《钢桥》

《钢桥》
《钢桥》

《钢桥》课程教学大纲

课程编号:032008 学分:3 总学时:51

大纲执笔人:吴冲大纲审核人:石雪飞

一、课程性质与目的

本课程是面向桥梁工程专业的专业课,是《桥梁工程》系列课程的一个重要组成部分。该课程开设的目的是使学生了解和掌握国内外常用钢桥的构造原理、计算理论和设计方法。

通过本课程的学习,要求学生必须掌握国内外常用钢桥的设计和构造原理、计算理论和方法,了解大跨度钢桥的结构特点和使用场合。

二、课程基本要求

1.熟悉各类常用钢桥诸如钢板梁桥、结合梁桥、桁梁桥、组合体系桥、悬索桥、斜张桥的体系特点、构造要点、工作性能(行为)和使用场合。2.掌握上述各类钢桥的常规设计计算理论和方法。

3.了解大跨度钢桥的体系特点、结构和采用原则。

三、课程基本内容

第一章概论

第一节钢桥的发展概况

一、国外钢桥的发展概况

二、我国钢桥的发展概况

第二节钢桥的主要结构形式与受力特点

一、钢桥的主要结构形式

二、钢桥的主要特点

第三节钢桥设计一般要求与计算基本原则

一、钢桥设计一般要求和原则

二、钢桥的设计计算方法

第四节钢桥的主要材料

一、钢桥的主要材料

二、钢材容许应力及其提高系数

第二章钢桥连接

第一节钢桥的连接方式

一、焊接

二、螺栓连接

三、铆钉连接

第二节焊缝连接

一、焊接方法

二、焊缝连接的型式

三、焊接符号及其表示方法

四、焊缝连接的缺陷、质量检验和焊缝级别

五、焊缝连接层状撕裂防止措施

六、焊接残余应力与残余变形

第三节角焊缝的设计与计算

一、角焊缝的布置和受力性能

二、角焊缝尺寸的构造要求

三、角焊缝连接的计算

四、部分熔透坡口焊缝

五、计算示例

第四节坡口焊缝的设计与计算

一、坡口焊缝的型式

二、坡口焊缝的布置和构造

三、坡口焊缝连接的计算

第五节高强螺栓连接

一、高强螺栓连接的构造

二、摩擦型高强度螺栓受力性能和承载力

三、高强度螺栓连接的设计计算

四、计算示例

第三章桥面结构

第一节概述

一、桥面分类

二、公路钢桥桥面

三、铁路钢桥桥面

四、桥面系梁格

第二节钢筋混凝土桥面

一.钢筋混凝土桥面的构造

二、钢筋混凝土桥面板的受力特性与设计计算方法

三、国外钢筋混凝土桥面板的设计计算方法

第三节钢桥面

一、钢桥面的构造

二、钢桥面的连接

三、钢桥面板的力学特性与有效宽度计算

四、钢桥面板的计算方法

五、钢桥面板设计计算和构造细节处理中应该特别注意的几个问题第四章钢板梁桥

第一节钢板梁桥的组成与总体设计

一、钢板梁桥的结构形式与组成

二、横断面布置

三、平面布置

四、支座及临时支点布置

第二节主梁

一、主梁的构成

二、主梁梁高

三、主梁翼缘板设计

四、主梁腹板加劲肋构造与设计

五、主梁的截面变化

六、主梁连接

第三节横向联结系与纵向联结系

一、横向联结系

二、纵向联结系

第五章钢箱梁桥

第一节钢箱梁桥的结构形式与总体布置

一、结构形式

二、构造特点

三、总体布置

四、钢箱梁桥的用钢量

第二节主梁

一、主梁构造

二、主梁梁高与梁宽

三、主梁的截面变化

四、加劲肋

五、顶底板最小板厚与设计计算方法

第三节横隔板

一、横隔板的作用与构造形式

二、横隔板间距的确定

三、横隔板刚度K的确定

四、横隔板应力的验算

五、横隔板计算示例

第四节钢箱梁受力分析

一、箱梁截面受力特性

二、弯剪分析

三.箱梁自由扭转

四、箱梁约束扭转应力

第六章组合梁桥

第一节概述

第二节剪力传递器

一、剪力传递器的结构形式

二、剪力传递器的构造要求

三、剪力传递器的容许承载力

第三节一般计算原理

一、翼缘板有效宽度

二、组合梁换算截面几何特性

三、组合梁应力

第四节混凝土徐变收缩和温差

一、混凝土的徐变

二、温差应力

三、混凝土收缩

第五节组合截面连续梁

一、负弯矩的处理方法

二、支座调整产生的预应力与徐变内力

三、支点附近区段预加力及徐变内力计算

四、混凝土收缩内力计算

第六节计算示例

一、计算条件

二、桥面板顺桥方向局部应力计算

三、主梁计算

四、剪力传递器计算

第七章钢桁梁桥

第一节概述

一、钢桁梁的组成

二、主桁架的图式及特点

三、连续桁梁及悬臂桁梁桥

第二节桁梁桥构造与施工

一、主桁杆件构造

二、节点构造

三、联结系构造

第三节桁梁桥的计算

一、概述

二、主桁架的计算

三、节点计算

五、钢桁梁的挠度与预拱度及横向刚度

第八章钢拱桥*

简要介绍钢拱桥桥的结构形式、构造特点以及设计计算基本原理与方法。第九章钢斜拉桥*

以工程实例的形式介绍钢斜拉桥钢箱梁及其锚固结构的构造与受力特点、设计计算要点。

第十章悬索桥*

以工程实例的形式介绍悬索桥钢箱梁及其锚固结构的构造与受力特点、设计计算要点。

第十一章钢桥疲劳*

简要介绍钢梁疲劳验算荷载与荷载谱、连接对疲劳的影响、防止疲劳损伤和破坏的构造措施、疲劳验算方法。

第十二章钢梁防腐*

简要介绍钢梁常用的防腐材料与方法。

第十三章钢桥制作与安装*

简要介绍钢梁加工制作方法与工艺、吊装方法与主要设备、制作与安装误差要求等。

*注:第8~13章主要作为学生自学内容,教学内容由教师安排。

四、实验或上机内容

钢板梁桥或组合梁桥大作业,包括设计计算书和设计图。

五、前修课程要求

《材料力学》、《结构力学》、《钢结构基本原理》。

七、教材与主要参考书

建议教材:

吴冲主编,《钢桥》,人民交通出版社,北京,2006年

参考教材:

[1] 小西一郎:钢桥(1-11),人民铁道出版社,北京,1983年

[2] 交通部标准(JTJ025-86):公路桥涵钢结构及木结构设计规范,人民交通

出版社,北京,1989年

[3] 国家标准(TB10002.2-99):铁路桥梁钢结构设计规范,中国铁道出版社,

北京,2000年

[4] 国家标准(GB50017-2003):钢结构设计规范,中国计划出版社,北京,2003

[5] 日本道路協会:道路橋示方書?同解説(鋼橋編),丸善株式会社,東京,

2001年

[6] 日本道路協会:鋼道路橋設計便覧,丸善株式会社,東京,1979年

[7] AASHTO: Standard Specification for Highway Bridges

[8] 铁道部标准(TBJ2-96):铁路桥涵设计规范,铁道部建设司标准科情所,

1996

[9] 英国标准学会BS5400:钢桥、混凝土桥及结合桥,西南交通大学出版社,

1987

[10] 日本土木学会,座屈設計ガイドライン,丸善株式会社,1987

[11] 刘士林、梁智涛等:斜拉桥,人民交通出版社,2002

[12] 日本道路协会,钢道路桥疲劳设计指针,丸善株式会社,2001

[13] 周远棣、徐君兰:钢桥,人民交通出版社,北京,1990年

48m钢桥设计

48m钢桁架铁路桥设计 学院:土木工程学院 班级:土木0906 姓名:张宇 学号:1801090603 指导老师:方海 整理日期:2012年01月07日

——目录—— 第一章设计依据 (2) 第二章主桁架杆件内力计算 (4) 第三章主桁杆件设计 (10) 第四章弦杆拼接计算 (14) 第五章节点板设计 (16) 第六章节点板强度检算 (16)

48m钢桁架桥课程设计 一、设计目的: 跨度L=48米单线铁路下承载式简支栓焊钢桁梁桥部分设计 二、设计依据: 1. 设计《规范》 铁道部1986TB12-85《铁路桥涵设计规范》简称《桥规》。 2. 结构基本尺寸 计算跨度L=48m;桥跨全长L=48.10m;节间长度d=8.00m; 主桁节间数n=6;主桁中心距B=5.75m;平纵联宽B0=5.30m; 主桁高度H=12.00m;纵梁高度h=1.35m;纵梁中心距b=2.00m; 3. 钢材及其基本容许应力: 杆件及构件——16Mnq;高强螺栓——40B;精制螺栓——ML3;螺母及垫圈——45号碳素钢;铸件——ZG25;辊轴——锻钢35钢材的基本容许应力参照1986年颁布的《铁路桥涵设计规范》。 4. 结构的连接方式: 桁梁杆件及构件,采用工厂焊接,工地高强螺栓连接; 人行道托架采用精制螺栓连接; 焊缝的最小正边尺寸参照《桥规》; 高强螺栓和精制螺栓的杆径为Φ22,孔径d=23mm; 5. 设计活载等级——标准中活载 6. 设计恒载 主桁P3=16kN/m;联结系P4=2.76kN/m;桥面系P2=6.81kN/m; 高强螺栓P6=(P2+P3+P4)×3%; 检查设备P5=1.00kN/m; 桥面P1=10.00kN/m;焊缝P7=(P2+P3+P4)×1.5%。 计算主桁恒载时,按每线恒载P=P1+P2+P3+P4+P5+P6+P7。 三、设计内容: 1. 主桁杆件内力计算,并将计算结果汇整于2号图上; 2. 围绕E2节点主桁杆件截面选择及检算; 3. 主桁E2节点设计及检算; 4. 绘制主桁E2节点图(3号图)。 四、提交文件: 1.设计说明书; 2. 2、3号图各一张 要求:计算正确,书写条理清楚,语句通顺;结构图绘制正确,图纸采用的比例恰当,线条粗细均匀,尺寸标准清晰。

200战备钢桥资料

表2-1 桥梁尺寸(mm) 注: * 表中桥外形尺寸及桥顶部高度,均未考虑水平撑架高度,如果水平撑架在桁架顶部设置,则表中尺寸应增加49mm,用宽水平撑架增加43mm。 ** 表中桥基础面系指采用下桥座(ZB200-402-200)垫在桥座板(ZB200-403-000)的尺寸,如果采用其它支座则有变动。

2. 3. 1 桥梁结构的几何特性 为了确定各类桥梁结构的承载能力,必须确定桥梁结构断面的几何特性。对加强型的桥梁结构,其几何特性按组合断面考虑。详见表2-2。 表2-2 桥梁几何特性(半边桥)

2. 3. 2 桁架单元容许内力的确定 桁架单元弦杆材料的屈服强度σS=345MPa 桁架单元弦杆材料的容许应力[σ]=0.8×σS=276 MPa 弦杆容许压力[N]= [σ]×F×φ=276×2548×0.751=528kN=54t 弦杆平面外稳定系数单排为φSS=0.751;双排为φDS=0.897,取最小φ=0.751 桁架单元容许弯矩[M]= [N]×h=528×2.134=1127kN·m=115t·m 双排桥梁结构由于稳定系数为φDS=0.897 双排容许内力提高系数ξDS=0.897/0.751=1.194,对完全加强的结构考虑内力提高,实际计算时系数ξ=1.12。桁架单元容许内力详见表2-3。 表2-3 桁架容许内力(半边桥) 1.4 桥节单元重量

表2-4 ZB-200型钢桥桥节单元重量 注: 1. 表中列出的为每3. 048m桥节的重量(t)。 2. 钢构件的重量为理论重量。 3. 通常端桥节为非加强结构。 3. 桥梁最大架设跨度的确定 根据桥梁设计规范,按照式(2-1)和式(2-2),可以计算出各种桥梁结构在不同荷载作用下的最大跨度。单车道计算结果详见表2-6,双车道计算结果详见表2-8。根据表2-6、表2-8计算结果就可分别推出单车道和双车道桥梁跨度及荷载匹配表,详见表2-7和表2-9。为了更直观的看出桥梁跨度与荷载匹配的情况,又分别制定了单车道和双车道荷载与跨径组合表,详见表2-10和表2-11。根据以上表格就可方便设计出各种桥梁结构。

临时钢桥设计方案

钢桥设计方案 一、概述 1.1工程概况 由我单位承建的阿克肖水库导流兼冲沙洞工程,因导流洞进口引渠段土石方开挖弃料拉运及为后期工程施工创造交通便利所修建的临时2#道路横跨阿克肖河,建立一座简易钢结构便桥。根据现场的地形地貌并结合载荷使用要求,经现场勘查我部架设的钢桥规模为长12m共两跨,钢桥外宽4.5m,桥面净宽4m,单项行车道。 1.2 地理位置 设计钢桥位于阿克肖河床中心段,距导流洞进口引渠段开挖范围约0.35km,距2#弃渣场约1.6km,距瑙阿巴提塔吉克乡约3km。 1.3 阿克肖河水文概况 钢桥处址多年平均流量6.46m3/s,多年平均径流量2.038×106m3。阿克肖河的洪水主要分为春洪和夏洪两大类。一般春洪多以季节性积雪融水型为主的洪水类型出现,夏洪多以高山冰雪融水为主的洪水类型出现,此外,还有与山区发生的暴雨洪水相叠加而产生的混合型洪水。根据资料提供,十年一遇洪水流量约为60m3/s 二、设计标准

①设计车速:5km/h ②设计载荷:80t ③桥跨设计:12m两跨简易钢桥 ④桥面布置:桥面净宽4m ⑤设计过水流量:51.12m3/s 三、钢桥设计方案 3.1 钢桥基础设计 钢桥基础均为向河床原地面下挖2m,长6.8m宽3m,C20混凝土浇筑。两端为直立型桥台长4.5m宽1.8m高2m,钢筋混凝土结构。中间桥台为梯形上4.5m,上底宽1m下底宽2m高2m,钢筋混凝土结构。台帽为长4.5m下底宽0.8m上底宽0.3m高0.7m,钢筋混凝土结构。 3.2 桥梁设计 桥梁采用八根热轧型56b“工”字钢,长度为12m。设计间距35cm,每根“工”钢用Φ25钢筋焊接相连,形成一个整体。 3.3 桥面设计 桥面采用4m的热轧型20槽钢进行满铺,间距为10cm并与“工”字钢进行焊接。再用0.5mm钢板进行桥面找平。 3.4 防护结构设计 桥面采用50钢管做成护栏进行防护,栏杆高度1.2m,栏杆纵向3m一根立柱(与桥面槽钢焊接)、高度方向设置两道横杆。

日本的耐候钢桥技术

日本的耐候钢桥技术 2010年l2月汪磊等:日本的耐候钢桥技术2010年第6期 日本的耐候钢桥技术 汪磊,刘向南 (云南省交通规划设计研究院,云南昆明650011) 摘要:介绍日本耐候钢桥的发 展背景历程和现状,基本原理,设计 施工及维持管理要点,希望能对国内 日益推广发展的铜桥设计和建造等方 面拓宽思路.并为中国桥梁早日全面 赶超世界桥梁先进水平提供一些借鉴 和帮助 关键词:日本公路桥梁;耐候铜 桥:免涂装技术:腐蚀机理 0引言 耐候钢(在日本也称为免涂装 钢)是随着高强钢材的出现,材质轻 薄化和防腐蚀要求相应提高而发展起 来的.早在20世纪初,欧美各国制钢 业就已经相继发现在炼钢时掺入微量 的Cu等其他金属元素,可以提高钢材 在大气中的耐腐蚀性.以此为契机, 大规模的钢材添加合金元素后的耐腐 蚀性的调查开展起来,很快就积累了 一 定的经验数据.1967年美国在世界 上首次将耐候钢材用于"裸桥"方式

建设的钢桥.并在1977年建成了世界上最大跨度的上承式耐候钢拱桥——新河峡大桥(NewRiverGorge Bridge1.其后耐候钢桥在世界范围内得到很快推广.目前已成为发达国家 钢桥的一种发展趋势. 13本属于岛国,直接濒临海洋的 区域占国土的绝大部分,这些地区的 空气中携含有大量的海盐成分(75% 为NaC1,其他也均为金属盐类),这些盐分在空气中达到吸湿临界湿度后即会在附近固态物表面结露.促使其腐 蚀反应的发生.另外13本冬季寒冷, 为消融公路路面积冰而抛洒的大量融54 雪剂,同样会造成公路钢构造物的腐 蚀加剧,所以在日本钢桥的防腐蚀工 作显得尤为重要而艰巨. 1969年日本建成其国内第一座完 全真正的耐候钢桥,并于1985年制定了《无涂装耐候性桥梁设计施工要领》,还在1993年进行了修订,确定了耐候钢桥适用海岸环境飞来盐分的判断标准:飞来盐分量<0.05mg/i00em? d(0.05mmd).经过四十多年的不断 积累和发展,目前已经形成了耐候钢 材生产加工,耐候钢桥设计建造及维 护维修各方面一整套较为先进成熟的体系,在桥型上也涵盖了梁桥,桁架

钢桥课程设计

《钢桥》课程设计任务书《钢桥》课程设计指导书 青岛理工大学土木工程学院 道桥教研室 指导老师:赵建锋 2010年12月

《钢桥》课程设计任务书 一、设计题目 单线铁路下承式简支栓焊钢桁架桥上部结构设计 二、设计目的 1. 了解钢材性能及钢桥的疲劳、防腐等问题; 2. 熟悉钢桁架梁桥的构造特点及计算方法; 3. 通过单线铁路下承式简支栓焊钢桁架桥上部结构设计计算,掌握主桁杆件内力组合及计算方法;掌握主桁杆件截面设计及验算内容; 4. 熟悉主桁节点的构造特点,掌握主桁节点设计的基本要求及设计步骤; 5. 熟悉桥面系、联结系的构造特点,掌握其内力计算和强度验算方法; 6. 熟悉钢桥的制图规范,提高绘图能力; 7. 初步了解计算机有限元计算在桥梁设计中的应用。 三、设计资料 1. 设计依据:铁路桥涵设计基本规范(TB1000 2.1-2005) 铁路桥梁钢结构设计规范(TB10002.-2008) 钢桥构造与设计 2. 结构轮廓尺寸: 计算跨度L= m ,节间长度d= 8 m ,主桁高度H= 11m ,主桁中心距B= 5.75m ,纵梁中心距b= 2.0m 。 3. 材料:主桁杆件材料Q345qD ,板厚≤40mm ,高强度螺栓采用M22。 4. 活载等级:中-活载。 5. 恒载: (1)主桁计算 桥面m kN p =1,桥面系m kN p =2,每片主桁架m kN p = 3, 联结系m kN p =4; (2)纵梁、横梁计算 纵梁(每线) m kN p = 5 (未包括桥面),横梁(每片) m kN p = 6。 6. 风力强度0.1,25.13212 0==K K K m kN W 。

日本钢结构桥资料

日本钢结构桥资料

日本钢桥新技术资料 日本是钢桥的王国,钢桥的结构形式随着时代的发展而不断地进行着改进。教科书里介绍的结构形式有许多已经过时,日本桥梁建设协会的资料是实际工程设计的参考资料。 少数主梁桥 少数主梁桥是通过采用大跨度的合成桥面板或PC桥面板,达到减少主梁数目,并使横梁,风撑结构简素化以至于省略的新形桥梁。近年来已经成为一种常见的钢桥形式。适用于曲率半径大于700米的场合,经济跨径30到80米。特长:由于采用合成桥面板或PC桥面板,提高了桥面板的跨度。合成桥面板的底钢板同时兼做混凝土的模板。现场打设的PC桥面板或工厂预制的桥面板均可对应。由于桥面板跨度的增大,减少了主梁数目。横梁的间隔也达到10米程度,横梁可以直接使用型材。通过桥面板抵抗横方向的荷重,省略了下风撑。除去强风地域,一直到70米均可保证抗风安全性。跨径再大的话需要对抗风做特别的考虑。

狭小箱梁桥 狭小箱梁桥的主梁比从前的箱梁窄,翼缘的板厚较大,纵向加强肋的设置个数少,省略了横向加强肋,并且通过使用大跨度的合成桥面板,PC桥面板,简化了床组结构。适用于曲率半径大于300米的场合,经济跨径60-110米。特长:纵加强肋的设置个数大大减少,或者省略横加强肋。较大跨径时,虽然箱梁断面较宽,箱内结构也可以简素化。例如最大跨径97.6米,梁高3.1米,腹板间隔2.5米的狭小箱梁,但纵加强肋只设了一处。 当上下线一体化时狭小箱梁

开断面箱梁桥 适用于曲率半径大于300米的场合,经济跨径50-90米。 当上下线一体化时开断面箱梁 合理化钢床板少数I梁桥 适用于曲率半径大于700米的场合,经济跨径60-110米。采用大尺寸的U形加强肋。

日本桥梁介绍

日本的城市大跨径桥梁介绍 在考察中,我们对日本在城市大跨径桥梁建设中的成就和创新理念留下了深刻的印象,其桥梁结构主要采用悬索桥和斜张桥,下面分别介绍东京彩虹大桥、明石海湾大桥、港大桥下津井濑户大桥、因岛大桥、多多罗大桥和生口大桥的相关情况。 1 日本东京彩虹大桥 图1系东京著名的彩虹大桥。人们来到东京第一个观赏的地标式建筑应是彩虹桥。这是一座连接东京台场和芝浦的全长918 m的悬索结构桥,是日本首都东京一条横越东京湾北部,连接港区芝浦及台场的大桥。东京彩虹大桥的结构为三跨二铰加劲桁梁式悬索桥,其正名称为“首都高速道路11号台场线东京港联络桥”,于1987年动工,1993年8月26日建成通车。 图1 东京著名的彩虹大桥 彩虹大桥全长798 m,主桥跨径为570 m。桥梁分为上下两层,上层为首都高速道路11号台场线,下层的中央部分为新交通临海线(东京临海新交通临海线)的路轨,两侧为一般道路,包括国道357号行车道及行人道。单车及50cc以下的机车禁止使用彩虹大桥,桥上设有人行道,游人可伴着徐徐的海风漫步在彩虹桥上,饱览东京的景色。 如今东京彩虹桥优美的白色桥体结构,早已成为东京临海的重要景观。在桥梁工程筹建之时设计者就充分考虑了景观要求,并将夜景照明作为其桥梁主体规划的重要内容。大桥的照明分4个部分,主要是主塔悬索大梁和抛锚处。这些部分的照明优美协调并形成一个完整的统一体,同时又不失各自的特点。景观照明随季节日期和时间作相应变化,并创造出丰富的景观效果。从生态平衡的角度充分考虑了节能,其主塔日光下的光色随季节发生变化(夏季白色,冬季暖白),其感官在心理上可产生非视觉上的效果。两座支撑大桥的桥塔使用白色设计,令彩虹大桥与周围的景色相协调和共融。在悬索桥面的缆索上设置有红、白、绿3 色光源,并采用日间收集来的太阳能作为能源,在晚上来点缀彩虹大桥。彩虹大桥的景色已成为日本近年一个新兴的观光胜地,其下层外侧的行人道,让行人可徒步过桥。

321 钢桥设计基本参数

“321” 钢桥设计基本参数 简介:装配式公路钢桥(简称“321”钢桥)是在原英制贝雷桁架桥的基础上,结合我国国情和实际情况研制而成的快速组装桥梁,材料为16Mn。 “321”钢桥属临时性桥梁结构,钢材的容许应力按基本容许应力提高30%,本桥设计时采用的容许应力按下列确定: 16锰钢的拉应力、压应力及弯应力: 1.3×210=273 MPa 16锰钢的剪应力: 1.3×120=156 MPa 销子为30铬锰钛,插销为弹簧钢 30铬锰钛的拉应力、压应力及弯应力 0.85×1300=1105 MPa 30铬锰钛的剪应力 0.45×1300=585 MPa 2、钢梁截面特性 (1)、桁架上下弦杆系由各两根10号热轧槽钢背靠背组合而成,腹杆由8号工字钢组成; (2)、“321”钢桥在大多数情况下,最大跨径是由容许弯矩控制,但在个别情况下,是由剪力控制。 桥梁几何特性表 (表中数值为半边桥之值,全桥时应乘2) 几何特性 W(cm3) I(cm4) 结构构造 单排单层不加强 3578.5 250497.2 加强 7699.1 577434.4

双排单层不加强 7157.1 500994.4 加强 15398.3 1154868.8 三排单层不加强 10735.6 751491.6 加强 23097.4 1732303.2 双排双层不加强 14817.9 2148588.8 加强 30641.7 4596255.2 三排双层不加强 22226.8 3222883.2 加强 45962.6 6894382.8 桁架容许内力表 桥型不加强桥梁加强桥梁 容许内力单排单层双排单层三排单层双排双层三排双层单排单层双排单层三排单层双排双层三排双层 弯矩(KN·M) 788.2 1576.4 2246.4 3265.4 4653.2 1687.5 3375.0 4809.4 6750.0 9618.8 剪力(KN) 245.2 490.5 698.9 490.5 698.9 245.2 490.5 698.9 490.5 6 98.9 “321”钢桥 弦杆截面积A(cm2):2×12.74=25.48 弦杆惯矩Ix(cm4):396.6 弦杆截面模量Wx(cm3):79.4 自由长度Lp(cm):75 长细比λ= Lp/r :19 纵向弯曲系数φ:0.953 弦杆纵向容许受压荷载(KN):663 1、容许内力指的是跨中弯矩和支点剪力; 2、桁架销子双剪状态容许剪力550KN(销子直径为49.5mm);

日本钢结构桥资料

日本钢桥新技术资料 日本是钢桥的王国,钢桥的结构形式随着时代的发展而不断地进行着改进。教科书里介绍的结构形式有许多已经过时,日本桥梁建设协会的资料是实际工程设计的参考资料。 少数主梁桥 少数主梁桥是通过采用大跨度的合成桥面板或PC桥面板,达到减少主梁数目,并使横梁,风撑结构简素化以至于省略的新形桥梁。近年来已经成为一种常见的钢桥形式。适用于曲率半径大于700米的场合,经济跨径30到80米。特长:由于采用合成桥面板或PC桥面板,提高了桥面板的跨度。合成桥面板的底钢板同时兼做混凝土的模板。现场打设的PC桥面板或工厂预制的桥面板均可对应。由于桥面板跨度的增大,减少了主梁数目。横梁的间隔也达到10米程度,横梁可以直接使用型材。通过桥面板抵抗横方向的荷重,省略了下风撑。除去强风地域,一直到70米均可保证抗风安全性。跨径再大的话需要对抗风做特别的考虑。

狭小箱梁桥的主梁比从前的箱梁窄,翼缘的板厚较大,纵向加强肋的设置个数少,省略了横向加强肋,并且通过使用大跨度的合成桥面板,PC桥面板,简化了床组结构。适用于曲率半径大于300米的场合,经济跨径60-110米。特长:纵加强肋的设置个数大大减少,或者省略横加强肋。较大跨径时,虽然箱梁断面较宽,箱内结构也可以简素化。例如最大跨径97.6米,梁高3.1米,腹板间隔2.5米的狭小箱梁,但纵加强肋只设了一处。 当上下线一体化时狭小箱梁

适用于曲率半径大于300米的场合,经济跨径50-90米。 当上下线一体化时开断面箱梁 合理化钢床板少数I梁桥 适用于曲率半径大于700米的场合,经济跨径60-110米。采用大尺寸的U形加强肋。

外文翻译---日本钢桥建筑的近期发展趋向

外文资料翻译 Considerations on recent trends insteel bridge construction in Japan Abstract In this paper, consideration is given on recent trends in, steel bridge construction in Japan. As far as recent trends are concerned, it is observed that the construction of long and big steel bridges has practically been completed. Consequently, the focus of recent main works is the maintenance of superannuated (averaged) bridges and the seismic retrofitting of existing bridges. The refreshment and regeneration of some superannuated bridges is also needed recently in order to mitigate the uncomfortable influence of these bridges on their surrounding environment. For this purpose, maintenance and retrofitting works should be economically reasonable jobs. The necessity and importance of these works should be understood by the nation through retrofitting existing bridges against disasters and mitigating the unfavorable influence of bridge structures on the bridge environment on the basis of the code of ethics for civil engineers promulgated by JSCE. Moreover, bridge engineers should seek better social status and the bridge engineering field should become attractive to young students who will bear the future of this field. 1.1 Construction trend In Japan, many bridges were intensively constructed in the 1960s–80s, during the period of high economic growth, with the number of bridges constructed per year decreasing recently to half of the overall peak. More specifically, the steel bridge industry reached the golden age in the latter half of the 1960s. However, the latest data indicates that the recent number of constructed steel bridges has declined to approximately 40% of its peak, though the number of constructed RC and PC bridges remains almost constant from the beginning of 1960 to date. After the construction of many bridges as one of the important infrastructures, bridges were constructed predominantly in places of direct need. Recently, it is observed that various kinds of damage have occurred to many bridges mainly constructed in the 1960s.

日本钢桥

少数主梁桥 少数主梁桥是通过采用大跨度的合成桥面板或PC桥面板,达到减少主梁数目,并使横梁,风撑结构简素化以至于省略的新形桥梁。近年来已经成为一种常见的钢桥形式。 适用于曲率半径大于700米的场合,经济跨径30到80米。 特长:由于采用合成桥面板或PC桥面板,提高了桥面板的跨度。合成桥面板的底钢板同时兼做混凝土的模板。现场打设的PC桥面板或工厂预制的桥面板均可对应。 由于桥面板跨度的增大,减少了主梁数目。横梁的间隔也达到10米程度,横梁可以直接使用型材。通过桥面板抵抗横方向的荷重,省略了下风撑。除去强风地域,一直到70米均可保证抗风安全性。跨径再大的话需要对抗风做特别的考虑。 狭小箱梁桥 狭小箱梁桥的主梁比从前的箱梁窄,翼缘的板厚较大,纵向加强肋的设置个数少,省略了横向加强肋,并且通过使用大跨度的合成桥面板,PC桥面板,简化了床组结构。 适用于曲率半径大于300米的场合,经济跨径60-110米。 特长:纵加强肋的设置个数大大减少,或者省略横加强肋。较大跨径时,虽然箱梁断面较宽,箱内结构也可以简素化。例如最大跨径97.6米,梁高3.1米,腹板间隔2.5米的狭小箱梁,但纵加强肋只设了一处。 当上下线一体化时狭小箱梁

开断面箱梁桥 适用于曲率半径大于300米的场合,经济跨径50-90米。 当上下线一体化时开断面箱梁

合理化钢床板少数I梁桥 适用于曲率半径大于700米的场合,经济跨径60-110米。 采用大尺寸的U形加强肋。 合理化钢床板少数I梁桥采用了较厚的钢桥面板,增强了耐久性。 合理化钢床板少数I梁桥与从前桥梁的比较。

合理化钢桁架桥 与从前的钢桁架桥相比,省略了支持桥面板的纵梁和牛腿等床组结构,采用了适用于大跨度的合成桥面板或PC桥面板。通过桥面板抵抗横向荷载,省略了上风撑。 结构简素化钢桥 从前日本的钢桥,为了最大限度上节省材料,结构做的过分复杂。但由于总成本中材料费用比重的下降,制作安装费用比重的上升,钢桥结构上需要做相应的改进。在工程实践中,日本技术者在工作细节上总有一种复杂化的倾向,不利于降低桥梁的总造价,为此,1998和2003年,日本桥梁建设协会两次发行新的钢桥设计指针,力图使钢桥结构简素化。 与以前相比,主要的改变点: 1.在一个部材(节段)内,断面不进行变化。以前的公路钢桥,在一个节段内,上下翼缘的宽度和厚度都要进行变化。由于考虑运输问题公路钢桥的节段节段都不太长,截面变化过多,给工厂制造带来很多不便;而且上翼缘宽度变化的话,在打设桥面板混凝土时,模板设置十分麻烦,为此进行了简化。 2。在全桥范围内,上翼缘宽度不作改变;下翼缘,原则上保持一致,对于连续梁的中间支点附近可根据需要加宽。 3。通过适当加大腹板板厚,水平加强肋设置一段。以前有些桥梁设置了两段,并且腹板板厚多次改变。 4。腹板的连接板,以前多用三块,上下主要抵抗弯矩,中间主要抵抗剪断力,在简素化结构中,只用一块连接板。 5。各节段翼缘的板厚一般有改变,所以,在连接板处设置板厚调整垫板。

钢桥设计名词解释

1、钢结构设计原则以及规范要求? 在钢结构设计中贯彻执行国家的技术经济政策,做到技术先进、经济合理、安全适用、确保质量,设计钢结构时,应从工程实际情况出发,合理选用材料、结构方案和构造措施,满足结构在运输、安装和使用过程中的强度、稳定性和刚度要求,宜优先采用定型的和标准化的结构和构件,减少制作、安装工作量,符合防火要求,注意结构的抗腐蚀性能。 2、钢桥按受力体系分为几类? 梁式桥拱桥钢构桥:主要承受结构为偏心受压和受弯,并兼有梁桥和拱桥的一些受力特点。斜拉桥:将梁用若干根斜拉索拉在索塔上,斜拉索不仅为梁提供弹性支撑,而且其水平分离对梁内产生很大的轴力悬索桥。组合体系梁桥 3、结构型钢材主要性能指标? 强度屈服点冷弯性能韧性可焊性耐久性:耐腐蚀性耐老化(时效硬化) 耐长期高温耐疲劳 4、钢结构失稳,按失稳性质分为哪几种? 分支点失稳(1)稳定分岔失稳(屈曲)(2)不稳定分岔失稳(屈曲)极值性失稳,跳跃性失稳5、钢结构连接形式有哪几种,各自的优缺点分别是? 1.螺栓联接结构简单、型式多样、接可靠装拆方便、成本低缺点:在交变荷载下,易松动。制孔精度较高。 2.焊接设备简单、生产效率高、焊缝强度高、密封性能好。缺点:拆卸不方便 3.铆接联接强度高. 密封性能好。缺点:.拆卸不方便、制孔精度高 7、降低焊接残余应力,残余变形的主要措施? (1)预留收缩变形量(2)反变形法三(3)选择合理的焊接顺序(4)锤击焊缝法(5)加热减应区法(6)焊前预热和焊后缓冷(7)合理的焊接工艺方法(8)刚性固定法8、焊缝常见缺陷? 焊缝的常见缺陷有裂纹、气孔、焊瘤、弧坑、咬边、夹渣、未焊透。 二1普通螺栓抗剪连接工作原理和破坏形式? 1)当螺栓直径较细而被连接钢材较厚时,可能发生螺栓杆剪切破坏 2)当螺栓直径较粗而被连接钢材较薄时,孔壁可能在螺栓杆局部承压或挤 压下产生较大挤压应力和塑性变形,最终导致螺栓孔拉长而使钢板在孔 间剪切断裂 3)当构件开孔较多使截面削弱较大时,可能发生构件沿净截面的强度极限 (拉或压)破坏 4)当螺栓孔距板端距离较小时,导致板端沿最大剪应力方向剪断 5)当螺栓杆较长(被连接钢材总厚度较大)较细时,可能发生螺栓杆弯曲 破坏 工作原理:普通抗剪螺栓连接在受外力后,节点连接板即产生滑动,外力通过螺栓杆受剪和连接板孔壁承压来传力。 2高强螺栓预紧力确定方法? 1)扭矩法:采用可直接显示扭矩的特制扳手,根据事先测定的扭矩和螺栓拉力之间的关系式施加扭矩,并计入必要的超张拉值。 2)转角法:分初拧和终拧两步。初拧是用普通扳手使连接构件相互紧密贴合,终拧是以初拧的贴紧位置为起点,根据螺栓直径和板叠厚度确定终拧角度,用强有力的扳手旋转螺母,拧至预定角度,达到预拉力数值。 3)扭剪法:拧断螺栓梅花切口处截面来控制预拉力数值。 3公路桥梁疲劳应力幅如何确定?

桥梁设计外文翻译---日本钢桥建筑的近期发展趋向

Considerations on recent trends in, steel bridge construction in Japan Abstract In this paper, consideration is given on recent trends in, steel bridge construction in Japan. As far as recent trends are concerned, it is observed that the construction of long and big steel bridges has practically been completed. Consequently, the focus of recent main works is the maintenance of superannuated (averaged) bridges and the seismic retrofitting of existing bridges. The refreshment and regeneration of some superannuated bridges is also needed recently in order to mitigate the uncomfortable influence of these bridges on their surrounding environment. For this purpose, maintenance and retrofitting works should be economically reasonable jobs. The necessity and importance of these works should be understood by the nation through retrofitting existing bridges against disasters and mitigating the unfavorable influence of bridge structures on the bridge environment on the basis of the code of ethics for civil engineers promulgated by JSCE. Moreover, bridge engineers should seek better social status and the bridge engineering field should become attractive to young students who will bear the future of this field. 1.1 Construction trend In Japan, many bridges were intensively constructed in the 1960s–80s, during the period of high economic growth, with the number of bridges constructed per year decreasing recently to half of the overall peak. More specifically, the steel bridge industry reached the golden age in the latter half of the 1960s. However, the latest data indicates that the recent number of 1

(生产管理知识)日本钢桥生产的组织管理

从多多罗大桥建设中看日本钢桥生产的组织管理 1.日本多多罗大桥的上部工程概要 多多罗大桥在本州四国联络公团管辖的尾道~今治的通路(E通路)上,连结广岛县的生口岛和爱媛县的大三岛,其塔高220M、桥长1480M,竣工时(1997年8月)是世界上最大的斜拉桥。 1994年4月1日,2个共同联合体(2JV)承揽了多多罗大桥的主塔、锚固架、钢索、主桁等的设计、制造、架设工程任务。由三菱、川田、宫地、日立、驹井组成的共同联合体承担多多罗大桥上部结构工程的第一部分,由石播、横河、钢管、泷上、松尾组成的共同联合体承担多多罗大桥上部结构工程的第二部分。 1994年4月开始工厂制造的材料订购及放样作业,并配合现场架设施工计划顺次推进,1994年11月发出2P锚固架,到1997年8月架设桥中间合龙段,经过3年零4个月。 本桥的特点: ①塔高220M、桥长1480M、主跨890M的斜拉桥当时堪称世界第一。 ②主塔基部断面为12m×8.5m、普通部断面为6~5.6m×8~5.9m,是大断 面。 ③塔下部、边跨、塔附近部分的主梁在工厂组装,进行大节段架设。 ④斜拉桥主梁轴向产生非常大的压缩力。 ⑤边跨端部配有PC梁是钢和PC梁的复合结构。 ⑥应对钢桥面板的疲劳,采用了反映出各种实验结果的制造方法和细部结 构。 ⑦主塔相关的放样作业沿用了CAD设计时的数据。 为确立和此桥特点有关的施工方法,2个联合体的10个会社成为一体,充分运用过去积累的施工经验,又对施工中可能发生的各种问题进行各种施工试验,事前进行了反复的研究。对于质量管理,联合体制定各自的管理项目,同时密切加强2个联合体的信息交流,注意使2个联合体的10个公司进行统一的施工建设。

钢桥设计原则

钢桥的主要特点 一、主要优缺点 1、优点 1)、高强匀质材料:钢材是一种抗拉、抗压、抗剪强度高的匀质材料,承受拉、压、弯、剪均可,并且与混凝土等材料相比自重小(通常用重量强度比来表示两种材料在结构意义上的相对轻重),所以钢桥具有很大的跨越能力。桥梁跨度非常大、荷载非常重,采用别的材料来建桥将遇到困难时,一般采用钢桥。钢材可加工性能好,可用于复杂桥型和景观桥。2)、钢桥的构件最适合用工业化方法来制造,便于运输,便于无支架施工,工地的安装速度也快。因此,钢桥的施工期限较短。 3)、韧性、延性好,可提高抗震性能。 4)、钢桥在受到破坏后,易于修复和更换。 5)、旧桥可回收,资源可再利用,有利于环保。 2、缺点 钢材的主要缺点是易于腐蚀,需要经常检查和按期油漆。铁路钢桥行车时噪声与振动均比较大。 二、结构与受力 1、薄壁结构 为了提高截面效率,钢桥一般做成薄壁结构,应力计算应该考虑剪力滞、扭转(自由扭转、约束扭转)、翘曲等影响。 2、稳定(stability) 钢桥结构刚度小,稳定问题突出。作为薄壁结构,为了防止板件的局部失稳需要设置加劲肋和限制板件的宽厚比。 3、刚度(stiffness) 刚度小,设计中通过限制杆件的长细比(slenderness ratio)、挠度(deflection)和钢桥的宽跨比保证桥梁的刚度。 4、疲劳(fatigue) 构件和连接的疲劳强度受材质、连接方法与方式、荷载性质、应力状态、应力幅和应力比的影响。 5、连接(connection) 钢桥构件一般由钢板和型钢等焊接而成,用高强螺栓(high-strength bolt)或工地焊接拼装。 三、钢桥加工制作与安装 钢桥设计图(design drawing)表达的内容和标注的尺寸是指成桥状态下的结构形状和尺寸。钢桥制作需完成的任务就是,以钢板和型钢为主要原材料,按钢桥成桥要求,在工厂加工成可运输的单元或构件,直至包装发运。钢桥安装是将工厂制作的构件或单元,吊装就位,连接成桥,并满足设计图结构受力、结构形状和尺寸要求。 钢桥构件的工厂加工需要经过材料预处理、作样、号料、切割、矫正、边缘加工、制孔、组焊、焊接、整形、检验、试装、除锈、涂装、包装发运等多道工序。钢结构在加工过程中,钢板或型钢会产生各种各样的变形。同时,在钢桥安装过程中(特别是工地焊接)也会产生不可忽视的变形。这些变形在钢桥零件下料时必须事先加以考虑,否则很可能出现尺寸误差等问题使得钢桥制作安装变得困难,甚至成桥不能达到设计图的要求。 因此,工厂在接受设计图纸后,首先要根据可以采购到的各种原材料尺寸、工厂的加工能力和运输条件等,绘制钢结构单元和构件图,即工厂加工图(shop drawing)。加工图考虑预拱度、制作安装变形等影响,说明加工工艺,并得到设计方和业主的认可。其次,工厂需

钢桥的焊缝设计焊缝尺寸

钢桥的焊缝设计及焊缝尺寸 史永吉、方兴、王辉、史志强、曾志斌 (铁道科学研究院北京 100088) 内容摘要:焊接钢桥现已成为钢桥建设的主流,正确的焊缝设计不仅涉及钢桥的承载力和安全性,也极大的影响焊接变形,制造工期及材料消耗等经济性。基于目前焊缝设计思想的某些偏向,本文介绍了焊缝的受力类型,应力检验及各类焊缝尺寸的简便确定方法。 关键词:焊接钢桥,焊缝设计,焊缝尺寸 1.前言 焊接钢桥现已成为世界各国钢桥的主流。焊接钢桥是采用焊缝作为其连接的主要方式,正确的焊缝设计是确保钢桥安全性的关键。通常,应根据焊接接头的受力状态及焊缝抗力进行应力检算,来确定焊缝尺寸。然而,由于焊接接头及板厚等种类繁多,受力状态各不相同,为了减少设计工作量。急需制定简便的偏于安全的确定焊缝尺寸方法。而不必一一通过焊缝应力检验的方式来选定焊缝尺寸。 另一方面,目前存在着一种偏向,认为“焊缝尺寸宁大勿小”、“角焊缝宁可全熔透”才是安全的。 固然,焊缝作为钢结构的连接,连接强度应等于或大于被连接构件的强度,否则将影响结构的极限承载力和安全性。但是,也应认识到,过大的焊缝尺寸非但无益,一定程度上是有害的,例如:对接焊缝的凸起高度,过去误称为“加强高”,现在则称为“余高”,而且,需根据焊缝宽度对余高加以限制,以免产生过大的应力集中;过大的角焊缝将产生较大的焊接变形,影响结构的几何形态,同时,需增加焊道,增多焊接材料的消耗,延长工期,降低了经济性,而且,易产生焊接缺陷。 所以,合理的确定各种接头的焊缝尺寸具有重要意义。本文概要介绍了焊接接头的焊缝受力类型、焊缝有效断面和有效长度、焊缝应力检算,以及设定的焊缝尺寸的经验方法,供广大设计和制造工程师参考。 2.焊缝的受力类型 作为钢结构连接方式,焊缝依据接头的受力状态大体可分为以下三种基本类型。 2.1 传力焊缝 把焊接接头一侧构件的内力(或应力)通过焊缝传递给另一侧构件,主要有以下基本形式。

42米钢桥设计计算书(中南大学).

42m钢桁架铁路桥设计 学院:土木工程学院 班级:桥梁 姓名: 学号: 指导老师:

42m钢桁架桥课程设计 一、设计目的: 跨度L=42米单线铁路下承载式简支栓焊钢桁梁桥部分设计 二、设计依据: 1. 设计《规范》 现行桥规,也可采用铁道部1986TB12-85《铁路桥涵设计规范》简称《老桥规》。 2. 结构基本尺寸 计算跨度L=42m;桥跨全长L=42.10m;节间长度d=7.00m; 主桁节间数n=6;主桁中心距B=5.75m;平纵联宽B0=5.30m; 主桁高度H=12.00m;纵梁高度h=1.45m;纵梁中心距b=2.00m; 3. 钢材及其基本容许应力: 杆件及构件——16Mna;高强螺栓——40B;精制螺栓——ML3;螺母及垫圈——45号碳素钢;铸件——ZG25;辊轴——锻钢35钢材的基本容许应力参照1986年颁布的《铁路桥涵设计规范》。 4. 结构的连接方式: 桁梁杆件及构件,采用工厂焊接,工地高强螺栓连接; 人行道托架采用精制螺栓连接; 焊缝的最小正边尺寸参照《桥规》; 高强螺栓和精制螺栓的杆径为Φ22,孔径d=23mm; 5. 设计活载等级——标准中活载 6. 设计恒载 主桁P3=16.8kN/m;联结系P4=2.85kN/m;桥面系P2=7.39kN/m; 高强螺栓P6=(P2+P3+P4)×3%; 检查设备P5=1.00kN/m; 桥面P1=10.00kN/m;焊缝P7=(P2+P3+P4)×1.5%。 计算主桁恒载时,按每线恒载P=P1+P2+P3+P4+P5+P6+P7。 三、设计内容: 1. 主桁杆件内力计算,并将计算结果汇整于2号图上; 2. 围绕E2节点主桁杆件截面选择及检算; 3. 主桁E2节点设计及检算; 4. 绘制主桁E2节点图(3号图)。 四、提交文件: 1.设计说明书; 2. 2、3号图各一张 要求:计算正确,书写条理清楚,语句通顺;结构图绘制正确,图纸采用的比例恰当,线条粗细均匀,尺寸标准清晰。 第一章设计依据 一、设计规范 中华人民功和国铁道部1986年《铁道桥涵设计规范》(TBJ2—85),以下简称《桥规》。 二、钢材 杆件 16锰桥(16Mnq)高强螺栓 40硼(40B) 螺母垫圈甲45(A45)焊缝力学性能不低于基材 精制螺栓铆螺3(ML3)铸件铸钢25п(ZG25п) 琨轴 35号缎钢(DG35) 三、连接方式 工厂连接采用焊接,工地连接采用高强螺栓连接,人行道托架工地连接采用精制螺栓连接,螺栓孔径一

中国钢桥发展概况

⒈中国钢桥发展概况 常见得钢桥型式有:梁桥(I型板梁、桁梁、箱梁),拱桥(系杆拱、下承拱、上承拱、中承拱),以及悬索桥与斜拉桥等。大跨径公路钢桥主要就是悬索桥(图1 a)与斜拉桥(图1b);铁路钢桥多为梁桥与拱桥。图1c为低塔斜拉公铁两用梁桥。按造桥方法,钢桥可分为: a b C d 图1 焊接钢桥得几种桥型 a---西陵长江大桥(公路桥);b--- 南京长江二桥(公路桥); c---芜湖长江大桥(公铁两用桥);d---贵州北盘江大桥(铁路桥) 铆接桥(工厂制造与工地拼接均为铆接)、栓焊桥(工厂制造为焊接,工地拼接为高强度螺栓连接)与全焊桥(工厂制造与工地拼接均为焊接)。栓焊桥与全焊桥统称为焊接桥。 我国仅在长江上已有各种型式得桥梁29余座,其中接近半数为钢桥。“万里长江成了中国当代桥梁得展台。”(北京日报,2002、07、17)。关于焊接钢桥,可以公路桥为对象作比较,按大跨径悬索桥得跨径L≥600m,大跨径斜拉桥L≥400m,进行不完全统计,90年代以来中国已建成大跨径悬索桥7座,大跨径斜拉桥10座;同时期国外建成得大跨径悬索桥有10座(其中日本6座),大跨径斜拉桥有15座(其中日本6座)。按跨径大小排序〔1〕〔2〕,在世界上建成得全部悬索桥中排名前十位得焊接钢桥中,中国有2座:江阴长江大桥(L=1385m)排名第四,香港青马大桥(L=1377m)排名第五;日本明石海峡大桥L=1990m,居首位;丹麦得Great Belt大桥L=1624m,排名第二。而在全部斜拉桥排名前十位得焊接钢桥中,日本得多多罗大桥L=890m,居首位;中国有6座桥,排名第三、四、五、六、七与第九(南京长江二桥L=628m,排第三位;武汉长江三桥L=618m,排第四位)。其中“不少已跻身‘世界级’桥梁,展示出中国当代建桥技术达到了世界先进水平”。(北京日报2002、07、17)。 1996年布达佩斯国际焊接钢桥会议中,日本东京大学伊藤教授在题为“东亚焊接桥得技术进展”〔2〕(p、67)中讲了日本得情况,并着重评述了中国钢桥得发展,“中国当前正在蓬勃开展经济工作,条件允许,也需要在广阔得中国大地上大规模建设永久性基础设施。在

相关主题
相关文档
最新文档