高层建筑结构抗震性能化设计与分析

高层建筑结构抗震性能化设计与分析
高层建筑结构抗震性能化设计与分析

高层建筑结构抗震性能化设计与分析

发表时间:2016-06-13T10:38:53.533Z 来源:《工程建设标准化》2016年4月总第209期作者:马俊[导读] 由于城市用地的紧张,人口聚集,为满足人民的工作生活的需求,城市中的高层建筑的数目也在不断的增多。

马俊

(云南省设计院集团,云南,昆明,650000)【摘要】我国处于一个地震多发带,随着高层建筑越来越多,而对于高层建筑的抗震分析尤为重要,随着技术的进步,对高层建筑结构的抗震概念的完善,计算机分析手段进一步增强,对高层建筑结构提出基于性能化设计的目标,通过分析做到精细化设计。【关键词】高层建筑;性能化设计;性能目标前言

由于城市用地的紧张,人口聚集,为满足人民的工作生活的需求,城市中的高层建筑的数目也在不断的增多。而我国处于地震多发地带,对高层建筑的抗震设计就显得尤为重要。

1、高层建筑抗震概念设计对于高层建筑的抗震设计应首先注重对结构的一个整体概念的考虑。首先对结构方案的确定要借助一个概念性的思考来确定。延性结构、超静定结构和可以实现多道防线的结构,是抗震结构设计的基本要求。首先结构必须是超静定的结构,防止因结构自由度过少,地震中一个节点破坏而导致整个结构倒塌。其次,高层建筑还应当设置多道防线,每道防线由不同受力和变形能力的超静定抗侧力结构组成。

目前高层建筑中应用广泛的结构体系有:框架结构、剪力墙结构、框架-剪力墙结构、框架-核心筒结构、筒中筒结构等。其中框架-剪力墙(筒体)结构、混合框架-核心筒结构等均属于两种变形性能不同的抗侧力单元共同工作。概念设计还体现在对结构整体薄弱环节的把握。现行规范中对结构不规则性的判断即是对结构薄弱环节的判断,结构的规则项即代表其对结构带来相应的不利影响,不规则项越多,则结构的不利因素也越多,这些不利因素都将导致结构在相应部位出现局部损坏坏,进而导致结构破坏。在把握住结构的概念性设计后,还应采用正确有效的,更能反映实际的的计算方法。而结构设计可以说是没有唯一解的。

2、按现行的抗震规范的设计方法我国现行的结构规范采用的是以概率理论为基础的结构极限状态设计。按“三水准两阶段”的设防目标和设计方法,三水准即“小震不坏、中震可修、大震不倒”的设防目标;两阶段的设计方法即:第一阶段主要是结构在小震下按弹性反应谱理论得到的地震作用验算结构的承载力和变形,并通过内力调整和采取抗震构造措施以满足第二、三水准的要求;第二阶段是对结构在大震下的弹塑性变形验算,并对薄弱部位做防倒塌控制。但对于超限高层和复杂高层,采用以上方法不能完全满足结构的可靠度要求,还需进行性能化设计。

3、基于性能化的结构抗震设计3.1 结构性能目标基于性能化的设计是对现行规范三水准两阶段方法的一种延续。基于性能化得设计基本步骤可分为:一、性能目标的选用;二、实施目标的计算、采取的措施;三、对目标的评价,并通过专家论证。根据《抗规》的规定,选定性能目标应对应于不同地震动水准的预期损坏状态或使用功能不低于“三水准”的要求。再根据所选定的性能目标对结构或其关键部位选定性能设计指标。结构性能水准一般可分为:完好、基本完好、轻微损坏、中等破坏、严重破坏和倒塌。设计时根据具体的设防烈度、场地条件、薄弱部位等条件,按所设定的目标在不同水准地震作用下进行设计。

3.2 结构计算基于性能化设计的结构计算分析应做到准确、详尽,应能反映结构在不同地震作用下各部位的不同状态,以便分析其是否能够达到所设定的目标。在小震时仍可采用反应谱法,按全楼弹性控制结构的承载力和变形。值得注意的的是,按地震影响系数计算的剪重比小于限值时,说明结构总体刚度不足,需调整。在中震和大震作用下,应采用时程分析法进行补充验算,时程分析按弹性时程分析和弹塑性时程分析进行计算,有效分析结构出现塑性铰的部位和连续倒塌的可能性,并对关键部位和薄弱部位有针对性的加强,做到结构可控,构件按预先设定的目标进行设计。时程分析法又可分静里弹塑性时程分析和动力弹塑性时程分析。静力弹塑性时程分析法也叫PUSH-OVER法,是按一定的加载方式对结构施加单调递增的水平荷载,一旦有构件屈服即修改其刚度,进而修改结构总刚度矩阵,再进行下一步计算,依次循环,逐步将结构推至一个给定的目标位移来研究分析结构的非线性性能。动力弹塑性时程分析法是将确定的加速度-时间曲线划分为很小的时段,然后逐步积分,求出体系在各个时刻的位移、速度和加速度,进而计算出结构的内力。这种方法能够计算出地震反应全过程各个时段结构的内力和变形状态,给出结构构件开裂和屈服的顺序,揭示出结构应力和塑性变形集中的部位,从而判断结构的屈服机制、薄弱环节及可能的破坏形式,这是一种相对完善和精确的计算方法。对于超限高层和复杂高层还应采用两种以上的力学模型进行比较分析。

4、结合目前实际的设计方法由于采用基于性能化的抗震分析设计较为复杂,针对所有项目进行全楼性能化设计目前还很难做到,所以根据不同项目的实际情况确定其设计方法。对于重要建筑、超限高层、复杂高层或一些采用新技术、新材料的项目,除采用常规计算分析外,对薄弱层、加强层、重要构件设定性能水准,补充分析,强调这些部位在大震作用下的承载能力和延性,不至于由于关键构件的失效而导致整个结构的破坏。而对于其他次要构件构件满足“三水准”的要求即可。这样,既满足结构抗震的整体安全性,又相对简化设计的操作性,也相对复合结构的经济性。

5、总结

高层建筑结构抗震设计

浅谈高层建筑结构抗震设计 摘要:近年来,我国建筑业的发展突飞猛进,各地高楼林立。在高层建筑中,抗震设计是一项不容忽视的关键任务,因此,本文主要就高层建筑结构抗震设计进行了分析。 关键词:高层建筑抗震设计应用 中图分类号:[tu208.3]文献标识码:a 文章编号: abstract: in recent years, the development of construction industry in our country by leaps and bounds, tall buildings all over the line. in the high-rise building, the seismic design is a not allow to ignore the key task, therefore, this article mainly aseismic design of high-rise building are analyzed. keywords: high building aseismic design applications 随着我国经济的蓬勃发展,各地的高层建筑纷纷拔地而起,速度惊人。高层建筑结构的抗震设计一直以来就是建筑设计和施工的重点,要使工程建设真正能够减轻甚至避免地震带来的危害,把握好抗震设计是关键。因此,我们首先要对建筑地震进行必要的理论分析,然后进行抗震设计,从而来探索高层建筑的抗震设计理念和方法,以采取必要的抗震措施。 一、高层建筑结构抗震设计的理论和规范 我国《建筑抗震设计规范》(gb50011-2001)对各类建筑结构的

超限高层建筑结构基于性能抗震设计

超限高层建筑结构基于性能抗震设计的研究超限高层建筑的结构抗震设计中,采用基于性能要求的抗震设计方法,有助于提高高层建筑工程抗震设计的可靠性、避免抗震安全隐患,同时又促进高层建筑技术发展。 阐述基于性能抗震设计方法与常规抗震设计方法的比较;针对超限高层建筑结构的特点,提出结构的抗震性能目标、性能水准以及实施性能设计的主要方法,包括性能水准判别准则、性能目标的选用及结构计算和试验要求。文中还列举了应用性能设计理念和要求的部分工程实例。 基于性能的抗震设计理念和方法,自世纪年代在美国兴起,并日益得到工程界的关注。美国的ATC40(1996年)、FEMA237(1997年)提出了既有建筑评定、加固中使用多重性能目标的建议,并提供了设计方法。美国加州结构工程师协会SEAO于1995年提出了新建房屋基于性能的抗震设计。1998年和2000年,美国FEMA又发布了几个有关基于性能的抗震设计文件。2003年美国ICC(Internation-alCode Council)发布了《建筑物及设施的性能规范》,其内容广泛,涉及房屋的建筑、结构、非结构及设施的正常使用性能、遭遇各种灾害时(火、风、地震等)的性能施工过程及长期使用性能,该规范对基于性能设计方法的重要准则作了明确的规定。日本开始将抗震性能设计的思想正式列入设计和加固标准中,并已由建筑研究所(BRI)提出个性能标准。欧洲混凝土协会(CRB)于2003 年出版了“钢筋混凝土建筑结构基于位移的抗震设计”报告。澳大利亚则在基于性能设计的整体框架以及建筑防火性能设计等方面做了许多研究,提出了相应的建筑规范(BCA1996)。我国在基于性能的抗震设计方面也发表了不少论文加以研究和探讨。基于性能的抗震设计是建筑结构抗震设计的一个新的重要发展,它的特点是:使抗震设计从宏观定性的目标向具体量化的多重目标过渡,业主(设计者)可选择所需的性能目标;抗震设计中更强调实施性能目标的深入分析和论证,有利于建筑结构的创新,经过论证(包括试验)可以采用现行标准规范中还未规定的新的结构体系、新技术、新材料;有利于针对不同设防烈度、场地条件及建筑的重要性采用不同的性能目标和抗震措施。这一方法是一种发展方向。目前,这一方法在工程中还未得到广泛的应用,还有一些问题有待研究改进,诸如:地震作用的不确定性、结构分析模型和参数的选用存在不少经验因素、模型试验和震害

关于对建筑结构抗震设计分析84

关于对建筑结构抗震设计分析 摘要:我国是地震多发国,破坏性地震造成建筑结构、桥梁结构的损坏,人员 的伤亡及经济损失都是巨大的。随着社会的不断向前发展,各门学科的交叉发展,使得隔震、消能减震等抗震技术的运用走上一个新的阶段。任何结构所受的载荷 都具有不同程度的动载荷性质,有不少结构主要在振动环境下工作。通过对隔震 装置的动力学分析,发现自振振动在结构的地震反应中经常占有主导地位,不能 够忽略。建筑结构抗震设计中的概念设计是对建筑抗震设计的宏观控制。本文根 据地震的特点,从建筑物的场地选择、平立面形式、结构布置、延性等方面论述 了建筑结构设计中概念设计的内容。 关键词:建筑结构;抗震;设计 一、建筑结构抗震概念设计概述 我国结构计算理论经历了经验估算、容许应力法、破损阶段计算、极限状态 计算,到目前普遍采用的概率极限状态理论等阶段。现行的《建筑结构可靠度设 计统一标准》(GB50068-2001)则采用以概率理论为基础的结构极限状态设计准则,以使建筑结构的设计得以符合技术先进、经济合理、安全适用的原则。概率 极限状态设计法更科学、更合理,但该法在运算过程中还带有一定程度近似,只 能视作近似概率法,并且仅凭极限状态设计也很难估算建筑物的真正承载力。事 实上,建筑物是一个空间结构,各种构件以相当复杂的方式共同工作,并非是脱 离结构体系的单独构件。 地震具有随机性、不确定性和复杂性,要准确预测建筑物所遭遇地震的特性 和参数,目前是很难做到的。而建筑物本身又是一个庞大复杂的系统,在遭受地 震作用后其破坏机理和破坏过程十分复杂。且在结构分析方面,由于未能充分考 虑结构的空间作用、非弹性性质、材料时效、阻尼变化等多种因素,也存在着不 确定性。因此,结构工程抗震问题不能完全依赖“计算设计”解决。应立足于工程 抗震基本理论及长期工程抗震经验总结的工程抗震基本概念,从“概念设计”的角 度着眼于结构的总体地震反应,按照结构的破坏过程,灵活运用抗震设计准则, 全面合理地解决结构设计中的基本问题,既注意总体布置上的大原则,又顾及到 关键部位的细节构造,从根本上提高结构的抗震能力。 二、抗震概念设计的基本原则与要求 1.选择有利场地。 造成建筑物震害的原因是多方面的,场地条件是其中之一。由于场地因素引 起的震害往往特别严重,而且有些情况仅仅依靠工程措施来弥补是很困难的。因此,选择工程场址时,应进行详细勘察,搞清地形、地质情况,挑选对建筑抗震 有利的地段,尽可能避开对建筑抗震不利的地段,任何情况下均不得在抗震危险 地段上建造可能引起人员伤亡或较大经济损失的建筑物。 对建筑抗震有利的地段,一般是指位于开阔平坦地带的坚硬场地土或密实均 匀中硬场地土。建造于这类场地上的建筑一般不会发生由于地基失效导致的震害,从而可从根本上减轻地震对建筑物的影响。对建筑抗震不利的地段,就地形而言,一般是指条状突出的山嘴、孤立的山包和山梁的顶部、高差较大的台地边缘、非 岩质的陡坡、河岸和边坡的边缘;就场地土质而言,一般是指软弱土、易液化土、故河道、断层破碎带、暗埋塘浜沟谷或半挖半填地基等,以及在平面分布上成因、岩性、状态明显不均匀的地段。 2.采用合理的建筑平立面。

高层建筑结构与抗震模拟试卷

高层建筑结构与抗震模拟试卷 一、填空题(每空1分,共20分) 1、高层建筑结构平面不规则分为、、 几种类型。 2、高层建筑基础类型有、和。 3、框架结构近似手算方法包括、、 。 4、高层建筑框架结构柱反弯点高度应考虑、 、的影响。 5、隔震又称为“主动防震”,常用的隔震形式包括、、、 。 6、对于钢筋混凝土框架和抗震墙之类的杆系构件,抗震设计的优化准则是四强四弱,包括: 、、、。 二、单项选择题(每题2分,共10分) 1、高层建筑采用()限制来保证结构满足舒适度要求。 A、层间位移 B、顶点最大位移 C、最大位移与层高比值 D、顶点最大加速度 2、高层建筑地震作用计算宜采用()。 A、底部剪力法 B、振型分解反应谱法 C、弹性时程分析法 D、弹塑性时程分析法 3、当框架结构梁与柱线刚度之比超过()时,反弯点计算假定满足工程设计精度要求。 A、2 B、3 C、4 D、5 4、联肢剪力墙计算宜选用()分析方法。 A、材料力学分析法 B、连续化方法 C、壁式框架分析法 D、有限元法 5、框剪结构侧移曲线为()。 A、弯曲型 B、剪切型 C、弯剪型 D、复合型 三、多项选择题(将正确的答案的编号填入括弧中,完全选对才得分,否则不得分,每小题4分,共20分) 1、抗震设防结构布置原则() A、合理设置沉降缝 B、合理选择结构体系 C、足够的变形能力 D、增大自重 E、增加基础埋深 2、框架梁最不利内力组合有() A、端区-M max,+M max,V max B、端区M max及对应N,V C、中间+M max D、中间M max及对应N,V E、端区N max及对应M,V 3、双肢和多肢剪力墙内力和位移计算中假定() A、连梁反弯点在跨中 B、各墙肢刚度接近 C、考虑D值修正 D、墙肢应考虑轴向变形影响 E、考虑反弯点修正 4、高层建筑结构整体抗震性能取决于() A、构件的强度和变形能力 B、结构的刚度

几种建筑结构抗震性能比较与分析

几种建筑结构抗震性能比较与分析 1.前言 地震是一种突发性的自然灾害,至今可预报性仍然很低。强烈地震发生时会使建筑物产生沿竖直和水平方向的加速度,给建筑局部构件以严重破坏,严重时甚至造成整体结构的倒塌,并造成人身和财产的巨大损失。由于建筑物依附在地球表面,建筑物受地震破坏的方式主要受地震波的传播方式影响。通常,地震对建筑物的破坏有三种方式:上下颠簸、水平摇摆、左右扭转。多数时候,还是三种方式的复合作用。地震波传播方式有纵波、横波、面波,由于地球表层岩性的复杂性,传播过程中也会出现像激流中“漩涡”的复杂情况。 我国属地震多发国家,需要考虑抗震设防的地域辽阔。自五十年代开始,在国际抗震理论的推动下,我国逐渐形成了自己的抗震设防的特色。经过充分的研究和大量的实践,在2001年新修订的抗震设计规范(gb5001122001)中,建筑物的抗震能力较之前的规范可提高10 %以上,其技术含量达到国际先进水平。但是受经济实力的限制,我国建筑安全可靠度的设置仍低于欧美等发达国家。因此研究结构的抗震性能在我国具有充分的必要性。 2.几种建筑结构的特点及抗震分析 目前,我国主要民用建筑的结构主要有三类:底框结构、砌体结构和混凝土结构 2.1底框结构

底框结构能够在建筑物底层形成大空间,是我国现阶段经济条件下特有的一种结构。这种结构多用于临街的住宅、办公楼等建筑在底层设置商店、饭店、邮局或银行等。这样,房屋的上面几层为纵横墙较多的砌体承重结构,而底层则因使用要求上需要大空间的原因采用框架结构形成了砖混底层框架结构。但这种结构形式在抗震性能方面却是不利的:上部砖混结构部分纵横墙较密,不仅重量大, 抗侧移刚度也大,而底框部分抗侧移刚度则较小,形成“上刚下柔” 的结构体系。地震位移反应相对集中于底层,引起底层的严重破坏,从而危及整个房屋的安全。 底框结构建筑因其在使用上的方便性和灵活性而被广泛采用,但是从抗震角度来看它是一种不合理的结构形式。这类结构的体系亦较混乱,由于经济原因,大多尽可能少用混凝土框架,导致框架和砌体承重墙抗侧力构件的承载力和变形能力很不协调,平面抗侧刚度极不均匀心。这类结构的震害现象主要表现为底部框架由于变形集中而破坏,或上部砌体结构破坏。其具体表现为: 1.由于刚度突变,底框和上部砖混的结合处成为底框结构的薄弱环节。底框结构刚度大,上部砖混结构破坏;砖混结构刚度大,底框结构破坏。 2.在底框结构建筑中,如果底部为多层框架结构的混合结构,则由于底层设置抗震墙,底框的坍塌减少;而上部砖混的坍塌增多。 3.圈梁和构造柱的设置对上部结构的抗震起到关键作用

浅析高层建筑结构设计的中震设计概念

浅析高层建筑结构设计的中震设计概念 发表时间:2016-06-27T14:51:54.553Z 来源:《基层建设》2016年5期作者:隆凡梅 [导读] 本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 摘要:对于普通建筑物的结构抗震设计,目前我国是以小震为设计基础,中震和大震则是通过地震力的调整系数和各种抗震构造措施来保证的。但是对于较重要的、超高的、超限的建筑物则需要进行中震和大震的抗震计算。本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 关键词:中震设计概念;地震影响系数;荷载 《建筑抗震设计规范》(GB50011-2001 2008年版)(下简称《抗规》)中对中震设计仅在总则中提到“小震不坏、中震可修、大震不倒”的抗震设防目标,但没有给出中震设计的设计要求和判断标准。 首先我们了解一下现行《抗规》存在几个问题: 1规范未对结构存在的薄弱构件进行分析并作出专门的设计规定,仅对框架类剪切型结构适用的薄弱层作了一些规定; 2在中震作用下,规范仅提出“中震可修”的概念设计要求,没有具体的抗震设计方法; 3“中震可修”的技术经济问题:可修的标准决定工程????造价、破坏损失、震后修复费用。 随着时代的进步,现在的建筑物体型复杂,结构新颖,超高超限越来越多,因此要求对结构进行中震的设计也越来越多。 2 中震设计 2.1 为何要进行中震设计呢? 《抗规》条文说明1.0.1条指出,对大多数结构,可只进行第一阶段设计(即小震下的弹性计算),而通过概念设计和抗震构造措施来实现“中震可修和大震不倒”的设计要求,但前提是建筑物的体型常规、合理,经验上一般能满足大中震的抗震要求。反之对于一些体型很不好的甚至超限的建筑物,在大震下的结构反应和小震完全不同,不进行相应的中震和大震计算是没法保证结构安全的。 为达到各阶段抗震要求,须对于上述体型异常、刚度变化大、超高超限等类型建筑物进行中震抗震设计,其余类型建筑物建议可按中震抗震进行验算。 2.2 中震设计的基本概念 抗震设计要达到的目标是在不同频数和强度的地震时,要求建筑物具有不同的抵抗能力。中震设计就是为了使建筑物满足该地区的基本设防烈度,即能够抵抗50年限期内可能遭遇超越概率为10%的地震烈度。 中震设计和大震设计都可称为性能设计。基于性能的抗震设计是建筑结构抗震设计的一个新的重要发展,它的特点是使抗震设计从宏观性、规范指定的目标向具体量化的多重目标过渡,业主(设计者)可选择所需的性能目标,而不仅仅是按现行规范通过分项系数、内力调整系数、抗震构造措施等粗略、定性的手段来满足中震和大震的设防要求。针对本工程的结构特点,设定本结构的抗震性能目标。对超限结构而言,利用这些指标能更合理地判断整体结构在中震、大震作用下的性能表现,给超限设计提供可靠的判断依据。 2.3 中震设计的分类 中震设计就是结构在地震影响系数按小震的2.875倍(αmax=0.23)取值下进行验算。目前工程界对于结构的中震设计有两种方法,第一种按照中震弹性设计,第二种是按照中震不屈服设计。 首先明确一点,中震弹性和中震不屈服是两个完全不同的概念,两者所采用的设计方法与设防目的均不相同。中震弹性设计,设计中取消《抗规》要求的各项地震组合内力调整系数,保留材料、荷载等分项系数,对应地保留了结构的安全度和可靠度,结构仍属于弹性阶段,属正常设计。中震不屈服设计,设计中除了地震内力不作调整,同时也取消了材料、荷载等分项系数,对应地不考虑结构的安全度和可靠度,结构已经处于弹塑性阶段,属承载力极限状态设计,是一种基于性能的设计方法。由此可见,中震弹性设计接近于平常的小震弹性设计,而中震不屈服设计则与大震设计同属于基于性能的设计。 3 基本方法及应用 根据中震设计的分类,以下分别阐述中震弹性及中震不屈服的具体设计方法,介绍如何在satwe、etabs、midas等软件中实现中震设计。 3.1 中震不屈服设计 3.3.1 不同抗震烈度下的各级屈服控制 若场地安评报告提供实际的地震影响系数,则应取用所提供的多遇地震、设防烈度地震下相应的地震影响系数,屈服判别地震作用1、2 的地震影响系数可相应插值求得。 3.3.2 SAWTE计算:地震信息中抗震等级均为四级;αmax按表3取值;总信息中风荷载不参加计算;勾选地震信息中的按中震(或大震)不屈服做结构设计选项;其它设计参数的定义均同小震设计。 3.3.3 MIDAS/Gen计算:主菜单→设计→钢筋混凝土构件设计参数→定义抗震等级:四级;主菜单→荷载→反应谱分析数据→反应谱函数:定义中震反应谱,在相应的小震反应谱基础上输入放大系数β即可,β值按表3计算所得;总信息中风荷载不参加计算;主菜单→结果→荷载组合:将各项荷载组合中的地震作用分项系数取为1.0;主菜单→设计→钢筋混凝土构件设计参数→材料分项系数:将材料分项系数取为1.0;其它同小震。 3.3.4 ETABS计算:选项→首选项→混凝土框架设计→定义抗震设计等级:四级;定义→反应谱函数→Add Chinese 2002 Spectrum→定义中震反应谱,地震影响系数最大值αmax取值,其余参数按《抗规》;静荷载工况中不定义风荷载作用;定义→荷载组合→各项荷载比例系数均取为荷载分项系数1.0x荷载组合系数φ;定义→材料属性→填写各材料的强度标准值其它同小震。 4 工程算例 4.1 示范算例 4.1.1 基本参数:二十二层框支剪力墙结构,三层楼面转换,无地下室,首、二层4.5米,标准层3.5米,总高79m。结构平面布置如图一所示。结构高宽比3.76,长宽比1.22;抗震参数,7 度,第一组,0.10g;场地II类;风荷载100年一遇为0.9kN/㎡。

钢结构抗震性能分析

钢结构抗震性能分析 摘要:钢结构建筑具有建设速度快、工业化程度比较高、技术经济指标好、抗震性能相比较其他建筑材料比较优越,所以能够广泛地应用于建筑的各个领域,有着得天独厚的发展优势。本文对钢结构建筑的抗震性能进行分析,总结出钢结构抗震的特点及在建设中的应用,分析了几种钢结构所具有的抗震性能,为建筑中明确钢结构的抗震性能找到了依据。 关键词:建筑;钢结构;发展;抗震;分析 引言 近几年,随着我国建筑产业高速发展,钢铁材料和结构体逐渐呈现多元化的发展趋势,建筑行业的发展也更是各具特色。作为现代建筑领域新兴的钢结构建筑,也越来越被建筑界所重视,这对地震多发的地区,建筑在地震中由于倒坍所造成的灾害,将会成为地震灾害中,对于生命和财产安全中,最具破坏力和杀伤力的直接因素,这就需要不断加强钢结构的抗震性能,提升钢结构建筑抗震的能力 1 钢结构的特点 优质的钢结构具有良好的延伸性,能够将震动时发生的波动抵消掉。对于钢结构在抗拉、抗压、抗剪的强度要求上都很高,特别是钢结构需要凭着工艺制造,利用其所具有的高延性,提升其在地震中的抗震能力[1]。钢结构通过自身的塑性变形特点,达到吸收和消耗震动过程中,抵抗强烈地震的能力。 2 建筑中的钢结构体系 在钢结构建筑中,用的较多钢结构框架体系有纯框架结构、中心支撑结构、偏心支撑结构等。纯框架结构延性和抗震性能比较好,但是由于抗侧刚度比较差,一般不太适合用于层数比较高的建筑。以中心支撑的钢结构框架结构抗侧刚度大,适用于层数较高的建筑。由于一些钢结构支撑构件,具有的滞回性能较差,对于耗散的震动的能量有限,抗震性能没有钢结构纯框架的性能好。钢结构的框架偏心支撑结构,还可以通过偏心连梁进行剪切,达到耗散地震的能量,保证通过钢结构框架的支撑不丧失稳定,这种抗震性能的效果,优于中心支撑的钢结构框架[2],并且其弹性阶段的刚度也接近中心支撑框架。如果采用能与钢结构框架抗侧刚度相匹配含有钢板的剪力墙,还有带竖缝剪力墙的钢结构代替支撑,可以构成具有钢结构框架的抗震墙板结构,其抗震的性能强于由钢结构框架构成的中心支撑结构。当房屋建筑的刚度要求更高时,一般都可以采用沿着建筑周边,有秩序地进行设置一些密柱深梁框架,来构成钢结构的框筒结构。这样设计安装的框筒结构抗侧刚度大,能够起到具有良好抗震性能的效果。 3 建筑中钢结构的抗震性能分析

建筑结构抗震分析论文

建筑结构抗震分析论文 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

山东科技大学土木工程与建筑学院《土木工程理论与实践》学习报告 题目建筑结构抗震分析 专业班级土木工程2011级2班 学生姓名张国刚 学号 2015 年 5月

建筑结构抗震分析 摘要 近年来,我国地震频发,在多次地震中,建筑物也经受着重大的考验,有关建筑物结构抗震设计的问题引起了全社会的高度重视。本文在此背景下,首先分析了当前的研究背景,对结构抗震理论的内容及其发展做了扼要的介绍,在此基础上,分析了建筑结构抗震设计的重要性,最后提出了一些对策措施和意见建议。地震区建筑结构设防与不设防,震后结果大不一样。要使工程建设真正达到能够减轻以至避免地震灾害,把握好抗震设计关是减轻地震灾害的根本措施。文章根据实践经验和对有关资料的总结,对多层及高层钢筋混凝土房屋的抗震设计问题进行了研究和探讨。 关键词:建筑结构、抗震设计、抗震设防 目录 1研究背景以及结构抗震理论的发展 (4) 2建筑结构抗震的意义是什么 (4) 3建筑结构抗震设计的重要性分析 (5) 4震害多发点 (6) 结构层间屈服强度有明显的薄弱楼层 (6) 柱端与节点的破坏较为突出 (6)

砌体填充墙的破坏较为普遍 (6) 5抗震结构设计 (6) 抗震计算中的延性保证 (7) 构造措施上的延性保证 (7) 抗震设计的依据和目标 (8) (8) (8) 6结语………………………………………………………………………………………………… 8 参考文献 (9) 建筑结构抗震分析 1研究背景以及结构抗震理论的发展 5·12汶川地震是于2008年5月12日14时28分04秒,四川省汶川县发生的级地震,地震造成69227人遇难,374643人受伤,17923人失踪。自2008年“5·12”汶川大地震之后,2009年6月30日云南姚安级地震,2010年4月14日青海玉树发生级地震,2012年9月7日云南彝良、贵州威宁交界处发生级地震,2013年4月20日四川省

浅谈高层建筑抗震的现状及发展前景

浅谈高层建筑抗震的现状及发展前景 (中国矿业大学建筑工程学院土木11-5班马绪文) 摘要:对于一个高层结构的设计,遇到的问题可能错综复杂,只能具体问题具体分析。工程实践表明在高层结构的设计过程中,设计人员只有抗震概念清晰,构造措施得当,应用合适的结构分析软件三者有机结合才能取得比较理想的结果,在这个过程中抗震构造重于结构计算。本文对建筑抗震进行必要的理论分析,从而探索高层建筑的设计理念、方法,采取必要的抗震措施并简述其发展前景。 关键词:高层建筑;抗震;结构设计 现阶段,土与结构物共同工作理论的研究与发展使建筑抗震分析在概念上进一步走向完善,如果可以在结构与地基的材料特性,动力响应,计算理论,稳定标准诸方面得到符合实际的发展,自然会在建筑结构抗震领域内起到重要的作用。 1 高层建筑抗震设计特点 第一,控制建筑物的侧移是重要的指标。在地震荷载作用下,建筑结构所产生的水平剪切力占主导地位,所以建筑物会产生明显的侧移,随建筑结构的高度不断曾加,结构的侧向位移迅速增大,但该变形要在一定限度之内,这样才能保证结构安全以及使用功能。 第二,地震荷载中的水平荷载是决定因素。水平荷载会使建筑物产生倾覆力矩,并且在结构的竖向构件中引起很大的轴力,这些都与建筑物高度的两次方成正比,故随建筑结构高度的曾加,水平载荷大相径庭。对高度一定的建筑物而言,竖向荷载基本上是不变的,但是随着建筑物的质量、刚度等动力特性的不同,水平地震荷载和风荷载的变化是比较大的。 第三,要重视建筑结构的延性设计。高层建筑结构随着高度增加,刚度减小,显得更柔,在地震荷载作用下变形较大。这就要求建筑结构要有足够的变形能力,使结构进入塑性变形阶段仍然安全,需要在结构构造上采取有利的措施,使得建筑结构具有足够的延性。 2 建筑抗震的理论分析 2.1 建筑结构抗震规范简介 建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。 2.2 抗震设计的理论 拟静力理论:拟静力理论是20世纪10~40年代发展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于

建筑结构抗震能力分析

建筑结构抗震能力分析 【摘要】破坏性地震会给国家经济建设和人民生命财产安全造成直接和间接的危害和损失,尤其是强烈的地震会给人类带来巨大的灾害。目前,每年全世界由地震灾害造成的平均死亡人数达8000-10000 人/次,平均经济损失每次达十亿美元。尽管如此,地震造成的惨重人员伤亡和巨大的财产损失,主要却是由建筑物的破坏所引起。因此,如何提高建筑物抗震能力就成为一个人们很关注的问题。地震是一种危害性极大的自然灾害。地震造成的惨重人员伤亡和巨大的财产损失,主要是由建筑物的破坏所引起。抗震就是和地震这种自然灾害进行斗争。 【关键词】地震;建筑结构;抗震能力 1.影响建筑结构抗震能力的主要因素 1.1建造结构所用的材料及施工质量 这个因素是显而易见的,但是也容易被人们忽视。对于材料而言,我们要明确这样一个道理:地震对结构作用的大小几乎与结构的质量成正比。一般说在相同条件下,质量大,地震作用就大,震害程度就大;质量小,地震作用就小,震害就小。所以,在建筑的楼板、墙体、框架、隔断、围护墙以及屋面构件中,广泛采用多孔砖、硅酸盐砌块、陶粒混凝土、加气混凝土板、空心塑料板材、瓦楞铁等轻质材料,将能显著改善建筑的抗震性能。 施工质量的影响是深远的,在整个施工过程中,任何一个环节出现问题,都可能影响建筑结构本身的抗震能力。施工中造成的材料性能和截面几何特征在一定范围内变动,砂浆强度、混凝土浇筑质量以及延性构造措施在施工中的变动等施工质量问题,对实际结构抗震性能具有重要影响。 1.2建筑物本身的设计 建筑物如果平面布置复杂,致使质心与刚心不重合,在地震作用下产生扭转效应,则会加剧了地震的破坏作用,海城地震和唐山地震中有不少这样的震害实例.台湾921 地震中,一栋钢筋混凝土结构由于结构平面不规则,在水平地震作用下,结构产生严重扭转效应而破坏倒塌,同时撞坏相邻建筑上部的阳台。抗震设计中,要求结构平面布置尽可能地使结构的刚心和质心相一致,以减小地震作用下结构产生的扭转效应,对于结构平面布置不规则的房屋应注意偏离结构刚心远端抗震墙或框架柱承载力的验算。建筑立面应避免头重脚轻,结构重心尽可能的降低,出屋面部分如屋顶的女儿墙、水箱间等,由于根部与下部结构连接薄弱,刚度突变,受鞭梢效应影响严重,在地震时容易率先破坏倾倒;另外,其地震作用通过周边的屋面结构传至下部结构,如屋面结构刚度不够时,在突出屋面结构的下部一定范围内破坏相对集中。 1.3建筑场地 地震造成建筑物的破坏,情况是各种各样的,其一,由于地震时的地面强烈运动,使建筑物在振动过程中,因丧失整体性或强度不足,或变形过大而破坏;其二,由于水坝倒塌、海啸、火灾、爆炸等次生灾害所造成;其三,由于断层错动、山崖崩塌、河岸滑坡、地层陷落等地面严重变形直接造成。前两种可以通过工程措施加以防治,而后一种情况,单靠工程措施很难达到预防目的,或者代价昂贵。 2.建筑结构抗震能力评估方法 建筑结构抗震能力评估方法是高层建筑结构分析的核心内容。只有对建筑结

高层结构抗震分析

基于高层连体结构的抗震设计分析 高层建筑连体结构是近十几年来发展起来的一种新型结构形式,所谓连体结构是指两个塔楼或多个塔楼由设置在一定高度处的连接体(又称连廊)相连而组成的建筑物。在地震作用下由于连接体的存在使得由原来独立发生振动的塔楼要相互作用、相互影响,在地震作用下的反应远比单塔结构和无连接体的多塔结构受力复杂,会出现较强的祸联震动、扭转加大等现象,其结构的抗震性能也不如单体结构,因此连接体的设置改变了结构的动力特性。高层连体结构的特点主要有以下几点:对称性、扭转效应、连体两端的连接处理方式重点考虑滑动支座的做法,限复位装置的构造,并应提供滑动支座的预计滑移量。当采用阻尼器作为限复位装置时,也可归为弱连接方式。强化结构的抗震安全目标并提高结构的抗震功能要求,已经成为工程抗震领域亟待解决的课题。 1 工程概况 本工程位于某市繁华商业地段,地理位置十分重要,城市景观的要求很高,建筑的使用功能也要求多元化,房屋的下部三层为商城,其上有21层的塔楼,工程总建筑面积约30000平方米,24层,总高度83米,为多功能的写字间,塔楼的顶上三层为观光连廊,因此形成了大底盘双塔的连体建筑结构。自然条件和设计依据:1)基本风压:035N/km2;2)抗震设防烈度:7度,设计基本地震加速度为0.109,设计地震分组为第一;3)建筑抗震设防类别:丙类;4)钢筋混凝土结构的抗震等级:剪力墙二级,框架二级。与连接体相连的部分的梁柱构件为一级。 2 结构方案的确定 2.1 结构方案的确定。 高层建筑的抗震设计首先应该注重的是概念设计。一般应掌握以下原则:根据结构的层数、房屋的高度、抗震设防要求、施工技术、材料等条件来选择合理的结构形式;对抗震结构要尽可能的设置多道防线,采用具有联肢墙、壁式框架的剪力墙结构、框架—剪力墙结构、框架—核心筒结构、筒中筒结构等多重抗侧力结构体系;结构的承载力、变形能力和侧向刚度要均匀连续变化,以适应地震反应的要求,结构的平面布置要力求简单、规则、对称,要避免应力集中的凹角和狭长的缩颈部;构件的设计要采取有效的措施防止脆性破坏,保证结构有足够的延性。要减轻结构的自重,降低结构的地震作用。 2.2 本工程从平面形状来看,平面狭长的形状,属于抗震不利平面,从竖向来看,底下三层为大底盘,其上有二栋21层的塔楼,在塔楼的顶上三层设有连接体,因此竖向刚度不均匀,形成竖向刚度二次突变,对抗震非常不利。本工程的难点就在于要在建筑方案己经基本定性的原则下从结构方面来采取措施,尽量满足抗震的要求,尽可能的减轻地震的反应。这些措施包括结构体系的选择,剪力墙的布置,连接体的选型等,下面分别阐述。 2.3 根据本工程结构的层数、高度和使用功能要求,按照《高规》规定的房屋使用高度和高宽比要求,采用钢筋混凝土框架—剪力墙结构比较适合。框架—剪力墙结构是由框架和剪力墙共同组成的结构体系,它既能为建筑提供较大的使用空间,又有较大的抗水平力刚度,适用于商场、办公、住宅等,是一种抗震性能比较好的高层建筑结构体系。框架—剪力墙的结构布置应设计成双向的抗侧力体系,剪力墙应分散均匀地布置在建筑物的周边、楼电梯间、平面形状变化处及荷载较大的部位。剪力墙贯通建筑物的全高,并沿高度逐步减薄,避免刚度突变。框架—剪力墙结构中,要有足够的剪力墙的数量,应当使剪力墙承担大部分的水平作用产生的剪力,但是剪力墙的数量也不能过多,否则,结构的刚度过大,引起的地震反应加大,对结构的抗震设计也不利,结构设计也不经济。 2.4 连接体的结构方案确定。连接体是连体结构中一个重要的组成部分。从前面的分析表明,对对称结构而言,在对称的水平力作用下,连接体的存在对结构的受力性能影响很小,

高层建筑结构抗震设计方法

高层建筑结构抗震设计方法 结构抗震设计方法 基础的抗震设计。基础是实现高层建筑安全性的重要条件。我国高层建筑通常采用钢筋混凝土连续地基梁形式,在基础梁的设计中,为充分发挥钢筋的抗拉性和混凝土的抗压性的复合效应,把设计重点放在梁的高度和钢筋的用量上,在钢筋的布置上采用主筋、腹筋、肋筋、基础筋、基础辅筋5种钢筋的结合。为防止基础钢筋的生锈,一方面采用耐酸化的混凝土,另一方面是增加钢筋表面的保护层厚度,以抑止钢筋的腐蚀。高层建筑基础处理的另一个特色是钢制基础结合垫块的应用,它是高层建筑上部结构柱与基础相连的重要结构部件。它的功能之一是使具有吸湿性的混凝土基础和钢制结构柱及上部建筑相分离,有效防止结构体的锈蚀,确保部件的耐久性。 钢结构骨架的抗震设计。采用钢框架结合点柱壁局部加厚技术来提高结构抗震性能。一般钢框架结构,梁和柱结合点通常是柱上加焊钢制隅撑与梁端用螺栓紧固连接。在这种方式下,钢柱必须在结合部被切断,加焊隅撑后再结合,这样做技术上的不稳定性和材料品质不齐全的可能性很大,而且遇到大地震,钢柱结合部折断的危险性很大。鉴于此,可以首先该结构的梁柱采用高密度钢材,以发挥其高强抗震、抗拉和耐久性。柱壁增厚法避免断柱形式,对二、三层的独立住宅而言,结构柱可以一贯到底,从而解决易折问题。与梁结合部柱壁达到两倍厚,所采用的是高频加热引导增厚技术。在制造过程中品质易下降的钢管经过加热处理反

而使材料本来所具有的拉伸强度得以恢复。对于地震时易产生的应力集中,柱的增厚部位能发挥很大的阻抗能力,从而提高和强化了结构的抗震性。 墙体的抗震设计。“三合一”外墙结构体系,首先是由日本专家设计应用的,采用外墙结构柱与两侧外墙板钢框架组合形成的“三合一”整体承重的结构体系。该体系不仅仅用柱和梁来支撑高层建筑,而是利用墙体钢框架与结构柱结合,有效地承受来自垂直方向与水平方向的荷载。由于外墙板钢框架的补强作用,该做法可以较好地发挥结构柱设计值以外的补强承载力。加强了对竖向地震力及雪荷载的抵抗能力,最大限度地发挥其抗震优势;另一方面,由于外墙板钢框架与内部斜拉杆所构成“面”承载与结构柱的结合并用,也提高了整体抗侧推力和抗变形能力。它的抗水平风载和地震力的能力比单纯墙体承重体系提高30%左右。

中大震作用下高层建筑抗震性能分析及其构造措施探讨

中大震作用下高层建筑抗震性能分析及其构造措施探讨 摘要:对于超高层建筑或者超限结构来说应当对结构采取中、大震下的抗震性能分析,本文通过结合某高层结构设计实例,除了对该结构采取小震弹性分析外,还将增加“中震不屈服”、“中震弹性”等方法对结构关键构件进行设计,控制结构的抗震性能。通过中、大震的抗震性能分析提出可行的抗震构造措施,为同类结构提供指引。 关键词:结构设计;超高层结构;抗震分析;抗震构造措施 Abstract: For tall building or overrun structure for ought to the structure of the earthquake, take the seismic performance analysis, this paper through the combination of a high-rise structure design example, in addition to the structure of small earthquakes to elastic analysis outside, still will increa se “the shock of do not yield”, “the shock of the elastic” method of key component structure design, control structure seismic performance. Through the aseismatic performance of strong earthquakes, and analysis the feasible seismic structural measures, to provide direction for the similar structure. Key words: Structure design; Super-tall structures; Seismic analysis; Seismic construction measures 1.工程概况 本项目定位为创造高品质的、包含超高层超甲级写字楼及商业性办公楼,形成新型的商业聚落空间及城市综合体。塔楼由一栋超高层建筑组成。总建筑面积为94532.54㎡,地上层数为32层,地下为2层。结构类型采用框架-核心筒结构。由于主楼结构布置相对比较复杂,因此需要对其采取中震和大震下的抗震性能分析。 2.中、大震下结构抗震性能目标 根据按照《抗规》1.0.1条规定及条文说明,抗震设防性能目标主要通过“两阶段三水准”的设计方法和采取有关措施实现。结合本高层结构实际情况,除了对该结构采取小震弹性分析外,还将增加“中震不屈服”、“中震弹性”等方法对结构关键构件进行设计,控制结构的抗震性能。对于本高层结构中的节点,按强节点弱构件的抗震性能要求设计。针对中震以及大震抗震目标,笔者总结了高层结构中大抗震设防性能目标细化见表1所示。 表1高层结构中大抗震设防性能目标 地震烈度中震(设防烈度地震) 大震(罕遇地震)

建筑结构抗震分析论文

. . .. . . 科技大学土木工程与建筑学院《土木工程理论与实践》学习报告 题目建筑结构抗震分析 专业班级土木工程2011级2班 学生国刚 学号201101020236

2015 年5月

建筑结构抗震分析 摘要 近年来,我国地震频发,在多次地震中,建筑物也经受着重大的考验,有关建筑物结构抗震设计的问题引起了全社会的高度重视。本文在此背景下,首先分析了当前的研究背景,对结构抗震理论的容及其发展做了扼要的介绍,在此基础上,分析了建筑结构抗震设计的重要性,最后提出了一些对策措施和意见建议。地震区建筑结构设防与不设防,震后结果大不一样。要使工程建设真正达到能够减轻以至避免地震灾害,把握好抗震设计关是减轻地震灾害的根本措施。文章根据实践经验和对有关资料的总结,对多层及高层钢筋混凝土房屋的抗震设计问题进行了研究和探讨。 关键词:建筑结构、抗震设计、抗震设防

目录 1研究背景以及结构抗震理论的发展 (4) 2建筑结构抗震的意义是什么 (4) 3建筑结构抗震设计的重要性分析 (5) 4震害多发点 (6) 4.1结构层间屈服强度有明显的薄弱楼层 (6) 4.2柱端与节点的破坏较为突出 (6) 4.3砌体填充墙的破坏较为普遍 (6) 5抗震结构设计 (6) 5.1抗震计算中的延性保证 (7) 5.2构造措施上的延性保证 (7) 5.3抗震设计的依据和目标 (8) 5.3.1基于性能的抗震设计依据 (8) 5.3.2抗震设计的目标 (8) 6结语 (8)

参考文献 (9) 建筑结构抗震分析 1研究背景以及结构抗震理论的发展 5·12汶川地震是于2008年5月12日14时28分04秒,省汶川县发生的8.0级地震,地震造成69227人遇难,374643人受伤,17923人失踪。自2008年“5·12”汶川震之后,2009年6月30日安6.0级地震,2010年4月14日发生7.1级地震,2012年9月7日彝良、威宁交界处发生5.7级地震,2013年4月20日省市芦山县发生7.0级震等等。在地震中,无一例外的伴随着大量房屋倒塌以及其他建筑物被损毁的现象,不仅仅造成了大量的财产损失,也严重威胁人民群众的生命安全。而且注入日本等一些

高层建筑结构抗震设计分析

高层建筑结构抗震设计分析 摘要:随着高层建筑的增多,结构抗震分析和设计已越来越重要。由于高层建筑层数多、高度较高,结构也比一般的建筑复杂很多,一旦遭遇地震,将会受到巨大的损失。因此做好高层建筑结构的抗震设计,对提升高层建筑抵御地震的能力有着重要的意义。 关键词:高层建筑;建筑结构;抗震设计 前沿 高层建筑作为一道美丽的城市风景,近些年来,随着经济的发展和城市建设的蓬勃发展,高层建筑越来越受到人们的喜爱。但是高层建筑在结构设计方面的问题比普通的工程设计更复杂、更庞大。如果前期的结构设计做的不好,就很有可能影响到建筑工程的后期施工,甚至有可能留下一定的安全隐患。因此,做好高层建筑结构的抗震设计研究和分析就显得至关重要。 一、高层建筑结构抗震设计的必要性 1、建筑结构的抗震设计概念 现在谈到建筑结构的抗震设计,就是考验建筑的抗震能力,给人们提供最大安全性建筑的一种设计方案。我国建立这么多年,也发生过很多大型地震,给国家和人民带来了巨大地损失。但是在这么多次地震中,国家的相关部门总结了很多工程建筑的经验,就是以这些经验作为抗震设计的基础,来不断完善建筑的结构体系。现在随着科技的发展,我国在建筑结构的抗震设计的研究领域中有了很大的突破,也在一些高层建筑上应用相关研究成果,在不断地实践过程中,但还是存在相关的问题予以研究并解决。 2、加强高层建筑结构抗震设计是必经之路 自从产生了建筑结构抗震的概念后,高层建筑结构设计更应该把抗震元素考虑在内。因为我国本身就是处于地震带多的国家,这几年来也频繁地发生地震,我国大多数地区的高层建筑的抗震能力差,都出现多处裂缝及崩塌的现象。正是上述原因,加强高层建筑结构的抗震设计是当务之急。现在在抗震设计中,并不是简简单单地分析计算就可以的,要重视概念设计,这才能保证结构的安全性和可靠性,地震时震动的周期是个变数,在设计中一定得考虑到这个概念,在高层结构计算时,一定要保证数据的精确性、再将地震的因素考虑在内,才能更好地做高层建筑结构的抗震设计。 二、高层建筑抗震设计分析方法 1、场地和地基的选择 建筑的场地以及地基的选择对于高层建筑的抗震能力具有直接的影响,是建筑抗震设计的基础。在进行建筑场地以及地基的选择时,应该充分的了解当地的地震活动情况,对当地的地质情况进行科学的勘察,在收集丰富资料的基础之上对场地进行综合的分析和评价,评估当地的抗震设计等级。对于一些不利于抗震设计的场地应该尽可能的进行规避,而实在无法规避的应该有针对性的做好相应的处理措施。在高层建筑地基选择过程当中应该尽可能的选择岩石或者是其它具有较高密实度的基土,从而提高建筑地基的抗震能力,尽可能的避开不利于抗震的软性地基土。对于一些达不到抗震要求的地基应该采取相应的措施进行加固和改造,使其能够符合相应的标准。 2、建筑结构的规则性 在进行建筑结构设计的过程当中,应该尽可能的做到规则,尤其是抗侧力结

高层建筑抗震设计分析.

高层建筑抗震设计分析 关键词高层建筑;结构设计;抗震0 引言 随着我国社会主义现代化建设和城市化进程的不断向前推进,建设用地日趋紧张,促使建筑功能越来越多样化,高层建筑得的发展是大势所趋。高层建筑的特点是高度比较高,所以地震荷载和风荷载在设计过程中占主导和控制地位,而我国又是地震多发国家,因此高层建筑的抗震设计分析显得尤为重要。 1 高层建筑抗震设计特点 第一,控制建筑物的侧移是重要的指标。在地震荷载作用下,建筑结构所产生的水平剪切力占主导地位,所以建筑物会产生明显的侧移,随建筑结构的高度不断曾加,结构的侧向位移迅速增大,但该变形要在一定限度之内,这样才能保证结构安全以及使用功能。 第二,地震荷载中的水平荷载是决定因素。水平荷载会使建筑物产生倾覆力矩,并且在结构的竖向构件中引起很大的轴力,这些都与建筑物高度的两次方成正比,故随建筑结构高度的曾加,水平载荷大相径庭。对高度一定的建筑物而言,竖向荷载基本上是不变的,但是随着建筑物的质量、刚度等动力特性的不同,水平地震荷载和风荷载的变化是比较大的。 第三,要重视建筑结构的延性设计。高层建筑结构随着高度增加,刚度减小,显得更柔,在地震荷载作用下变形较大。这就要求建筑结构要有足够的变形能力,使结构进入塑性变形阶段仍然安全,需要在结构构造上采取有利的措施,使得建筑结构具有足够的延性。 2 结构体系的合理选择 地震对建筑物的伤害主要是水平地震力所造成的剪切破坏,所以根据结构体系对抗侧力能力的不同,钢筋砼结构主要可分为框架结构、框架-剪力墙结构、剪力墙结构、筒体结构等,这也是我国高层建筑长采用的结构形式。由于这些体系的结构形式、抵抗水平力的能力有所区别,尤其是对地震反映大不相同,因此它们适用于不同的场合。 2.1 框架结构 框架结构由框架梁、柱构件组成。其特点是柱网布置灵活,便于获得较大的使用空间。框架结构的框架梁和柱既承受竖向荷载,又承受水平荷载。当建筑物高度较低、层数相对较少时,其水平荷载对结构的影响不大,这时采用框架结构还是比较合适的,既满足受力要求,也提供了很大的使用空间。但框架结构侧向刚度很小,随着建筑物高度的曾加,框架结构水平荷载分布呈现出不均匀的现象,有的楼层相对薄弱,很容易屈服。地震荷载对柱子的破坏作用要相对强烈,而对梁的

相关文档
最新文档