排列组合

排列组合
排列组合

数学广角

──排列组合(一)

教材分析:

“数学广角”是义务教育课程标准实验教科书从二年级上册开始新增设的一个单元,是新教材在向学生渗透数学思想方法方面做出的新的尝试。排列和组合的思想方法不仅应用广泛,而且是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材,本教材在渗透数学思想方法方面做了一些努力和探索,把重要的数学思想方法通过学生日常生活中最简单的事例呈现出来。

教材的例1通过2个卡片的排列顺序不同,表示不同的两位数,属于排列知识,例1给出了一幅学生用数字卡片摆两位数的情境图,学生可以进行小组合作学习,然后小组交流摆卡片的体会:怎样摆才能保证不重复不遗漏。教材以学生熟悉而又感兴趣的生活场景为依托,重在向学生渗透这些数学思想方法,将学习活动置于模拟情景中,给学生提供操作和活动的机会,初步培养学生有顺序地、全面地思考问题的意识,为学生今后学习组合数学和学习概率统计奠定基础。

学生分析:

在日常生活中,有很多需要用排列组合来解决的知识。如体育中足球、乒乓球的比赛场次,密码箱中密码的排列数等等,作为二年级的学生,已有了一定的生活经验,因此在数学学习中注意安排生动有趣的活动,让学生通过这些活动来进行学习,经历简单的排列组合规律的数学知识探索过程,让学生在活动中探究新知,发现规律,从而培养学生的数学能力。

教学目标:

1.通过观察、实验等活动,使学生找出最简单的事物的排列数和组合数,初步经历简单的排列和组合规律的探索过程;

2.使学生初步学会排列组合的简单方法,锻炼学生观察、分析和推理的能力;

3.培养学生有序、全面思考问题的意识,通过小组合作探究的学习形式,养成与人合作的良好习惯。

设计理念:

根据学生认知特点和规律,在本节课的设计中,我遵照《课标》的要求和低年级学生学习数学的实际,着眼于学生的发展,注重发挥多媒体教学的作用,通过课件演示、实物投影、动手操作、游戏活动等方式组织教学,做到:

a、创设情境活用教材

我对教材进行了灵活的处理,创设了“六一”参观体育馆这样一个情境,在一个又一个的活动情境中渗透排列和组合的思想方法,让学生亲身经历探索简单事物排列和组合规律的过程,在活动中主动参与,在活动中发现规律。

b、关注合作促进交流

以小组合作的形式贯穿全课,充分应用分组合作、共同探究的学习模式,在教学中鼓励学生与同伴交流,引导学生展开讨论,使学生在合作中学会了知识,体验了学习的乐趣,思维活动也更加活跃。

教学流程:

一、创设情境,导入新课

师:马上就是“六一”儿童节了,你们打算怎么度过这个属于我们自己的节日呢?

学生自由回答。

师:老师决定今天这节课带大家去体育馆玩一玩,你们愿意吗?

(课件出示体育馆的场景,学生兴趣盎然。)

[创设参观体育馆的情境,激发学生的学习兴趣,符合低年级儿童的年龄特点,抓住了“童心”,为新课的顺利进行作好了铺垫。]

二、合作学习,构建模型

1.初步感知。

师:瞧!有这么多运动员在这儿参加比赛,现在想请大家给运动员试着编一个号。

课件显示:

学生同桌讨论,指名回答:12和21。

2.合作探究。

师:(课件在原基础上加一个3)如果是1、2、3三个数字呢?能编出几个号?能组成几个两位数?请大家拿出数字卡片动手摆一摆,组长把大家的讨论结果记录在答题卡上。比比看,哪个组找的最多。

(活动开始,教师巡视。)

以组为单位派代表上台汇报,将答题纸展示在投影仪上。

师:有的组摆出了4个不同的两位数,有的组摆出了6个不同的两位数,你们是怎么摆的?有什么好办法?

(鼓励方法的多样化,对各组的不同方法进行肯定和表扬。)

结合发言,引导学生进行评价,选出优胜组。

师生共同归纳:用数字排列组成数,要按照一定的顺序确定十位上的数,然后考虑个位上有哪些数可以与其搭配。

板书:不重复、不遗漏、有顺序

[在合作交流的过程中让小学生经历了简单的事物排列与组合规律的过程,由2个数过渡到3个数的排列,给学生留有较大的探索交流空间,这样做,既有利于学生的学习,又培养了

学生乐于合作的习惯。]

3.握一握。

师:刚才各组同学都合作得非常好,大家真了不起!(走到优胜组旁边,伸手和优胜组的4名同学握手)向你们表示祝贺!

师:握手是我们见面时表示礼貌的一种方式,提到握手啊,老师要考考你们了,如果组内的4名同学每两人握一次手,一共要握几次呢?猜猜看!

(指名回答,学生进行猜测。)

师:究竟是几次呢?请大家互相握握看吧!

请一个组的同学上台演示,其他同学一起数数。

[用实践活动培养学生的实践和应用意识,感受到数学的乐趣,从根本上体现了课堂的发展按学生的思维发展进行。]

三、分层练习,巩固新知

1.乒乓球赛。

师:这里在干什么?

(课件播放录像片段:乒乓球比赛。)

师:三个运动员每两位只打一场,他们要决出冠军需要进行几场比赛?

如果老师也参加进去呢?

学生各抒己见,自由发言。

2.搭配服装。

师:激烈的比赛结束了,马上就要进行颁奖典礼了,这里有两件衣服和两条裤子,同学们,获奖选手可以怎样搭配衣服呢?

(课件出示图片。)

学生拿出学具卡片,独立解决问题。

汇报交流,投影展示,说说自己为什么这样设计。

师:你想让他们穿哪套呢?你是怎么想的?

3.付钱问题。

师:为了奖励获奖运动员,组委会决定给他们买一份特别的奖品。

(课件出示奖品盒以及标价:5元。)

现在有一张5元,2张2元、5张一元,可以有几种拿法?

学生摆学具,上台汇报,教师及时进行表扬。

[让学生在活动中运用新知识,三个层次的情境安排,给学生留有充足的空间,让他们利用学过的数学知识来解决生活中的问题,体现了数学的应用价值。]

四、畅谈收获,全课小结

师:今天大家玩的开心吗?你有什么感受和收获?

学生自由发言,畅谈学习收获。

评析:

本节课的教学设计始终以小组合作为主,改变了重教师“讲”知识、轻学生“构”知识的教学模式,按照新的教学理念和儿童的认知特点,创造性的设计教学,将学生的学习活动置于参观体育馆这样一个模拟情境中,凸现了数学学习的生活化。

整个教学过程教师给了学生很大的学习空间,创设了给运动员编号、搭配衣服、买奖品等活动情境,使得学生始终在玩中感受数学,在玩中体会排列的知识,通过师生的双边活动、合作交流和自主探究,使学生完全在平等、自由、和谐的氛围中学习。

总之,这节课教师注重把数学和生活相沟通,让学生在知识的活动中得到发展,在发展过程中习得知识,整个课堂充满了生活气息和生命活力!

排列组合专题复习与经典例题详解

排列组合专题复习及经典例题详解 1. 学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类型办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法. 2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……,做第n 步有n m 种不同的方法;那么完成这件事共有n m m m N ???=...21种不同的方法. 特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n 个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,n m <时叫做选排列,n m =时叫做全排列. 4.排列数:从n 个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n P 表示. 5.排列数公式:)、(+∈≤-= +---=N m n n m m n n m n n n n P m n ,)! (!)1)...(2)(1( 排列数具有的性质:11-++=m n m n m n mP P P 特别提醒: 规定0!=1

高中数学完整讲义——排列与组合5.排列组合问题的常见模型1

高中数学讲义 1.基本计数原理 ⑴加法原理 分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++种不同的方法.又称加法原理. ⑵乘法原理 分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =???种不同的方法.又称乘法原理. ⑶加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理. 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素) 排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. 排列数公式:A (1)(2) (1)m n n n n n m =---+,m n +∈N ,,并且m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=. ⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合. 组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示. 组合数公式:(1)(2)(1)!C !!()! m n n n n n m n m m n m ---+==-,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0 C 1n =) 知识内容 排列组合问题的常见模型 1

[超全]排列组合二十种经典解法!

超全的排列组合解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2 m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A

几类经典排列组合问题

一、小球放盒子问题(分组问题) (1)6个不同的小球放到6个不同的盒子里。 解析:分步乘法计数原理, 每个小球都有六种放法 答案:66 。 (2)6个不同的小球放到6个不同的盒子里,要求每个盒子只能放一个小球。 解析:思路一:分步乘法计数原理, 第一个小球有6种放法 第二个小球有5种放法 …… 第六个小球有1种放法 即6*5*4*3*2*1; 思路二:将小球按顺序摆放后,与不同的盒子相对应即可,即A 6 6。 答案:720。 (3)6个不同的小球平均放到3个相同的盒子里。 解析:平均分组的问题 因为盒子相同,相当于把小球等分成三堆,设想6个小球编号为ABCDEF , 首先从6个球中选出2个,为C 2 6; 然后从剩下的4个球中选出2个,为C 2 4; 最后剩下2个球,为C 2 2; 但是:C 2 6取出AB 球、C 2 4取出CD 球、剩EF 球; C 2 6取出AB 球、C 2 4取出EF 球、剩CD 球; C 2 6取出C D 球、C 2 4取出AB 球、剩EF 球; C 2 6取出C D 球、C 2 4取出EF 球、剩AB 球; C 2 6取出EF 球、C 2 4取出AB 球、剩CD 球; C 2 6取出EF 球、C 2 4取出CD 球、剩AB 球; 得到的结果是一样的,故按照C 2 6C 2 4C 2 2组合完成后还应除去A 3 3, 答案:C 2 6C 2 4C 2 2/A 3 3 (4)6个不同的小球平均放到3个不同的盒子里。 解析:平均分组后再分配的问题 平均分组得到的结果为C 2 6C 2 4C 2 2/A 3 3,分完组后三堆小球还要放到不同的盒 子里,即再进行一个A 3 3的排列 答案:C 2 6C 2 4C 2 2 (5)6个不同的小球按1、2、3的数量,分别放到3个相同的盒子里。 解析:非平均分组的问题 因为盒子相同,相当于把小球分成数量不等的三堆, 首先从6个球中选出1个,为C 1 6; 然后从剩下的5个球中选出2个,为C 2 5; 最后剩下3个球,为C 3 3; 注意:因为这个问题是非平均分组,故不存在(3)中出现的重复的情况,

高二数学知识点:排列与组合

高二数学知识点:排列与组合 排列组合公式/排列组合计算公式 排列P------和顺序有关 组合C-------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法."排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m)表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式

从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n 个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符 号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 2019-07-0813:30 公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?

超全排列组合二十种经典解法

超全的排列组合解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2 m 种不同的方法,…,在第n 类办法中有m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有 1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A

排列组合的21种例题

高考数学复习 解排列组合应用题的21种策略 排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 A 、60种 B 、48种 C 、36种 D 、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是 A 、24种 B 、60种 C 、90种 D 、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有 A 、6种 B 、9种 C 、11种 D 、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是 A 、1260种 B 、2025种 C 、2520种 D 、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有 A 、44412 8 4 C C C 种 B 、44412 8 4 3C C C 种 C 、44312 8 3 C C A 种 D 、4441284 3 3 C C C A 种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为 A 、480种 B 、240种 C 、120种 D 、96种 7.名额分配问题隔板法: 例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?

排列组合问题经典题型(含解析)

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有() A、 444 1284 C C C 种 B、 444 1284 3C C C 种 C、 443 1283 C C A 种 D、 444 1284 3 3 C C C A种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为() A、480种 B、240种 C、120种 D、96种 7.名额分配问题隔板法: 例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A、210种 B、300种 C、464种 D、600种 (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种? (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?

高中数学排列组合部分错题精选

高考数学复习易做易错题选 排列组合易错题正误解析 排列组合问题类型繁多、方法丰富、富于变化,稍不注意,极易出错.本文选择一些在教学中学生常见的错误进行正误解析,以飨读者. 1没有理解两个基本原理出错 排列组合问题基于两个基本计数原理,即加法原理和乘法原理,故理解“分类用加、分步用乘”是解决排列组合问题的前提. 例1(1995年上海高考题)从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装与组装计算机各两台,则不同的取法有 种. 误解:因为可以取2台原装与3台组装计算机或是3台原装与2台组装计算机,所以只有2种取法. 错因分析:误解的原因在于没有意识到“选取2台原装与3台组装计算机或是3台原装与2台组装计算机”是完成任务的两“类”办法,每类办法中都还有不同的取法. 正解:由分析,完成第一类办法还可以分成两步:第一步在原装计算机中任意选取2台,有26C 种方法;第二步是在组装计算机任意选取3台,有35C 种方法,据 乘法原理共有3526C C ?种方法.同理,完成第二类办法中有2536C C ?种方法.据加法原 理完成全部的选取过程共有+?3526C C 3502536=?C C 种方法. 例2 在一次运动会上有四项比赛的冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有( )种. (A )34A (B )34 (C )43 (D )34C 误解:把四个冠军,排在甲、乙、丙三个位置上,选A . 错因分析:误解是没有理解乘法原理的概念,盲目地套用公式. 正解:四项比赛的冠军依次在甲、乙、丙三人中选取,每项冠军都有3种选取方法,由乘法原理共有433333=???种. 说明:本题还有同学这样误解,甲乙丙夺冠均有四种情况,由乘法原理得34.这是由于没有考虑到某项冠军一旦被一人夺得后,其他人就不再有4种夺冠可能. 2判断不出是排列还是组合出错 在判断一个问题是排列还是组合问题时,主要看元素的组成有没有顺序性,有

高中数学-排列组合解法大全

排列组合解法大全 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第 1类办法中有m1种不同的方法,在第 2 类办法中有m2种不同的方法,?,在第n 类办法中有m n种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第 1步有m1种不同的方法,做第 2步有m2种不同的方法,做第n步有m n种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下 : 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事 , 即采取分步还是分类 , 或是分步与分类同时进行 , 确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题, 元素总数是多少及取出多少个元素 . 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一. 特殊元素和特殊位置优先策略 例 1. 由 0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解: 由于末位和首位有特殊要求 , 应该优先安排 , 以免不合要求的元素占了这两个位置 . 先排末位共有C13 然后排首位共有C14 最后排其它位置共有A43 由分步计数原理得C41C13A43 288 练习题 :7 种不同的花种在排成一列的花盆里 , 若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二. 相邻元素捆绑策略 例 2. 7 人站成一排 , 其中甲乙相邻且丙丁相邻 , 共有多少种不同的排法 . 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素部进行自排。由分步计数原理可得共有A55A22A22480种不同的排法 练习题 : 某人射击 8 枪,命中 4 枪, 4 枪命中恰好有 3 枪连在一起的情形的不同种数为20

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

[超全]排列组合二十种经典解法!

[超全]排列组合二十种经典解法!

超全的排列组合解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有m种不同的方法,在第2类办法中有2m种不同1 的方法,…,在第n类办法中有 m种不同的方 n 法,那么完成这件事共有: 第 2 页共 22 页

种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有m种不同的方法,做第2步有2m种不同的方1 法,…,做第n步有 m种不同的方法,那么完 n 成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉, 第 3 页共 22 页

高中数学:排列与组合练习

高中数学:排列与组合练习 1.(昆明质检)互不相同的5盆菊花,其中2盆为白色,2盆为黄色,1盆为红色,先要摆成一排,要求红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,共有摆放方法(D) A.A55种B.A22种 C.A24A22种D.C12C12A22A22种 解析:红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,即红色菊花两边各一盆白色菊花,一盆黄色菊花,共有C12C12A22A22种摆放方法. 2.(广州测试)某学校获得5个高校自主招生推荐名额,其中甲大学2个,乙大学2个,丙大学1个,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有(B) A.36种B.24种 C.22种D.20种 解析:根据题意,分两种情况讨论:第一种,3名男生每个大学各推荐1人,2名女生分别推荐给甲大学和乙大学,共有A33A22=12种推荐方法;第二种,将3名男生分成两组分别推荐给甲大学和乙大学,共有C23A22A22=12种推荐方法.故共有24种推荐方法,选B. 3.(广东珠海模拟)将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有(C) A.480种B.360种 C.240种D.120种 解析:根据题意,将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则必须有2个小球放入1个盒子,其余的小球各单独放入一个盒子,分2步进行分析:①先将5个小球分成4组,有C25=10种分法;②将分好的4组全排列,放入4个盒子,有A44=24种情况,则不同放法有10×24=240种.故选C. 4.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为(C) A.16 B.18

排列 组合 定义 公式 原理

排列组合公式 久了不用竟然忘了 排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。排列的全体组成的集合用 P(n,r)表示。排列的个数用P(n,r)表示。当r=n时称为全排列。一般不说可重即无重。可重排列的相应记号为 P(n,r),P(n,r)。 组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。 组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合 有记号C(n,r),C(n,r)。 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式

3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数 集合A为数字不重复的九位数的集合,S(A)=9! 集合B为数字不重复的六位数的集合。 把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。显然各子集没有共同元素。每个子集元素的个数,等于剩余的3个数的全排列,即3! 这时集合B的元素与A的子集存在一一对应关系,则 S(A)=S(B)*3! S(B)=9!/3! 这就是我们用以前的方法求出的P(9,6) 例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法? 设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。把集合B分为子集的集合,规则为全部由相同数字组成的数组成一个子集,则每个子集都是某6个数的全排列,即每个子集有6!个元素。这时集合C的元素与B的子集存在一一对应关系,则 S(B)=S(C)*6! S(C)=9!/3!/6! 这就是我们用以前的方法求出的C(9,6) 以上都是简单的例子,似乎不用弄得这么复杂。但是集合的观念才是排列组合公式的来源,也是对公式更深刻的认识。大家可能没有意识到,在我们平时数物品的数量时,说1,2,3,4,5,一共有5个,这时我们就是在把物品的集合与集合(1,2,3,4,5)建立一一对应的关系,正是因为物品数量与集合(1, 2,3,4,5)的元素个数相等,所以我们才说物品共有5个。我写这篇文章的目的是把这些潜在的思路变得清晰,从而能用它解决更复杂的问题。 例3:9个人坐成一圈,问不同坐法有多少种?

排列组合问题经典题型与通用方法(全面)

() A、60种 B、48种 C、36种 D、24种 解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种, 答案:D . 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法有() A、24种 B、60种 C、90种 D、120种 解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602 A =种,选 B .11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。 例11.现有1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种? 解析:老师在中间三个位置上选一个有13A 种,4名同学在其余4个位置上有4 4A 种方法;所以共有143472A A =种。 12.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。 例12.(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是() A、36种 B、120种 C、720种 D、1440种 (2)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法? 解析:(1)前后两排可看成一排的两段,因此本题可看成6个不同的元素排成一排,共66720A =种,选C .(2)解析:看成一排,某2个元素在前半段四个位置中选排2个,有2 4A 种,某1个元素排在后半段的四个位置中选一个有14A 种,其余5个元素任排5个位置上有55A 种,故共有1254455760A A A =种排法. 16.圆排问题单排法:把n 个不同元素放在圆周n 个无编号位置上的排列,顺序(例如按顺时钟)不同的排法才算不同的排列,而顺序相同(即旋转一下就可以重合)的排法认为是相同的,它与普通排列的区别在于只计顺序而无首位、末位之分,下列n 个普通排列:排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.A ,B ,C ,D ,E 五人并排站成一排,如果A ,B 必须相邻且B 在A 的右边,则不同的排法有(一)排序问题

高中数学排列组合公式大全_高中数学排列组合重点知识

高中数学排列组合公式大全_高中数学排列组合重点知识 1.排列及计算公式 从n个不同元素中,任取mm≤n个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出mm≤n个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 pn,m表示. pn,m=nn-1n-2……n-m+1= n!/n-m!规定0!=1. 2.组合及计算公式 从n个不同元素中,任取mm≤n个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出mm≤n个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 cn,m 表示. cn,m=pn,m/m!=n!/n-m!*m!;cn,m=cn,n-m; 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=pn,r/r=n!/rn-r!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/n1!*n2!*...*nk!. k类元素,每类的个数无限,从中取出m个元素的组合数为cm+k-1,m. 排列Pnmn为下标,m为上标 Pnm=n×n-1....n-m+1;Pnm=n!/n-m!注:!是阶乘符号;Pnn两个n分别为上标和下标=n!;0!=1;Pn1n为下标1为上标=n 组合Cnmn为下标,m为上标 Cnm=Pnm/Pmm ;Cnm=n!/m!n-m!;Cnn两个n分别为上标和下标 =1 ;Cn1n为下标1为上标=n;Cnm=Cnn-m 加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。 排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。

排列组合中分组(分堆)与分配问题

太奇MBA 数学助教 李瑞玲 一.分组(分堆)与分配问题 将n 个不同元素按照某些条件分配给k 个不同的对象,称为分配问题,又分为定向分配和不定向分配两种问题。 将n 个不同元素按照某些条件分成k 组,称为分组问题。分组问题有不平均分组,平均分组,部分平均分组三情况。 分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的,而后者即使两组的元素个数相同,但因所要分配的对象不同,仍然是可区分的。对于后者必须先分组后排列。一.基本的分组问题 例1.六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法? (1)每组两本(均分三组)(平均分组问题)(2)一组一本,一组两本,一组三本(不平均分组问题)(3)一组四本,另外两组各一本 (部分平均分组问题) 分析:(1)分组和顺序无关,是组合问题。分组数为90222426=C C C ,而这90种分组方法实际上重复了6次。现把六本不同的书标上 6,5,4,3,2,1六个号码,先看一下这种情况: (1,2)(3,4)(5,6)(1,2)(5,6)(3,4)(3,4)(1,2)(5,6)(3,4)(5,6)(1,2)(5,6)(1,2)(3,4) (5,6)(3,4)(1,2) 由于书是均匀分组的,三组的本数都一样,又与顺序无关,所以这种

情况下这六种分法是同一种分法,于是可知重复了6次。以上的分组实际上加入了组的顺序,同理其他情况也是如此,因此还应取消分组 的顺序,即除以3 3 P ,于是最后知分法为156 90 332 22426==P C C C . (2)先分组,分组方法是603 32516=C C C ,那么还要不要除以33P ???(很 关键的问题) 由于每组的书的本数是不一样的,因此不会出现相同的分法,即 共有60332516=C C C 。 (3)先分组,分组方法是30111246=C C C ,这其中有没有重复的分法???(需 要好好考虑) 现还把六本不同的书标上6,5,4,3,2,1六个号码,先看以下情况1)先取四本分一组,剩下的两本,一本一组,情况如下(1,2,3,4)5 6 (1,2,3,4)6 5 2)先取一本分一组,再取四本分一组,剩余的一本为一组,情况如下 5 (1,2,3,4)6 6(1,2,3,4)5 3)先取一本分一组,再取一本为一组,剩下的四本为一组,情况如下 5 6(1,2,3,4) 6 5(1,2,3,4) 由此可知每一种分法重复了2次,原因是其中两组的的书的本数都是一本,这两组有了顺序,需要把分组的顺序取消掉,而四本的那一组,由于书的本数不一样,不可重复,故最后的结果为

排列组合公式推导

1公吨=1t=1000kg 密度单位g/cm3 Proe密度单位公吨/mm3 1公吨/mm3=1000kg/(cm3×10-3)=109g/cm3 1g/cm3=10-9公吨/mm3 排列和组合基本公式的推导,定义 在本节中,笔者将介绍「排列」(Permutation)和「组合」(Combination)的基本概念和两个基本公式。请注意「点算组合学」中的很多概念都可以从不同角度解释为日常生活中的不同事例,因此笔者亦会引导读者从不同角度理解「排列」和「组合」的意义。 先从「排列」开始。「排列」的最直观意义,就是给定n个「可区别」(Distinguishable,亦作「相异」)的物件,现把这n个物件的全部或部分排次序,「排列」问题就是求不同排列方式的总数。为了区别这些物件,我们可不妨给每个物件一个编号:1、2 ... n,因此「排列」问题实际等同於求把数字1、2 ... n的全部或部分排次序的方式总数。「排列」问题可分为「全排列」和「部分排列」两种,当我们把给定的n个数字1 、2 ... n全部排次序,求有多少种排法时,就是「全排列」问题。我们可以把排序过程分解为n 个程序:第一个程序决定排於第一位的数字,第二个程序决定排於第二位的数字...第n个程序决定排於第n位的数字。在进行第一个程序时,有n个数字可供选择,因此有n种选法。在进行第二个程序时,由於在前一程序已选定了一个数字,现在可供选择的数字只剩下n-1个,因此有n-1种选法。在进行第三个程序时,由於在前一程序已选定了一个数字,现在可供选择的数字只剩下 n-2个,因此有n-2种选法。如是者直至第n个程序,这时可供选择的数字只剩下1个,因此只有1种选择。由於以上各程序是「各自独立」的,我们可以运用「乘法原理」求得答案为n×(n-1)×(n-2)×...2×1。在数学上把上式简记为n!,读作「n阶乘」(n-factorial)。 例题1:把1至3这3个数字进行「全排列」,共有多少种排法?试列出所有排法。 答1:共有3! = 3 × 2 × 1 = 6种排法,这6种排法为1-2-3;1-3-2;2-1-3;2-3-1;3-1-2;3-2-1。 当然,给定n个数字,我们不一定非要把全部n个数字排序不可,我们也可只抽取部分数字(例如r个,r < n)来排序,并求有多少种排法,这样的问题就是「部分排列」问题。我们可以把「部分排列」问题理解成抽东西的问题。设在某袋中有n个球,每个球都标了编号1、2 ... n。现从袋中抽r个球出来(抽出来之后不得再放回袋中),并把球上的数字按被抽出来的顺序记下,这r个数字的序列实际便等同於一个排序。「部分排列」问题的解答跟「全排列」问题非常相似,只不过现在我们是把排序过程分解为r个而非n个步骤。进行第一

相关文档
最新文档