第五章 真值表的判定作用

第五章  真值表的判定作用
第五章  真值表的判定作用

?第五章真值表的判定作用

第一节重言式、矛盾式、可满足式

一、真值联结词

?定义:真值联结词是指仅仅表示复合命题与支命题之间真假关系的联结词。

?真值联结词主要有五个:

??(否定)、∧(合取)、

?∨(析取)、→(蕴涵)、

?←→(等值)

二、真值形式

?定义:真值形式是指由真值联结词和命题变项所构成的形式结构。?五种基本的真值形式

?否定式:?p

?合取式:p∧q

?析取式:p∨q

?蕴涵式:p→q

?等值式:p←→q

三、五种基本真值形式的真值表

?T 表示“真”、F 表示“假”

?1、?p

2、p∧q

3、p∨q

4、p→q

5、p←→q

四、重言式、矛盾式、可满足式

?1、重言式(又叫永真式)是指在一个命题形式中不论其中的变项取什么值,该命题形式的值总是真的。

?如:p∨?p

?2、矛盾式(又叫永假式)是指在一个命题形式中不论其中的变项取什么值,该命题形式的值总是假的。

?如:p∧?p

?3、可满足式是指在一个命题形式中不论其中的变项取什么值,该命题形式的值至少在一种情况下是真的。

?如:p ∧q

第二节真值表的判定作用

?一、真值表可以判定任一命题形式是否是重言式。

?例1. 判定(p→q∧?q)→?p 是否为重言式。

公式的构成过程:由简到繁地列举出该公式的各个组成部分,最后为该公式本身。

根据五个基本真值形式的真值表,一步步地计算出每个组成部分的真值,最后得出该公式的真值。如果这个公式在各种情况下都是真的,就判定它是重言式,否则就判定它不是重言式。

(1) (2) (3) (4)

(5)

[例2] 判定下列公式是否是重言式:p→p,p∧p,p∧?p。

用真值表法判定如下:

可见,p→p为重言式,而p∧p是可满足式,p∧ p是矛盾式。例3、判定((p∨q)∧?p)→q是否重言式?

?由真值表可知((p∨q)∧?p)→q 是重言式。

例4、((p∨q)∧p)→?q

?由真值表可知((p∨q)∧p)→?q 不是重言式。[例5] 用真值表法判定公式(p→q)∧(q→r)→(p→r)是否为重言式。

为了书写方便,还可以直接在公式下面计算真值。

[例6] p ∨q ∨r →p ∧q

∧r

根据这个公式的主联结词的真值,此公式不是重言式。采用这种书写方式,对于一个结构复杂的公式来说,就简便得多了。

二、真值表可以判定任意两个复合命题之间是

否具有等值关系

?例1、?(p ∧q)

?? p ∨? q

?由真值表可知这两个命题之间具有等值关系。

例2、?(p∨q)

? p ∨? q

?由真值表可知这两个命题之间不具有等值关系。

三、真值表还可以帮助解决一些推理问题?例:列出A、B、C三个命题的真值表,并回答当A、B、C三个命题恰有一个为真时,甲是否是木工?

?A、如果甲不是木工,则乙是泥工。

?B、如果乙不是泥工,则甲不是木工。

?C、甲不是木工,且乙不是泥工。

?解设p表示“甲是木工”;q表示“乙是泥工”。?A:?p→q

?B:?q→?p

?C:?p∧?q

?答:由真值表可以看出,当A、B、C三命题恰有一个为真时,

甲是木工。

练习题

?一、用真值表判定下列真值形式是否是重言式

?1、((P→q)∧?p)→q

?2、((P∨q)∧?q)→P

?二、用真值表判定下列各组命题形式之间是否具有等值关系。?1、?(P→q)

? P∧?q

?2、?(P∧?q)

??P∨q

?三、列出A、B两命题的真值表,并回答A、B恰有一个为假时,王军是否考上了大学?

?A:如果王军考上了大学,那么李伟就没有考上大学。

?B:王军没有考上大学。

四、列出A、B、C三命题的真值表,并回答当A、B、C三命题恰有一真时,是否甲村所有人家都有彩电?

?A、甲村所有人家都有彩电,并且乙村所有人家都有彩电。?B、或者甲村所有人家都有彩电,或者乙村所有人家都有彩电。?C、如果乙村所有人家都有彩电,那么甲村有些人家没有彩电。第三节归谬赋值法(短真值表法)

归谬赋值法的基本思想:如果一个蕴涵式是重言式,那么该公式的变项无论赋什么值,前件真而后件假是不

可能的,即如果前件真而后件假,则命题变项在赋值时必然导致逻辑矛盾。

?[例1] 判定(p∨q)∧?p→q是否是重言式。

?假设这一蕴涵式的前件(p∨q)∧?p为真,而后件q为假。?则有

?(p ∨q)∧?p →q

?(1)-

?(2)+ - ?(3)+ +

?(4)+ - -

?其中,命题变项p的赋值出现矛盾,表明原假设不成立,即不可能是前件真而后假。所以,(p∨q)∧?p→q是重言式。

?为了书写方便,我们可直接在公式下面赋值。

?[例2](p→q)∧(q→r)→(p→r)

?+++ + ++±- + - -

?其中r的赋值出现矛质,所以该公式为重言式。

?[例3] (p∨q)∧p→?q

?+++ + + - - +

?因为这种假设未导致矛盾,所以该公式不是重言式。

?[例4] (p∧q )→r ? p→( q→r)

?+ - + + - - + - + - - ?++ + - - -++ ++ + ?第一次赋值中,q的赋值出现矛盾;第二次赋值中,r的赋值出现矛盾。所以(p∧q)→r) ?(p→(q→r)是重言式。

自然推理方法

?如果认为超感官知觉的探究者是诚实的,那么就必须允许有关超感官知觉的大量证据;并且,必须认真考虑关于超人视力的学说,如果超感官知觉被尝试性地承认为事实的话。如果允许有关超感官知觉的大量证据,那么就必须尝试性地接受它为事实,并且必须努力去解释它。

如果我们准备严肃的对待所谓的“超自然”现象,就必须认真对待关于超人视力的学说;并且,如果我们准备严肃地对待所谓的“超自然”现象,就必须对灵魂给予新的尊敬。如果我们进一步探究该问题,那么,如果必须对灵魂给予新的尊敬,我们就必须严肃地考虑他们关于与死人对话的说法。我们确实要进一步探究该问题,但是我们实际上被迫相信鬼魂,如果我们严肃地考虑灵魂关于与死人对话的说法的话。所以,如果认为超感官知觉的探究者是诚实的,我们实际上就被迫相信鬼魂。

证明组合恒等式的方法与技巧

证明组合恒等式的方法与技巧 摘要本文是以高中二项式定理和排列组合知识为理论基础,对几个常见重要的例题作分析,总结组合恒等式常见的证明方法与技巧。对组合恒等式的证明方法本文主要讲了组合公式法,组合数性质法,二项式定理法,比较系数法,数列求和法,数学归纳法,组合分析法。 关键字组合,组合数,组合恒等式,二项式定理 Proof Methods and Skills of Combinatorial Identity ABSTRACT This thesis primarily analyses some common but significant examples on the basis of binomial theorem and permutation and combination knowledge of senior middle school to summarize the common demonstrating methods and technique of combinatorial identity. For combinatorial identity, here it mainly introduces the methods of combination formula, unitized construction, mathematical induction ,and so on . KEY WORDS combination,combinatorial identity,binomial theorem 前言 组合恒等式在数学及其应用中占有不可忽视的地位,它是以高中排 列组合、二项式定理为基础。组合恒等式的证明有一定的难度和特殊的

恒等式的证明

恒等式的证明

————————————————————————————————作者:————————————————————————————————日期:

第五讲恒等式的证明 代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析. 两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等. 把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等. 证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧. 1.由繁到简和相向趋进 恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式). 例1 已知x+y+z=xyz,证明: x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz. 分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边. 证因为x+y+z=xyz,所以 左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2) =(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2 =xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx) =xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx) =xyz+xyz+xyz+xyz =4xyz=右边. 说明本例的证明思路就是“由繁到简”.

三角恒等式证明9种基本技巧

三角恒等式证明9种基本技巧 三角恒等式的证明是三角函数中一类重要问题,这类问题主要以无条件和有条件恒等式出现。根据恒等式的特点,可采用各种不同的方法技巧,技巧常从以下各个方面表示出来。 1.化角 观察条件及目标式中角度间联系,立足于消除角间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是证明三角恒等式时一种常用技巧。 例1求证:tan 23x - tan 21x =x x x 2cos cos sin 2+ 思路分析:本题的关键是角度关系:x=23x -2 1 x ,可作以下证明: 2.化函数 三角函数中有几组重要公式,它们不仅揭示了角间的关系,同时揭示了函数间的相互关系,三角变换中,以观察函数名称的差异为主观点,以化异为为同(如化切为弦等)的思路,恰当选用公式,这也是证明三角恒等式的一种基本技巧。 例2 设A B A tan )tan(-+A C 22sin sin =1,求证:tanA 、tanC 、tanB 顺次成等比数列。 思路分析:欲证tan 2 C = tanA ·tanB ,将条件中的弦化切是关键。 3.化幂 应用升、降幂公式作幂的转化,以便更好地选用公式对面临的问题实行变换,这也是三角恒等式证明的一种技巧。 例3求证 cos4α-4cos2α+3=8sin 4 α 思路分析:应用降幂公式,从右证到左:

将已知或目标中的常数化为特殊角的函数值以适应求征需要,这方面的例子效多。如 1=sin 2 α+cos 2 α=sec 2 α-tan 2 α=csc 2 α-cot 2 α=tan αcot α=sin αcsc α=cos αsec α,1=tan450 =sin900 =cos00 等等。如何对常数实行变换,这需要对具体问题作具体分析。 例4 求证 αααα2 2sin cos cos sin 21--=α α tan 1tan 1+- 思路分析:将左式分子中“1”用“sin 2 α+cos 2 α”代替,问题便迎刃而解。 5.化参数 用代入、加减、乘除及三角公式消去参数的方法同样在证明恒等式时用到。 例5 已知acos 2 α+bsin 2 α=mcos 2 β,asin 2 α+bcos 2 α=nsin 2 β,mtan 2 α=ntan 2 β(β≠n π) 求证:(a+b)(m+n)=2mn 6.化比 一些附有积或商形式的条件三角恒等式证明问题,常可考虑应用比例的有关定理。用等比定理,合、分比定理对条件加以变换,或顺推出结论,或简化条件,常常可以为解题带来方便。 例6 已知(1+ cos α)(1- cos β)=1- 2 ( ≠0,1)。求证:tan 2 2α= -+11tan 22 β 思路分析:综观条件与结论,可考虑从条件中将 分离出来,以结论中 -+11为向导,应用合比定理即可达到论证之目的。

三角函数恒等式的证明

三角形内有关角的三角函数恒等式的证明 张思明 课型和教学模式:习题课,“导学探索,自主解决”模式 教学目的: (1)掌握利用三角形条件进行角的三角函数恒等式证明的主要方法,使学生熟悉三角变换的一些常用方法和技巧(如定向变形,和积互换等)。 (2)通过自主的发现探索,培养学生发散、创造的思维习惯和思维能力,体验数形结合、特殊一般转化的数学思想。并利用此题材做学法指导。 (3)通过个人自学、小组讨论、互相启发、合作学习,培养学生自主与协作相结合的学习能力和敢于创新,不断探索的科学精神。 教学对象:高一(5)班 教学设计: 一.引题:(A,B环节) 1.1复习提问:在三角形条件下,你能说出哪些有关角的三角恒等式? 拟答: , …… , ,

…… 这些结果是诱导公式,的特殊情况。 1.2今天开始的学习任务是解决这类问题:在三角形条件下,有关角的三角恒等式的证明。学习策略是先分若干个学习小组(四人一组),分头在课本P233---P238,P261-266的例题和习题中,找出有三角形条件的所有三角恒等式。 1.3备考:期待找出有关△ABC内角A、B、C的三角恒等式有: (1)P233:例题10:sinA+sinB+sinC=4cosA/2cosB/2cosC/2 (2)P238:习题十七第6题:sinA+sinB-sinC=4sinA/2sinB/2cosC/2. (3) cosA+cosB+cosC=1+4sinA/2sinB/2sinC/2. (4) sin2A+sin2B+sin2C=4sinAsinBsinC. (5)cos2A+cos2B+cos2C=-1-4cosAcosBcosC. (6)P264:复参题三第22题:tgA+tgB+tgC = tgAtgBtgC. (7) 也许有学生会找出:P264--(23)但无妨。 1.4请各组学生分工合作完成以上恒等式的证明: 提示:建议先自学例题10,注意题目之间的联系,以减少证明的重复劳动。 二.第一层次的问题解决(C,D环节) 2.1让一个组上黑板,请学生自主地挑出有“代表性”的3题(不超过3题)书写证明过程。然后请其他某一个组评判或给出不同的证法。 证法备考:(1)左到右:化积---->提取----->化积。 (2)左到右:化积---->提取----->化积sin(A+B)/2=cosC/2

恒等证明-第4讲恒等式证明竞赛班教师版

第四讲 利用恒等式解题 代数式的恒等变形可以认为是解决数学问题必不可少的一种变形(运算)的方式。将已知、求证的式子进行适当、巧妙的变形,使问题得到解决,也是衡量一个同学数学能力的标准之一。因此,国内外各级数学竞赛试题中,都有大量涉及恒等变形的试题。 一、 基础知识 1. 恒等变形的意义 如果一个等式中的字母取允许范围内的任意一个值,等式总能成立,那么这个等式叫做恒等式;把一个式子变形为与原式恒等的另一种不同形式的式子,这种变形叫做恒等变形。 2. 恒等变形的分类 恒等变形主要分为无条件限制等式和有条件限制等式变形两大类; 恒等变形主要形式可概括为整式变形、分式变形和根式变形。 3. 三种数学方法在恒等变形中的体现 初中同学接触到的数学方法在恒等变形中的体现主要有:换元法、配方法、待定系数法。 二、 例题部分-分式部分 例1.(★,1999年北京市)不等于0的三个正数a 、b 、c 满足1111 a b c a b c ++= ++,求证:a 、b 、c 中至少有两个互为相反数。 《初中数学竞赛同步辅导》,华中师范大学出版社,P113,例5 例2.(★)不等于0的三个正数a 、b 、c 满足 1111 a b c a b c ++= ++,求证:对任意整数n , 21 21 21 212121 1 111 n n n n n n a b c a b c ------++= ++; 《初中数学竞赛同步辅导》,华中师范大学出版社,P116,4 《奥数教程》初二年级,华东师范大学出版社,P90,例3 例3.(★)设a 、b 、c 都不为0,2a b c ++=,1111 2 a b c ++=;求证:a ,b ,c 中至少有一个等于2; 【证明】:由 11112a b c ++=,得2abc ab bc ca =++,故()()0a b c ab bc ca abc ++++-= 从而()()()0a b b c c a +++=,若a +b =0,则c =2,其余类似; 例4.(★★)若x 、y 、z 不全相等,且111 x y z p y z x + =+=+=,求所有可能得p ,并且证明:0xyz p += 【证明】:由x 、y 、z 不全相等,则x 、y 、z 必互不相等;∵1 p z x =+ ,及1x p y =-,得1y p z yp =+-,

代数恒等式的证明练习

1. 求证: ①(a+b+c)2+(a+b-c)2-(a-b-c)2-(a-b-c)2=8ab ②(x+y )4+x 4+y 4=2(x 2+xy+y 2)2 ③(x-2y)x 3-(y-2x)y 3=(x+y)(x-y)3 ④3 n+2+5 n+2―3 n ―5 n =24(5 n +3 n-1) ⑤a 5n +a n +1=(a 3 n -a 2 n +1)(a 2 n +a n +1) 2.己知:a 2+b 2=2ab 求证:a=b 3.己知:a+b+c=0 求证:①a 3+a 2c+b 2c+b 3=abc ②a 4+b 4+c 4=2a 2b 2+2b 2c 2+2c 2a 2 4.己知:a 2=a+1 求证:a 5=5a+3 5.己知:x +y -z=0 求证: x 3+8y 3=z 3-6xyz 6.己知:a 2+b 2+c 2=ab+ac+bc 求证:a=b=c 7.己知:a ∶b=b ∶c 求证:(a+b+c )2+a 2+b 2+c 2=2(a+b+c)(a+c) 8.己知:abc ≠0,ab+bc=2ac 求证: c b b a 1111-=- 9.己知:a c z c b y b a x -=-=- 求证:x+y+z=0 10.求证:(2x -3)(2x+1)(x 2-1)+1是一个完全平方式 11己知:ax 3+bx 2+cx+d 能被x 2+p 整除 求证:ad=bc

练习20 1.④左边=5 n(5 2-1)+3 n-1(33-3)= 24(5 n+3 n-1)注意右边有3n-1 2.左边-右边=(a-b)2 3.②左边-右边=(a2+b2-c2)2-4a2b2=…… 4.∵a5=a2a2a,用a2=a+1代入 5.用z=x+2y代入右边 6.用已知的(左-右)×2 7.用b2=ac分别代入左边,右边化为同一个代数式 8.在已知的等式两边都除以abc 9.设三个比的比值为k, 10.(2x2-x-2)2 11. 用待定系数法

三角函数恒等式证明的基本方法

三角函数恒等式证明的基本方法 三角函数恒等式是指对定义域内的任何一个自变量x 都成立的等式;三角函数恒等式的证明问题是指证明给定的三角函数等式对定义域内的任何一个自变量x 都成立的数学问题。这类问题主要包括:①三角函数等式一边较繁杂,一边较简单;②三角函数等式的两边都较繁杂两种类型。那么在实际解答三角函数恒等式的证明问题时,到底应该怎样展开思路,它的基本方法如何呢?下面通过典型例题的解析来回答这个问题。 【典例1】解答下列问题: 1、证明下列三角函数恒等式: (1)4222sin sin cos cos 1αααα++=; (2) 22(cos 1)sin 22cos ααα-+=-; (3)若sin α.cos α<0,sin α.tan α<0, =±2tan 2 α 。 【解析】 【知识点】①同角三角函数的基本关系;②二次根式的定义与性质;③分式的定义与性质。 【解题思路】(1)对左边运用同角三角函数的基本关系,通过运算就可得到右边,从而证明恒等式;(2)对左边运用同角三角函数的基本关系,通过运算就可得到右边,从而证明恒等式;(3)对左边运用分式的性质,同角三角函数的基本关系和二次根式的性质,通过运算就

可得到右边,从而证明恒等式。 【详细解答】(1)Q 左边=sin 2α( sin 2α+ cos 2α)+ cos 2α= sin 2α+ cos 2α=1 =右边,∴4222sin sin cos cos 1αααα++=;(2)Q 左边= cos 2α-2 cos α+1+ sin 2α =2-2 cos α=右边,∴22(cos 1)sin 22cos ααα-+=-;(3) Q sin α.cos α<0,sin α.tan α<0,∴α是第二象限的角,?2 α 是第一象限或第三象限的角,①当 2 α 是第一象限的角时,左边 |1sin |2|cos | 2α α+- |1sin |2|cos | 2 α α-=1sin 1sin 2 2cos 2 α α α +-+=2tan 2α;②当2 α是第一象限的角时,左边 |1sin |2|cos |2α α+-|1sin | 2|cos | 2α α- = 1sin 1sin 2 2cos 2 α α α --+-=-2tan 2α;?左边=±2tan 2 α=右边,∴若若 sin α.cos α<0,sin α.tan α<0 ±2tan 2α。 2、求证:22sin()sin() sin cos αβαβαβ+-=1-22tan tan βα ; 【解析】

组合恒等式的证明方法与技巧

证明组合恒等式的方法与技巧 前言 组合恒等式在数学及其应用中占有不可忽视的地位,它是以高中排前言列组合、二项式定理为基础.组合恒等式的证明有一定的难度和特殊的技巧,且灵活性很强,要求学生掌握这部分知识,不但要学好有关的基础知识,基本概念和基本技能,而且还要适当诱导学生拓宽思路、发挥才智,培养解决问题方法多样化的思想.下面就以例题讲解的形式,把证明组合恒等式的常见方法与技巧一一列举出来. 1. 利用组合公式证明 组合公式:m n C = n! !n m m (-)! 例1. 求证:m m n C =n 1 1m n C -- 分析:这是组合恒等式的一个基本性质,等式两边都只是一个简单的组合数.由此,我们只要把组合公式 代入,经过简化比较,等号两边相等即可. 证:∵ m m n C = m n! !n m m (-)! … 1 1m n C --= n n !1!n m m (-1)(-)(-)!=n n !m 1!n m m m (-1)(-)(-)!=m n! !n m m (-)! ∴ m m n C =n --1 1m n C . 技巧:利用组合公式证明时,只须将等式中的组合数用公式代入,经过化简比较即可,此方法思路清晰,对处理比较简单的等式证明很有效,但运算量比较大,如遇到比较复杂一点的组合恒等式,此方法而不可取. 2. 利用组合数性质证明 组合数的基本性质:(1)m n C =n m n C - (2)1m n C +=m n C +1 m n C - (3)k k n C =n k 11n C -- (4)++...+=012n 2n n n n n C C C C ?

恒等式的证明

第五讲恒等式的证明 代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析. 两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等. 把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等. 证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧. 1.由繁到简和相向趋进 恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式). 例1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz. 分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边. 证因为x+y+z=xyz,所以 左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2) =(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2 =xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx) =xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx) =xyz+xyz+xyz+xyz

恒等式证明

初一数学竞赛系列讲座(7) 有关恒等式的证明 一、知识要点 恒等式的证明分为一般恒等式的证明和条件恒等式证明,对于一般恒等式的证明,常常通过恒等变形从一边证到另一边,或证两边都等于同一个数或式。在恒等变形过程中,除了要掌握一些基本方法外,还应注意应用一些变形技巧,如:整体处理、“1”的代换等;对于条件恒等式的证明,如何处理好条件等式是关键,要认真分析条件等式的结构特征,以及它和要证明的恒等式之间的关系。 二、例题精讲 例1 求证:a 1+(1-a 1)a 2+(1-a 1)(1-a 2)a 3+…+(1-a 1)(1-a 2)…(1-a n-1)a n =1-(1-a 1)(1-a 2)…(1-a n-1)(1-a n ) 分析:要证等式成立,只要证明1- a 1- (1-a 1)a 2- (1-a 1)(1-a 2)a 3 -…- (1-a 1)(1-a 2)…(1-a n-1)a n =(1-a 1)(1-a 2)…(1-a n-1)(1-a n ) 证明:1- a 1- (1-a 1)a 2- (1-a 1)(1-a 2)a 3 -…- (1-a 1)(1-a 2)…(1-a n-1)a n =(1-a 1)[ 1- a 2- (1-a 2)a 3- (1-a 2)(1-a 3)a 4 -…- (1-a 2)(1-a 3)…(1-a n-1)a n ] =(1-a 1) (1-a 2)[ 1- a 3- (1-a 3)a 4- (1-a 3)(1-a 4)a 5 -…- (1-a 3)(1-a 4)…(1-a n-1)a n ] =(1-a 1) (1-a 2) (1-a 3)[ 1- a 4- (1-a 4)a 5- (1-a 4)(1-a 5)a 6 -…- (1-a 4)(1-a 5)…(1-a n-1)a n ] =…… =(1-a 1)(1-a 2)…(1-a n-1)(1-a n ) ∴ 原等式成立 例2 证明恒等式 ()()()()()() 11322321121132322121a a a a a a a a a a a a a a a a a a a a a a a a n n n n ++++++=++++++ (第二十届全俄数学奥林匹克九年级试题) 证明 评注:裂项是恒等变形中常用的一种方法 ()()()()()()11322321121322211113232121132322121111111111111a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a n n n n n n n ++++++=???? ??+-++???? ??+-+???? ??+-=???? ??+-++???? ??+-+???? ??+-=++++++

组合恒等式的证明方法与技巧

证明组合恒等式的方法与技巧 前言 组合恒等式在数学及其应用中占有不可忽视的地位,它是以高中排前言列组合、二项式定理为基础.组合恒等式的证明有一定的难度和特殊的技巧,且灵活性很强,要求学生掌握这部分知识,不但要学好有关的基础知识,基本概念和基本技能,而且还要适当诱导学生拓宽思路、发挥才智,培养解决问题方法多样化的思想.下面就以例题讲解的形式,把证明组合恒等式的常见方法与技巧一一列举出来. 1. 利用组合公式证明 组合公式:m n C = n ! !n m m (-)! 例1. 求证:m m n C =n 11 m n C -- 分析:这是组合恒等式的一个基本性质,等式两边都只是一个简单的组合数.由此,我们只要把组合公式代入,经过简化比较,等号两边相等即可. 证:∵ m m n C = m n ! !n m m ?(-)! 11 m n C --= n n ! 1!n m m ?(-1)(-)(-)!= n n !m 1!n m m m ???(-1)(-)(-)!= m n ! !n m m ?(-)! ∴ m m n C =n --11 m n C . 技巧:利用组合公式证明时,只须将等式中的组合数用公式代入,经过化简比较即可,此方法思路清晰,对处理比较简单的等式证明很有效,但运算量比较大,如遇到比较复杂一点的组合恒等式,此方法而不可取. 2. 利用组合数性质证明 组合数的基本性质:(1)m n C =n m n C - (2)1 m n C +=m n C +1 m n C - (3)k ?k n C =n ?k 1 1n C -- (4)++...+=0 1 2 n 2n n n n n C C C C -+-+...+(-1)=00 1 2 3 n n n n n n n C C C C C (5)

数论中埃米特恒等式证明

数论中埃米特恒等式证明 证明下列命题: (1)*,N n R x ∈∈+,且1至x 之间的整数中,有][n x 个是n 的倍数。 (2)若,!||n p α则 +++==][][][)!(32p n p n p n n p α。 (3)x 为实数,n 为正整数,求证:(埃米特恒等式)][]1[]2[]1[][nx n n x n x n x x =-++++++ + 。 证明:(1)因为1][][+<≤n x n x n x ,即n n x x n n x ?+<≤?)1]([][ 故*,N n R x ∈∈+,且1至x 之间的整数中,有][n x 个是n 的倍数。 (2)由于p 是质数,因此!n 含p 的方次数)!(n p 一定是1,2,3,n n ,1,- 各数中含p 的方次数的总和。由(1)知1,2,3,n n ,1,- 中有][p n 个p 倍数,有][2p n 个2p 的倍数,┈,所以 +++=][][][)!(32p n p n p n n p (3)不妨设0>x ,①当][]1[x n n x =-+时,即1}{011}{<

真值表判断

源代码: # include # include # include # include # include # define MAXSIZE 100 typedef char elemtype; typedef struct{ /*定义栈结构*/ elemtype data[MAXSIZE]; /*定义栈的大小*/ int top; /*定义栈的指针*/ }sqstack; void init_sqsqstack(sqstack*S){ /*初始化栈*/ S->top = -1; /*栈底定义为-1,用来判断是否为空*/ } int empty_sqstack(sqstack*S){ /*判断栈是否为空*/ if (S->top==-1) /*栈指针值为-1,则栈是为空并返回1*/ return 1; else return 0; /*栈指针值不为-1,则栈不为空,此时返回0*/ } void push_sqstack(sqstack*S,elemtype x){ /*入栈,当栈满时提示*/ if (S->top==MAXSIZE-1) /*栈指针值为最大值(MAXSIZE)-1,则栈 已经满,此时提示无法执行入栈*/ {printf("出现错误!");return;} else /*否则可以执行入栈操作*/ S->data[++(S->top)]=x; }

void pop_sqstack(sqstack *S,elemtype *x){ /*出栈,当栈满时提示*/ if(S->top==-1) /*判断栈是否为空,为空则提示*/ { printf("出现错误!");return;} else{ /*栈不为空,读取栈的内容,并使指针移向下一个*/ *x = S->data[S->top]; S->top--; } } void top_sqstack(sqstack*S,elemtype*x){ /*读取栈中的内容,但不移动指针*/ if(S->top==-1) /*判断栈是否为空,为空则提示*/ {printf("出现错误!");return;} else /*栈不为空,读取栈的内容,但指针移不移动*/ *x = S->data[S->top]; } int pre(char op){ /*定义不同优先级*/ switch (op){ case'>': case'=':return 1; break; case'|':return 2; break; /*‘>’‘=’“|”“&”“~”优先级依次升高*/ case'&':return 3; break; case'~':return 4; break; case'(': case'#': default:return 0; break; /*其他符号只用返回‘0’即可。有用时可以用来判断*/ } } void transform(char suffix[],char exp[]){ /*将数字中缀表达式exp转换为后缀表达式suffix*/ sqstack S; /*新定义一个栈*/ char ch;

排列组合公式及恒等式推导、证明(word版)

排列组合公式及恒等式推导、证明(WOrd 版) 说明:因公式编辑需特定的公式编辑插件,不管是 word 还是PPS 附带公式编辑经常是 出错用不了。下载此 word 版的,记得下载 MathTyPe 公式编辑器哦,否则乱码一堆。如果 想偷懒可下截同名的截图版。另外,还有 PPt 课件(包含了排列组合的精典解题方法和精 典试题)供学友们下载。 一、排列数公式: An l =n (n -1)(n-1) 3创2 1 推导:把n 个不同的元素任选m 个排次序或n 个全排序,按计数 原理分步进行: 第步,排第位: 有 n 种选法; 第二步,排第二位: 有(n-1)种选法; 第三步,排第三位: 有(n-2)种选法; 第m 步,排第m 位: 有(n-m+1)种选法; I I I I 最后一步,排最后一位:有 1 种选法。 根据分步乘法原理,得出上述公式。 二、组合数公式: C m =A m = n(n- 1)(n- 2)…(n - m+1)= n! n A r m m! m!( n-m)! n JI C n = 1 A m =n(n -1)(n - 2) (n - m +1) = n! (n - m)!

推导:把n个不同的元素任选m个不排序,按计数原理分步进行:第步,取第个:有n种取法; 第二步,取第二个:有(n-1)种取法; 第三步,取第三个: I I 有(n-2) 种取法; I I 第m步,取第m个:I I 有(n-m+1) 种取法; I I 最后一步,取最后一个:有1 种取法。 上述各步的取法相乘是排序的方法数,由于选m个,就有m!种排排法,选n个就有n!种排法。故取m个的取法应当除以m!,取n 个的取法应当除以n!。遂得出上述公式。 证明:利用排列和组合之间的关系以及排列的公式来推导证明 将部分排列问题A n n分解为两个步骤: 第一步,就是从n个球中抽m个出来,先不排序,此即定义的组合数问题C n n; 第二步,则是把这m个被抽出来的球全部排序,即全排列A m。 根据乘法原理,A n n=C n n A m 即: C m A Tl n(n -1)0-2厂(n-m+1) n! A Tl m!m!(n- m)! 组合公式也适用于全组合的情况,即求C(n, n)的问题。根据 m!

逻辑式与真值表

课题:逻辑式与真值表 课时:两课时 教学目标:1、了解逻辑式的概念; 2、会填写逻辑式的真值表; 3、理解等值逻辑式的涵义; 4、能够判断逻辑式是否等值 教学重点:理解等值逻辑式的概念,并能判断逻辑式是否等值。 教学难点:填写逻辑式的真值表 教学过程: 一、创设情境,导入课题 A 、A ·(B+C )、[(A B)+C] + D 、1、0 有常量1、0以及逻辑变量经逻辑运算构成的式子叫做逻辑代数式,简称逻辑式。 逻辑运算的优先次序依次为“非运算”、“与运算”、“或运算”,如果有添加括号的逻辑式,首先要进行括号内的运算。 二、动脑思考,探索新知 列出逻辑变量的一切可能取值与相应的逻辑式的值的表,叫做逻辑式的真值表。 问题1:试写出AB B A +?的真值表。 A B AB B A +? 1 1 1 0 0 1 0 分析:可以先写出B A ?和AB ,再计算AB B A +? 问题2:试写出B A +与B A ?的真值表,并观察它们值的关系 A B A+B B A + A B B A ? 1 1 1 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1 1 1

如果对于逻辑变量的任何一组取值,两个逻辑式的值都相等,这样的两个逻辑式叫做等值逻辑式,等值逻辑式可用“=”连接,并称为等式。需要注意,这种相等是状态的相同。 问题3:用真值表验证下列等式是否成立 A·(B+C)=A·B+A·C A B C B+C A·(B+C)A·B A·C A·B+A·C 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 可以看出对于逻辑变量的任何一组值,A·(B+C)与A·B+A·C的值都相同,所以A·(B+C)=A·B+A·C。 随堂练习 1.填写下列真值表,并判断有没有等值逻辑式 (1) A B A·B B A?B A+ (2) A B A+B B A? A+B

组合恒等式证明的几种方法

1 引言 组合恒等式是组合数学的一个重要部分.它在数学的各个分支中都有广泛应用,而且它的证明方法多种多样,具有很强的灵活性.下面通过几个实例具体讲述一下,几种证法在组合恒等式中的运用. 2 代数法 通常利用组合恒等式的一些性质进行计算或化简,使得等式两边相等, 或者利用二项式定理∑ 0==+n r r n r r n n y x C )y x (在展开式中令x 和y 为某个特定的 值,也可以先对二项式定理利用幂级数的微商或积分后再代值,得出所需要的 恒等式. 例1 111 22m m m m n n n n C C C C n m +-++++=>, . 分析:这个等式两边都很简单,我们可以利用一些常用的组合恒等式去求证. 证明:1 +2+11+=2++m n m n m n m n C C C C m n m n m n m n C m n m C ,C m m n C 1+=1+= 11 + )m n m m m n (C m n 2+1++1+∴左边= 2()11m n n m m C m n m +++++-= 2(2)(1)()(1)(1) m n n m n m m m C m n m +++-++=++- 232 () (1)(1) (2)(1)() (1)(1) m n m n n n C m n m n n C m n m ++=++-++=++- 右边=()1 2(2)!(2)(1)! (1)!1!(1)(1)()!! m n n n n n C n m m m n m n m m +++++= =+-+++--

(1)(2)(1)(1)m n n n C n m m ++=+-+ 左边=右边 即证. 例2 求证:n n n n n n n n n n C C C C 20112211233333=+++++--- . 分析:看到上式,很容易想到二项式的展开式,尝试利用二项式定理去做. 证明: 由二项式定理建立恒等式, 112221 1(3)3333n n n n n n n n n n n C x C x C x x ----+=+++++ 令1x =,即得 2112214233331 n n n n n n n n n C C C ---==+++++ 即证. 例3(1)设n 是大于2的整数,则 0)1(32321=-+++-n n n n n nC C C C . (2)n 为正整数,则 )12(1 11131211131-+=++++++n n n n n n C n C C . 分析:观察上面两式的系数,很容易想到它们和微分积分有关,我们可以尝试利用求积分或微分的方法去解决这道题目. 证明:(1)0122(1)n n n n n n n x C C x C x C x +=++++ 等式两边对x 求导, 112 1 (1)2n n n n n n n x C C x n C x --+=++ + 令0x =得, 1231023(1)n n n n n n C C C nC -=-+++- 即证. (2)由二项式定理有,

复合判断真值表

复合明体(判断)及其真值表 第一节联言判断 一、什么是联言判断 联言判断是断定若干事物情况共同存在的复合判断。例如: 泰山既雄伟,又壮丽。 联言判断由联言支和联言联结项构成。联言支可以有两个或三个以上,联言支通过联结项“并且”联结起来。一个二支联言判断的逻辑形式是: P并且q 在现代逻辑中,“并且”也可用“∧”(读作“合取”)表示。这样,联言判断的逻辑形式也可表示为: P∧q 在现代汉语中,联言判断用并列复句、递进复句、连贯复句、转折复句与某些单句表达。 二、联言判断的真假值 联言判断的真假决定于联言支的真假。一个联言判断,只有当它的联言支都真时,它才是真的,只要朋一个联言支假,它就是假的。 两个联言支中如果有一个假或者两个都假时,那么,这个联言判断就是假的。 联言判断的真假值与联言支的真假值的制约关系可以用下列真值表来表示: 现代逻辑认为,一个合取式(P∧q),只要支命题都真,即使支命题之间没有意义上的联系,也是真的。例如,“1+1=2,并且雪是白的”这个联言命题就是真的。然而,在实际思维和语言表达中,人们不满足于仅从真假值的角度对联言判断加以研究,而进一步从联言支之间不同意义上的联系作具体分析,以便准确使用这种判断。 三、使用联言判断要注意的几个问题 1、选择恰当的关联词语来表达联言判断 联言判断是对各种共同存在的事物情况的概括反映,而共同存在的事物情况之间的关系是有区别的。这种区别表现为并列关系、连贯关系(承接关系)、递进关系、转折关系。其语言形式则是并列复句、连贯复句、递进复句、转折复句。所以,在语言运用中,要根据联言支之间的实际关系选择恰当的关联词语来表达。 2、注意联言支的排列顺序 如“她结了婚,而且生了孩子”。

排列组合公式及恒等式推导证明word版

排列组合公式及恒等式推导、证明(word 版) 说明:因公式编辑需特定的公式编辑插件,不管是word 还是pps 附带公式编辑经常是出错用不了。下载此word 版的,记得下载MathType 公式编辑器哦,否则乱码一堆。如果想偷懒可下截同名的截图版。另外,还有PPt 课件(包含了排列组合的精典解题方法和精典试题)供学友们下载。 一、排列数公式: !(1)(2)(1) ()!m n n A n n n n m n m (1)(1)321n n A n n n 推导:把n 个不同的元素任选m 个排次序或n 个全排序,按计数原理分步进行: 第一步,排第一位: 有 n 种选法; 第二步,排第二位: 有(n-1) 种选法; 第三步,排第三位: 有(n-2) 种选法; ┋ 第m 步,排第m 位: 有(n-m+1)种选法; ┋ 最后一步,排最后一位:有 1 种选法。 根据分步乘法原理,得出上述公式。 二、组合数公式: (1)(2)(1) ! ! !()!m m n n m m A n n n n m n C A m m n m 1n n C

推导:把n 个不同的元素任选m 个不排序,按计数原理分步进行: 第一步,取第一个: 有 n 种取法; 第二步,取第二个: 有(n-1) 种取法; 第三步,取第三个: 有(n-2) 种取法; ┋ 第m 步,取第m 个: 有(n-m+1)种取法; ┋ 最后一步,取最后一个:有 1 种取法。 上述各步的取法相乘是排序的方法数,由于选m 个,就有m!种排排法,选n 个就有n!种排法。故取m 个的取法应当除以m!,取n 个的取法应当除以n!。遂得出上述公式。 证明:利用排列和组合之间的关系以及排列的公式来推导证明。 将部分排列问题m n A 分解为两个步骤: 第一步,就是从n 个球中抽m 个出来,先不排序,此即定义的组合数问题m n C ; 第二步,则是把这m 个被抽出来的球全部排序,即全排列m m A 。 根据乘法原理,m m m n n m A C A 即: (1)(2)(1)! !!()!m m n n m m A n n n n m n C A m m n m

高中数学组合恒等式证明八法学法指导

组合恒等式证明八法 童广鹏 二项式系数可以组成许多有趣的组合恒等式,这些等式常通过简捷的组合分析得到证明,本文举例说明。 一、公式法 例1. 求证:1n 1k n n k n n 1k n n 2n n 1n n n C C C ...C C C ++++-+++=+++++。 证明:由1n k n n k n 1n 1k n C C C ++++++++,1n 1k n n 1k n 1n k n C C C +-+-++++=,…,1 n 2n n 2n 1n 3n C C C ++++++=,1n 1n n 1n 1n 2n C C C ++++++=,1n 1k n n 1k n 1n k n n k n 1n 2n 1n 3n 1n k n 1n 1k n C C C C C C ...C C +-+-++++++++++++++++=++++ 1n 1n n 1n 1n 2n n 2n C C C C ...+++++++++++,整理即1n 1k n n k n n 1k n n 2n n 1n n n C C C ...C C C ++++-+++=+++++。 点评:运用基本组合数公式进行转换,如:1 k 1n k 1n 1k 1n k n n k n C C C n k C C -------===,m k m n m n m k k n C C C C --=等是处理组合恒等式的常用方法,同时,在上述恒等式中,取n=1,2,…可以推出一系列新等式,如(1)由21n 1n 1211C C ...C C +=+++,得1+2+…+()2 1n n n +=,(2) 由22n 21n 2322C C ...C C ++=+++得()()()3 2n 1n n 1n n ...321++=+?++ ??等,可见本题的结 论具有示范作用。 二、二项式定理法 例2. 求证:12 3C ...3C 3C 3n 21n n 2n 2n 1n 1n n -=?++?+?+---。 证明:因为()n n n 1n 1n n 0n n b C ...b a C a C b a +++=+-,令3a =,1b =得 ()1n n n C 3113+=-+()1C 3C ...3C 3n n 1n n 2n 2n 1n -+?++?+?---,故 3C ...3C 3C 31 n n 2n 2n 1n 1n n ?++?+?+---12 n 2-=。 点评:对二项式定理自身作乘法、赋值和求积等运算获得一些恒等式,根据二项展开式 的特性,赋予x 以不同的值,常能使问题迎刃而解。 三、倒序求和法 例3. 求证:()()1n n n 2n 1n 2 2n 3C 1n 3...C 7C 41-+=+++++。 证明:令()()1C 4C 7...C 1n 3C 1n 3...C 7C 41S 1n 2n n n n n 2n 1n +++++=+++++=,故()() n n n 2n 1n 2C ...C C 12n 3S 2=+++++=, ()()1n n n 2n 1n 2 2n 3C 1n 3...C 7C 41S -+=+++++=。

相关文档
最新文档