涡轮喷气式发动机

涡轮喷气式发动机
涡轮喷气式发动机

涡轮喷气发动机

李飞龙运航1101 201173619

涡轮喷气发动机,它包括有外壳、轴承、转轴、进气外定子、进气定子、轴套、尾排气定子、整流罩、尾轴螺母、排气定子、排气叶轮、控制装置,它还包括有前轴螺母、大轴套、燃烧室,所述转轴的前轴伸端和后轴伸端设有外螺纹,在转轴的前轴伸端的外螺纹上旋有前轴螺母,并且在转轴上向后依次设置有进气叶轮、轴套、一对支撑轴承、轴套、排气叶轮,在后轴伸端的外螺纹上旋有尾轴螺母,所述进气叶轮和排气叶轮与转轴相固定连接。涡轮喷气发动机包含四节:压缩器,燃烧室,涡轮节,和排气节。压缩器部分空气以高速度通过进气道到达燃烧室。燃烧室包含燃油入口和用于燃烧的点火器。膨胀的空气驱动涡轮,涡轮通过轴连接到压缩器,支持发动机的运行。从发动机排出加速的排气提供推力。这是基本应用了压缩空气,点燃油气混合物,产生动力以自维持发动机运行,和用于推进的排气。

进气道

在飞行中,发动机前方的空气经进气道流过压缩器。其气道前方未受扰动气流的速度,与飞行速度大小相等,方向相反。空气流出进气道的速度(c1)就是压缩器的进口气流速度。

在飞行速度大于压缩器进口气流速度的情况下,空气流过进气道,流速减小,压力和温度升高,空气受到了压缩。在飞行速度小于压缩器进口气流速度的情况下,空气流过进气道时,流速增大,压力和温度降低,这时没有动力压缩。

目前,飞机平飞时的速度,一般都大于压缩器进口气流速度。因此,在飞行中空气流过进气道时,一般都受到动力压缩。

空气流经进气道时的流动损失,包括摩擦损失、分离损失和激波损失等三种

1.摩擦损失

进气道内的摩擦损失是由于空气具有粘性,在管壁表面形成了附面层而产生的。摩擦损失的大小,除了取决于气流速度以外,还直接与进气道管壁的光滑程度有关。因此,机务人员应当重视进气道的维护工作,注意防止划伤进气道的表面,并且保持进气道的清洁,以免增大摩擦损失,使发动机推力减小。

2.分离损失

分离损失主要是由于气流在进气道进口的流动方向与进气道前缘内壁的方向不一致而产生的。当进口的气流方向与进气道前缘内壁的方向不一致时,由于气流转弯时惯性离心力的作用,进气道前缘内壁附近的空气压力降低,在前缘内壁附近会出现与气流流动方向相反的压力差,发生分离现象,而造成气流分离损失。为了减小气流分离损失,进气道前缘应做成流线形,使气流逐渐地改变流动方向,避免产生严重的分离现象。

3.激波损失

超音速飞行时,空气以超音速流向进气道。要把超音速气流变成亚音速气流,不可避免地要产生激波损失。

压气机

压气机结构主要是叶轮、扩压器和进气系统。叶轮轴在球轴承和滚棒轴承中旋转,或者与涡轮轴共用一轴,或者在中间分开,用联轴节相连,这一般是从易于分解角度设计的。叶轮由涡轮驱动高速旋转,空气连续地吸入叶轮的中心。离心力的作用使空气沿导向叶片径向向外流向叶轮尖部。从而使空气加速,并造成压力升高。发动机进气道上也可装导向叶片,用以给进入压气机的空气提供初始漩流。

空气离开叶轮后进入扩压器段,那里的通道呈扩张形,将大部分动能转化成压力能。实际上,通常将这种压气机设计得大约一半压力升高发生在叶轮中,另一半在扩压器中。

为了尽量提高通过压气机的空气流量和压力升高,要求叶轮高速旋转。因此,叶轮被设计成在高达1600英尺/秒的叶尖速度下工作。通过在这样高的叶尖速度下工作,增大了从叶轮流出的气流速度,于足得到的可转换成压压力的能量就更多。

为了保持压气机的效率,必须防止叶轮和机匣之间漏气过多;将它们之间的间隙保持尽量小即可达此目的。

主燃烧室

航空燃气轮机主燃烧室的传统结构形式可分为单管燃烧室、环管燃烧室、环形燃烧室,这基本与航空燃气轮机的发展历程相对应。早期的燃烧室多为单管燃烧室,后来发展为环管燃烧室,上世纪60年代,环形燃烧室出现并成为燃气涡轮发动机的必然选择,随着燃烧技术的发展,短环形燃烧室是目前普遍采用的方案。在采用离心式压气机的燃气轮机中为了缩短轴距并利用离心压气机径向尺寸较大的特点,发展了环形回流燃烧室或环形折流燃烧室。

现代高性能发动机对主燃烧室提出了越来越高的要求,对于军用发动机主燃烧室而言,要求其具有更高的温升工作能力和更宽的工作范围;而民用发动机对燃烧室污染排放指标提出了极为苛刻的要求,以满足发动机适航取证。因此主燃烧室主要朝两个方向发展:高性能军用发动机使用的高温升燃烧室及民用发动机需要的低排放燃烧室;为应对上述挑战,提出了以下燃烧室新技术方案。

旋流器阵列多点喷射燃烧室:此类燃烧室(见图2)是将常规燃烧室头部的旋流器和喷嘴的尺寸缩小,在传统燃烧室单个头部大小的空间内布置多个喷射点,每个喷射点的燃料和空气快速均匀的混合,每个喷射点有自己的回流区和燃烧区,燃烧时有多个火焰,由于每个喷射点的回流区长度短,燃烧驻留时间短,在降低污染物的生成方面有很大的潜力。同时该类型燃烧室由于有多个喷射点的存在,可以将喷射区域进行分区燃烧,兼顾燃烧室在低工况下的稳定工作及高工况下的高效燃烧,适合于工作范围宽广的高温升燃烧室;还可以对喷射点进行控制,具有温度场主动调节能力,能够满足高性能军用发动机高品质燃烧室出口温度场的需求。

燃烧室前后的压力不同,前部压力远远大于后部压力,所以后喷气流会向后喷射。加上燃烧室和尾喷管都有机匣包裹,里面也有管道作为引射导向,所以不会想别的地方乱窜的。加力式的涡轮发动机在普通燃烧室后面还有加力燃烧室,那里也会有一个叫做火焰稳定器的装置对后喷尾流进行稳定。

加力燃烧室

战斗机在起飞、爬升、规避导弹或作战机动飞行等状态需要更大的推力以实现短时间加速飞行,发动机使用加力是短时间内增加推力的最好办法。加力燃烧室是实现发动机加力的部件,它能保持发动机最大转速和涡轮前燃气温度不变的情况下,将燃油喷入气流中让剩余氧气再次燃烧,产生额外推力。现在军用涡扇发动机加力燃烧室(图5所示),大都采用V 形稳定器来稳定火焰,这种加力燃烧室通过气流在钝体后形成的尾迹旋涡和回流区产生一个油气混合均匀的低速区,从而具备了火焰稳定的必备条件。

现代高推重比航空发动机加力燃烧室工作条件越来越恶劣,性能要求更高,主要特征表现在内涵进口温度更高、氧含量降低的情况下,进一步提高加力温度和燃烧效率,降低流体阻力,缩短长度,加力重量超轻。传统发动机加力燃烧室很难实现上述要求,未来加力燃烧室的发展必然将某些部件进行一体化设计,变得更加紧凑,以减少长度和降低重量,提高发动机推重比。涡轮后框架一体化加力燃烧室、旋流加力燃烧室、外涵加力燃烧室是目前研究

的重要方案。

涡轮后框架一体化加力燃烧室:涡轮后框架一体化加力燃烧室的主要特征是取消传统加力燃烧室的混合扩压器,将喷油杆和钝体稳定器整合到涡轮后支撑框架的支板上,形成超级紧凑的一体化结构,加力燃油从支板内的喷嘴孔喷入并进入支板后形成的回流区内稳定燃烧,涡轮后框架一体化加力燃烧室与传统加力燃烧室对比如图6所示。这种加力燃烧室的设计关键在于:合理的安排燃油喷射,既保证加力燃油浓度分布与氧浓度分布主动匹配,又避免燃油的自燃与结焦,还能保证燃油在支板后的回流区内形成稳定燃烧点火源,同时保证加力燃烧室较低的流阻损失;一体化加力燃烧室方案能适用于更高的加力热负荷,具有更简单的结构以及更高的喷杆和稳定器工作可靠性,在高推重比发动机研制中得到了深入广泛的研究。采用涡轮后框架一体化加力燃烧室的典型代表为美国PW公司研制的F119发动机,其推重比在10左右。

涡轮

空气首先进入的是发动机的进气道,当飞机飞行时,可以看作气流以飞行速度流向发动机,由于飞机飞行的速度是变化的,而压气机适应的来流速度是有一定的范围的,因而进气道的功能就是通过可调管道,将来流调整为合适的速度。在超音速飞行时,在进气道前和进气道内气流速度减至亚音速,此时气流的滞止可使压力升高十几倍甚至几十倍,大大超过压气机中的压力提高倍数,因而产生了单靠速度冲压,不需压气机的冲压喷气发动机。进气道后的压气机是专门用来提高气流的压力的,空气流过压气机时,压气机工作叶片对气流做功,使气流的压力,温度升高。在亚音速时,压气机是气流增压的主要部件。

从燃烧室流出的高温高压燃气,流过同压气机装在同一条轴上的涡轮。燃气的部分内能在涡轮中膨胀转化为机械能,带动压气机旋转,在涡轮喷气发动机中,气流在涡轮中膨胀所做的功正好等于压气机压缩空气所消耗的功以及传动附件克服摩擦所需的功。经过燃烧后,涡轮前的燃气能量大大增加,因而在涡轮中的膨胀比远小于压气机中的压缩比,涡轮出口处的压力和温度都比压气机进口高很多,发动机的推力就是这一部分燃气的能量而来的。

从涡轮中流出的高温高压燃气,在尾喷管中继续膨胀,以高速沿发动机轴向从喷口向后排出。这一速度比气流进入发动机的速度大得多,使发动机获得了反作用的推力。

一般来讲,当气流从燃烧室出来时的温度越高,输入的能量就越大,发动机的推力也就越大。但是,由于涡轮材料等的限制,目前只能达到1650K左右,现代战斗机有时需要短时间增加推力,就在涡轮后再加上一个加力燃烧室喷入燃油,让未充分燃烧的燃气与喷入的燃油混合再次燃烧,由于加力燃烧室内无旋转部件,温度可达2000K,可使发动机的推力增加至1.5倍左右。其缺点就是油耗急剧加大,同时过高的温度也影响发动机的寿命,因此发动机开加力一般是有时限的,低空不过十几秒,多用于起飞或战斗时,在高空则可开较长的时间。

随着航空燃气涡轮技术的进步,人们在涡轮喷气发动机的基础上,又发展了多种喷气发动机,如根据增压技术的不同,有冲压发动机和脉动发动机;根据能量输出的不同,有涡轮风扇发动机、涡轮螺旋桨发动机、涡轮轴发动机和螺桨风扇发动机等。

喷气发动机尽管在低速时油耗要大于活塞式发动机,但其优异的高速性能使其迅速取代了后者,成为航空发动机的主流。

喷管

喷管的功能是将从涡轮(或加力燃烧室)流出的燃气膨胀加速,将燃气中的一部分热焓转变为动能,从尾喷管高速喷出,产生反作用推力。根据尾喷管出口气流喷射速流的不同,可以分为亚声速喷管和超声速喷管两类。亚声速喷管为收敛形喷管,超声速喷管为收敛扩张形喷管。由于发动机提供给尾喷管的空气流量和膨胀比不断地发生变化,因此有必要对收敛扩

张喷管的喉道面积和出口面积不断地进行调节,尽量避免过度膨胀或不完全膨胀现象的发生。涡轮喷气发动机和涡轮风扇发动机在地面工作时尾喷管的膨胀比根据发动机设计参数的不同可以在很大范围内变化,很多发动机πe在1.5~2.5范围内。当发动机在超声速条件下飞行时,由于进气道的冲压增压,尾喷管的膨胀比将大得多。

航模涡轮喷气发动机制造安装

航模涡轮喷气发动机制造安装 HerrSchreckling早期受到过基础技术教育,后来又修完了重点在应用物理学方面的工程课程。之后又在一家大型的化工公司从事工程控制和系3统控制方面的工作。HerrSchreckling在15岁之前已经有了飞行模型的经验,那是他第一次把一套飞机模型套件组装起来后的事。几年之后他开始学习制造模型飞机和无线电控制设备。他特别钟情于模型的动力系统,但那时还没有重大的进展。因此他投入了相当多的时在电动飞行器方面的开发:可调螺距的推进系统和计算机优化的电动飞行系统。接下来他的首次成功尝试是用他自己制作的一套电动直升机,随后是他为WolfgangKueppers设计了电动系统,并创造了竞速模型的速度记录。再随后的五年中他把他的全部业余时间投入了喷气发动机的开发,并且抽出时间写出他在这方面的成功经验。因此,如决定要开发专业级的模型喷气发动机的话,HerrSchreckling 是最适合的合作人选。虽然HerrSchreckling并不是非常好的模型飞行员,但是他具有独创的见解,并且在一个领域有独创,并把他自己做的发动机装到了模型中并且飞了起来,因此他必定是我们这个时代最多才多艺最有经验的模型制造者。至今已经有很多种成功类型的FD3/64涡轮喷气发动机被制造出来,这促使我决定要给这本新版本的书添加一个附录,涉及到喷气发动机的一些特殊问题,但是如果我要写一个很透切的附录那肯定会超出本书的范围,甚至会让读者困惑。很多问题摆在我面前,比如说:“为什么你把FD3/64发动机设计

成这个样子而不是那样?”对于这个问题我只能作一些比较片面的回答。当面对一个比较棘手的问题,比如轴承润滑的供给,我试图使用一些简单实用的解决方案而不使用比较完善但复杂的测试每一种方法找出最好的系统的方法。有很多在喷气模型方面比较成功的模型爱好者,他们的活动在1994年在Nordheim举行的争夺战利品Ohain/Whittle中形成了一个高潮。尽管是作为一个非完全专业的模型爱好者来参加竞赛的,但是由ReinerEckstein制作并操作使用FD3/64涡轮喷气发动机的一架“涡轮驯马师”获得了quotBestofShowquot奖。自从第一个版本出现以后很多真正的开发工作已经进行,并且在半像真比例模型和FD3发动机的飞行中获得了很多经验,这导致了一种新的更精确完美的设计的产生:FD3/67LS涡轮喷气发动机套件。当然我会很愿意对按我的图纸制作发动机中遇到的问题进行解释,对于过去在电话中耐心的听我指导的模型爱好者我在这向他们表示感谢。 简介22222.1简单的涡轮喷气发动机如何工作2.2一个用业余制作燃气轮机的好方法2.3燃烧系统2.3.1燃料2.3.2燃烧室和燃油喷射器2.4温度问题2.5冷却33333.1涡轮喷气推进和螺旋桨推进的本质区别3.2在典型的模型飞行器飞行中的动力效应3.2.1滑跑起飞3.2.2爬升性能和最大速度3.2.3典型的动力运动:圆周运动3.3涡轮喷气模型的飞行经验3.3.1今天的涡轮喷气发动机模型3.3.2涡轮喷气发动机模型的特性3.4飞行中的涡轮喷气发动机3.5噪声3.6模型介绍44444.1角速度和平面速度4.2涡轮的设计过程54.3压缩机的设计过程4.3.1增压涡轮的设计与空气动力的关系4.3.2扩散系统的设计4.3.3

喷气发动机原理简介

喷气发动机原理简介

分类 涡轮喷气式发动机 完全采用燃气喷气产生推力的喷气发动机是涡轮喷气发动机。这种发动机的推力和油耗都很高。适合于高速飞行。也是最早的喷气发动机。离心式涡轮喷气发动机 使用离心叶轮作为压气机。这种压气机很简单,适合用比较差的材料制作,所以在早期应用很多。但是这种压气机阻力很大,压缩比低,并且发动机直径也很大,所以现在已经不再使用这种压气机。 轴流式涡轮喷气发动机 使用扇叶作为压气机。这样的发动机克服了离心式发动机的缺点,因此具有很高的性能。缺点是制造工艺苛刻。现在的高空高速飞机依然在使用轴流式涡喷发动机。 涡轮风扇发动机 一台涡扇发动机的一级压气机 主条目:涡轮风扇发动机

在轴流式涡喷发动机的一级压气机上安装巨大的进气风扇的发动机。一级压气机风扇因为体积大,除了可以压缩空气外,还能当作螺旋桨使用。 涡轮风扇发动机的燃油效率在跨音速附近比涡轮喷气发动机要高。 涡轮轴发动机 主条目:涡轮轴发动机 涡轮轴发动机类似涡桨发动机,但拥有更大的扭矩,并且他的输出轴和涡轮轴是不平行的(一般是垂直),输出轴减速器也不在发动机上。所以他更类似于飞机上用的燃气轮机。 涡轴发动机的大扭矩使他经常用于需要带动大螺旋桨的直升机。它的结构和车用燃气轮机区别不大。 涡轮喷气发动机(Turbojet)(简称涡喷发动机)[1]是一种涡轮发动机。特点是完全依赖燃气流产生推力。通常用作高速飞机的动力。油耗比涡轮风扇发动机高。 涡喷发动机分为离心式与轴流式两种,离心式由英国人弗兰克·惠特尔爵士于1930年取得发明专利,但是直到1941年装有这种发动机的

飞机才第一次上天,没有参加第二次世界大战,轴流式诞生在德国,并且作为第一种实用的喷气式战斗机Me-262的动力参加了1944年末的战斗。 相比起离心式涡喷发动机,轴流式具有横截面小,压缩比高的优点,但是需要较高品质的材料——这在1945年左右是不存在的。当今的涡喷发动机均为轴流式。 一个典型的轴流式涡轮喷气发动机图解(浅蓝色箭头为气流流向)图片注释: 1 - 吸入, 2 - 低压压缩, 3 - 高压压缩, 4 - 燃烧, 5 - 排气, 6 - 热区域, 7 - 涡轮机, 8 - 燃烧室, 9 - 冷区域, 10 - 进气口

航空发动机涡轮叶片

摘要 摘要 本论文着重论述了涡轮叶片的故障分析。首先引见了涡轮叶片的一些根本常识;对涡轮叶片的结构特点和工作特点进行了详尽的论述,为进一步分析涡轮叶片故障做铺垫。接着对涡轮叶片的系统故障与故障形式作了阐明,涡轮叶片的故障形式主要分为裂纹故障和折断两大类,通过图表的形式来阐述观点和得出结论;然后罗列出了一些实例(某型发动机和涡轮工作叶片裂纹故障、涡轮工作叶片折断故障)对叶片的故障作了详细剖析。最后通过分析和研究,举出了一些对故障的预防措施和排除故障的方法。 关键词:涡轮叶片论述,涡轮叶片故障及其故障类型,故障现象,故障原因,排除方法

ABSTRACT ABSTRACT This paper emphatically discusses the failure analysis of turbine blade.First introduced some basic knowledge of turbine blades;The structure characteristics and working characteristics of turbine blade were described in she wants,for the further analysis of turbine blade failure Then the failure and failure mode of turbine blades;Turbine blade failure form mainly divided into two major categories of crack fault and broken,Through the graph form to illustrate ideas and draw conclusions ;Then lists some examples(WJ5 swine and turbine engine blade crack fault,turbine blade folding section)has made the detailed analysis of the blade.Through the analysis and research,finally give the preventive measures for faults and troubleshooting methods. Key words: The turbine blades is discussed,turbine blade fault and failure type,The fault phenomenon,fault caus,Elimination method

小型涡喷发动机制造材料总结

小型涡喷发动机制造材料总结 我是王开心,欢迎大家加入CHNJET中国喷气爱好者原地!介于大家对小型涡喷发动机的热爱以及对制造一个属于自己小型涡喷发动机的追求,在此我写下这点总结以备大家在制造和生产小型涡喷发动机的过程中对于制造材料产生疑惑时做以参考,同时在这里也纠正一些刚刚了解到涡喷发动机和金属材料的朋友们的一个直观错误:选择耐高温材料并不单单只看这个金属材料的熔点,而是应多方面考虑到这个金属材料的蠕变强度,热疲劳性,高温抗氧化性以及高温下金属会产生晶粒长大效应等等因素。 相关名词的解释说明——晶粒长大效应:晶粒长大是金属的一种缺陷,晶粒越大,晶界越少,晶界少了金属各部分抵御外界的能力就变小了,因此晶粒长大效应是判断金属在高温下性能好坏的重要指标。 大家在制造小型涡喷发动机的过程中最能接触到的金属材料我总结为以下几种:304不锈钢,316L不锈钢,310S不锈钢,NAS800,NAS600和K418耐高温合金。下面对上述几种材料在加工和生产中容易遇到的问题和使用中容易遇到的问题做以介绍。 首先304不锈钢,316L不锈钢,310S不锈钢,NAS800,NAS600都属于“奥氏体不锈钢”奥氏体不锈钢具有很高的耐蚀性,良好的冷加工性和良好的韧性、塑性、焊接性和无磁性,下面我们就来分析一下这几种金属在制造微型涡喷发动机时所要了解到的一些特性。

SUS304 304不锈钢介绍:304不锈钢由于含碳量较低,因而有良好的加工成型性和抗氧化性,同时该钢具有良好的焊接性能,适用于各种方法的焊接(备注:该钢焊接后不需进行热处理工艺)。 304不锈钢的抗氧化特性:1,该钢在700-800℃氧化时具有优异的抗氧化性能,属于完全抗氧化级。2,该钢在900℃时表面形成的氧化膜开始脱落,属于抗氧化级。3,该钢在1000℃时属于次抗氧化级。304不锈钢管最高使用温度在750度-860度但是,实际上达不到860度这么高。450度时有个临界点,情况如下:304不锈钢不易保持在450到860度,因为在450度以上的时候,会稀释碳周围的铬,形成碳化铭,造成贫铬区,从而改变不锈钢性能材质;而且,450的温度外加屈服力会使得奥氏体向马氏体转化。说简单通俗一点,经常在450度以上环境下使用,304不锈钢的性能和结构都发生变化。 总结得出:304不锈钢在900℃以下的热空气中具有稳定的抗氧化性,同时在900℃时304不锈钢具有较小的晶粒尺寸,在800-1000℃时产生了奥氏体晶粒长大效应,加温为1000℃时,晶粒的平均截距开始增大。所以在制造小型涡喷发动机时如果设计温度在600-900℃时不建议长期使用304不锈钢。但是,在模友制造过程中 如果受到经费的限制可以考虑用304不锈钢制造一个低推力的小型涡喷发动机的主轴,燃烧室及尾喷口。 SUS316L

第六章 双轴涡轮喷气发动机

第六章双轴涡轮喷气发动机 Twin spool turbo-jet engine 第6.1节双轴涡轮喷气发动机的防喘原理和性能优点Avoiding surge occurred and other adventages of Twin spool turbo-jet engine 采用双轴涡轮喷气发动机的主要目的是防止压气机喘振。双轴发动机把一台高设计增压比的压气机分为二台低设计增压比的压气机,分别由各自的涡轮带动。低压压气机与低压涡轮组成低压转子,高压压气机与高压涡轮组成高压转子,双轴发动机的结构方案如图6.1.1。 图6.1.1 双轴发动机简图 为什么双轴发动机在转速降低时有效的防止压气机喘振?这个问题在前面已经讨论过了,现在联系涡轮的工作状态进一步说明如下: 单轴的高设计增压比压气机在非设计状态下工作严重恶化,是由于沿压气机气流通道轴向速度的重新分布所引起的,根据压气机进口和出口流量相等的条件,可以得到 式中A 2、A 3 、c 2z 、c 3z 、ρ 2 和ρ 3 分别代表压气机进出口的面积、气流轴向分速度 和密度。上式可以改写为 由多变压缩过程的关系可得: 式中 n——多变指数 分别用压气机进出口的周向速度u 2和u 3 除上式左边的分子和分母,可得

上两式中K 1和K 2 为常数。在速度三角形中c z /u称为耗量系数。 由上两式可见,压气机增压比的变化将导致压气机进出口轴向速度之比和耗量系数之比也相应地变化。当发动机相似参数变化时,就会产生这种情 况。发动机相似参数的变化可能是由于转速的变化引起的,也可能是在转速不变时压气机进口温度变化引起的,这两种情况没有本质的差别。 由压气机的气流速度三角形可以知道,耗量系数的变化影响着速度三角形的形状,使气流流入压气机叶片的攻角发生变化。例如,压气机进口耗量系数c 2z 降低,将引起第一级压气机叶片的攻角增大;而压气机出口耗量系数c 3z 增加,将引起末级压气机叶片攻角减小。 因此,当发动机转速相似参数降低后,压气机的最前面几级和末后几级都将 偏离它们的设计状态,中间各级由于耗量系数c z 变化不大,因而工作状态变化不大。压气机前后各级的攻角偏离设计状态,首先使压气机级效率降低,进一步发展将会导致压气机喘振。在非设计状态下前后各级工作不协调的现象对于高设计增压比的压气机将更为严重。 通过上述分析,可以知道,要达到在非设计状态下前后各级协调地工作,最有效的方法是使各级的转速相应于各级进口气流轴向速度的重新分布而各自变 化,以保证各级耗量系数c z 不变。然而这在结构上是不可能的,也不需要这样。在一般情况下只要把压气机分成两组就足够了。这就成为双轴压气机和双轴发动机。 当双轴发动机的转速相似参数降低以后,高压转子和低压转子的转速自动地进行调整,使前后各级能够协调工作。为了说明这个现象,再进一步分析压气机和涡轮工作的某些特点。 压气机由设计状态降低转速和增压比时,前后各级的气流轴向速度和耗量系数都将重新分布,前几级的耗量系数降低,攻角加大;而后几级的耗量系数加大, 攻角减小。攻角的改变将引起各级加功量w c,i 的变化。 对于前面几级,攻角加大时,工作轮出口的气流相对速度方向基本不变,因 而气流转角Δβ加大,扭速Δw u 加大。如果是压气机进口温度增加使转速相似参数降低而工作轮切线速度u不变时,级的加功量也加大。 对于后面几级,流入角减小时,将使气流转角Δβ减小,扭速Δw u 减小, 因而级加功量w c,i 减小。 总之,当压气机增压比降低时,低压压气机的加功量w c,l 和高压压气机的加 功量w c,h 之比将加大,即 式中下角注s表示设计状态下的比值。 如果低压压气机和高压压气机用同一个比值降低转速(这在双轴发动机上当然是不可能的,但为了便于分析,姑且这样假设),那末上述加功量比值的变化关系仍然是正确的。因为

大修航空发动机涡轮叶片的检修技术示范文本

大修航空发动机涡轮叶片的检修技术示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

大修航空发动机涡轮叶片的检修技术示 范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 介绍了涡轮叶片的清洗、无损检测、叶型完整性检测 等预处理,以及包括表面损伤修理、叶顶修复、热静压、 喷丸强化及涂层修复等在内的先进修理技术。 涡轮叶片的工作条件非常恶劣,因此,在性能先进的 航空发动机上,涡轮叶片都采用了性能优异但价格十分昂 贵的镍基和钴基高温合金材料以及复杂的制造工艺,例 如,定向凝固叶片和单晶叶片。在维修车间采用先进的修 理技术对存在缺陷和损伤的叶片进行修复,延长其使用寿 命,减少更换叶片,可获得可观的经济收益。为了有效提 高航空发动机的工作可靠性和经济性,涡轮叶片先进的修 理技术日益受到发动机用户和修理单位的重视,并获得了

广泛的应用。 1.修理前的处理与检测 涡轮叶片在实施修理工艺之前进行必要的预处理和检测,以清除其表面的附着杂质;对叶片损伤形式和损伤程度做出评估,从而确定叶片的可修理度和采用的修理技术手段。 1.1清洗 由于涡轮叶片表面黏附有燃料燃烧后的沉积物以及涂层和(或)基体经过高温氧化腐蚀后所产生的热蚀层,一般统称为积炭。积炭致使涡轮效率下降,热蚀层会降低叶片的机械强度和叶片表面处理的工艺效果,同时积炭也掩盖了叶片表面的损伤,不便于检测。因此,叶片在进行检测和修理前,要清除积炭。 1.2无损检测 在修理前,使用先进的检测仪器对叶片的叶型完整性

涡轮喷气发动机

涡轮喷气发动机(Turbojet)(简称涡喷发动机)是一种涡轮发动机。特点是完全依赖燃气流产生推力。通常用作高速飞机的动力。油耗比涡轮风扇发动机高。 涡喷发动机分为离心式与轴流式两种,离心式由英国人弗兰克·惠特尔爵士于1930年取得发明专利,但是直到1941年装有这种发动机的飞机才第一次上天,没有参加第二次世界大战,轴流式诞生在德国,并且作为第一种实用的喷气式战斗机Me-262的动力参加了1944年末的战斗。 相比起离心式涡喷发动机,轴流式具有横截面小,压缩比高的优点,但是需要较高品质的材料——这在1945年左右是不存在的。当今的涡喷发动机均为轴流式。 一个典型的轴流式涡轮喷气发动机图解(浅蓝色箭头为气流流向) 图片注释: 1 - 吸入, 2 - 低压压缩, 3 - 高压压缩, 4 - 燃烧, 5 - 排气, 6 - 热区域, 7 - 涡轮机, 8 - 燃烧室, 9 - 冷区域, 10 - 进气口目录 1 结构 一个典型的轴流式涡轮喷气发动机图解(浅蓝色箭头为气流流向)图片注释: 1 - 吸入, 2 - 低压压缩, 3 - 高压压缩, 4 - 燃烧, 5 - 排气, 6 - 热区域, 7 - 涡轮机, 8 - 燃烧室, 9 - 冷区域, 10 - 进气口 1.1 进气道 1.2 压气机 1.3 燃烧室与涡轮 1.4 喷管及加力燃烧室 2 使用情况 3 基本参数 结构

离心式涡轮喷气发动机的原理示意图 图片注释: 顺时针依次为: 离心叶轮(压缩机),轴,涡轮机,喷嘴,燃烧室 轴流式涡轮喷气发动机的原理示意图 图片注释: 顺时针依次为: 压缩机,涡轮机,喷嘴,轴,燃烧室 进气道 轴流式涡喷发动机的主要结构如图,空气首先进入进气道,因为飞机飞行的状态是变化的,进气道需要保证空气最后能顺利的进入下一结构:压气机(compressor)。进气道的主要作用就是将空气在进入压气机之前调整到发动机能正常运转的状态。在超音速飞行时,机头与进气道口都会产生激波(shockwave),空气经过激波压力会升高,因此进气道能起一定的预压缩作用,但是激波位置不适当将造成局部压力的不均匀,甚至有可能损坏压气机。所以一般超音速飞机的进气道口都有一个激波调节锥,根据空速的情况调节激波的位置。 离心式涡轮喷气发动机的原理示意图图片注释: 顺时针依次为: 离心叶轮(压缩机),轴,涡轮机,喷嘴,燃烧室 两侧进气或机腹进气的飞机由于进气道紧贴机身,会受到附面层(boundary layer,或邊界層)的影响,还会附带一个附面层调节装置。所谓附面层是指紧贴机身表面流动的一层空气,其流速远低于周围空气,但其静压比周围高,形成压力梯度。因为其能量低,不适于进入发动机而需要排除。当飞机有一定迎角(angle of attack,AOA)时由于压力梯度的变化,在压力梯度加大的部分(如背风面)将发生附面层分离的现象,即本来紧贴机身的附面层在某一点突然脱离,形成湍流。 湍流是相对层流来说的,简单说就是运动不规则的流体,严格的说所有的流动都是湍流。湍流的发生机制、过程的模型化现在都不太清楚。但是不是说湍流不好,在发动机中很多地方例如在燃烧过程就要充分利用湍流。 压气机 压气机由定子(stator)叶片与转子(rotor)叶片交错组成,一对定子叶片与转子叶片称为一级,定子固定在发动机框架上,转子由转子轴与涡轮相连。现役涡喷发动机一般为8-

涡喷发动机的工作原理

1.涡喷发动机的工作原理? 涡喷发动机以空气为介质,进气道将所需的的外界空气以最小的流动损失送到压气机;压气机通过高速旋转的叶片对空气压缩做功,提高空气的压力;空气在燃烧室内和燃油混合燃烧,将燃料化学能转变成热能,生成高温高压燃气;燃气在涡轮内膨胀,将热能转为机械能,驱动涡轮旋转,带动压气机;燃气在喷管内继续膨胀,加速燃气,燃气以较高速度排出,产生推力。 2.涡轮发动机的特征,什么是燃气涡轮发动机的特性?发动机特性分哪几种? 特征:发动机作为一个热机,它将燃料的热能转变为机械能,同时作为一个推进器,它利用所产生的机械能使发动机获得推力。 发动机的特性:燃气涡轮发动机的推力和燃油消耗率随发动机转速、飞行高度和飞行速度的变化规律叫发动机特性。发动机特性分为:保持飞机高度和飞机速度不变的情况下,发动机推力和燃油消耗率随发动机转速的变化规律叫发动机转速特性。在给定的调节规律下,保持发动机的转速和飞机速度不变时,发动机的推力和燃油消耗率随飞机的高度的变化规律叫高度特性。在给定的调节规律下,保持发动机的转速和飞行高度不变时,发动机的推力和燃油消耗量随飞机速度(或马赫数)的变化规律叫速度特性。 3.净推力和总推力 根据牛顿第2,第3定律,气流进入发动机和离开发动机的动量发生变化,产生推力。 净推力:取决于离开发动机的燃气动量与进来的空气动量加进来的燃油动量。净推力还包括喷管出口的静压超过周围空气的静压产生的推力。Fn=Qma(Vj-Va)+Aj(Pj-Pam) 总推力:是指当飞机静止时发动机排气产生的推力,包括排气动量产生的推力和喷口静压和环境空气静压之差产生的附加推力。Fg=Qma(Vj)+Aj(Pj-Pam)。 正常飞行时,压气机、扩压器、燃烧室、排气锥产生向前推力,涡轮、尾喷口产生向后的推力。 4.影响热效率的因素? 热效率表明,在循环中加入的热量有多少变为机械功。影响因素有:加热比(涡轮前燃气总温),压气机增压比,压气机效率和涡轮效率。加热比、压气机效率和涡轮效率增大,热效率也增大。压气机增压比提高,热效率增大,当增压比等于最经济增压比时,热效率最大,继续提高增压比,热效率反而下降。热效率也称做内效率。 5.进气道的作用?什么是进气道总压恢复系数? 一是尽可能多的恢复自由气流的总压并输送该压力到压气机,这就是冲压恢复或压力恢复;二是提供均匀的气流到压气机使压气机有效地工作。进气道出口截面的总压与进气道前方来流的总压比值,叫做进气道总压恢复系数,该系数是小于1的数值,表示进气道的流动损失。 6.进气道冲压比的定义,影响冲压比的因素? 进气道的冲压比是:进气道出口处的总压与远方气流静压的比值。冲压比越大,说明空气在压气机前的冲压压缩程度越大,影响冲压比因素:流动损失,飞行速度和大气温度。(大气密度、高度、发动机转速):当大气温度和飞行速度一定时,流动损失大,则冲压比下降;当大气温度和流动损失一定时,飞行速度越大,则冲压比增加;当飞行速度和流动损失一定时,大气温度上升,则冲压比下降。 7.压气机分哪两种?目前燃气涡轮发动机中常采用哪一种,为什么? 离心式和轴流式。目前燃气涡轮发动机中常采用轴流式压气机。这是因为轴流式压气机具有下述优点:总的增压比高,压气机效率高,单位面积的流通能力高,迎风面积小,阻力小。缺点:单级增压比低,结构复杂 离心式优点:单级增压比高,压气机稳定工作范围宽,结构简单可靠,重量轻,长度短,起动功率小,缺点:流动损失大,效率低,单位面积的流通能力低,迎风面积大,阻力大 8.进口导向叶片的功能是什么?决定进入压气机叶片气流攻角的因素是什么? 为了保证压气机工作稳定,有的在第1级工作叶轮前还有一排不动的叶片称为进口导向叶片。其功能是引导气流的流动方向产生预旋,使气流以合适的方向流入第1级工作叶轮。决定因素是:工作叶轮进口处的绝对速度(包括大小和方向),压气机的转速。 9.简要说明空气在多级压气机中的流动。 基元级的叶栅通道均是扩张形的。在叶轮内,绝对速度增大,相对速度减小。同时,总压、静压和总温、静温都升高;在整流器内,绝对速度减小;静压和静温升高,总压略有下降,总温保持不变。由此可见,空气流过基元级时,不仅在叶轮内受到压缩,而且在整流器内也受到压缩。

微型涡轮喷气发动机

产品名称: 微型涡轮喷气发动机 规格型号: 包装说明: 多种规格和型号的微型喷气发动机,推力60kg,40kg,12kg,6kg,能满足不同需要。 本实用新型涉及的一种微型涡轮喷气发动机,它包括有外壳、轴承、转轴、进气外定子、进气定子、轴套、尾排气定子、整流罩、尾轴螺母、排气定子、排气叶轮、控制装置,它还包括有前轴螺母、大轴套、燃烧室,所述转轴的前轴伸端和后轴伸端设有外螺纹,在转轴的前轴伸端的外螺纹上旋有前轴螺母,并且在转轴上向后依次设置有进气叶轮、轴套、一对支撑轴承、轴套、排气叶轮,在后轴伸端的外螺纹上旋有尾轴螺母,所述进气叶轮和排气叶轮与转轴相固定连接;由于采用了本设计方案,提高了航模发动机推动力,大大提高了航模飞行的性能,拓展了航模在现代战争、军事演习和提高军事演练技能上发挥其重要的作用 20CM的涡扇发动机存在使用型号,但全是军用型号,用于某些巡航导弹的。也正因为如此,具体的数值保密,无法知道。但两位工程师大概估算了一下,根据构型不同,最大推力应当在200磅(离心式压气机构型),至400磅(轴流式压气机构型)之间。 航模协会的人说,用于航模的涡喷发动机口径4-8厘米。最大推力20-40公斤,相当吓人。他有一架装备4.3厘米口径涡喷发动机的模型,自重1.6公斤,最大飞行速度可达350公里/小时。 30厘米直径,10000牛?差不多一吨的推力? 双路式涡轮喷气发动机 百科名片 涡轮发动机 涡轮发动机通过增加空气流过发动机的速度来产生推力。它包括进气道,压缩器,燃烧室,涡轮节,和排气节。

如图1 涡轮发动机相比往复式发动机有下列优点:振动少,增加飞机性能,可靠性高,和容易操作。

涡轮发动机类型

涡轮发动机是根据它们使用的压缩器类型来分类的。压缩器类型分为三类:离心流式,轴流式,和离心轴流式。离心流式发动机中进气道空气是通过加速空气以垂直于机器纵轴的方向排出而得到压 缩的。轴流式发动机通过一系列旋转和平行于纵轴移动空气的固定翼形而压缩空气。离心轴流式设计使用这两类压缩器来获得需要的压缩。 空气经过发动机的路径和如何产生功率确定了发动机的类型。有四种类型的飞机涡轮发动机-涡轮喷气发动机,涡轮螺旋桨发动机,涡轮风扇发动机和涡轮轴发动机。

涡轮喷气发动机

涡轮喷气发动机包含四节:压缩器,燃烧室,涡轮节,和排气节。压缩器部分空气以高速度通过进气道到达燃烧室。燃烧室包含燃油入口和用于燃烧的点火器。膨胀的空气驱动涡轮,涡轮通过轴连接到压缩器,支持发动机的运行。从发动机排出加速的排气提供推力。这是基本应用了压缩空气,点燃油气混合物,产生动力以自维持发动机运行,和用于推进的排气。 涡轮喷气发动机受限于航程和续航力。它们在低压缩器速度时对油门的反应也慢。

涡轮螺旋桨发动机

涡轮螺旋桨发动机是一个通过减速齿轮驱动螺旋桨的涡轮发动机。排出气体驱动一个动力涡轮机,它通过一个轴和减速齿轮组件连接。减速齿轮在涡轮螺旋桨发动机上是必须的,因为螺旋桨转速比发动机运行转速低得多的时候才能得到最佳螺旋桨性能。涡轮螺旋桨发动机是涡轮喷气发动机和往复式发动机的一个折衷产物。涡轮螺旋桨发动机最有效率的速度范围是250mph到400mph(英里每小时),高度位于18000英尺到30000英尺。它们在起飞和着陆时低空速状态也能很好的运行,燃油效率也好。涡轮螺旋桨发动机的最小单位燃油消耗通常位于高度范围25000英尺到对流层顶。

涡轮风扇发动机

涡轮风扇发动机的发展结合了涡轮喷气发动机和涡轮螺旋桨发动机的一些最好特征。涡轮风扇发动机的设计是通过转移燃烧室周围的次级气流来产生额外的推力。涡轮风扇发动机旁路空气产生了增强的推力,冷却了发动机,有助于抑制排气噪音。这能够获得涡轮喷气型发动机的巡航速度和更低的燃油消耗。 通过涡轮风扇发动机的进气道空气通常被分成两个分离的气流。一个气流通过发动机的中心部分,而另一股气流从发动机中心旁路通过。正是这个旁路的气流才有术

航空发动机叶片材料及制造技术现状

航空发动机叶片材料及制造技术现状 在航空发动机中,涡轮叶片由于处于温度最高、应力最复杂、环境最恶劣的部位而被列为第一关键件,并被誉为“王冠上的明珠”。涡轮叶片的性能水平,特别是承温能力,成为一种型号发动机先进程度的重要标志,在一定意义上,也是一个国家航空工业水平的显著标志【007】。 航空发动机不断追求高推重比,使得变形高温合金和铸造高温合金难以满足其越来越高的温度及性能要求,因而国外自7O年代以来纷纷开始研制新型高温合金,先后研制了定向凝固高温合金、单晶高温合金等具有优异高温性能的新材料;单晶高温合金已经发展到了第3代。8O年代,又开始研制了陶瓷叶片材料,在叶片上开始采用防腐、隔热涂层等技术。 1 航空发动机原理简介 航空发动机主要分民用和军用两种。图1是普惠公司民用涡轮发动机主要构件;图2是军用发动机的工作原理示意图;图3是飞机涡轮发动机内的温度、气流速度和压力分布;图4是罗尔斯-罗伊斯喷气发动机内温度和材料分布;图5为航空发动机用不同材料用量的发展变化情况。 图1 普惠公司民用涡轮发动机主要构件 图2 EJ200军用飞机涡轮发动机的工作原理

图3 商用涡轮发动机内的温度、气流速度和压力分布 图4 罗尔斯-罗伊斯喷气发动机内温度和材料分布 图5 航空发动机用不同材料用量的变化情况

1变形高温合金叶片 1.1 叶片材料 变形高温合金发展有50多年的历史,国内飞机发动机叶片常用变形高温合金如表1所示。高温合金中随着铝、钛和钨、钼含量增加,材料性能持续提高,但热加工性能下降;加入昂贵的合金元素钴之后,可以改善材料的综合性能和提高高温组织的稳定性。 1.2 制造技术 生产工艺。变形高温合金叶片的生产是将热轧棒经过模锻或辊压成形的。模锻叶片主要工艺如下: (1)镦锻榫头部位; (2)换模具,模锻叶身。通常分粗锻、精锻两道工序;模锻时,一般要在模腔内壁喷涂硫化钼,减少模具与材料接触面之阻力,以利于金属变 形流动; (3)精锻件,机加工成成品; (4)成品零件消应力退火处理; (5)表面抛光处理。分电解抛光、机械抛光两种。 常见问题。模锻叶片生产中常见问题如下: (1)钢锭头部切头余量不足,中心亮条缺陷贯穿整个叶片; (2) GH4049合金模锻易出现锻造裂纹; (3)叶片电解抛光中,发生电解损伤,形成晶界腐蚀; (4) GH4220合金生产的叶片,在试车中容易发生“掉晶”现象;这是在热应力反复作用下,导致晶粒松动,直至剥落。 发展趋势。叶片是航空发动机关键零件.它的制造量占整机制造量的三分之一左右。航空发动机叶片属于薄壁易变形零件。如何控制其变形并高效、高质量地加工是目前叶片制造行业研究的重要课题之一。

涡轮喷气发动机制作图结构设计

涡轮喷气发动机制作图结构设计 注意事项:个人自制涡喷是一项能力挑战,不建议无机械基础及未成年人尝试!!另外在此申明:本资料如用于商业产品开发,请自行解决相关版权。谢谢合作!!!另外,制作中一定要有安全意识,!!!切记与高速运转物体,与火打交道,安全第一! 安全守则: 涡喷的制作不同于其他模型,由于涡喷在高温与高速条件下工作 如果你不想被当成烤鸭请注意下面的事项!! 1.别被火喷成烤鸭,玩火要有科学知识指导。 2.涡轮一定要作动平衡才能用。

3.无论如何不要在共公场合试发动机,很多人围观不是好事。 4.涡轮转速高达70000转每分以上,没机械基础不要去试!! 5.发动机试运与工作中,永远不要站在涡轮的两侧正对位,以免涡轮发生事故时,钢片高速飞出,象子弹一样,危及生命!! 特别提醒!做涡喷一定要有机加工与材料常识,了解金属,火灾,爆炸原理,等安全知识,安全第一。 涡喷自制问题解答: 1:.发动机如何自己设计?到哪里找材料,价钱如何? 模型用的发动机不是大的发动机的按比列缩小,任何试图这样做都很可能是失败。值得推荐的是英国人-Kurt Schreckling设计的FD3-64航模涡喷发动机的设计,开创了小型发动机设计先河,用一个简单方法制作的放射式压气机,环型燃烧室,一个用简单方法制做出来的涡轮,达到了良好的效果。他的理念已被最新改进的各种新的设计所证实,并且都是以他的设计为基础进行的提炼。数字显示,许多爱好者根据他的著作理论,成功地将发动机用在了航模上。

涡轮喷气发动机材料为不锈钢为主,材料成本很低,如果从材料本身的价值来说,以广州为例,也就100元上下,但由于个人爱好者,有些可能无机床,氩弧焊的话,到外面加工的人力成本会贵过材料费。但也无妨。再就是如果有认识不锈钢加工厂的话,找到边角料足矣做一台涡轮,如果你想省事些,可以用涡轮增压器上的压气轮来代替木头的压气轮。。 2.涡轮容易加工吗,没专业设备如何做动平衡? 涡轮是由型号为301,2.5mm不锈板剪口弯成,用一个小电钻配小砂轮可以打磨出翼型即可,关键的动平衡测试,记住这一点很重要!!否则会导致发动机解体!!是用我们的大拇指与食指来感觉振动。灵敏度相当高。足以完成涡轮的动平衡调试。 3.散热与轴承问题 压缩空气将穿过轴套为轴承提供冷却,轴承为简单的滚珠轴承,用自身的压缩空气压油提供油雾润滑。可以用透平油,或低粘度的机械润滑油。 FD3-64的设计合理的利用压气机的空气,将温度控制在600度以下,从而保证各部件的强度。 在运行中我们要注意发动机的温度不能超高。

“超影”微型涡轮喷气发动机

项目名称: “超影”微型涡轮喷气发动机 来源: 第十一届“挑战杯”国赛作品 小类: 机械与控制 大类: 科技发明制作A类 简介: “超影”微型涡轮喷气发动机结合机械、材料科学、运动控制、流体力学等多学科理论, 进行技术创新与综合设计,完成了微型离心压气机,微型蒸发管式环形燃烧室,微型轴流涡轮,保形通道式扩压器以及微型控制器等的设计,用仅仅20个零部件就实现了发 动机8一级的推重比。“超影”可以直接装备到高级喷气航模、应急和科学实验平台以及高速靶机、微小型导弹等微小型无人武器系统,同时,以本作品为基础可以发展出用于分布式能源的发电装置和大飞机必备的APU核心组件。随着本作品工程化、产业化的推进必将产生良好的经济和社会效益。(收起) 详细介绍: 本作品旨在通过设计一台微型涡轮喷气发动机——“超影”,并将其改进发展成为飞行验 证机型,促进该微型发动机在微小型无人机方面的应用,推进产业化。“超影”可以直接 装备到高级喷气航模、应急和科学实验平台以及高速靶机等微小型无人武器系统,同时,以本作品为基础可以发展出用于分布式能源的发电装置和大飞机必备的APU核心组件。 随着本作品工程化、产业化的推进必将产生良好的经济和社会效益。微型涡轮喷气发动机涉及了微型涡轮发动机总体设计、机械、材料科学、运动控制、流体力学等多学科理论,“超影”的研制中通过技术创新,解决了微型化所带来的零部件气动、结构以及控制 系统设计等方面的部分技术难题,形成了多项专利技术。“超影”微型涡轮发动机采用了先进的保形通道式扩压器、微型发动机热管理与微型控制器等技术,并采用创新技术对发动机匹配进行工作调试。对压气机、燃烧室、涡轮等主要部件及总体设计的多次改进,使“超影”达到了85N的推力,实现了8一级的推重比。“超影”微型涡轮发动机已经替换某模型飞机的活塞发动机,进行了飞行验证,积累了对现有无人机进行发动机直接换装的经验,可以大大加速我国无人机性能提升。通过上述内容的研究获得了动力强劲的微型涡轮喷气发动机,它能够给微型飞行器带来真正日行万里的速度。(收起) 作品专业信息 设计、发明的目的和基本思路、创新点、技术关键和主要技术指标 为了突破微型涡轮发动机在部件气动设计、发动机控制、结构设计和加工制造工艺等方面存在的技术难题,促进微型涡轮发动机在微小型飞行器、分布式发电系统、辅助动力装置等方面的应用,推进微型涡轮发动机的产业化进程,我们设计制作了“超影”微型涡 轮发动机,并将其发展成为飞行验证机型。本作品主要工作内容包括:微型涡轮发动

航空发动机原理复习题

发动机原理部分 进气道 1.进气道的功用: 在各种状态下, 将足够量的空气, 以最小的流动损失, 顺利地引入压气机; 2.涡轮发动机进气道功能 冲压恢复—尽可能多的恢复自由气流的总压并输入该压力到压气机。提供均匀的气流到压气机使压气机有效的工作.当压气机进口处的气流马赫数小于飞行马赫数时, 通过冲压压缩空气, 提高空气的压力 3.进气道类型: 亚音进气道:扩张型、收敛型;超音速:内压式、外压式、混合式 4.冲压比:进气道出口处的总压与远前方气流静压的比值∏i=P1*/P0*。 影响进气道冲压比的因素:流动损失、飞行速度、大气温度。 5.$ 6.空气流量:单位时间流入进气道的空气质量称为空气流量。 影响因素:大气密度, 飞行速度、压气机的转速 压气机 7.压气机功用:对流过它的空气进行压缩,提高空气的压力。供给发动机工作时所需 要的压缩空气,也可以为坐舱增压、涡轮散热和其他发动机的起动提供压缩空气。8.压气机分类及其原理、特点和应用 (1)离心式压气机:空气在工作叶轮内沿远离叶轮旋转中心的方向流动. (2)轴流式压气机:空气在工作叶轮内基本沿发动机的轴线方向流动. (3)混合式压气机: 9.阻尼台和宽叶片功用 阻尼台:对于长叶片,为了避免发生危险的共振或颤振,在叶身中部带一个减振凸台。 < 宽弦叶片:大大改善叶片减振特性。与带减振凸台的窄弦风扇叶片比,具有流道面积大,喘振裕度宽,及效率高和减振性好的优点。 10.压气机喘振: 是气流沿压气机轴向发生的低频率、高振幅的气流振荡现象。 11.喘振的表现: 发动机声音由尖锐转为低沉,出现强烈机械振动. 压气机出口压力和流量大幅度波动,出现发动机熄火. 发动机进口处有明显的气流吞吐现象,并伴有放炮声. 12.造成喘振的原因 气流攻角过大,使气流在大多数叶片的叶背处发生分离。 燃烧室 13.| 14.燃烧室的功用及有几种基本类型 功用:用来将燃油中的化学能转变为热能,将压气机增压后的高压空气加热到涡轮前允许的温度,以便进入涡轮和排气装置内膨胀做功。 分类:单管(多个单管)、环管和环形三种基本类型 15.简述燃烧室的主要要求点火可靠、燃烧稳定、燃烧完全、燃烧室出口温度场符合要 求、压力损失小、尺寸小、重量轻、排气污染少 16.环形燃烧室的结构特点、优缺点 结构特点:火焰筒和壳体都是同心环形结构,无需联焰管 优点:与压气机配合获得最佳的气动设计,压力损失最小;空间利用率最高,迎风面积最小;可得到均匀的出口周向温度场;无需联焰管,点火时容易传焰。 缺点:调试时需要大型气源;

小型涡喷发动机制造材料总结复习过程

小型涡喷发动机制造 材料总结

小型涡喷发动机制造材料总结 我是王开心,欢迎大家加入CHNJET中国喷气爱好者原地!介于大家对小型涡喷发动机的热爱以及对制造一个属于自己小型涡喷发动机的追求,在此我写下这点总结以备大家在制造和生产小型涡喷发动机的过程中对于制造材料产生疑惑时做以参考,同时在这里也纠正一些刚刚了解到涡喷发动机和金属材料的朋友们的一个直观错误:选择耐高温材料并不单单只看这个金属材料的熔点,而是应多方面考虑到这个金属材料的蠕变强度,热疲劳性,高温抗氧化性以及高温下金属会产生晶粒长大效应等等因素。 相关名词的解释说明——晶粒长大效应:晶粒长大是金属的一种缺陷,晶粒越大,晶界越少,晶界少了金属各部分抵御外界的能力就变小了,因此晶粒长大效应是判断金属在高温下性能好坏的重要指标。 大家在制造小型涡喷发动机的过程中最能接触到的金属材料我总结为以下几种:304不锈钢,316L不锈钢,310S不锈钢,NAS800,NAS600和K418耐高温合金。下面对上述几种材料在加工和生产中容易遇到的问题和使用中容易遇到的问题做以介绍。 首先304不锈钢,316L不锈钢,310S不锈钢,NAS800,NAS600都属于“奥氏体不锈钢”奥氏体不锈钢具有很高的耐蚀性,良好的冷加工性和良好的韧性、塑

性、焊接性和无磁性,下面我们就来分析一下这几种金属在制造微型涡喷发动机时所要了解到的一些特性。 SUS304 304不锈钢介绍:304不锈钢由于含碳量较低,因而有良好的加工成型性和抗氧化性,同时该钢具有良好的焊接性能,适用于各种方法的焊接(备注:该钢焊接后不需进行热处理工艺)。 304不锈钢的抗氧化特性:1,该钢在700-800℃氧化时具有优异的抗氧化性能,属于完全抗氧化级。2,该钢在900℃时表面形成的氧化膜开始脱落,属于抗氧化级。3,该钢在1000℃时属于次抗氧化级。304不锈钢管最高使用温度在750度-860度但是,实际上达不到860度这么高。450度时有个临界点,情况如下:304不锈钢不易保持在450到860度,因为在450度以上的时候,会稀释碳周围的铬,形成碳化铭,造成贫铬区,从而改变不锈钢性能材质;而且,450的温度外加屈服力会使得奥氏体向马氏体转化。说简单通俗一点,经常在450度以上环境下使用,304不锈钢的性能和结构都发生变化。 总结得出:304不锈钢在900℃以下的热空气中具有稳定的抗氧化性,同时在900℃时304不锈钢具有较小的晶粒尺寸,在800-1000℃时产生了奥氏体晶粒长大效应,加温为1000℃时,晶粒的平均截距开始增大。所以在制造小型涡喷发动机时如果设计温度在600-900℃时不建议长期使用304不锈钢。但是,在模友制造过程中

涡轮风扇喷气发动机及涡轮喷气发动机的区别_以及涡喷

涡轮风扇喷气发动机及涡轮喷气发动机的区别以及涡喷.冲压原理 涡轮风扇喷气发动机的诞生 二战后,随着时间推移、技术更新,涡轮喷气发动机显得不足以满足新型飞机的动力需求。尤其是二战后快速发展的亚音速民航飞机和大型运输机,飞行速度要求达到高亚音速即可,耗油量要小,因此发动机效率要很高。涡轮喷气发动机的效率已经无法满足这种需求,使得上述机种的航程缩短。因此一段时期内出现了较多的使用涡轮螺旋桨发动机的大型飞机。 实际上早在30年代起,带有外涵道的喷气发动机已经出现了一些粗糙的早期设计。40和50年代,早期涡扇发动机开始了试验。但由于对风扇叶片设计制造的要求非常高。因此直到60年代,人们才得以制造出符合涡扇发动机要求的风扇叶片,从而揭开了涡扇发动机实用化的阶段。 50年代,美国的NACA(即NASA 美国航空航天管理局的前身)对涡扇发动机进行了非常重要的科研工作。55到56年研究成果转由通用电气公司(GE)继续深入发展。GE在1957年成功推出了CJ805-23型涡扇发动机,立即打破了超音速喷气发动机的大量纪录。但最早的实用化的涡扇发动机则是普拉特·惠特尼(Pratt & Whitney)公司的JT3D涡扇发动机。实际上普·惠公司启动涡扇研制项目要比GE晚,他们是在探听到GE在研制CJ805的机密后,匆忙加紧工作,抢先推出了了实用的JT3D。 1960年,罗尔斯·罗伊斯公司的“康威”(Conway)涡扇发动机开始被波音707大型远程喷气客机采用,成为第一种被民航客机使用的涡扇发动机。60年代洛克西德“三星”客机和波音747“珍宝”客机采用了罗·罗公司的RB211-22B大型涡扇发动机,标志着涡扇发动机的全面成熟。此后涡轮喷气发动机迅速的被西方民用航空工业抛弃。 波音707的军用型号之一,KC-135加油机。不加力式涡扇发动机实际上较为容易辨认,其外部有一直径很大的风扇外壳。 涡轮风扇喷气发动机的原理 涡桨发动机的推力有限,同时影响飞机提高飞行速度。因此必需提高喷气发动机的效率。发动机的效率包括热效率和推进效率两个部分。提高燃气在涡轮前的温度和压气机的增压比,就可以提高热效率。因为高温、高密度的气体包含的能量要大。但是,在飞行速度不变的条件下,提高涡轮前温度,自然会使排气速度加大。而流速快的气体在排出时动能损失大。因此,片面的加大热功率,即加大涡轮前温度,会导致推进效率的下降。要全面提高发动机效率,必需解决热效率和推进效率这一对矛盾。 涡轮风扇发动机的妙处,就在于既提高涡轮前温度,又不增加排气速度。涡扇发动机的结构,实际上就是涡轮喷气发动机的前方再增加了几级涡轮,这些涡轮带动一定数量的

相关文档
最新文档