频谱分析仪的使用方法

频谱分析仪的使用方法
频谱分析仪的使用方法

电磁干扰测量与诊断

当你的产品由于电磁干扰发射强度超过电磁兼容标准规定而不能出厂时,或当由于电路模块之间的电磁干扰,系统不能正常工作时,我们就要解决电磁干扰的问题。要解决电磁干扰问题,首先要能够“看”到电磁干扰,了解电磁干扰的幅度和发生源。本文要介绍有关电磁干扰测量和判断干扰发生源的方法。

1.测量仪器

谈到测量电信号,电气工程师首先想到的可能就是示波器。示波器是一种将电压幅度随时间变化的规律显示出来的仪器,它相当于电气工程师的眼睛,使你能够看到线路中电流和电压的变化规律,从而掌握电路的工作状态。但是示波器并不是电磁干扰测量与诊断的理想工具。这是因为:

A. 所有电磁兼容标准中的电磁干扰极限值都是在频域中定义的,而示波器显示出的时域波形。因此测试得到的结果无法直接与标准比较。为了将测试结果与标准相比较,必须将时域波形变换为频域频谱。

B. 电磁干扰相对于电路的工作信号往往都是较小的,并且电磁干扰的频率往往比信号高,而当一些幅度较低的高频信号叠加在一个幅度较大的低频信号时,用示波器是无法进行测量。

C. 示波器的灵敏度在mV级,而由天线接收到的电磁干扰的幅度通常为V级,因此示波器不能满足灵敏度的要求。

测量电磁干扰更合适的仪器是频谱分析仪。频谱分析仪是一种将电压幅度随频率变化的规律显示出来的仪器,它显示的波形称为频谱。频谱分析仪克服了示波器在测量电磁干扰中的缺点,它能够精确测量各个频率上的干扰强度。

对于电磁干扰问题的分析而言,频谱分析仪是比示波器更有用的仪器。而用频谱分析仪可以直接显示出信号的各个频谱分量。

频谱分析仪的原理

频谱分析仪是一台在一定频率范围内扫描接收的接收机,它的原理图如图1所示。

图1 频谱分析仪的原理框图

频谱分析仪采用频率扫描超外差的工作方式。混频器将天线上接收到的信号与本振产生的信号混频,当混频的频率等于中频时,这个信号可以通过中频放大器,被放大后,进行峰值检波。检波后的信号被视频放大器进行放大,然后显示出来。由于本振电路的振荡频率随着时间变化,因此频谱分析仪在不同的时间接收的频率是不同的。当本振振荡器的频率随着时间进行扫描时,屏幕上就显示出了被测信号在不同频率上的幅度,将不同频率上信号的幅度记录下来,就得到了被测信号的频谱。

根据这个频谱,就能够知道被测设备是否有超过标准规定的干扰发射,或产生干扰的信号频率是多少。

频谱分析仪的使用方法

要获得正确的测量结果,必须正确地操作频谱分析仪。本节简单介绍频谱分析仪的使用方法。正确使用频谱分析仪的关键是正确设置频谱分析仪的各个参数。下面解释频谱分析仪中主要参数的意义和设置方法。

A.频率扫描范围:

规定了频谱分析仪扫描频率的上限和下限。通过调整扫描频率范围,可以对感兴趣的频率进行细致的观察。扫描频率范围越宽,则扫描一遍所需要时间越长,频谱上各点的测量精度越低,因此,在可能的情况下,尽量使用较小的频率范围。在设置这个参数时,可以通过设置扫描开始频率和终止频率来确定,例如:start

frequency = 1MHz, stop frequency = 11MHz。也可以通过设置扫描中心频率和频率范围来确定,例如:center frequency = 6MHz, span = 10MHz。这两种设置的结果是一样的。

B.中频分辨带宽:

规定了频谱分析仪的中频带宽,这项指标决定了仪器的选择性和扫描时间。调整分辨带宽可以达到两个目的,一个是提高仪器的选择性,以便对频率相距很近的两个信号进行区别。另一个目的是提高仪器的灵敏度。因为任何电路都有热噪声,这些噪声会将微弱信号淹没,而使仪器无法观察微弱信号。噪声的幅度与仪器的通频带宽成正比,带宽越宽,则噪声越大。因此减小仪器的分辨带宽可以减小仪器本身的噪声,从而增强对微弱信号的检测能力。

分辨带宽一般以3dB带宽来表示。当分辨带宽变化时,屏幕上显示的信号幅度可能会发变化。若测量信号的带宽大于通频带带宽,则当带宽增加时,由于通过中频放大器的信号总能量增加,显示幅度会有所增加。若测量信号的带宽小于通频带宽,如对于单根谱线的信号,则不管分辨带宽怎样变化,显示信号的幅度都不会发生变化。信号带宽超过中频带宽的信号称为宽带信号,信号带宽小于中频带宽的信号称为窄带信号。根据信号是宽带信号还是窄带信号能够有效地定位干扰源。

C.扫描时间:

仪器接收的信号从扫描频率范围的最低端扫描到最高端所使用的时间叫做扫描时间。扫描时间与扫描频率范围是相匹配的。如果扫描时间过短,测量到的信号幅度比实际的信号幅度要小。

D.视频带宽:

视频带宽的作用与中频带宽相同,可以减小仪器本身的带内噪声,从而提高仪器对微弱信号的检测能力。

2.用频谱分析仪分析干扰的来源

根据干扰信号的频率确定干扰源

在解决电磁干扰问题时,最重要的一个问题是判断干扰的来源,只有准确将干扰源定位后,才能够提出解决干扰的措施。根据信号的频率来确定干扰源是最简单的方法,因为在信号的所有特征中,频率特征是最稳定的,并且电路设计人员往往对电路中各个部位的信号频率都十分清楚。因此,只要知道了干扰信号的频率,就能够推测出干扰是哪个部位产生的。

对于电磁干扰信号,由于其幅度往往远小于正常工作信号,因此用示波器很难测量到干扰信号的频率。特别是当较小的干扰信号叠加在较大的工作信号上时,示波器无法与干扰信号同步,因此不可能得到准确的干扰信号频率。

而用频谱分析仪做这种测量是十分简单的。由于频谱分析仪的中频带宽较窄,因此能够将与干扰信号频率不同的信号滤除掉,精确地测量出干扰信号频率,从而判断产生干扰信号的电路。

根据干扰信号的带宽确定干扰源

判断干扰信号的带宽也是判断干扰源的有效方法。例如,在一个宽带源的发射中可能存在一个单个高强度信号,如果能够判断这个高强度信号是窄带信号,则它不可能是从宽带发射源产生的。干扰源可能是电源中的振荡器,或工作不稳定的电路,或谐振电路。当在仪器的通频带中只有一根谱线时,就可以断定这个信号是窄带信号。

根据傅立叶变换,单根的谱线所对应的信号是周期信号。因此,当遇到单根谱线时,就要将注意力集中到电路中的周期信号电路上。

3.用近场测试方法确定辐射源

除了上述的根据信号特征判断干扰源的方法以外,在近场区查找辐射源可以直接发现干扰源。在近场区查找辐射源的工具有近场探头和电流卡钳。检查电缆上的发射源要使用电流卡钳,检查机箱缝隙的泄漏要使用近场探头。

电流卡钳与近场探头

电流探头是利用变压器原理制造的能够检测导线上电流的传感器。当电流探头卡在被测导线上时,导线相当于变压器的初级,探头中的线圈相当于变压器的次级。导线上的信号电流在电流探头的线圈上感应出电流,在仪器的输入端产生电压。于是频谱分析仪的屏幕上就可以看到干扰信号的频谱。仪器上读到的电压值与导线中的电流值通过传输阻抗换算。传输阻抗定义为:仪器50 输入阻抗上感应的电压与导线中的电流之比。对于一个具体的探头,可以从厂家提供的探头说明书中查到它的转移阻抗Z T。因此,导线中的电流等于:

I = V / Z T

如果公式中的所有物理量都用dB表示,则直接相减。

对于机箱的泄漏,要用近场探头进行探测。近场探头可以看成是很小的环形天线。由于它很小,因此灵敏度很低,仅能对近场的辐射源进行探测。这样有利于对辐射源进行精确定位。由于近场探头的灵敏度较低,因此在使用时要与前置放大器配套使用。

用电流卡钳检测共模电流

设备产生辐射的主要原因之一是电缆上有共模电流。因此当设备或系统有超标发射时,首先应该怀疑的就是设备上外拖的各种电缆。这些电缆包括电源线电缆和设备之间的互连电缆。

将电流探头卡在电缆上,这时由于探头同时卡住了信号线和回流线,因此差模电流不会感应出电压,仪器上读出的电压仅代表共模电流。

测量共模电流时,最好在屏蔽室中进行。如果不在屏蔽室中,周围环境中的电磁场会在电缆上感应出电流,造成误判断。因此应首先将设备的电源断开,在设备没有加电的状态下测量电缆上的背景电流,并记录下来,以便与设备加电后测量的结果进行比较,排除背景的影响。

如果在用天线进行测量时将频谱分析仪的扫描频率局限感兴趣的频率周围很小的范围内,则可以排除环境中的干扰。

用近场探头检测机箱的泄漏

如果设备上外拖电缆上没有较强的共模电流,就要检查设备机箱上是否有电磁泄漏。检查机箱泄漏的工具是近场探头。将近场探头靠近机箱上的接缝和开口处,观察频谱分析仪上是否有感兴趣的信号出现。一般由于探头的灵敏度较低,即使用了放大器,很弱的信号在探头中感应的电压也很低,因此在测量时要将频谱分析仪的灵敏度调得尽量高。根据前面的讨论,减小频谱分析仪的分辨带宽能够提高仪器的灵敏度。但是要注意的是,当分辨带宽很窄时,扫描时间会变得很长。为了缩短扫描时间,提高检测效率,应该使频谱分析仪的扫描频率范围尽量小。因此一般在用近场探头检测机箱泄漏时,都是首先用天线测出泄漏信号的精确频率,然后使仪器用尽量小的扫描频率范围覆盖住这个干扰频率。这样做的另一个好处是不会将背景干扰误判为泄漏信号。

对于机箱而言,靠近滤波器安装位置的缝隙是最容易产生电磁泄漏的。因为滤波器将信号线上的干扰信号旁路到机箱上,在机箱上形成较强的干扰电流,这些电流流过缝隙时,就会在缝隙处产生电磁泄漏。

4.容易犯的错误

当设备不能满足有关的电磁兼容标准时,就要对设备产生超标发射的原因进行调查,然后进行排除。在这个过程中,经常发现许多人经过长时间的努力,仍然没有排除故障。造成这种情况的原因是诊断工作陷入了“死循环”。这种情况可以用下面的例子说明。

假设一个系统在测试时出现了超标发射,使系统不能满足电磁兼容标准中对电磁辐射的限制。经过初步调查,原因可能有4个,它们分别是:

主机与键盘之间的互连电缆(电缆1)上的共模电流产生的辐射

主机与打印机之间的互连电缆(电缆2)上的共模电流产生的辐射

机箱面板与机箱基体之间的缝隙(开口1)产生的泄漏

某显示窗口(开口2)产生泄漏

在诊断时,首先在电缆1上套一个铁氧体磁环,以减小共模辐射,结果发现频谱仪屏幕上显示的信号并没有明显减小。于是试验人员认为电缆1不是一个主要的泄漏源,将铁氧体磁环取下,套在电缆2上,结果发现频谱仪屏幕上显示的信号还没有明显减小。结果试验人员得出结论,电缆不是泄漏源。

于是再对机箱上的泄漏进行检查。用屏蔽胶带将开口1堵上,发现频谱仪屏幕上显示的信号没有明显减小。试验人员认为开口1不是主要泄漏源,将屏蔽胶带取下,堵到开口2上。结果频谱仪上的显示信号还没有减小。试验人员一筹莫展。之所以会发生这个问题,是因为试验人员忽视了频谱分析仪上显示的信号幅度是以dB为单位显示的。下面我们看一下为什么会有这种现象。

假设这4个泄漏源所占的成分各占1/4,并且在每个辐射源上采取的措施能够将这个辐射源完全抑制掉。则我们采取以上4个措施中的一个时,频谱仪上显示信号降低的幅度ΔA 为:

ΔA = 20 lg ( 4 / 3 ) = dB

幅度减小这么少,显然是微不足道的。但这却已经将泄漏减少了25%。

正确的方法是,当对一个可能的泄漏源采取了抑制措施后,即使没有明显的改善,也不要将这个措施去掉,继续对可能的泄漏源采取措施。当采取到某个措施时,如果干扰幅度降低很多,并不一定说明这个泄漏源是主要的,而仅说明这个干扰源是最后一个。按照这个步骤对4个泄漏源逐个处理的结果如图1所示。

在前面的叙述中,我们假定对某个泄漏源采取措施后,这个泄漏源被100%消除掉,如果这样,当最后一个泄漏源去掉后,电磁干扰的减小应为无限大。实际这是不可能的。我们在采取任何一个措施时,都不可能将干扰源100%消除。泄漏源去掉的程度可以是99% ,或% ,

甚至以上,而决不可能是100% !所以当最后一个泄漏源去掉后,尽管改善很大,但仍是有限值。

当设备完全符合有关的规定后,如果为了降低产品成本,减少不必要的器件,可以将采取的措施逐个去掉。首先应该考虑去掉的是成本较高器件/材料,或在正式产品上难于实现的措施。如果去掉后,产品的电磁发射并没有超标,就可以去掉这个措施。通过试验,使产品成本降到最低。

图 2 抑制4个泄漏源时干扰幅度的变化

5.产品电磁兼容测试诊断步骤

图3给出了一个设备或系统的电磁干扰发射与故障分析步骤,按照这个步骤进行可以提高测试诊断的效率。

图3 电磁兼容测试诊断步骤关于图3的说明如下:

电磁兼容测试一般首先测量干扰发射,因为干扰发射的试验费用一般比敏感度试验

费用低。另外当设备的干扰发射能够满足要求时,往往敏感度也不会有大的问题。

因为几乎所有的解决干扰发射的措施同样对改善敏感度有效。

测量干扰发射时要先测量传导发射,不仅要在标准规定的频率范围内测量,还要对

更高的频率进行摸底测量。当电源线上有较强的干扰电流时,要先解决这个问题。

因为这些传导干扰电流会借助导线的天线作用产生辐射,导致辐射发射不合格。

当传导发射完全合格后,再进行辐射发射测试。对于辐射发射不合格的频率,要记

录下精确频率,便于在用近场探头查找问题时,将频谱分析仪的扫描范围设置在干

扰频率附近。

6.附录

测量仪器配件供应厂商:

惠普公司:

提供频谱分析仪,前置放大器,近场探头,电流卡钳等,能够构成一套完整的干扰发射诊断系统。

Electro –metrics :

生产电磁干扰接收机与测试系统,天线,近场探头,阻抗稳定网络等。

Web:

Email:

Tektronix :

电磁干扰测试接收机,频谱分析仪。

Solar Electronics Company:

满足GJB-151A要求的各种电流卡钳和干扰注入卡钳,脉冲发生器,扫频功率源。

各种测试天线。

ETS :

各种测试天线,电流卡钳,干扰注入卡钳,近场探头,GTEM小室,测试转台,天线塔,阻抗稳定网络;

Amplifier Research :

能满足各种标准中敏感度试验的功率放大器。

CPI:

Fischer Custom Communicatons :

满足EN50082-2, IEC 1000-4-6, ENV 50141等标准要求的传导敏感度测量附件,如耦合解耦网络,干扰注入钳等。

Thermo Voltek :

功率放大器。

Noise Laboratory :

测量线路板上的近场辐射的线路板辐射扫描测试仪

Haefely :

满足IEC和EN标准要求的各种干扰发生器,如静电放电模拟器,电快速脉冲模拟器,浪涌模拟器等。

KeyTek :

满足IEC和EN标准要求的各种干扰发生器,如静电放电模拟器,电快速脉冲模拟器,浪涌模拟器等。

频谱分析仪的使用方法

频谱分析仪的使用方法(第一页) 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不

频谱分析仪使用指南

Spectrum Analyzer Basics 频谱分析仪是通用的多功能测量仪器。例如:频谱分析仪可以对普通发射机进行多项测量,如频率、功率、失真、增益和噪声特性。 功能范围(Functional Areas ) 频谱分析仪的前面板控制分成几组,包含下列功能:频率扫描宽度和幅度(FREQUENCY,SPAN&LITUDE)键以及与此有关的软件菜单可设置频谱仪的三个基本功能。 仪器状态(INSTRUMENT STATE ):功能通常影响整个频谱仪的状态,而不仅是一个功能。 标记(MARKER)功能:根据频谱仪的显示迹线读出频率和幅度 提供信号分析的能力。 控制(CONTRIL)功能:允许调节频谱分析的带宽,扫描时间和 显示。 数字(DATA)键:允许变更激活功能的数值。 窗口(WINDOWS)键:打开窗口显示模式,允许窗口转换,控 制区域扫宽和区域位置。 基本功能(Fundamental Function) 频谱分析仪上有三种基本功能。通过设置中心频率,频率扫宽或者起始和终止频率,操作者可控制信号在频幕上的水平位置。信号的垂直位置由参考电平控制。一旦按下某个键,其

功能就变成了激活功能。与这些功能有关的量值可通过数据输入控制进行改变。 Sets the Center Frequency Adjusts the Span Peaks Signal Amplitude to 频率键(FREQUENCY) 按下频率( FREQUENCY)键,在频幕左侧显示CENTER 表示中心频率功能有效。中心频率(CENTERFREQ)软键标记发亮表示中心频率功能有效。激活功能框为荧屏上的长方形空间,其内部显示中心频率信息。出现在功能框中的数值可通过旋钮,步进键或数字/单位键改变。 频率扫宽键(SPAN) 按下频率扫宽 (SPAN)键, (SPAN)显示在活动功能框中,(SPAN)软键标记发亮,表明频率扫宽功能有效。频率扫宽的大小可通过旋钮,步进键或数字键/单位键改变。 幅度键(AMPLITUDE)按下 按下幅度键(AMPLITUDE)参考电平(REFLEVEL)0dbm显示在 激活功能框中,( REFLEVEL)软键标记发亮,表明参考电平功

安立 MS2721A频谱分析仪 中文操作指南

按键功能介绍: Shift + File (数字键7):与文件操作相关的功能,包括测量结果的保存、打印,以及各种文件操作 Shift + System (数字键8):系统菜单,包括系统状态测试、语言选择、网络地址设置等功能 Shift + Mode (数字键9):模式菜单,用于选择频谱分析模式或者干扰分析模式 Shift + Measure (数字键4):单键测量菜单,包括场强、占用带宽、信道功率、临道比、AM/FM解调,以及C/I测试 Shift + Trace (数字键5):与轨迹操作有关的功能菜单,包括轨迹的选择,轨迹的操作(最大保持、最小保持、平均等),另外还可以存储和调回曲线 Shift + Limit (数字键6):用于编辑和开/关限制线功能,并可以打开极限报警功能 Shift + Preset (数字键1):系统复位菜单 Shift + Calibrate (数字键2):在本仪表上不起作用 Shift + Sweep (数字键3):与频率扫描有关的功能,包括扫描时间的设置、扫描以及触发方式的选择,另外还有检波器模式的选择(正峰值、负峰值、均方根、样本) 一般可以用返回回到上一级菜单,用更多进入第二屏菜单,也可以直接按Back 按键返回上一级菜单。另外,要取消当前的操作或者设置,可以按最上方的Esc 按键。 1. 工作模式的选择 Shift+Mode(数字键9),然后通过拨轮或者上/下键选择频谱分析模式(Spectrum Analyzer)或者干扰分析模式(Interference Analyzer) 2. 仪表复位操作 在某些情况下,由于仪表参数设置的冲突,有些功能可能不能正常工作,这时通过复位操作可以使仪表恢复正常状态,具体操作方法如下: Shift+Preset(数字键1),然后选择预置,就可以恢复初始状态了

安立频谱仪使用说明

安立频谱仪介绍

安立频谱仪使用章程 频谱分析仪的正面图如下: 下面介绍这些按键的功能: 第三章按键功能 硬键 硬键是指在面板上用黑色和蓝色标注的按键,他们有着特殊的功能。功能硬键有四种,他们位于下端,而右端则有17个硬键,这17个硬键中有12个硬键有着双重的功能,这就要看当前所使用的模式而决定它们的功能了。 功能硬键 模式 按一下“MODE(模式)”键,然后用“UP/DOWN(上下)”键来选 择所要操作的模式,然后再按“ENTER(回车)”键来确认所选的模 式。 FREQ/SPAN (频率/频宽)

按一下“FREQ/SPAN(频率/频宽)”键后便会出现“CENTER(中心)、 FREQUENCY(频率)、SPAN(频宽)、START(开始频率)和STOP(截 至频率)的选项。我们可以通过相应的软键来选择相应的功能。AMPLITUDE (幅度) 按一下“AMPLITUDE(幅度)”键后便会出现“REFLEVEL(参考电平)、 SCALE(刻度)、ATTEN(衰减)、REF LEVEL OFFSET(参考电平偏移)、 和UNITS(单位)”选项,我们可以通过相应的软键来选择相应的功能。BW/SWEEP (带宽/扫描) 按一下“BW/SWEEP(带宽/扫描)”键后便会出现“RBW、VBW、 MAXHOLD(保持最大值)、A VERAGE(平均值)和DETECTION(检 测)”选项,我们可以通过相应的软键来选择相应的功能。KEYPAD HARD KEYS (面板上的硬键) 下面的这些按键是用黑色字体标注的 0~9 是当需要进行测量或修改数据时用来输入数据的。 +/- 这个键可以使被操作的数值的符号发生变化即正负变化。 . 入小数点。 ESCAPE CLEAR 这个键的功能是退出当前操作或清楚显示。如果您在进行参数修改时 按一下这个键,则该参数值只保存最后一次操作的有效值,如果再按 一次该键则关闭该参数的设置窗口。再正常的前向移动(就是进入下 层目录)中,按一下这个键则返回上层目录。如果在开该仪器的时候 一直按下该键则仪器将恢复出厂时的设置。 UP/DOWN ARROWS

安捷伦glenB 频谱分析仪使用说明简介

Agilent E4402B ESA-E Series Spectrum Analyzer 使用方法简介 宁波之猫 2009-6-17

目录

1简介 Agilent ESA-E系列是能适应未来需要的Agilent中性能频谱分析仪解决方案。该系列在测量速度、动态范围、精度和功率分辨能力上,都为类似价位的产品建立了性能标准。它灵活的平台设计使研发、制造和现场服务工程师能自定义产品,以满足特定测试要求,和在需要时用新的特性升级产品。该产品

采用单键测量解决方案,并具有易于浏览的用户界面和高速测量的性能,使工程师能把较少的时间用于测试,而把更多的时间用在元件和产品的设计、制作和查错上。 2.面板 操作区 1.观察角度键,用于调节显示,以适于使用者的观察角度。 2.Esc键,可以取消输入,终止打印。 3.无标识键,实现左边屏幕上紧挨的右边栏菜单的功能。 4.Frequency Channel(频率通道)、Span X Scale(扫宽X刻度)和Amplitude Y scale(幅度Y 刻度)三个键,可以激活主要的调节功能(频率、X轴、Y轴)并在右边栏显示相应的菜单。 5.Control(控制)功能区。 6.Measure(测量)功能区。 7.System(系统)功能区。 8.Marker(标记)功能区。 9.软驱和耳机插孔。 10.步进键和旋钮,用于改变所选中有效功能的数值。 11.音量调节。 12.外接键盘插口。 13.探头电源,为高阻抗交流探头或其它附件提供电源。 14.Return键,用于返回先前选择过的一级菜单。 15.Amptd Ref Out,可提供-20dBm的50MHz幅度参考信号。 16.Tab(制表)键,用于在界限编辑器和修正编辑器中四处移动,也用于在有File菜单键所访问对话 框的域中移动。 17.信号输入口(50Ω)。在使用中,接50ΩBNC电缆,探头上必须串联一隔直电容(30PF左右,陶瓷 封装)。探头实物:

频谱分析报告仪地使用方法

频谱分析仪的使用方法 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不稳定,甚至测不出来。这主要足频率计灵敏度问题,即信号低于20mv频率计就无能为力了,如用示波器测量时,信号5%失真示波器看不出来,在频谱仪上万分之一的失真都能看出来。

频谱仪的简单操作使用方法

R3131A频谱仪简单操作使用方法 一.R3131A频谱仪简介。 R3131A频谱仪是日本ADV ANTEST公司的产品,用于测量高频信号,可测量的频率范围为9K—3GHz。对于GSM手机的维修,通过频谱仪可测量射频电路中的以下电路信号, (维修人员可以通过对所测出信号的幅度、频率偏移、干扰程度等参数的分析,以判断出故障点,进行快速有效的维修): 1.手机参考基准时钟(13M,26M等); 2.射频本振(RFVCO)的输出频率信号(视手机型号而异); 3.发射本振(TXVCO)的输出频率信号(GSM:890M—915M;DCS:1710—1785M); 4.由天线至中频芯片间接收和发射通路的高频信号; 5.接收中频和发射中频信号(视手机型号而异)。 面板上各按键(如图-1所示)的功能如下: A区:此区按键是其他区功能按键对应的详细功能选择按键,例如按下B区的FREQ 键后,会在屏幕的右边弹出一列功能菜单,要选择其中的“START”功能就可通过按下其对 (图-1) B区:此区按键是主要设置参数的功能按键区,包括:FREQ—中心频率; SPAN—扫描频率宽度;LEVEL—参考电平。此区中按键只需直接按下对应键输入数值及单位即可。 C区:此区是数字数值及标点符号选择输入区,其中“1”键的另一个功能是“CAL(校

准)”,此功能要先按下“SHIFT(蓝色键)”后再按下“1”键进行相应选择才起作用; “-”是退格删除键,可删除错误输入。 D 区:参数单位选择区,包括幅度、电平、频率、时间的单位,其中“Hz ”键还有“ENTER(确认)”的作用。 E 区:系统功能按键控制区,较常使用的有“SHIFT ”第二功能选择键,“SHIFT+CONFIG(PRESET )”选择系统复位功能,“RECALL ”调用存储的设置信息键,“SHIFT+RECALL(SA VE )”选择将设置信息保存功能。 F 区:信号波形峰值检测功能选择区。 G 区:其他参数功能选择控制区,常用的有“BW ”信号带宽选择及“SWEEP ”扫描时间选择,“SWEEP ”是指显示屏幕从左边到右边扫描一次的时间。 显示屏幕上的信息(如图-2所示)。 二.一般操作步骤。[“ ”表示的是菜单面板上直接功能按键,“ ” 表 示单个菜单键的详细功能按键(在显示屏幕的右边)]: 1) 按Power On 键开机。 2) 每次开始使用时,开机30分钟后进行自动校准,先按 Shift+7(cal ) ,再选择 cal all 键,校准过程中出现“Calibrating ”字样,校准结束后如通过则回复校准前状态。校准过程约进行3分钟。 3) 校准完成后首先按 FREQ 键,设置中心频率数值,例如需测中心频率为902.4M 的信

频谱分析仪使用注意

正确使用频谱分析仪需注意的几点 首先,电源对于频谱分析仪来说是非常重要的,在给频谱分析仪加电之前,一定要确保电源接确,保证地线可靠接地。频谱仪配置的是三芯电源线,开机之前,必须将电源线插头插入标准的三相插座中,不要使用没有保护地的电源线,以防止可能造成的人身伤害。 其次,对信号进行精确测量前,开机后应预热三十分钟,当测试环境温度改变3—5度时,频谱仪应重新进行校准。 三,任何频谱仪在输入端口都有一个允许输入的最大安全功率,称为最大输入电平。如国产多功能频谱分析仪AV4032要求连续波输入信号的最大功率不能超过+30dBmW(1W),且不允许直流输入。若输入信号值超出了频谱仪所允许的最大输入电平值,则会造成仪器损坏;对于不允许直流输入的频谱仪,若输入信号中含有直流成份,则也会对频谱仪造成损伤。 一般频谱仪的最大输入电平值通常在前面板靠近输入连接口的地方标出。如果频谱仪不允许信号中含有直流电压,当测量带有直流分量的信号时,应外接一个恰当数值的电容器用于隔直流。 当对所测信号的性质不太了解时,可采用以下的办法来保证频谱分析仪的安全使用:如果有RF功率计,可以用它来先测一下信号电平,如果没有功率计,则在信号电缆与频谱仪的输入端之间应接上一个一定量值的外部衰减器,频谱仪应选择最大的射频衰减和可能的最大基准电平,并且使用最宽的频率扫宽(SPAN),保证可能偏出屏幕的信号可以清晰看见。我们也可以使用示波器、电压表等仪器来检查DC及AC信号电平。 频谱分析仪的工作原理 频谱分析仪架构犹如时域用途的示波器,外观如图1.2所示,面板上布建许多功能控制按键,作为系统功能之调整与控制,系统主要的功能是在频域里显示输入信号的频谱特性.频谱分

史上最好的频谱分析仪基础知识(收藏必备)

频谱分析是观察和测量信号幅度和信号失真的一种快速方法,其显示结果可以直观反映出输入信号的傅立叶变换的幅度。信号频域分析的测量范围极其宽广,超过140dB,这使得频谱分析仪成为适合现代通信和微波领域的多用途仪器。频谱分析实质上是考察给定信号源,天线,或信号分配系统的幅度与频率的关系,这种分析能给出有关信号的重要信息,如稳定度,失真,幅度以及调制的类型和质量。利用这些信息,可以进行电路或系统的调试,以提高效率或验证在所需要的信息发射和不需要的信号发射方面是否符合不断涌现的各种规章条例。 现代频谱分析仪已经得到许多综合利用,从研究开发到生产制造,到现场维护。新型频谱分析仪已经改名叫信号分析仪,已经成为具有重要价值的实验室仪器,能够快速观察大的频谱宽度,然后迅速移近放大来观察信号细节已受到工程师的高度重视。在制造领域,测量速度结合通过计算机来存取数据的能力,可以快速,精确和重复地完成一些极其复杂的测量。 有两种技术方法可完成信号频域测量(统称为频谱分析)。 1.FFT分析仪用数值计算的方法处理一定时间周期的信号,可提供频率;幅度和相位信息。这种仪器同样能分析周期和非周期信号。FFT 的特点是速度快;精度高,但其分析频率带宽受ADC采样速率限制,适合分析窄带宽信号。 2.扫频式频谱分析仪可分析稳定和周期变化信号,可提供信号幅度和频率信息,适合于宽频带快速扫描测试。

图1 信号的频域分析技术 快速傅立叶变换频谱分析仪 快速傅立叶变换可用来确定时域信号的频谱。信号必须在时域中被数字化,然后执行FFT算法来求出频谱。一般FFT分析仪的结构是:输入信号首先通过一个可变衰减器,以提供不同的测量范围,然后信号经过低通滤波器,除去处于仪器频率范围之外的不希望的高频分量,再对波形进行取样即模拟到数字转换,转换为数字形式后,用微处理器(或其他数字电路如FPGA,DSP)接收取样波形,利用FFT计算波形的频谱,并将结果记录和显示在屏幕上。 FFT分析仪能够完成多通道滤波器式同样的功能,但无需使用许多带通滤波器,它使用数字信号处理来实现多个独立滤波器相当的功能。从概念上讲,FFT方法

安捷伦 E4402B频谱分析仪使用操作说明书

频谱分析仪使用方法简介 1简介 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、频谱度、频谱稳定度和交调失真等信号参数的测量,可用于测量放大器和滤波器等电路系统的某些参数,分析信号频率分量(频率和功率),是一种多用途的电子测量仪器。频谱分析仪是对无线电信号测量的必备手段,是从事电子产品研发、生产、检验的常用工具。因此被称为工程师的射频万用表 2.面板

2.1 操作区 1.观察角度键,用于调节显示,以适于使用者的观察角度。 2.Esc键,可以取消输入,终止打印。 3.无标识键,实现左边屏幕上紧挨的右边栏菜单的功能。 4.Frequency Channel(频率通道)、Span X Scale(扫宽X刻度)和Amplitude Y scale(幅度Y刻度)三个键,可以激活主要的调节功能(频率、X轴、Y 轴)并在右边栏显示相应的菜单。 5.Control(控制)功能区。 6.Measure(测量)功能区。 7.System(系统)功能区。 8.Marker(标记)功能区。 9.软驱和耳机插孔。 10.步进键和旋钮,用于改变所选中有效功能的数值。 11.音量调节。 12.外接键盘插口。 13.探头电源,为高阻抗交流探头或其它附件提供电源。 14.Return键,用于返回先前选择过的一级菜单。 15.Amptd Ref Out,可提供-20dBm的50MHz幅度参考信号。 16.Tab(制表)键,用于在界限编辑器和修正编辑器中四处移动,也用于在有 File菜单键所访问对话框的域中移动。 17.信号输入口(50Ω)。在使用中,接50ΩBNC(卡口配合性连接器)电缆, 探头上必须串联一隔直电容(30PF左右,陶瓷封装)。 18.Next Window键,可用来选择在支持分屏显示方式功能中(如区域标记)的 有效窗口,在这样的方式下,按下Zoom键将允许在有效窗口的分屏显示与全屏显示间进行转换。 19.Help键,按下后屏幕会提示按面板或菜单上的键,按后会显示相应说明。 20.射频输出(50Ω),是内部跟踪发生器的源输出,只适用与选件1DN或1DQ。 如果跟踪发生器的输出功率过大,则有可能损坏被测器件,不要超过被测器件所能容许的最高功率。 21.I(电源开)键,接通分析仪电源。O(备用)键,断开分析仪多数电路的电 源。实际适用中,用I键开机,O键关机,拔掉电源线才能完全断电。开机后需5分钟时间预热,以保证分析仪满足器全部技术指标。 22.数字键盘区。

频谱分析仪at5010使用方法

频谱分析仪 Spectrum Analyzer 系统主要的功能是在频域里显示输入信号的频谱特性.频谱分析仪依信号处理方式的不同,一般有两种类型;即时频谱分析仪(Real-Time Spectrum Analyzer)与扫描调谐频谱分析仪(Sweep-Tuned Spectrum Analyzer). 即时频率分析仪的功能为在同一瞬间显示频域的信号振幅,其工作原理是针对不同的频率信号而有相对应的滤波器与检知器(Detector),再经由同步的多工扫描器将信号传送到CRT萤幕上,其优点是能显示周期性杂散波(Periodic Random Waves)的瞬间反应,其缺点是价昂且性能受限於频宽范围,滤波器的数目与最大的多工交换时间(Switching Time). 最常用的频谱分析仪是扫描调谐频谱分析仪,其基本结构类似超外差式接收器,工作原理是输入信号经衰减器直接外加到混波器,可调变的本地振荡器经与CRT同步的扫描产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大,滤波与检波传送到CRT的垂直方向板,因此在CRT的纵轴显示信号振幅与频率的对应关系. 影响信号反应的重要部份为滤波器频宽,滤波器之特性为高斯滤波器(Gaussian-Shaped Filter),影响的功能就是量测时常见到的解析频宽(RBW,ResolutionBandwidth).RBW代表两个不同频率的信号能够被清楚的分辨出来的最低频宽差异,两个不同频率的信号频宽如低於频谱分析仪的RBW,此时该两信号将重叠,难以分辨,较低的RBW固然有助於不同频率信号的分辨与量测,低的RBW将滤除较高频率的信号成份,导致信号显示时产生失真,失真值与设定的RBW密切相关,较高的RBW固然有助於宽频带信号的侦测,将增加杂讯底层值(Noise Floor),降低量测灵敏度,对於侦测低强度的信号易产生阻碍,因此适当的RBW宽度是正确使用频谱分析仪重要的概念. (9)中频带宽选择(400kHz、20kHz):选在20kHz带宽时,噪声电平降低,选择性提高,能分隔开频率更近的谱线。此时,若扫频宽度过宽,则由于需要更长的扫描时间,从而造成信号过渡过程中信号幅度降低,使测量不正确。此时“校准失效”LED发亮即表明这一点。 (10)视频滤波器选择(VIDEOFILTER):可用来降低屏幕上的噪声,它使得正常情况下,平均噪声电平刚好高出其信号(小信号)谱线,以便于观察。该滤波器带宽是4kHz。 (11)Y移位调节(Y-POS):调节射速垂直方向移动。 (12)BNC 5011输入端口(1NPUT 5011):在不用输入衰减时,不允许超出的最大允许输入电压为+25V(DC)和十10dBm(AC)。当加上40dB最大输入衰减时,最大输入电压为+20dBm。 (13)衰减器按钮:输入衰减器包括有4个10dB衰减器,在信号进入第一混频器之前,利用衰减器按钮可降低信号幅度。按键压下时衰减器接人。

v1E8000频谱分析仪使用说明书

目录 1仪器的一般性说明 ..................... 错误!未定义书签。 1.1仪器的主要功能简介 ......... 错误!未定义书签。 1.2选择机型介绍 ..................... 错误!未定义书签。 1.3可供选购功能附件的介绍 . 错误!未定义书签。 1.4随机标准配置附件的说明 . 错误!未定义书签。 1.5预防性护理 ......................... 错误!未定义书签。 1.6年检和校准说明 ................. 错误!未定义书签。 1.7静电放电(ESD)的保护方法错误!未定义书签。 1.8电池的更换 ......................... 错误!未定义书签。 1.9使用软背包 ......................... 错误!未定义书签。 1.10有关的技术支持和服务信息错误!未定义书签。 2熟悉仪器 (3) 2.1打开频谱分析仪 (3) 2.1.1频谱分析仪前面板介绍 (3) 2.1.2测试面板介绍 (5) 2.2人机交互界面介绍 (5) 2.2.1屏幕显示信息介绍 (5) 2.2.2菜单操作 (6) 2.2.3符号与指示 (7) 2.2.4数据输入 (7) 2.3测量模式选择 (8) 2.4菜单详解 (8) 2.4.1AMP按键 (8) 2.4.2CPL按键 (10) 2.4.3FREQ按键 (10) 2.4.4MARK按键 (11) 2.4.5MEAS按键 (12) 2.4.6MEAS/SETUP按键 (13) 2.4.7PEAK按键 (14) 2.4.8SAVE按键 (15) 2.4.9SYS按键 (16) 3频谱测量 (17) 3.1测量类型选择 (17) 3.2频谱扫描的功能和使用 (17) 3.2.1基础测量 (17) 3.2.2基本参数设置 (27) 3.2.3测量参数设置 (31) 3.2.4基本使用 (37) 3.3通道功率 (45) 3.3.1基础测量 (45) 3.3.2基本参数设置 (49) 3.3.3测量参数设置 (49) 3.3.4基本使用 (51) 3.4邻道功率 (52) 3.4.1基础测量 (52) 3.4.2基本参数设置 (53) 3.4.3测量参数设置 (54) 3.4.4基本使用 (56) 3.5占用带宽 (57) 目录-1

安捷伦-Agilent-E4402B-频谱分析仪使用说明简介

Agilent E4402B ESA-ESeries SpectrumAn alyzer 使用方法简介 宁波之猫 2009-6-17

?目录 1简介............................................................................................. 错误!未定义书签。 2.面板............................................................................................. 错误!未定义书签。 2.1操作区?错误!未定义书签。 2.2 屏幕显示......................................................................... 错误!未定义书签。3.各功能区的使用....................................................................... 错误!未定义书签。 3.1 Control(控制)功能区 ............................................ 错误!未定义书签。 3.1.1 FrequencyChannel:?错误!未定义书签。 3.1.2Span X Scale?错误!未定义书签。 3.1.3Amplitude YScale .......................... 错误!未定义书签。 3.1.4 Input/Output ................................................... 错误!未定义书签。 3.1.5 View/Trace?错误!未定义书签。 3.1.6 Display?错误!未定义书签。 3.1.7 Mode ..................................................................... 错误!未定义书签。 3.1.8 Det/Demod?错误!未定义书签。 3.1.9Auto Cuple?8 3.1.10BW/Avg?错误!未定义书签。 3.1.11 Trig ............................................................. 错误!未定义书签。 3.1.12 Single?错误!未定义书签。 3.1.13Sweep?错误!未定义书签。 3.1.14Source?错误!未定义书签。 3.2 Measure(测量)功能区?错误!未定义书签。 3.2.1Measure?错误!未定义书签。 3.2.2 Meas Setup .............................................. 错误!未定义书签。 3.2.3 Meas Control ................................................ 错误!未定义书签。 3.3 System(系统)功能区............................................... 错误!未定义书签。 3.3.1System ......................................................... 错误!未定义书签。 3.3.2 Preset?错误!未定义书签。 3.3.3 File?错误!未定义书签。 3.3.4 Print Setup&Print .................................. 错误!未定义书签。 3.4Marker(标记)功能区?错误!未定义书签。 3.4.1 Marker........................................................... 错误!未定义书签。 3.4.2 Peak Search ................................................... 错误!未定义书签。 3.4.3 Freq Count?错误!未定义书签。 3.4.4Marker→?错误!未定义书签。 4.测试步骤举例............................................................................. 错误!未定义书签。

频谱分析仪和信号源使用说明

一、注意事项: 1、测试信号时一般需要在频谱仪上接一个转换头,注意将转换头的螺纹和频谱仪的螺纹对齐再用力拧,否则容易将螺纹损坏。(安装和拆卸转换头时需要注意) 2、测试大于30dBm的大功率信号时,最好先加上衰减器在进行测试,以免功率过大将频谱仪烧坏。 二、常用功能介绍: 频谱仪左边是显示屏,右边是操作按键。左下角是开关。右边的操作按键分为5个部分:FUNCTION、MARKER、SYSTEM、CONTROL、DATA ENTRY。当选择某个按键时,在显示屏的右侧会出现相应的菜单选项,通过按旁边的键可以选择对应的操作。下面分别介绍各部分常用的操作选项。 1、FUNCTION Frequency->Center:设置中心频率; Frequency->Start:设置起始频率; Frequency->Stop:设置终止频率; Frequency->CF Step:设置频率步进值; Span->WidthSpan: Span->FullSpan:设置全屏显示的频率跨度; AmpL->Ref.Lever:设置参考频率; Measure->Adjacent CH Power:相邻信道功率(可通过旋钮测试主瓣和旁瓣信号的带宽和带内功率); Measure->Channel Power:信道功率; Measure->Occupied BandWith:占用带宽; Measure->Harmonic Distortion:谐波失真; 2、MARKER PEAK:该键最常用,用来标记输入信号峰值功率; 3、SYSTEM 该部分用来进行系统设置,如将测试图像保存为图片格式,从软盘读取文件等。由于软盘不常用,所以一般用相机直接拍摄当前的图像。 Preset:将系统恢复到默认状态; 4、CONTROL Trace->Clr&Wrt:清除当前显示; Trace->Max Hold:保留最大值; Trace->Min Hold:保留最小值; CPL->All Auto:所有的设为自动; CPL->RBW:设置分辨率带宽(该值越小,分辨率越高,相应扫描速率越慢); CPL->VBW:设置显示带宽; CPL->Swp Time:扫频时间; (一般RBW和VBW设置为自动;Swp Time保持默认值) 5、DA TA ENTRY 该部分用来输入数值。右边的旋钮可以用来微调数值以及改变MARKER标记的频率值。

HS5660C型精密噪声频谱分析仪说明书

HS5660C型精密噪声频谱分析仪 使用说明书 国营四三八零厂嘉兴分厂

一、概述 HS5660C型精密噪声频谱分析仪是一种袖珍式的智能化噪声测量仪器,它集噪声采集、积分测量、噪声统计、频谱分析等几种功能于一体,主要性能指标符合IEC61672 标准和JJG188-2002声级计检定规程对1级声级计的规定要求。 HS5660C具有大屏幕液晶显示、时钟设置、自动测量并存储测量数据等特点,最多可存储500组单组数据、4组整时数据和50组滤波器自动测量数据,并且可以通过RS -232C口把数据传输给HS4784打印或传输给计算机进行处理,在设计上有许多创新,能满足多种测量要求。 本仪器结构紧凑、造型美观、功能多、自动化程度高,可广泛应用于环保、工厂、学校、科研等部门进行噪声测量及分析。 二、主要技术指标 1.传声器:1/2英寸驻极体测试电容传声器 2.测量范围:25dB~130dB(A)、30dB~130dB(C);40dB~130dB(Lin) 3.频率计权:10Hz~20kHz 4.时间计权:F( 快 )、S( 慢 ) 5.滤波器:1/1倍频程(符合GB/T 3241标准2级) 6.自动测量功能:Leq、LAE、SD、LN(L95、L90、L50、L10、L5)、Lmax、Lmin、Ldn、Ld、Ln。 7.测量时间设定:Man、10s、1m、5m、10m、15m、20m、1h、8h、24h、24h整时测量。 8.时钟:年、月、日、时、分、秒设置运行。 9.测量数据自动存储:共500组单组数据,4组整时数据和50组滤波器自动测量数据。 10.接口:分析仪通过RS-232C可将数据传输给HS4784打印机或计算机处理。 11.校准:使用HS6020校准至93.8dB。 12.显示器:使用专门为噪声测量仪器设计的LCD显示器。 13.电源:使用+9V外接电源(外+内-),或者用5节5号高能碱性电池。 14.外形尺寸:l×b×h 307mm×80mm×30mm

频谱分析仪使用手册

ES A系列频谱分析仪 使用手册 通信网络管理中心通信枢纽室

目录 第一章安装和设置............................. 错误!未定义书签。 1、初始检查................................ 错误!未定义书签。 2、电源要求................................ 错误!未定义书签。 3、首次开启分析仪.......................... 错误!未定义书签。 4、运行内部对准............................ 错误!未定义书签。 5、打印机设置和操作........................ 错误!未定义书签。 6、防止静电释放............................ 错误!未定义书签。第二章前面板和后面板特性..................... 错误!未定义书签。 1、前面板概览.............................. 错误!未定义书签。 2、后面板特性.............................. 错误!未定义书签。 3、键概述.................................. 错误!未定义书签。 4、前面板和后面板符号...................... 错误!未定义书签。第三章进行基本测量.......................... 错误!未定义书签。 1、使用前面板.............................. 错误!未定义书签。 2、预设频谱分析仪.......................... 错误!未定义书签。 3、查看信号................................ 错误!未定义书签。

频谱仪原理及使用方法

频谱仪原理及使用方法 频谱仪是一种将信号电压幅度随频率变化的规律予以显示的仪器。频谱仪在电磁兼容分析方面有着广泛的应用,它能够在扫描范围内精确地测量和显示各个频率上的信号特征,使我们能够“看到”电信号,从而为分析电信号带来方便。 1.频谱仪的原理 频谱仪是一台在一定频率范围内扫描接收的接收机,它的原理图如图1所示。 频谱分析仪采用频率扫描超外差的工作方式。混频器将天线上接收到的信号与本振产生的信号混频,当混频的频率等于中频时,这个信号可以通过中频放大器,被放大后,进行峰值检波。检波后的信号被视频放大器进行放大,然后显示出来。由于本振电路的振荡频率随着时间变化,因此频谱分析仪在不同的时间接收的频率是不同的。当本振振荡器的频率随着时间进行扫描时,屏幕上就显示出了被测信号在不同频率上的幅度,将不同频率上信号的幅度记录下来,就得到了被测信号的频谱。进行干扰分析时,根据这个频谱,就能够知道被测设备或空中电波是否有超过标准规定的干扰信号以及干扰信号的发射特征。 2.频谱分析仪的使用方法 要进行深入的干扰分析,必须熟练地操作频谱分析仪,关键是掌握各个参数的物理意义和设置要求。 (1)频率扫描范围 通过调整扫描频率范围,可以对所要研究的频率成分进行细致的观察。扫描频率范围越宽,则扫描一遍所需要时间越长,频谱上各点的测量精度越低,因此,在可能的情况下,尽量使用较小的频率范围。在设置这个参数时,可以通过设置扫描开始频率目”无“’。04朋和终止频率来确定,例如:startfrequeney=150MHz,stopfrequency=160MHz;也可以通过设置扫描中心频率和频率范围来确定,例如:eenterfrequeney=155MHz,span=10MHz。这两种设置的结果是一样的。Span越小,光标读出信号频率的精度就越高。一般扫描范围是根据被观测的信号频谱宽度或信道间隔来选择。如分析一个正弦波,则扫描范围应大于2f(f为调 制信号的频率),若要观测有无二次谐波的调制边带,则应大于4f。 (2)中频分辨率带宽 频谱分析仪的中频带宽决定了仪器的选择性和扫描时间。调整分辨带宽可以达到两个目的,一个是提高仪器的选择性,以便对频率相距很近的两个信号进行区别,若有两个频率成分同时落在中放通频带内,则频谱仪不能区分两个频率成分,所以,中放通频带越窄,则频谱仪的选择性越好。另一个目的是提高仪器的灵敏度。因为任何电路都有热噪声,这些噪声会将微弱信号淹没,而使仪器无法观察微弱信号。噪声的幅度与仪器的通频带宽成正比,带宽越宽,则噪声越大。因此减小仪器的分辨带宽可以减小仪器本身的噪声,从而增强对微弱信号的检测能力。根据实际经验,在测量信号功率时,一般来说,分辨率带宽RBW宜为

北邮电磁场实验_频谱分析仪的使用

北京邮电大学 电磁场与微波测量实验 5.3.1频谱分析仪的使用 5.3.2衰减器的特性测量 5.3.3定向耦合器特性测量 5.3.4滤波器的特性以及测量 5.5.2微波TV发射机系统的调测 学院: 班级: 组员:

5.3.1频谱分析仪的使用 1. 实验目的 了解频谱分析仪的工作原理,熟悉它的使用方法 了解微波信号发生器的使用方法 2.实验设备 频谱分析仪 微波信号发生器 3.实验原理 频谱分析仪是研究电信号频谱结构的仪器,主要的功能是在频域里显示输入信号的频谱特性。输入信号经衰减器直接外加到混波器,可调变的本地振荡器经与CRT同步的扫描产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大,滤波与检波传送到CRT的垂直方向板,因此在CRT的纵轴显示信号振幅与频率的对应关系。较低的RBW固然有助於不同频率信号的分辨与量测,低的RBW将滤除较高频率的信号成份,导致信号显示时产生失真,失真值与设定的RBW密切相关,较高的RBW固然有助於宽频带信号的侦测,将增加杂讯底层值(Noise Floor),降低量测灵敏度,对于侦测低强度的信号易产生阻碍,因此适当的RBW宽度是正确使用频谱分析仪重要的概念。 4. 实验内容 4.1单载波信号的频谱测量 4.1.1实验操作步骤 1.按照下图连接测试

2.设置微波信号发生器输出指定频率和功率的单载波信号(900MHz、-10dBm) 3.设置频谱分析仪的中心频率为微波信号发生器的输出频率,设置合适的扫描带宽,适当调整参考电平使频谱图显示在合适的位置。 4.用峰值搜索功能测量信号的频率和电平,测试数据记录到表1中 5.用差值光标功能测量信号和噪声的相对电平(信噪比),同时记录频谱分析仪的分辨率和带宽设置 4.1.2实验数据记录 表1 4.2带载波信号的杂散测量 4.2.1实验操作步骤 1.设置微波信号发生器输出制定频率和功率的正弦波(850MHz、-20dBm) 2.设置频谱分析仪的中心频率为微波信号发生器的输出频率,设置合适的扫描带宽,适当调整参考电平使频谱图显示在合适的位置。 3.用频谱分析仪测量输出信号的频率和电平,测试数据记录到表2中 4.增加频谱分析仪的扫描带宽,如100MHz,用手动设置功能适当减小频谱分析仪的分辨率带宽,观察频谱图的变化,直到观测到杂散信号为止。 5.在频谱图中确定最大杂散信号,用差值光标功能测量信号和最大杂散信号的相对电平(杂散抑制度)

相关文档
最新文档