余氯分析仪的测量原理分类

余氯分析仪的测量原理分类
余氯分析仪的测量原理分类

余氯分析仪的测量原理分类

余氯分析仪广泛用于自来水厂、饮用水分布网、冷却循环水、制水设备、游泳池、医院等水质处理工程,以及与二氧化氯发生器配套;对水溶液中的余氯含量进行连续监测或控制。

余氯分析仪按测量原理又可分为:

恒电压法余氯分析仪、DPD法余氯测量仪、膜法余氯检测仪这三种类型;然后我们在实际的工况中该如果选择余氯分析仪呢;

下面就让我们一起来了解一下几个基本概念;

游离氯——lvqi在水中生成HClO和ClO-,HClO和ClO-之和称为游离氯。

其中游离氯对细菌等微生物有很强的灭杀作用,是游离氯中的有效杀毒成分,所以也将HClO称为有效游离氯。

化合氯——在游离氯起杀菌作用之前,由于水中溶有铵离子、有机物的各种杂质,这些杂质会首先与游离氯反应,耗去一部分游离氯。

例如,游离氯会迅速与溶液中的铵离子形成单氯胺和二氯胺。

在较长一段时间里,游离氯还会与有机化合物(例如蛋白质和氨基酸)起反应,形成各种有机氯化合物。氯胺和有机氯化合物一起叫做化合氯。

总氯——化合氯加上游离氯就是溶液中的总氯量,称为总氯。

在这些物质中只有游离氯才是有效的消毒剂,化合氯几乎没有杀毒能力。

只有满足上述耗氯需要后,才会有多余的游离氯来杀灭细菌。

加氯量——加氯消毒时加入的氯量称为加氯量,加氯量应包括需氯量和余氯量两部分。需氯量是指用于杀死细菌及氧化有机物和还原性物质所需要的氯量。

余氯量——是指为抑制水中残余细菌再度繁殖而余留在水中的氯量,称为余氯或残余氯。

有人把游离氯称为余氯,这是不确切的,杀灭细菌后剩余的游离氯才是余氯。

为了维持杀灭细菌的效果,出水中始终要保持余氯量在0.5~1mg/L,在供水管网末端也要保持0.05~0.1mg/L的余氯。

测量出水中剩余游离氯含量的仪器称为余氯分析仪。

标签:

余氯分析仪

水质分析仪的工作原理及特点

水质分析仪的工作原理及特点 一、前言 随着近年来我国经济的快速发展,城市的工业和生活垃圾大量增加,目前对垃圾进行处理的主要方法是卫生填埋,而进行填埋都是露天作业,垃圾经压实后,随着垃圾中生物的分解及遇到雨雪天气时,雨水和雪水渗入填埋区,会产生垃圾渗滤液。渗滤液属高浓度有机废水,浓度值变化范围大,其中含碳氢化合物、硝酸盐、硫酸盐及微量铜、镉、铅等重金属离子,细菌指标很高,如不进行处理直接排入水体,将严重污染当地的水环境。为了保护水环境,必须加强对污水排放的监测。检测点的设计和检测仪表(主要是水质分析仪)的质量对水环境监测起着至关重要的作用,本文结合某一污水处理厂的设计谈谈这方面体会。 二、水质分析仪的工作原理 污水处理厂使用的分析仪有两种:pH计和溶氧分析仪。 1、pH计的工作原理 水的pH值随着所溶解的物质的多少而定,因此pH值能灵敏地指示出水质的变化情况。pH值的变化对生物的繁殖和生存有很大影响,同时还严重影响活性污泥生化作用,即影响处理效果,污水的pH值一般控制在6.5~7之间。水在化学上是中性的,某些水分子自发地按照下式分解:H2O=H++OH-,即分解成氢离子和氢氧根离子。在中性溶液中,氢离子H+和氢氧根离子OH-的浓度都是10-7mol/l,pH值是氢离子浓度以10为底的对数的负数:pH=-log,因此中性溶液的pH值等于7。如果有过量的氢离子,则pH值小于7,溶液呈酸性;反之,氢氧根离子过量,则溶液呈碱性。 pH值通常用电位法测量,通常用一个恒定电位的参比电极和测量电极组成一个原电池,原电池电动势的大小取决于氢离子的浓度,也取决于溶液的酸碱度。该厂采用了CPS11型pH传感器和CPM151型pH 变送器。具体结构如图1所示,测量电极上有特殊的对pH反应灵敏的玻璃探头,

热导检测器工作原理、结构组成及检测条件

热导检测器 热导检测器(TCD)是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(katherometer或Catherometer),它是知名的整体性能检测器,属物理常数检测方法。 一、工作原理 TCD由热导池及其检测电路组成。图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。载气流经参考池腔、进样器、色谱柱,从测量池腔排出。 R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。 当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。从电源E流出之电流I 在A 点分成二路i1、i2 至 B 点汇合,而后回到电源。这时,两个热丝均处于被加热状态,维持一定的丝温Tf,池体处于一定的池温 Tw。一般要求Tf与Tw差应大于100℃以上,以保证热丝向池壁传导热量。当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1R3=R2R4, 或写成R1/R4=R2/R3。M、N二点电位相等,电位差为零,无信号输出。当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。M、N 二点电位不等,即有电位差,输出信号。 二、热导池由热敏元件和池体组成 1 热敏元件 热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。(1)热敏电阻热敏电阻由锰、镍、钴等氧化物半导体制成直径约为~1.0mm的小珠,密封在玻壳内。 热敏电阻有三个优点:①热敏电阻阻值大(5~50kΩ),温度系数亦大,故灵敏度相当高。可直接作μg/g级的痕量分析;②热敏电阻体积小,可作成0.25mm直径的小球,这样池腔可小至50μL;③热敏电阻对载气流的波动不敏感,它耐腐蚀性和抗氧化。 热敏电阻也有三个缺点:①热敏电阻#$%的响应值随温度的增加而快速下降,因此,通常热敏电阻要在120℃以下使用。使用范围受到极大的限制;②与热丝相比,热敏电阻的温度系数大,表现为其响应值对于温度的变化十分敏感。例如在60℃时,池温改变1℃,热敏电阻和热丝的基线漂移分别为和,前者比后者大一倍多,因此,热敏电阻的稳定性差,特别是在程升操作时,尤为突出;③热敏电阻对还原条件十分敏感,故不能用氢气作载气。 目前,只有下二情况可用热敏电阻作热敏元件;一是低温痕量分析;二是需小池体积配毛细管柱。其他情况很少用热敏电阻,而多用热丝。而且,近年热敏电阻可作成小池体积的优势也在逐渐下降。 (2)热丝一个性能优异的TCD,对热丝的要求主要考虑四点:①电阻率高,以便可在相同长度内得到高阻值;②电阻温度系数大,以便通桥流加热后得到高阻值;③强度好;④耐氧化或腐蚀。①、②是为了获得高灵敏度,同时丝体积小,可缩小池体积,制作。③、④是为了获得高稳定性。表 3 -2-3 列出了商品TCD中常用的热丝性能。 钨丝电阻率低,相同长度之阻值只有铁铼丝的一半,灵敏度难以提高。另外,钨丝强度差,高温下易氧化,致使噪声增加、信!噪比下降。

光电测距仪

光电测距仪 光电测距仪的概况 我国已研制成功红外自动数字显示测距仪,近年来国内已有批量红外测距仪的产品,也从国外进口了数量不少的光电测距仪,如D135、D11000、EDT2000、DM501、DM103、ELD12、AGA120、AGA112、AGA14A、MiNi、SET2c、SEF3c、SET4c等,从建筑施工测量来说,AGA120、DM103、MiNi等光电测距仪最为实用,使用光电测距仪之前必须熟悉说明书或到有关单位进行短期培训,以便正确使用光电测距仪。 光电测距仪的构造 光电测距仪构造如图4-243所示。 图4-243 光电测距仪构造 光电测距仪是在经纬仪上加装光电测距头子,一般是配套的,什么型号测距头子配什么样型号的经纬仪,另外配一套反光棱镜。 光电测距仪的用途 为了测量A、B两点之间的距离,在A点安置光电测距仪主机,在B点安置反光棱镜,如图4-244所示。

图4-244 光电测距仪使用示意 对中、整平后,开启光电测距仪。发射望远镜发出一水平激光束射向B点反光棱镜,经过反射的激光束仍以水平方向折回A点,接收望远镜能够把折回的激光束调制、放大并精确地测出A、B两点的距离,可直接由数字计数器上显示出来。它的测距精度视仪器不同而各异,一般的光电测距仪精度可达±5mm +10ppm。 光电测距仪的检验与校正 1.送有关部门检验与校正 2.自检 自检,必须具有一定的检定设备,对光电测距仪相当熟悉,目前国内使用的光电测距仪品种相当多,在此不能详细介绍,建议送有关部门检定。 3.用六段法测定常数 简易六段法公式: C=0.02857[5(D06-D01-D12-D23-D34-D45-D56)+3(D05+D16-D02-D13-D24-D35-D46)+(D04+D15+D26-D03-D14-D25-D36)]举例:原有控制点:

红外线测距仪测量原理

红外线测距仪测量原理 测距仪是一种航迹推算仪器,用于测量目标距离,进行航迹推算。测距仪的形式很多,通常是一个长形圆筒,由物镜、目镜、测距转钮组成,用来测定目标距离。测距仪是根据光学、声学和电磁波学原理设计的,用于距离测量的仪器。 红外测距仪的分类有激光红外,红外和超声波三种,目前测距仪主要是指的激光红外测距仪,红外测距仪和超声波测距仪由于测量距离有限,测量精度很低目前已经被淘汰。激光红外测距仪是利用激光对目标的距离进行准确测定的仪器。激光红外测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。 测距仪有测量距离和测量精度,同时又是电子设备,所以品牌的选择非常重要,国际知名品牌的测距仪,在性能上会远优于杂牌的激光红外测距仪。 一.测距仪分类 测距仪从测距基本原理,可以分为以下三类: 1. 激光测距仪 激光测距仪是利用激光对目标的距离进行准确测定的仪器。激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。 激光测距仪是目前使用最为广泛的测距仪,激光测距仪又可以分类为手持式激光测距仪(测量距离0-300米),望远镜激光测距仪(测量距离500-20000米)。 目前市面上主流的都是激光测距仪,手持式激光测距仪全球前两大品牌是徕卡和博世,右图就是一款主流的手持式激光测距仪。 望远镜激光测距仪,为远距离激光测距仪,目前在户外使用相当广泛,望远镜激光测距仪全球前四大品牌是图雅得、博士能、奥尔法和尼康。四个品牌在产品上各有特点,2013年,美国激光技术杂志公布的数据,2013年全球单品销售冠军是图雅得SP1500,这款测距仪测量精准,反应速度快捷。 2. 超声波测距仪

(整理)光电测距仪知识介绍.

光电测距仪知识介绍 一、光电测距仪精度 1、测距仪精度表达式:M D=±(A+B·D) A--固定误差mm, B--比例误差系数mm/km, D—被测距离km; 每公里的比例误差为U mm,则M0=±(A mm+U mm·D) 2、测距仪的测距误差分为两部分:固定误差:与距离无关的误差,有测相误差、加常树误差、对中误差。比例误差:与距离成比例的误差,有光速误差、大气折射率误差、频率误差。周期误差有特殊性,与距离有关当不成比例。 3、测距仪的三轴有:仪器的发射光轴、仪器的接收光轴(二者统称测距光轴)和望远镜视准轴。有的仪器三轴平行,有的三轴同轴。 4、测距的精度评定:测距仪有标称精度和测距精度之区别。 标称精度:指一批仪器出厂时的合格精度,仪器的标称精度比较宽。M D=±(A+B·D) 测距精度:指一台仪器经过检测之后而得到的实际精度,可表明每台仪器在测距中的精度潜力大小。 M D=±√(M2d+M2a+M2b) M d–观测中误差,

M a–加常数的检测中误差, M b—乘常数的检测中误差, 二、光电测距仪测量方法 1、斜距测量:置仪于BM1点上,瞄准BM2点,观测一个往测回(照准一次读数若干次为一个测回,每一个测回中的若干次读数互差≯6mm时,取平均值作为此往测的平均斜距),然后置仪于BM2点上,瞄准BM1点,观测一个返测回。每测站观测前必须精确量出仪高i和棱镜高v。 2、竖直角(天顶距)测量:BM1和BM2两点往返分别测竖直角两个测回,要求半测回间较差≯12″。测回间较差≯8″时,取两测回的平均值作为往返测的竖直角。 往测高差:?H往=L往平均值·sinα往平均值+i往-v往 返测高差:?H返=L返平均值·sinα返平均值+i返-v返 精度计算:f h= ?H往-?H返

测距仪的原理及分类

文章简介测距仪是一种航迹推算仪器,用于测量目标距离,进行航迹推算。测距仪的形式很多,通常是一个长形圆筒,由物镜、目镜、测距转钮组成,用来 测定目标距离。测距仪是根据光学、声学和电磁波学原理设计的,用于距离测 量的仪器文章详细内容 那什么是测距仪呢?原理是什么?市面上有哪些测距仪,下文将详细进行介绍。一.测距仪分类 测距仪从测距基本原理,可以分为以下三类: 1. 激光测距仪 激光测距仪是利用激光对目标的距离进行准确测定的仪器。激光测距仪在 工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时 器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。 激光测距仪是目前使用最为广泛的测距仪,激光测距仪又可以分类为手持 式激光测距仪(测量距离0-300米),望远镜激光测距仪(测量距离500-20000米)。目前市面上主流的都是激光测距仪,手持式激光测距仪全球 前两大品牌是徕卡和博世,右图就是一款主流的手持式激光测距仪。望远 镜激光测距仪,为远距离激光测距仪,目前在户外使用相当广泛,望远镜激光 测距仪全球前四大品牌是图雅得、博士能、奥尔法和尼康。四个品牌在产品上 各有特点,2011年,美国激光技术杂志公布的数据,2011年全球单品销售冠军是图雅得YP900,这款测距仪测量精准,反应速度快捷。 2. 超声波测距仪 超声波测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声 波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和 接收到回波的时间差T,然后求出距离。超声波测距仪,由于超声波受 周围环境影响较大,所以一般测量距离比较短,测量精度比较低。目前使用范 围不是很广阔,但价格比较低,一般几百元左右。 3. 红外测距仪用调制的红外光进行精密测距的仪器,测程一般为1-5公里。利用的是红 外线传播时的不扩散原理:因为红外线在穿越其它物质时折射率很小,所以长 距离的测距仪都会考虑红外线,而红外线的传播是需要时间的,当红外线从测 距仪发出碰到反射物被反射回来被测距仪接受到再根据红外线从发出到被接受 到的时间及红外线的传播速度就可以算出距离

热导分析仪维护

1.4热导分析仪 1.4.1框图及原理 热导式分析仪是利用各种气体的热传导速度各不相同的物理特性制成的,可分析混合气体中某组分的百分含量,彼此无化学反映的混合气体的导热系数近似为各组分导热系数的算术平均值。使用时需满足:混合气体中除被测组分外,其余组分导热系数相近,且被测组分与其余组分导热系数要有明显差别。即入(侧)>>入(其余),入(混)=入(其余)+〔入(侧)—入(其余)〕×C(侧),因H2的导热系数最大,传热能力最强,CO2、SO2、Ar等比一般气体导热系数小,故热导式分析仪一般用于测以上几种。 (1)热导式分析仪检测器(热导池)的工作原理 由于气体导热系数都很小,直接测量较难,一般使导热系数变化转为热敏电阻值的变化,经测组值来测待测组分的体积百分含量。 热导池一般为圆筒内垂直挂一热敏电阻(如铂丝),电阻上通电流,气室内电阻丝产生的热量为Q=0.24I2Rn(Rn:电流工作作用下电阻丝平衡温度Tn 时的阻值)。 电阻丝向四周散热形式有:周围气体的热传导、热对流、辐射散热、被流通气体带走的热量、电阻丝轴向热传导等,只有热传导是经导热系数来反映的,其余为干扰,为减少干扰可用加大电阻丝长度与直径比、控制电阻丝热平衡温度,减去气室内壁温度<200℃,减小气室内半径、使被测气体流量小且恒定等措施。 当电阻丝产生的热量与经气体热传导所散失的热量相等时达到热量平衡,此时经理论计算电阻丝阻值与导热系数间为单位函数。热导分析仪都有稳压、稳流、恒温装置以保证流过电阻丝的电流、壁温、气体流量稳定。 图1.4.1-1 (2)检测器类型及测量回路 检测器结构有分流式、对流式、扩散式、对流扩散式四种。

氧气分析仪的特点与原理

氧气分析仪的特点与原理 氧气分析仪具有测量快速、准确、高精度的特点,它采用了先进的燃料池传感器测量氧含量。由于传感器完全密封,所以传感器是免维护的。通常使用寿命可达三到五年。 是老一代微氧仪的更新换代产品。并且与先进的单片机技术,流量控制,温度补偿,压力控制系统想结合,使之具有更好的人机操作平台和广泛的使用性能。 仪器采用独特的过压保护装置,当气体流量突然增大的时候,过压保护动作,气体进入传感器的通道被切断,从而很好的保护了传感器避免过压损坏。 同时由于该仪器设计时采针阀可将传感器在不使用的条件下密封,防止传感器在空气中消耗并且可以达到对进样管路进行吹扫,以达到清扫进样管路的目的,更使它在快速、大量分析作业众发挥重要作用。 仪器工作原理: 氧气分析仪采用完全密封的燃料池氧传感器是当前国际上zui先进的测氧方法之一。 燃料池氧传感器是由高活性的氧电极和铅电极构成,浸没在KOH的溶液中。在阴极氧被还原成氢氧根离子,而在阳极铅被氧化。 O2+2H2O+4e4OH 2Pb+4OH2Pb(OH)2+4e KOH溶液与外界有一层高分子薄膜隔开,样气不直接进入传感器,因而溶液与铅电

极不需定期清洗或更换。 样气中的氧分子通过高分子薄膜扩散到氧电极中进行电化学反应,电化学反应中产生的电流决定于扩散到氧电极的氧分子数,而氧的扩散速率又正比于样气中的氧含量; 这样,该传感器输出信号大小只与样气中的氧含量相关,而与通过传感器的气体总量无关。通过外部电路的连接,反应中的电荷转移即电流的大小与参加反应的氧成正比例关系。 采用此方法进行测氧,可以不受被测气体中还原性气体的影响,免去了许多的样气处理系统。它比老式“金网-铅”原电池测氧更快速,不需要漫长的开机吹除过程; “金网-铅”原电池样气直接进入溶液中,导致仪器的维护量很大,而燃料电池法样气不直接进入溶液中; 传感器可以非常稳定可靠的工作很长时间。事实上,燃料电池氧传感器是完全免维护的。 标签: 氧气分析仪

热导检测器(TCD)原理及操作注意事项

【资料】-热导检测器(TCD)原理及操作注意事项 热导检测器 热导检测器(TCD)是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(katherometer或Catherometer),它是知名的整体性能检测器,属物理常数检测方法。 一、工作原理 TCD由热导池及其检测电路组成。图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。载气流经参考池腔、进样器、色谱柱,从测量池腔排出。 R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。 当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。从电源E 流出之电流I 在A 点分成二路i1、i2 至 B 点汇合,而后回到电源。这时,两个热丝均处于被加热状态,维持一定的丝温Tf,池体处于一定的池温Tw。一般要求Tf与Tw差应大于100℃以上,以保证热丝向池壁传导热量。当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1?R3=R2?R4, 或写成R1/R4=R2/R3。M、N二点电位相等,

电位差为零,无信号输出。当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。M、N二点电位不等,即有电位差,输出信号。 二、热导池由热敏元件和池体组成 1 热敏元件 热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。 (1)热敏电阻 ....热敏电阻由锰、镍、钴等氧化物半导体制成直径约为0.1~1.0mm 的小珠,密封在玻壳内。 热敏电阻有三个优点 ..:①热敏电阻阻值大(5~50kΩ),温度系数亦大,故灵敏度相当高。可直接作μg/g级的痕量分析;②热敏电阻体积小,可作成0.25mm直径的小球,这样池腔可小至50μL;③热敏电阻对载气流的波动不敏感,它耐腐蚀性和抗氧化。 热敏电阻也有三个缺点 ..:①热敏电阻#$%的响应值随温度的增加而快速下降,因此,通常热敏电阻要在120℃以下使用。使用范围受到极大的限制;②与热丝相比,热敏电阻的温度系数大,表现为其响应值对于温度的变化十分敏感。例如在60℃时,池温改变1℃,热敏电阻和热丝的基线漂移分别为10.4mV和5.0mV,前者比后者大一倍多,因此,热敏电阻的稳定性差,特别是在程升操作时,尤为突出;③热敏电阻对还原条件十分敏感,故不能用氢气作载气。 目前,只有下二情况可用热敏电阻作热敏元件;一是低温痕量分析;二是需小池体积配毛细管柱。其他情况很少用热敏电阻,而多用热丝。而且,近年热敏电阻可作成小池体积的优势也在逐渐下降。 (2)热丝 ..一个性能优异的TCD,对热丝的要求主要考虑四点:①电阻率高,以便可在相同长度内得到高阻值;②电阻温度系数大,以便通桥流加热后得到高 阻值;③强度好;④耐氧化或腐蚀。①、②是为了获得高灵敏度 ....,同时丝体积小 ,可缩小池体积,制作微TCD。③、④是为了获得高稳定性 ....。表 3 -2-3 列出了商品TCD中常用的热丝性能。

测距仪原理图纸

激光测距仪原理 激光测距仪,是利用激光对目标的距离进行准确测定的仪器。激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一。 一.激光测距仪基本原理 激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间。光速和往返时间的乘积的一半,就是测距仪和被测量物体之间的距离。脉冲法测量距离的精度是一般是在+/- 1米左右。另外,此类测距仪的测量盲区一般是15米左右。 二.激光测距仪分类 激光测距仪分为两类,一类是手持激光测距仪,这类测距仪测量距离比较短,一般为40-250米,测量精度高。另外一类是激光测距仪望远镜,这类激光测距仪测量距离远,一般为500-2000米,最长测量距离可以达到20公里。 三.激光测距仪主要的产品 长距离的激光测距仪望远镜,全球前四大品牌,是图雅得、博士能、奥尔法和尼康。这四个品牌占据了全球激光测距仪95%以上的市场份额。四大品牌产品都各有其自身的优势。 图雅得作为全球第一品牌,产品以技术领先见长,图雅得是全球最早的能生产测距+测高+测角一体机的品牌,目前博士能和尼康都还没有这种技术。其产品快速测距、操作简单是其最大特点。产品价格适中,具有比较高的性价比。 博士能是全球老牌的激光测距仪望远镜品牌,其产品做工精美,是做工最好的品牌。博士能测距仪产品侧重打猎和高尔夫功能。产品功能强大,但是操作欠繁琐。另外博士能0.5码高精度测距仪方面非常有优势。 奥尔法是全球第三大品牌,其产品价格是四个品牌中最低的,产品具有非常高的性价比,产品操作简单,实用性高。 尼康在测距望远镜领域技术上不是很强,产品都为国内代工,但是凭借尼康品牌的知名度,在全球也有不俗的表现,长期占据第四的位置。在国内,尼康测距仪由于代理体制问题,售价一直偏高,导致性价比不高。 四大品牌主力产品有: 1.图雅得 SP1500H 这是图雅得2012年最新一代产品,也是目前望远镜测距仪功能最为强大的产品。集合了测距+测高+测角+测高差+测水平距离+连续测角+连续测距+连续测水平距离 8大功能,2012年6月在美国西雅图光学设备展商首次发布,被媒体誉为功能最为强大的测距仪。这款测距仪 1500米超长测距,超快测距速度,操作人性化,售价大约4000元,性价比不错,上市后即成为全球多功能测距仪销量冠军。 2.图雅得 YP900 这款测距仪900米测距,上市时间2011年,全球中距离测距仪 连续三年销量冠军,这款测距仪做工精美,具有超强的抗干扰能力,

溶氧分析仪的工作原理

溶氧分析仪的工作原理 整理时间:2008-8-8 10:05:00 查看次数:373关键词:溶解氧分析仪,工作原理 测定氧含量主要有三种方法:自动比色分析和化学分析测量,顺磁法测量,电化学法测量。水中溶氧量一般采用电化学法测量。该厂采用了COS4型溶氧传感器和COM252型溶氧变送器。 氧能溶于水,溶解度取决于温度、水表面的总压、分压和水中溶解的盐类。大气压力越高,水溶解氧的能力就越大,其关系由亨利(Henry)定律和道尔顿(Dalton)定律确定,亨利定律认为气体的 溶解度与其分压成正比。 以COS4氧量测量传感器为例,其中的电极由阴极(常用金和铂制成)和带电流的反电极(银)、无电流的参比电极(银)组成,电极浸没在电解质如KCl、KOH中,传感器有隔膜覆盖,隔膜将电极和电解质与被测量的液体分开,因此保护了传感器,既能防止电解质逸出,又可防止外来物质的侵入 而导致污染和毒化。 相反电极和阴极之间施加极化电压,假如测量元件浸入在有溶解氧的水中,氧会通过隔膜扩散,出现在阴极上(电子过剩)的氧分子就会被还原成氢氧根离子: O2+2H2O+4e-? 4OH-。 电化学当量的氯化银沉淀在反电极上(电子不足):4Ag+4Cl-? 4AgCl+4e-。对于每个氧分子,阴极放出4个电子,反电极接受电子,形成电流,电流的大小与被测同污水的氧分压成正比,该信号连同传感器上热电阻测出的温度信号被送入变送器,利用传感器中存储的含氧量和氧分压、温度之间的关系曲线计算出水中的含氧量,然后转化成标准信号输出。参比电极的功能是确定阴极电位。COS4

溶氧传感器的响应时间为:3分钟后达到最终测量值的90%,9分钟后达到最终测量值的99%;最低 流速要求为0.5cm/s。

如何选择便携式气体检测仪

如何选择便携式气体检测仪 近年来互联网不断影响每个行业,很多气体检测仪品牌面对日益激烈的竞争环境,似乎找到了一条所谓“用户体验”的捷径。相比于以往这些品牌包装各种高大上,外观相差无几,规格参数极高,然价格却异常低廉,正规采购需要数千元的检测仪只要几百元即可买到。难道真的是所谓“用互联网思维改造行业,消除行业暴利”吗? 确实,更精美的包装、更多的功能确实会大大提升用户体验,然而很多品牌打擦边球,仅在客户可察觉的外观下功夫,实则内在偷工减料,甚至参数弄虚作假,根本不能达到安全要求。对于这些品牌,客户如果只看外观参数,很可能会被置于安全风险之中而不自知。 便携式气体检测仪的选择核心 便携式气体检测仪作为保障用户生命安全的设备,重要的考虑因素就是安全性和稳定性。 ●安全性指:气体泄漏时能否及时、准确检测,其关键点在于传感器; ●稳定性指:能够在各种工况下能够正常工作,关键点在于防护和防爆能力。 因此,艾伊科技建议各位客户,在选择便携式气体检测仪时,务必要仔细辨别,拨开华丽的宣传及低廉的价格,产品本身的品质才是应关注的问题。下面为大家介绍选购便携式气体检测仪时需要注意的细节。 一、传感器选择 传感器是便携式气体检测仪的核心部件已成为业内共识,对于传感器,原理

的选择和品牌的选择极为重要。 ● 对于不同的气体只有选择正确检测原理才能达到较好效果,例如苯类物 质,由于其既属于可燃气有属于有毒气,很多厂家向客户推荐催化燃烧原理气体检测仪。但由于催化燃烧原理决定,其本身并不不适合于检测“较重的”或者长链的烷烃,特别是高闪点的物质。对于苯类更适合的是PID 光离子原理进行检测。 ● 同为传感器,厂商间的实力也存在很大差别。总体来说进口品牌优于国 产品牌,进口知名品牌优于一般品牌。即使同为进口传感器,不同品牌的传感器在市场占有率方面也有很大区别,常见品牌有 英国city 、日本根本、英国阿尔法等。 总结:传感器不是简单进口就好,还要选对检测原理与品牌。 二、防护性能选择 IP 防护等级是体现便携式气体检测仪在各种恶劣环境下能否正常使用的直观参数。IP 防护等级由两个数字所组成,第壹个数字表示电器防尘、防止外物侵入的等级(这里所指的外物含工具,人的手指等均不可接触到电器内之带电部分,以免触电),第2个数字表示电器防湿气、防水侵入的密闭程度,数字越大表示其防护等级越高。 一般来说,对于固定式气体检测仪防护等级建议IP65及以上,而便携式气体检测仪由于存在跌落等风险,建议选择IP66及以上。 IP 等级的选择,绝非简单看宣传资料上的声称等级,而是要资质确认与实际观察。

测距原理

现在市面上的测距仪主要分为三类:激光测距仪、超声波测距仪、红外测距仪,我们介绍对测距仪原理的分析也主要介绍这三种。1. 激光测距仪 激光测距仪是利用激光对目标的距离进行准确测定的仪器。激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。 激光测距仪是目前使用最为广泛的测距仪,激光测距仪又可以分类为手持式激光测距仪(测量距离0-300米),望远镜激光测距仪(测量距离500-3000米)。 激光测距原理就是激光发射机发出一束激光,激光遇到物体后反射回来,接收机收到反射回来的激光,计算自发出激光到收到激光的时间,用此时间乘以激光的速度再除以2就是测距仪到被测物体见的距离 2. 超声波测距仪 超声波测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和接收到回波的时间差T,然后求出距离L。 超声波测距仪,由于超声波受周围环境影响较大,所以一般测量距离比较短,测量精度比较低。目前使用范围不是很广阔,但价格比较低,一般几百元左右。 3.红外测距仪 用调制的红外光进行精密测距的仪器,测程一般为1-5公里。利用的是红外线传播时的不扩散原理:因为红外线在穿越其它物质时折射率很小,所以长距离的测距仪都会考虑红外线,而红外线的传播是需要时间的,当红外线从测距仪发出碰到反射物被反射回来被测距仪接受到再根据红外线从发出到被接受到的时间及红外线的传播速度就可以算出距离

pH计和溶氧分析仪的原理及特点

pH计和溶氧分析仪的原理及特点 1、pH计的工作原理 水的pH值随着所溶解的物质的多少而定,因此pH值能灵敏地指示出水质的变化情况。pH 值的变化对生物的繁殖和生存有很大影响,同时还严重影响活性污泥生化作用,即影响处理效果,污水的pH值一般控制在6.5~7之间。水在化学上是中性的,某些水分子自发地按照下式分解:H2O=H++OH-,即分解成氢离子和氢氧根离子。在中性溶液中,氢离子H+和氢氧根离子OH-的浓度都是10~7mol/l,pH值是氢离子浓度以10为底的对数的负数:pH=-log,因此中性溶液的pH值等于7。如果有过量的氢离子,则pH值小于7,溶液呈酸性;反之,氢氧根离子过量,则溶液呈碱性。 pH值通常用电位法测量,通常用一个恒定电位的参比电极和测量电极组成一个原电池,原电池电动势的大小取决于氢离子的浓度,也取决于溶液的酸碱度。该厂采用了CPS11型pH 传感器和CPM151型pH变送器。测量电极上有特殊的对pH反应灵敏的玻璃探头,它是由能导电、能渗透氢离子的特殊玻璃制成,具有测量精度高、抗干扰性好等特点。当玻璃探头和氢离子接触时,就产生电位。电位是通过悬吊在氯化银溶液中的银丝对照参比电极测到的。pH值不同,对应产生的电位也不一样,通过变送器将其转换成标准4~20mA输出。 2、溶氧分析仪的工作原理 水中的氧含量可充分显示水自净的程度。对于使用活化污泥的生物处理厂来说,了解曝气池和氧化沟的氧含量非常重要,污水中溶氧增加,会促进除厌氧微生物以外的生物活动,因而能去除挥发性物质和易于自然氧化的离子,使污水得到净化。

测定氧含量主要有三种方法:自动比色分析和化学分析测量,顺磁法测量,电化学法测量。水中溶氧量一般采用电化学法测量。该厂采用了COS4型溶氧传感器和COM252型溶氧变送器。氧能溶于水,溶解度取决于温度、水表面的总压、分压和水中溶解的盐类。大气压力越高,水溶解氧的能力就越大,其关系由亨利(Henry)定律和道尔顿(Dalton)定律确定,亨利定律认为气体的溶解度与其分压成正比。 以COS4氧量测量传感器为例,其中的电极由阴极(常用金和铂制成)和带电流的反电极(银)、无电流的参比电极(银)组成,电极浸没在电解质如KCl、KOH中,传感器有隔膜覆盖,隔膜将电极和电解质与被测量的液体分开,因此保护了传感器,既能防止电解质逸出,又可防止外来物质的侵入而导致污染和毒化。 相反电极和阴极之间施加极化电压,假如测量元件浸入在有溶解氧的水中,氧会通过隔膜扩散,出现在阴极上(电子过剩)的氧分子就会被还原成氢氧根离子: O2+2H2O+4e-? 4OH-。 电化学当量的氯化银沉淀在反电极上(电子不足):4Ag+4Cl-? 4AgCl+4e-。对于每个氧分子,阴极放出4个电子,反电极接受电子,形成电流,电流的大小与被测同污水的氧分压成正比,该信号连同传感器上热电阻测出的温度信号被送入变送器,利用传感器中存储的含氧量和氧分压、温度之间的关系曲线计算出水中的含氧量,然后转化成标准信号输出。参比电极的功能是确定阴极电位。COS4溶氧传感器的响应时间为:3分钟后达到最终测量值的90%,9分钟后达到最终测量值的99%;最低流速要求为0.5cm/s。 3、 pH计的特点

激光测距仪原理

激光测距仪激光测距基本原理 激光测距是光波测距中的一种测距方式,如果光以速度c在空气中传播在A、B两点间往返一次所需时间为t,则A、B两点间距离D可用下列表示。 D=ct/2 式中:D——测站点A、B两点间距离;c——光在大气中传播的速度;t——光往返A、B 一次所需的时间。 由上式可知,要测量A、B距离实际上是要测量光传播的时间t,根据测量时间方法的不同,激光测距仪通常可分为脉冲式和相位式两种测量形式。 相位式激光测距仪 相位式激光测距仪是用无线电波段的频率,对激光束进行幅度调制并测定调制光往返测线一次所产生的相位延迟,再根据调制光的波长,换算此相位延迟所代表的距离。即用间接方法测定出光经往返测线所需的时间。 相位式激光测距仪一般应用在精密测距中。由于其精度高,一般为毫米级,为了有效的反射信号,并使测定的目标限制在与仪器精度相称的某一特定点上,对这种测距仪都配置了被称为合作目标的反射镜。 若调制光角频率为ω,在待测量距离D上往返一次产生的相位延迟为φ,则对应时间t 可表示为: t=φ/ω 将此关系代入(3-6)式距离D可表示为 D=1/2 ct=1/2 c·φ/ω=c/(4πf) (Nπ+Δφ) =c/4f (N+ΔN)=U(N+) 式中:φ——信号往返测线一次产生的总的相位延迟。 ω——调制信号的角频率,ω=2πf。 U——单位长度,数值等于1/4调制波长 N——测线所包含调制半波长个数。 Δφ——信号往返测线一次产生相位延迟不足π部分。 ΔN——测线所包含调制波不足半波长的小数部分。 ΔN=φ/ω

在给定调制和标准大气条件下,频率c/(4πf)是一个常数,此时距离的测量变成了测线所包含半波长个数的测量和不足半波长的小数部分的测量即测N或φ,由于近代精密机械加工技术和无线电测相技术的发展,已使φ的测量达到很高的精度。 为了测得不足π的相角φ,可以通过不同的方法来进行测量,通常应用最多的是延迟测相和数字测相,目前短程激光测距仪均采用数字测相原理来求得φ。 由上所述一般情况下相位式激光测距仪使用连续发射带调制信号的激光束,为了获得测距高精度还需配置合作目标,而目前推出的手持式激光测距仪是脉冲式激光测距仪中又一新型测距仪,它不仅体积小、重量轻,还采用数字测相脉冲展宽细分技术,无需合作目标即可达到毫米级精度,测程已经超过100m,且能快速准确地直接显示距离。是短程精度精密工程测量、房屋建筑面积测量中最新型的长度计量标准器具。

几种氧分析仪原理及应用

1、电化学氧分析仪: 相当一部分的可燃性的、有毒有害气体都有电化学活性,可以被电化学氧化或者还原。利用这些反应,可以分辨气体成份、检测气体浓度。电化学气体传感器分很多子类: (1)原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫、氯气等。 (2)恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析的传感器。这种传感器已经成功地用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。 (3)浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器的成功实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。 (4)极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。 目前这种传感器的主要供应商遍布全世界,主要在德国、日本、美国,最近新加入几个欧洲供应商:英国、瑞士等。 2、顺磁式氧分析仪: 顺磁式氧分析仪:根据氧气的体积磁化率比一般气体高得多,在磁场中具有极高的顺磁特性的原理制成的一种测量气体中含氧量的分析仪器。顺磁式氧分析仪,也可叫做磁效应式氧分析仪、或磁式氧分析仪,我们通常通称为磁氧分析仪。它一般分为热磁对流式、压力机械式和磁压力式氧分析仪三种。 物质的磁特性:任何物质在外界磁场的作用下都会被磁化,呈现出一定的磁特性。物质在外加磁场中被磁化,其本身就会产生一个附加磁场,附加磁场与外磁场方向相同时,该物质就被外磁场吸引;附加磁场与外磁场方向相反时,则被外磁场排斥。因此,我们通常会将被外磁场吸引的物质称为顺磁性物质,或者说该物质具有顺磁性;而把被磁场排斥的物质称为逆磁性物质,或者说该物质具有逆磁性。气体介质处于磁场中也会被磁化,我们根据气体组分对磁场的吸引和排斥的不同,也将气体分为顺磁性和逆磁性。顺磁性气体有:O2、NO、NO2等;逆磁性气体有:H2、N2、CO2、CH4等。 磁性氧气传感器是磁性氧气分析仪的核心,但是目前也已经实现了“传感器化”进程。这种传感器只能用于氧气的检测,选择性极好。大气环境中只有氮氧化物能够产生微小的影响,但是由于这些干扰气体的含量往往很少,所以,磁氧分析技术的选择性几乎是唯一的! 当然磁氧根据传感器类型,又分为磁力机械式,热磁式氧分析仪,热磁式市场售价略低,

便携式VOCS气体检测仪

地址:深圳市龙华新区大浪下岭排新工业区14栋4楼官 网:https://www.360docs.net/doc/fe17996156.html, 便携式VOCS 气体检测仪

地址:深圳市龙华新区大浪下岭排新工业区14栋4楼官网:https://www.360docs.net/doc/fe17996156.html, 量程选择图表 产品介绍 VOCS 气体检测仪报警器、高精度、高分辨率,响应快速,超大容量锂电充电电池,采样距离远,LCD 背光显示,声光报警功能,上、下限报警值可任意设定,可进行零点和任意目标点校准,操作简单,具有误操作数据恢复功能. SK-800-C6H7N 泵吸式手持VOCS 检测仪是一种可连续监测VOCS 气体的检测设备。仪表应用了EFM 超低功耗的32位的ARM,传感器采用了世界最先进的进口固态电化学原理C6H7N 传感器,传感器部分的运用了两级高精度的低温漂的放大器和高稳定的电源处理电路,保障了仪表检测快速、测量精确、稳定、重复性好,使仪表达到了国际最先进和最稳定的气体检测仪和检漏仪。仪表采用超大的全彩3.5寸TFT 屏,支持中英文图形菜单操作,用户易操作。 便携式VOCS 气体检测仪参数 ●工作电压电池供电/可充电 波特率9600●测量气体VOCS 气体●检测原理电化学、PID ●采样精度±1%F.S ●响应时间<5S ●重复性±1%F.S ●工作湿度10-95%RH,(无冷凝)●工作温度-30~50℃●长期漂移≤±1%(F.S/年) ●存储温度-40 ~ 70℃ ●预热时间10S ●工作电流≤50mA ●工作气压86kpa-106kpa ●使用方式便携手持●质保期3年 ●输出接口多种●外壳材质防腐蚀塑料,铝合金●使用寿命3-5年●外型尺寸 ● 228×84×50.5mm(L×W ×H)不计采样管 ●测量范围详见选型表 ● 输出信号 USB 数据采集,30万组信息存储VOCS 气体探测仪量程选择表 量程(ppm)精度(ppm ) 0-500.010-1000.10-5000.10-10000.10-200010-50001 其他特殊量程 电话咨询技术工程师

热导检测器的原理

热导检测器的原理 热导检测器的原理及注意事项 热导检测器(TCD)是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(kat herometer或Catherometer),它是知名的整体性能检测器,属物理常数检测方法。热导检测器的原理及注意事项从以下几个方面给予 阐述。 一、工作原理 TCD由热导池及其检测电路组成。图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。载气流经参考池腔、进样器、色谱柱,从测量池腔排出。 R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。

当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。从电源E流出之电流I 在A 点分成二路i1、i2至 B 点汇合,而后回到电源。这时,两个热丝均处于被加热状态,维持一定的丝温T f,池体处于一定的池温 T w。一般要求T f与T w差应大于100℃以上,以保证热丝向池壁传导热量。当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1·R3=R2·R4, 或写成R1/R4=R2/R3。M、N二点电位相等,电位差为零,无信号输出。当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。M、N二点电位不等,即有电位差,输出信号。 二、热导池由热敏元件和池体组成 1 热敏元件 热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。 (1)热敏电阻热敏电阻由锰、镍、钴等氧化物半导体制成直径约为 0.1~1.0mm的小珠,密封在玻壳内。 热敏电阻有三个优点:①热敏电阻阻值大(5~50kΩ),温度系数亦大,故灵敏度相当高。可直接作μg/g级的痕量分析;②热敏电阻体积小,可作成0.25mm直径的小球,这样池腔可小至50μL;③热敏电阻对载气流的波动不敏感,它耐腐蚀性和抗氧化。 热敏电阻也有三个缺点:①热敏电阻#$%的响应值随温度的增加而快速下降,因此,通常热敏电阻要在120℃以下使用。使用范围受到极大的限制;②与热丝相比,热敏电阻的温度系数大,表现为其响应值对于温度的变化十分敏感。例如在60℃时,池温改变1℃,热敏电阻和热丝的基线漂移分别为10.4mV和5.0mV,前者比后者大一倍多,因此,热敏电阻的稳定性差,特别是在程升操作时,尤为突出;③热敏电阻对还原条件十分敏感,故不能用氢气作载气。 目前,只有下二情况可用热敏电阻作热敏元件;一是低温痕量分析;二是需小池体积配毛细管柱。其他情况很少用热敏电阻,而多用热丝。而且,近年热敏电阻可作成小池体积的优势也在逐渐下降。 (2)热丝一个性能优异的TCD,对热丝的要求主要考虑四点:①电阻率高,以便可在相同长度内得到高阻值;②电阻温度系数大,以便通桥流加热后得到高阻值;③强度好;④耐氧化或腐蚀。①、②是为了获得高灵敏度,同时丝体积小,可缩小池体积,制作微TCD。

相关文档
最新文档