗TiO2粒子近似看成是小型短路的光电化学电池,则光电效应应产生的光生电子和空穴在电场的作用下分别迁移到TiO2表面不同的位置。TiO2表面的光生电子e-易被水中溶解氧等氧化性物质所捕获,而空穴h+则可氧化吸附于TiO2表面的有机物或先把吸附在TiO2表面的OH-和H2O分子氧化成·OH自由基,·OH 自由基的氧化能力是水体中存在的氧化剂中最强的,能氧化水中绝大部分的有机物及无机污染 物,将其矿化为无机小分子、CO 2和H 2 O等无害物质。 反应过程如下: 反应过程如下: TiO2+ hv → h+ +e- (3) h+ +e-→热能(4) h+ + OH- →·OH (5) h+ + H2O →·OH + H+(6) e- +O2→ O2- (7)O2 + H+ → HO2·(8) 2 H2O·→ O2 + H2O2(9) H2O2+ O2 →·OH + H+ + O2(10) ·OH + dye →···→ CO2 + H2O (11) H+ + dye→···→ CO2 + H2O (12) 由机理反应可知,TiO2光催化降解有机物,实质上是一种自由基反应。 Ti02光催化氧化的影响因素 1、试剂的制备方法 常用Ti02光催化剂制备方法有溶胶一凝胶法、沉淀法、水解法等。不同方法制得的Ti02粉末的粒径不同,其光催化效果也不同。同时在制备过程中有无复合,有无掺杂等对光降解也有影响。Ti02的制备方法在许多文献上都有详细的报道,这里就不再赘述。

纳米薄膜光催化降解研究进展(DOC)

纳米薄膜光催化降解研究进展 摘要:光催化降解,简单地说就是利用某种材料作光催化剂,以实现对某些有毒害物质的分解。近年来,人们认识到用半导体氧化物作光催化剂,具有高效节能、清洁无毒、无二次污染和工艺简单等优点,同时具有超强的氧化能力,在光解水制氢气和降解有机污染物等方面有着广阔的应用前景。本文综述了最近几年TiO2薄膜以及其改性薄膜的研究,简要介绍了其他光催化薄膜ZnO、WO3的研究进展。 关键词:纳米二氧化钛;纳米氧化锌;纳米氧化钨;制备;光催化 1 引言 近些年来,环境污染日益严重,成为威胁人类生存的一个严重问题。为了解决这一难题,人们展开了治理污染、保护环境的科学研究。以半导体为催化剂,利用太阳光催化氧化有毒污染物质作为一种有效的治理污染方法,成为环境保护科学研究的一个热点。1972 年,Fujishima 和Honda发现光电池中光照射的TiO2,可持续发生水的氧化还原反应产生H2,1976年,Frank 将半导体材料用于降解污染物。从此,以TiO2为代表的半导体光催化剂开始发展起来。但TiO2的光催化效率不高,而且光响应范围在紫外光区,太阳光利用率低,制约了它的发展。对于TiO2的改性研究,提高其催化效率,扩大它的光响应范围,是近些年研究的主要方向。另外,其他的光催化材料如ZnO、WO3等的研究也取得了很大进展。本文回顾了最近几年TiO2以及其改性的研究进展和其他光催化材料ZnO、WO3的研究进展。 2 TiO2的研究 世界上能作为光触媒的材料众多,包括TiO2、ZnO、SnO2、ZrO2、CdS等多种氧化物硫化物半导体,其中TiO2价格便宜,化学稳定性好,无毒且原料易得,强抗光腐蚀性和光催化性,因此成为目前使用较为广泛的半导体光阳极材料。由于纳米TiO2神奇的光催化功能,应用范围不断扩大,而TiO2薄膜的制备是实现其实用价值的基础[1]。 2.1金属钛片的阳极氧化方法 阳极氧化方法是以金属钛片为阳极,Pt片或石墨为对电极,在一定电压下,含氟电解液中氧生成TiO2纳米管阵列的方法[2]。人们通过观察氧化过程中电流随时间的变化曲线,普遍认为钛的氧化过程与铝的氧化过程相似,可分为阻挡层的形成过程、纳米孔的形成过程以及多孔的生长过程。首先,在基板的表面生成大量致密氧化物,体积膨胀产生的内应力使阻挡层的表面出现微观起伏;在起伏的凹陷处,由于电场强度增加而加大了电解液对凹陷处氧化膜的溶解,产生了原始的纳米孔胚胎并为电流的通过提供了通道,使得氧化过程得以继续;而后在腐蚀介质(电解液)与电场的共同作用下,孔道底部向基体延伸。阳极氧化生成的TiO2是无定型的,需进行后续的晶化处理。阳极氧化法能制备牢固负载于基体上的TiO2纳米管阵列,这有助于构筑纳米结构及其在纳米器件上的应用。

相关文档
最新文档