光催化剂载体的分类及其应用发展

光催化剂载体的分类及其应用发展
光催化剂载体的分类及其应用发展

光催化剂载体的分类及其应用发展

摘要:近年来,为解决废水的降解,已经发展了很多治理技术,常见的有化学法,物理法等。光催化技术由于其热稳定性好,物美价廉,得到广泛应用,但是

光催化技术中催化剂粉末难分离,易失活限制其使用范围,故采用载体提高光催

化活性性能和回收率。

关键词:光催化,载体,回收率,发展;

1.前言

随着工业的大力发展,能源匮乏、环境污染日益加重,能源与环境问题是当代面临的两

大主题。在解决两大问题过程中,光催化崭露头角,作为一种极具魅力的技术被广泛研究。

光催化是一种具有反应条件温和、净化效果较好的工艺手段[1]。而一些纳米光催化剂,例如TiO2,粒径小,光生电子-空穴对复合率高,比表面积小,易于悬浮,凝聚,活性不稳定,循

环利用困难,并且分离回收之后的光催化剂也会有所损失,活性也有所降低。在保证光催化

性能的前提下,采用催化剂负载提高催化剂催化性能并且提高回收利用率[2-4]。为了有效解

决以上问题,本文就典型的光催化剂载体进行分类综述,分析其特点性能,并且指出其未来

应用发展方向。

2.光催化剂负载的分类及性能

光催化剂载体按大的分类,可分为无机载体和有机载体。

2.1硅基类载体

硅基载体包括SiO2,硅酸盐化合物以及衍生出来的硅酸盐产品等,种类繁多,易于获取、性质稳定,是良好的光催化剂载体。

2.1.1玻璃

常用的硅酸盐玻璃类载体有玻璃纤维,平板玻璃,微型玻璃珠等。Hui等[5]在多孔微型

玻璃珠上重复涂覆g-C3N4,550℃下煅烧,达到12wt%催化剂负载量。在可见光的照射下,

将所制备的黄色珠粒用以甲基橙的光催化降解,结果表明虽然负载后,g-C3N4光催化活性有

所下降,但成功的提高了催化剂回收率和稳定性,应用发展空间比较大。Wu等[6]以玻璃片

为载体,制备负载型氮掺杂二氧化钛,在可见光的照射下光催化降解亚甲基蓝,经过6h,降

解率达到62.58%,光催化剂复合载体表现出良好的光催化降解性能。

玻璃类材料物美价廉,模量高且部分具有良好的透光性,但玻璃是亚稳产物,热稳定性差,易折断。

2.1.2 硅胶

负载硅胶后的光催化剂比表面积大,吸附性能优异。除此之外,硅胶的存在提高了样品

的亲水性,Chen等[7]制备的硅胶负载型TiO2,对甲基橙的降解率比P25和TiO2提高了2和12倍。

2.2陶瓷基载体

日本二氧化钛光催化剂技术的应用现状和前景-可见光下的应用

日本二氧化钛光催化剂技术的应用现状和前景 【新华社东京1999年12月19日电】(记者张可喜)综述:日本二氧化钛光催化剂技术的应用现状和前景 二氧化钛(锐钛矿型二氧化钛),作为一种新的光催化剂,以其神奇的功能,近来在日本备受垂青,应用它制造的种种新产品相继问世,作为一种新的工业技术,正在日本兴起。 偶然发现的神奇功能 最初发现二氧化钛的催化剂效应的是日本的两位学者本多健一和藤岛昭。1969年,东京大学研究生院2年级研究生藤岛昭在导师本多健一副教授的指导下进行一项实验:用二氧化钛和白金作电极,放在水中,用光一照射,即使不通电,也能够把水分解为氧气和氢气。 二氧化钛的这种氧化分解功能被称为“本多—藤岛效应”。但是,随着实验、研究的加深,他们又发现,这种方法生产氢效率太低,难以成为大量生产氢能的技术。于是,这项研究成果就被搁置起来。4年前,藤岛教授有机会同来自东陶公司的客座研究员渡部俊也在另外一个科研项目中进行合作研究氧化钛的功能。一次,在交换意见时,渡部提出:“如果大量生产氢能不行,那么,把它应用在分解微量的有害化学物质方面,如清除厕所便器上的黄色污垢怎么样?” 二氧化钛确有这种功能。它在受到太阳光或荧光灯的紫外线的照射后,内部的电子就会发生激励。其结果,就产生了带负电的电子和带正电的空穴。电子使空气或水中的氧还原,生成双氧水,而空穴则向氧化表面水分子的方向起作用,产生氢氧(羟)基原子团。这些都是活性氧,有着强大的氧化分解能力,从而能够分解、清除附着在氧化钛表面的各种有机物。二氧化钛不仅有强大的氧化分解能力,而且还有自身不分解、几乎可永久性地起作用以及可以利用阳光和荧光灯的光线等优点。 这就是二氧化钛作为光催化剂在工业上得到应用的起点。 极其广泛的用途 目前,日本的企业、大学和政府科研机关都在积极地对二氧化钛的光催化剂功能进行应用开发。它的用途集中在环境保护和卫生医疗等领域。 这一技术首先被应用在高楼大厦、高速公路两旁的隔音墙、街道路灯等装置上。阳光(紫外线)的照射就能够清除积落在上面的尘埃和污染物质,如氧化氮、硫化物、氯化物等,不仅节省用以清扫的人力和财力,而且自然地净化了环境。东陶公司于1998年首先应用二氧化钛光催化剂制成厨房和浴池用瓷砖、汽车的喷涂材料。它的氧化分解功能使瓷砖和车身得以经常保持清洁。 把含有二氧化钛光催化剂的喷涂材料喷涂在公路表面,沾在路面的氧化氮便被分解为硝酸离子,下雨时被雨水冲洗掉,从而消除了氧化氮对环境的污染。“光催化剂公路”目前已经在千叶县进入试验阶段。 还可以把光催化剂涂敷在无纺布、玻璃和陶瓷等上,使之具有防污、脱臭、杀菌等性能。 东京大学尖端科学技术研究中心把非晶质状的二氧化钛光催化剂事先混入氯乙烯等树脂材料中,燃烧时它就会吸附氯等有害物质,落在地面,遇到阳光,

光催化剂的发展前景与突破

光催化剂的发展前景与突破 一、解决人类生存的重大问题 光催化学科是催化化学、光电化学、半导体物理、材料科学和环境科学等多学科交叉的新兴研究领域。光催化剂的研究应用一旦获得突破,将可以使环境和能源这两个二十一世纪人类面临的重大生存问题得以解决。 利用太阳能光催化分解水制氢H2O →H2 + ?O2 彻底解决能源问题利用环境光催化C6H6 + 7 ? O2 → 6 CO2 + 3H2O 彻底解决污染问题光催化以其室温深度反应和可直接利用太阳光作为光源来驱动反应等独特性能而成为一种理想的环境污染治理技术和洁净能源生产技术。 二、光催化研究领域急需解决的重大科技问题 目前以二氧化钛为基础的半导体光催化存在一些关键科学技术难题,使其广泛的工业应用受到极大制约,而这些问题的解决有赖于深入系统的基础研究。 最突出的问题在于: (1)量子效率低(~4%) 难以处理量大且浓度高的废气和废水,难以实现光催化分解水制氢的产业化。 (2)太阳能利用率低 由于TiO2半导体的能带结构(Eg=3.2eV)决定了其只能吸收利用紫外光或太阳光中的紫外线部分(太阳光中紫外辐射仅占~5 %)。 (3)多相光催化反应机理尚不十分明确

以半导体能带理论为基础的光催化理论难以解释许多实验现象,使得改进和开发新型高效光催化剂的研究工作盲目性大。 (4)光催化应用中的技术难题 如在液相反应体系中光催化剂的负载技术和分离回收技术,在气相反应体系中光催化剂的成膜技术及光催化剂活性稳定性问题。 上述关键问题也是目前国内外光催化领域的研究焦点,围绕这些问题开展进一步的研究不仅可望在光催化基础理论方面获得较大的突破,而且有利于促进光催化技术真正能在上述众多领域得到大规模广泛工业应用。 三、光催化领域的最新研究进展 近年来,光催化的基础与应用研究发展非常迅速,特别是在可见光诱导的新型光催化剂的研究、提高光催化过程效率的研究和光催化功能材料的研究等方面都取得了重要进展。 1、可见光诱导的光催化剂研究方面取得重大突破 采用固相合成、过渡金属离子和非金属离子掺杂、金属-有机络合物、表面敏化、半导体复合等多种方法,制备出了一系列新型非二氧化钛系或二氧化钛基可见光光催化材料,这些材料在可见光的照射下,能将H2O分解为H2和O2,或能有效降解空气、水中的有机和无机污染物。 2、为解决多相光催化过程效率偏低的问题,近年从提高催化剂自身的量子效率和改进反应过来程条件两个方面开展了大量的研究工作,取得了重要进展。 采用离子掺杂、半导体复合、纳米晶粒制备、超强酸化等方法,提高光生载流子的分离效率和抑制电子-空穴的重新复合,在一定程度上改善了光催化剂的量子效率。 3、光催化材料超亲水性的发现,开辟了光催化研究和应用的新领域 利用光催化膜的超亲水性和强氧化性等特性,研制开发出一系列光催化功能材料,如光催化自清洁抗雾玻璃、光催化自清洁抗菌陶瓷和光催化环保涂料等。这些功能材料已开始在建筑材料领域应用。与之相应的光催化膜功能材料的基础研究也有大量的文献报道。 4、超分散性及可见光活性实现突破 河南工业大学李道荣教授开发出了超分散性及可见光活性纳米二氧化钛光

纳米光催化剂研究现状与展望

年月纳米光催化剂研究现状与展望 马成乡 太原学院山西太原030032 摘要:随着水污染环境问题的日益严重,纳米光催化剂的研究也逐渐的开展起来。本文在分析影响纳米光催化剂性能因素的基础上,探讨了纳米光催化剂的研究现状,并对该材料的发展进行了相关探讨。 关键词:纳米光催化剂;影响因素;研究现状 随着我们国家经济的不断发展,生态环境的污染呈现出不断恶化的趋势,各种环境污染事件开始被社会媒体广泛的暴露出来。在种类比较多的环境污染物中,有机物的比例占到了50%以上。其中天然有机物对环境水体的污染比较小,大多数人工有机物对水体环境的污染程度较大。光催化技术与其他治理环境污染的技术相比,并不需要进行二次净化处理,而且这种纳米光催化剂可以循环使用。 一、影响纳米光催化剂的因素研究 影响纳米光催化剂的性能的因素主要体现在以下几个方面:1.催化剂的晶体结构:通常用作光催化剂的TiO 2具有两种晶体结构,分别为锐钦矿型和金红石型。有的研究结构表明,如果在锐钦矿型的晶体上进行金红石型晶体的生产,能够有效的促进锐钦矿型晶体多污染物的吸收。2.纳米催化剂粒径的影响:催化剂粒径的大小对其催化性能具有着比较重要的影响。很多研究结果表明,随着催化剂粒径的降低,光谱能够响应的范围也就越来越广。尤其当光催化剂离子达到纳米级别时,将会具有更高的氧化还原能力。但是随着纳米粒径的进一步减小,光的载流子在表面符合的概率会进一步增加,也就意味着光催化剂性能的下降。3.比表面积的影响:在反应物质比较充足的情况下,表面积越大,催化剂的活性也就越高;另外催化剂表面的活性中心是并不稳定的。 在反应体系与催化剂的反应条件方面主要影响因素表现在以下几个方面:1.反应的温度:一般来说温度对于光子的表面迁移和吸附以及解吸并不会产生比较明显的影响,所以在某种程度上问对对光催化反应的影响比较小。光催化剂在光的作用下进行各类有机物的催化反应过程时,反应速率与温度比较符合阿伦尼乌斯方程的描述。2.溶液PH 值得影响:溶液的PH 值对半导体的能带分布和表面的性质具有较高的影响。徐成杰等人在研究TiO2在降解有机物的过程中发现,当溶液的PH 值为7时,其降解的效率达到最低。3.光强度的影响:当环境中光的强度较低时,降解速率与光照强度程线性关系;中等光照强度,两者呈现平方根线性关系;当进一步增加光照强度时,催化速率的增加并不明显。 二、纳米光催化的掺杂改性以及复合半导体纳米催化剂的研究 当前纳米的光催化性能研究主要集中在TiO 2的光催化剂掺杂改性研究。在很多学者的研究之中,为了进一步减少自由电子与空穴相互复合的概率,可以在二氧化钛中掺杂少量的稀土离子。非金属离子的掺杂可以使得辐射光谱的范围进一步增强,进而可以提高可见光的利用效率。最近十年以来,双组份甚至是多组分掺杂已经成为纳米光催化剂TiO 2改性研究的热点。美国华盛顿大学的S AKATania 等学者采用溶胶凝胶法制备了La-N-TiO 2光催化剂,ES R 实验研究表明,这种经过掺杂改性的催化剂在500-678nm 光源的照耀下,对于乙醛的降解具有优异的效果。 最近几年以来半导体复合光催化剂的研究引起了学者的广泛注意。从本质上来说,半导体复合就是指一种物质粒子对另外一种物质粒子的修饰。目前的研究结果表明复合半导体比单一半导体具有更好的光催化效果。Tang 等人制备了CaIn 2O 4复合半导体,在亚甲基蓝120min 的脱色实验内,其脱色率可以达到96%。T ony 等人研制除了Fe 2O 3-S nO 2、CuO-SnO 2等类型的复合纳米半导体光催化剂。 三、展望 纳米光催化剂对当前环境问题的解决提供了比较合理的方案,但是目前环境中的光催化剂研究还停留在实验室阶段,并没有得到广泛的应用。目前影响纳米光催化性能的因素主要包括了催化剂的晶体结构、比表面积、反应温度、PH 值等因素;其次对纳米光催化的掺杂改性以及复合半导体纳米催化剂的研究现状进行了一定的分析,指出在以后的污水处理方面,应该设计比较简单的工艺组合反应来处理废水中的污染物,使得纳米光催化剂能够真正的从实验室走向社会。 参考文献: [1]GuoX.,Yang J.,Deng Y.et.al Hydrothermal synthesis and photoluminescence of hierarchic al lead tungstate superstructures re f f ects of reaction temperature and surf actanats[J].European Journalof Inorganic Chemistry,2013,2010(11):1736-1742. [2]SeguraPA,Frane oisM,Ga gnonC,etal.Reviewof theoeeurreneeo f anti-inf eetivesin contaminatedwastew atersandnatUr alanddrinkingw a ters[J].EnvironHealthpersP,2012,117(5):675-684. 管理创新 2014129

纳米光催化TIO2的应用领域及现状

自1972 年, a.fujishima和k. honda在n型半导体tio2电极上发现了水的光电催化分解作用之后,国内外的研究人员对tio2产生了深厚的兴趣。tio2氧化活性较高,化学稳定性好,对人体无毒害,成本低,无污染,应用范围广,因而最受重视,是目前应用最广泛的纳米光催化材料,也是最具有开发前途的绿色环保型催化剂。应用领域纳米tio2 能处理多种有毒化合物,包括工业有毒溶剂、化学杀虫剂、木材防腐剂、染料及燃料油等,迄今详细研究过的有机物达100种以上。此外,tio2光催化技术也被用于无机污染物的处理。利用光催化法在柠檬酸根离子存在下,可以使hg2+被还原成hg而沉积在tio2表面;此法同样适用于铅。tio2光催化可能降解的无机污染物还有氰化物,so2、h2s、no和no2等有害气体也能被吸附在tio2表面,在光的作用下转化成无毒无害物质。 1.空气净化当前解决空气污染主要有物理吸附法(活性炭)、臭氧净化法、静电除尘法、负氧离子净化法等,但是这些方法自身都有着难以克服的弊端,所以一直难以大范围地推广使用。与其相比,利用纳米光催化tio2净化空气则有如下优点:降解有机物的最终产物是co2和h2o,没有其它毒副产物出现,不会造成二次污染;纳米微粒的量子尺寸效应导致其吸收光谱的吸收边蓝移,促进半导体催化剂光催化活性的提高;纳米材料比表面积很大,增强了半导体光催化剂吸附有机污染物的能力。利用纳米光催化tio2治理空气污染已经得到广泛应用,国内外都出现了很多产品,例如纳米空气净化器、中央空调净化模块、光触媒涂料等,市场前景非常广阔。 2.水处理传统的水处理方法效率低、成本高、存在二次污染等问题,污水治理一直得不到好的解决。纳米技术的发展和应用很可能彻底解决这一难题。研究表明,纳米tio2能处理多种有毒化合物,可以将水中的烃类、卤代烃、酸、表面活性剂、染料、含氮有机物、有机磷杀虫剂、木材防腐剂和燃料油等很快地完全氧化为co2、h2o等无害物质。此外,纳米tio2在降解毛纺染料废水、有机溴(或磷)杀虫剂等到方面也有一定效果。无机物在tio2表面也具有光化学活性。例如,废水中的cr6+具有较强的致癌作用,在酸性条件下,tio2对cr6+具有明显的光催化还原作用。在ph 值为2.5的体系中,光照1h 后,cr6+被还原为cr3+。还原效率高达85% 。迄今为止,已经发现有3000多种难降解的有机化合物可以在紫外线的照射下通过纳米tio2或zno而迅速降解,特别是当水中有机污染物浓度很高或用其他方法很难降解时,这种技术有着明显的优势。德国开发出了利用阳光和光催化剂对污水进行净化的装置,每小时可净化100-150升水。虽然利用纳米光催化tio2进行水处理目前还未得到广泛应用,但我们可以看出它未来的应用前景必将非常广阔。 3.杀菌消毒纳米tio2的杀菌作用是利用光催化产生的空穴和形成于表面的活性氧类与细菌细胞或细胞内的组成成分进行生化反应,使细菌头单元失活而导致细胞死亡,并且能使细菌死亡后产生的内毒素分解。研究表明:将tio2涂覆在陶瓷、玻璃表面,经室内荧光灯照射1小时后可将其表面99%的大肠杆菌、绿脓杆菌、金黄色葡萄球菌等杀死。目前国外新型无机抗菌剂的开发与抗菌加工技术进展较快,已经形成系列化产品,其中tio2高催化活性纳米抗菌剂是市场前景最好的品种。日本在tio2光催化抗菌材料研究与应用起步较早,日本东陶等多家公司开发的光催化tio2抗菌瓷砖和卫生洁具已经大量投放市场。日本将今后发展的目光投向欧美国际抗菌产品市场,预计海外市场将是其国内市场的10倍,他们也极其关注中国抗菌塑料近年来的迅猛发展,纷纷抢滩中国市场。应用现状在当今世界性的环境污染问题越来越受到各国政府重视的情况下,利用纳米材料进行环境治理已经成为各国高科技竞争中的一个热点。在纳米光催化方面日本、美国等国家均投入巨资开展研究与开发工作,并大力推动其产业化,目前已有多种产品出现,其中所使用的纳米光催化材料绝大多数都是tio2。

光催化材料的研究与进展

光催化材料的研究与进展 洛阳理工学院吴华光B08010319 摘要: 光催化降解污染物是近年来发展起来的一种节能、高效的绿色环保新技术.它在去除空气中有害物质,废水中有机污染物的光催化降解,废水中重金属污染物的降解,饮用水的深度的处理,除臭,杀菌防霉等方面都有重要作用,但是作为新功能材料,它也面临着很多局限性:催化效率不高,催化剂产量不高,有些催化剂中含有有害重金属离子可能存在污染现象。但是我们也应当看到他巨大的发展潜力和市场利用价值,作为处理环境污染的一种方式,它以零二次污染,能源消耗为零,自发进行无需监控等优势必将居于污染控制的鳌头。本文介绍了一些关于光催化研究的制备与发展方向的思考,光催化正在以TiO 2 ,ZnO为主导多种非重金属离子掺杂,趋于多样化的制备方法方向发展。 关键字:光催化催化效率 正文: 光催化(Photocatalysis)是一种在催化剂存在下的光化学反应,是光化学与催化剂的有机结合,因此光和催化剂是光催化的必要条件。“光催化”定义为:通过催化剂对光的吸收而进行的催化反应(a catalytic reaction involving light absorption by a catalyst or a substrate)。氧化钛(TiO 2 )具有稳定的结构、优良的光催化性能及无毒等特点,是近年研究最多的光催化剂, 但是,TiO 2 具有大的禁带宽度,其值为3.2 eV,只能吸收波长A≤387 11111的紫外光,不能有效地利用太阳能,光催化或能量转换效率偏低,使它的应用受到限制。因此,研制新型光催化剂、提高光催化剂的催化活性仍是重要的研究课题]1[。复合掺杂不同半导体,利用不同半导体导带和价带能级的差异分离光生载流子,降低复合几率,提高量子效率,成为提高光催化材料性能的有效方法5]-[2。 与一元氧化物如TiO 2 和ZnO等光催化剂相比,复合氧化物光催化剂,如 ZnO- SnO 2TiO 2 -SnO 2 和WO3- TiO 2 等体系具有吸收波长更长和光催化效率更 高等特点因而成为研究热点. 一、常用的光催化剂的制备方法 (一)水热合成法。 热合成反应是在特制的密封容器中(能够产生一定的压力),以水溶液作为反应介质,通过对反应体系加热或接近其临界温度而产生高压,从而进行材料的合成与制备的一种有效方法。 (二)溶剂热合成法 溶剂热合成技术是在水热法的基础上,以有机溶剂代替水作为介质,采用类似水热合成的原理制备纳米材料,极大的扩展水热法的应用范围。 (三)溶胶-凝胶法

光催化材料在环境保护中的应用

光催化材料在环境保护中的应用 谭强150110115 摘要:光催化材料对于环境的保护有着深远的意义,近几年来,光催化降解污染物发展成为了一种节能、高效的绿色环保新技术。综述了光催化材料的反应机理和种类,阐述了影响光催化反应的条件和提高反应的效率等问题以及其在环保领域的应用,并提出了其今后的发展方向和前景的展望。同时又介绍了光催化材料的特点及发展历程,对光催化纳米材料在处理水污染、治理大气污染、控制噪声污染等方面的应用进行了综合性的评述。作为新功能材料,它也存在着一些局限性,例如:催化效率不高,催化剂产量不高,部分催化剂中含有有害重金属离子可能存在污染现象。但是我们也应当看到它隐含的巨大发展潜力和市场利用价值,作为处理环境污染的一种方式,它凭借零二次污染,能源消耗为零,自发进行无需监控等一些优势必将居于污染控制的鳌头。 关键字:光催化材料应用催化效率环境保护 引言 光催化是半导体材料的独特性能之一 , 主要应用于环境保护方面。光催化材料是指通过该材料、在光的作用下发生的光化学反应所需的催化剂,世界上能作为光催化材料的有很多,包括二氧化钛、氧化锌、氧化锡、二氧化锆、硫化镉等多种氧化物硫化物半导体,其中二氧化钛(Titanium Dioxide)因其氧化能力强,化学性质稳定无毒,成为世界上最当红的纳米光触媒材料。1972年Fujishima 等人发现了TiO2微粒经过光的照射能使水发生氧化还原反应并生成氢气,是光催化反应研究的开始。特别是在近年来由于日益严重的污染状况 , 有机物的光催化降解研究受到了非常大的重视。经过了近30年来的研究 ,特别是对光催化降解有机污染物的研究,使光催化在环境保护方面取得了比较大的进展。 由于经济的发展迅速,造成了环境的很大污染,迫使人们不断寻求方便快捷的处理污染的方法。通过不断研究,已发现有3000多种难降解的有机化合物可以在紫外线的照射下通过纳米 TiO 来迅速降解。特别是在水中有机污染物浓度较低或者用其它方法很难降解时,该技术就更显示出其更明显的优势和价值。 1.光催化材料的反应机理

光催化材料研究进展

光催化材料研究进展 20 世纪以来, 人们在享受迅速发展的科技所带来的舒适和方便的同时, 也品尝着盲目和短视造成的生存环境不断恶化的苦果, 环境污染日趋严重。为了适应可持续发展的需要, 污染的控制和治理已成为一个亟待解决的问题。在各种环境污染中, 最普遍、最重要和影响最大的是化学污染。因而, 有效的控制和治理各种化学污染物是环境综合治理的重点, 开发化学污染物无害化的实用技术是环境保护的关键。目前使用的具有代表性的化学污染物处理方法主要有: 物理吸附法、化学氧化法、微生物处理法和高温焚烧法。这些方法对环境的保护和治理起重大作用, 但是这些技术不同程度的存在着或效率低, 不能彻底将污染物无害化, 产生二次污染, 或使用围窄, 仅适合特定的污染物而不适合大规模推广应用等方面的缺陷[1]。光催化氧化技术是一门新兴的有广阔应用前景的技术, 特别适用于生化、物化等传统方法无法处理的难降解物质的处理。其中TiO 2、ZnO、CdS、WO 3、Fe 2 O 3等半导体光催化技术因其可以直接利用光能而被许多研究者看好[2]。 1.1 TiO 2光催化概述 1.1.1 TiO 2的结构性质 二氧化钛是一种多晶型化合物,常见的n型半导体。由于构成原子排列方式不同,TIO2在自然界主要有三种结晶形态分布:锐钛矿型、金红石型和板钛矿型。三种晶体结构的TIO2中,锐钛矿和金红石的工业用途较广。和锐钛矿相比,金红石的原子排列要致密得多,其相对密

度、折射率以及介电常数也较大,具有很高的分散光射线的能力,同时具有很强的遮盖力和着色力,可用作重要的白色涂料。锐钛矿在可见光短波部分的反射率比金红石型高,普遍拥有良好的光催化活性,在光催化处理环境污染物方面有着极为广阔的应用前景[3]。 1.1.2TiO2光催化反应机理 半导休表面多相光催化的基本原理:用能量高于禁带宽度(Eg)的光照射半导体表面时,价带上的电子被激发,跃迁到异带上,同时在价带产生相应的空穴,这样就半导体部生成电子(e-)—空穴(h+)随后,.电子-空穴对迁移到粒子表面不同位置、与吸附半导体表面的反应物发生相应的氧化或还原反应,同时激发态的二氧化钛重新回归到基态。与电荷分离相逆的是电子-空穴对的复合过程,这是半导体光催化剂失活的主要原因。电子-空穴对的复合将在半导体体或表面发生,并释放热量。 1.1.3 TiO2催化剂的局限及改性途径 作为光催化剂,虽然二氧化钛具有其他催化剂难以比拟的无毒、价廉以及稳定等优点。但是目前二氧化钛光催化还存在着一些不足和局限,致使其不能再现实中得到大规模应用。究其原因,主要在于二氧化钛催化剂对太的利用率不高并且其量子产率太低。锐钛矿相和金红石相二氧化铁的带隙分别为3.2eV和3.0 eV,对应的吸收阈值分别为420nm和380nm。它们所吸收的光的波长主要集中在紫外区,而在照射到地球表面的太中,紫外光部分所占的比例还不到5%。从利用太阳能的角度来看,二氧化钛对太的利用率较低,因此,如何缩小其带隙,利

光催化原理及应用

光催化原理及应用 起源 光触媒,是一个外来词,起源于日本,由于日本文字写成“光触媒”,所以中国人就直接把她命名为“光触媒”。其实日文“光触媒”翻译成中文应该叫“光催化剂”翻译成英文叫“photo catalyst”。光触媒于1967年被当时还是东京大学研究生的藤岛昭教授发现。在一次试验中对放入水中的氧化钛单结晶进行了光线照射,结果发现水被分解成了氧和氢。这一效果作为“ 本多· 藤岛效果” (Honda-Fujishima Effect)而闻名于世,该名称组合了藤岛教授和当时他的指导教师----东京工艺大学校长本多健一的名字。 这种现象相当于将光能转变为化学能,以当时正值石油危机的背景,世人对寻找新能源的期待甚为殷切,因此这一技术作为从水中提取氢的划时代方法受到了瞩目,但由于很难在短时间内提取大量的氢气,所以利用于新能源的开发终究无法实现,因此在轰动一时后迅速降温。 1992年第一次二氧化钛光触媒国际研讨会在加拿大举行,日本的研究机构发表许多关于光触媒的新观念,并提出应用于氮氧化物净化的研究成果。因此二氧化钛相关的专利数目亦最多,其它触媒关连技术则涵盖触媒调配的制程、触媒构造、触媒担体、触媒固定法、触媒性能测试等。以此为契机,光触媒应用于抗菌、防污、空气净化等领域的相关研究急剧增加,从1971年至2000年6月总共有10,717件光触媒的相关专利提出申请。二氧化钛 TiO 2 光触媒的广泛应用,将为人们带来清洁的环境、健康的身体。 催化剂是加速化学反应的化学物质,其本身并不参加反应。典型的天然光催化剂就是我们常见的叶绿素,在植物的光合作用中促进空气中的二氧化碳和水合成为氧气和碳水化合物。 光触媒是一种纳米级的金属氧化物材料,它涂布于基材表面,在光线的作用下,产生强烈催化降解功能:能有效地降解空气中有毒有害气体;能有效杀灭多种细菌,并能将细菌或真菌释放出的毒素分解及无害化处理;同时还具备除臭、抗污等功能。光催化是在光的辐照下使催化剂周围的氧气和水转化成极具活性的氧自由基,氧化力极强,几乎可以分解所有对人体或环境有害的有机物质总的来说纳米光触媒技术是一种纳米仿生技术,用于环境净化,自清洁材料,先进新能源,癌症医疗,高效率抗菌等多个前沿领域。 早在1839 年, Becquere 就发现了光电现象, 然而未能对其进行理论解释。直到1955 年, Brattain 和Gareet才对光电现象进行了合理的解释, 标志着光电化学的诞生。1972 年, 日本东京大学Fu jishmi a和H onda研究发现[ 3] , 利用二氧化钛单晶进行光催化反应可使水分解成氢和氧。这一开创性的工作标志着光电现象应用于光催化分解水制氢研究的全面启动。在过去30 年里, 人们在光催化材料开发与应用方面的研究取得了丰硕的成果。 以二氧化钛为例, 揭示了其晶体结构、表面羟基自由基以及氧缺陷对量子效率的影响机制; 采用元素掺杂、复合半导体以及光敏化等手段拓展其光催化活性至可见光响应范围; 通过在其表面沉积贵金属纳米颗粒可以提高电子- 空穴对的分离效率, 提高其光催化活性。尽管人们对光催化现象的认知与应用取得了长足的进步, 然而受认知手段与认知水平的限制, 目前对光催化作用机理的研究成果仍不足以指导光催化技术的大规模工业化应用, 亟待大力开展光催化基本原理研究工作以促进这一领域的发展。另一方面, 现有光催化材料的光响应范围窄, 量子转换效率低, 太阳能利用率低, 依然是制约光催化材料应用的瓶颈。寻找和制备高量子效率光催化材料是实现光能转换的先决条件, 也是光催化材料研究者所需要解决的首要任务之一。 光催化机理: 半导体材料在紫外及可见光照射下,将光能转化为化学能,并促进有机物的合成与分解,这一过程称为光催化。当光能等于或超过半导体材料的带隙能量时,电子从价带(VB)激发到导带(CB)形成光生载流子(电子-空穴对)。在缺乏合适的电子或空穴捕获剂时,吸收的光能因为载流子复合而以热的形

光催化剂

光催化剂概述 第一篇 通俗意义上讲触媒就是催化剂的意思,光触媒顾名思义就是光催化剂。催化剂是加速化学反应的化学物质,其本身并不参与反应。光催化剂就是在光子的激发下能够起到催化作用的化学物质的统称。 光催化技术是在20世纪70年代诞生的基础纳米技术,在中国大陆我们会用光触媒这个通俗词来称呼光催化剂。典型的天然光催化剂就是我们常见的叶绿素,在植物的光合作用中促进空气中的二氧化碳和水合成为氧气和碳水化合物。总的来说纳米光触媒技术是一种纳米仿生技术,用于环境净化,自清洁材料,先进新能源,癌症医疗,高效率抗菌等多个前沿领域。 世界上能作为光触媒的材料众多,包括二氧化钛(TiO2)、氧化锌(ZnO)、氧化锡(SnO2)、二氧化锆(ZrO2)、硫化镉(CdS)等多种氧化物硫化物半导体,其中二氧化钛(Titanium Dioxide)因其氧化能力强,化学性质稳定无毒,成为世界上最当红的纳米光触媒材料。在早期,也曾经较多使用硫化镉(CdS)和氧化锌(ZnO)作为光触媒材料,但是由于这两者的化学性质不稳定,会在光催化的同时发生光溶解,溶出有害的金属离子具有一定的生物毒性,故发达国家目前已经很少将它们用作为民用光催化材料,部分工业光催化领域还在使用。 二氧化钛是一种半导体,分别具有锐钛矿(Anatase),金红石(Rutile)及板钛矿(Brookite)三种晶体结构,其中只有锐钛矿结构和金红石结构具有光催化特性。 二氧化钛是氧化物半导体的一种,是世界上产量非常大的一种基础化工原料,普通的二氧化钛一般称为体相半导体以与纳米二氧化钛相区分。具有Anatase或者Rutile结构的二氧化钛在具有一定能量的光子激发下[光子激发原理参考光触媒反应原理]能使分子轨 道中的电子离开价带(Valence band)跃迁至导带(conduction band)。从而在材料价带形成光生空穴[Hole+],在导带形成光生电子[e-],在体相二氧化钛中由于二氧化钛颗粒很大,光生电子在到达导带开始向颗粒表面活动的过程中很容易与光生空穴复合,从而从宏观上我们无法观察到光子激发的效果。但是纳米的二氧化钛颗粒由于尺寸很小,所以电子比较容易扩散到晶体表面,导致原本不带电的晶体表面的2个不同部分出现了极性相反的2个微区-光生电子和光生空穴。由于光生电子和光生空穴都有很强的能量,远远高出一般有机污染物的分子链的强度,所以可以轻易将有机污染物分解成最原始的状态。同时光生空穴还能与空气中的水分子形成反应,产生氢氧自由基亦可分解有机污染物并且杀灭细菌病毒。这种在一个区域内2个微区截然相反的性质并且共同达到效果的过程是纳米技术典型的应用,一般称之为二元论。该反应微区称之为二元协同界面。

纳米光催化tio2的应用领域及现状

纳米光催化tio2的应用领域及现状 自1972年,A.Fujishima和K.Honda在n型半导体TiO2电极上发现了水的光电催化分解作用之后,国内外的研究人员对TiO2产生了深厚的兴趣。TiO2氧化活性较高,化学稳定性好,对人体无毒害,成本低,无污染,应用范围广,因而最受重视,是目前应用最广泛的纳米光催化材料,也是最具有开发前途的绿色环保型催化剂。应用领域纳米TiO2能处理多种有毒化合物,包括工业有毒溶剂、化学杀虫剂、木材防腐剂、染料及燃料油等,迄今详细研究过的有机物达100种以上。此外,TiO2光催化技术也被用于无机污染物的处理。利用光催化法在柠檬酸根离子存在下,可以使Hg2+被还原成Hg而沉积在TiO2表面;此法同样适用于铅。TiO2光催化可能降解的无机污染物还有氰化物,SO2、H2S、NO和NO2等有害气体也能被吸附在TiO2表面,在光的作用下转化成无毒无害物质。1.空气净化当前解决空气污染主要有物理吸附法(活性炭)、臭氧净化法、静电除尘法、负氧离子净化法等,但是这些方法自身都有着难以克服的弊端,所以一直难以大范围地推广使用。与其相比,利用纳米光催化TiO2净化空气则有如下优点:降解有机物的最终产物是CO2和H2O,没有其它毒副产物出现,不会造成二次污染;纳米微粒的量子尺寸效应导致其吸收光谱的吸收边蓝移,促进半导体催化剂光催化活性的提高;纳米材料比表面积很大,增强了半导体光催化剂吸附有机污染物的能力。利用纳米光催化TiO2治理空气污染已经得到广泛应用,国内外都出现了很多产品,例如纳米空气净化器、中央空调净化模块、光触媒涂料等,市场前景非常广阔。2.水处理传统的水处理方法效率低、成本高、存在二次污染等问题,污水治理一直得不到好的解决。纳米技术的发展和应用很可能彻底解决这一难题。研究表明,纳米TiO2能处理多种有毒化合物,可以将水中的烃类、卤代烃、酸、表面活性剂、染料、含氮有机物、有机磷杀虫剂、木材防腐剂和燃料油等很快地完全氧化为CO2、H2O等无害物质。此外,纳米TiO2在降解毛纺染料废水、有机溴(或磷)杀虫剂等到方面也有一定效果。无机物在TiO2表面也具有光化学活性。例如,废水中的Cr6+具有较强的致癌作用,在酸性条件下,TiO2对Cr6+具有明显的光催化还原作用。在pH值为2.5的体系中,光照1h后,Cr6+被还原为Cr3+。还原效率高达85%。迄今为止,已经发现有3000多种难降解的有机化合物可以在紫外线的照射下通过纳米TiO2或ZnO而迅速降解,特别是当水中有机污染物浓度很高或用其他方法很难降解时,这种技术有着明显的优势。德国开发出了利用阳光和光催化剂对污水进行净化的装置,每小时可净化100-150升水。虽然利用纳米光催化TiO2进行水处理目前还未得到广泛应用,但我们可以看出它未来的应用前景必将非常广阔。3.杀菌消毒纳米TiO2的杀菌作用是利用光催化产生的空穴和形成于表面的活性氧类与细菌细胞或细胞内的组成成分进行生化反应,使细菌头单元失活而导致细胞死亡,并且能使细菌死亡后产生的内毒素分解。研究表明:将TiO2涂覆在陶瓷、玻璃表面,经室内荧光灯照射1小时后可将其表面99%的大肠杆菌、绿脓杆菌、金黄色葡萄球菌等杀死。目前国外新型无机抗菌剂的开发与抗菌加工技术进展较快,已经形成系列化产品,其中TiO2高催化活性纳米抗菌剂是市场前景最好的品种。日本在TiO2光催化抗菌材料研究与应用起步较早,日本东陶等多家公司开发的光催化TiO2抗菌瓷砖和卫生洁具已经大量投放市场。日本将今后发展的目光投向欧美国际抗菌产品市场,预计海外市场将是其国内市场的10倍,他们也极其关注中国抗菌塑料近年来的迅猛发展,纷纷抢滩中国市场。应用现状在当今世界性的环境污染问题越来越受到各国政府重视的情况下,利用纳米材料进行环境治理已经成为各国高科技竞争中的一个热点。在纳米光催化方面日本、美国等国家均投入巨资开展研究与开发工作,并大力推动其产业化,目前已有多种产品出现,其中所使用的纳米光催化材料绝大多数都是TiO2。 纳米光催化tio2的应用领域及现状:1.日本日本对于纳米TiO2光催化的研究较早,现在已有多家日本公司生产出了多种纳米光催化的实用产品,见表1:表1日本前十大催化公司及其主要产品公司名称

纳米光催化路面材料研究进展及前景分析

龙源期刊网 https://www.360docs.net/doc/fe2697121.html, 纳米光催化路面材料研究进展及前景分析 作者:龚兴亮毛晓鸥 来源:《城市建设理论研究》2013年第03期 摘要:综述了国内外纳米光催化路面材料的研究进展,并对研究进程中存在的问题进行了分析,认为在沥青路面中的应用存在较多问题,若要实现光催化材料在路面上的大规模推广,需突破光催化材料应用形式这一关键问题。 关键词:光催化;汽车尾气;路面;降解 Current Progress and Perspectives of Nanophotocatalysts Applied on Pvement Li Peilin1, Zhou Yan1 (1.Chongqing ZhiXiang Cuseway Thnology Egineering Co LTD, Chongqing 400060) Abstract: The recent development and progress of nanophotocatalysts Applied on Pvement are reviewed. Some problems in the current study and the future trend of development are briefly analyzed. The application on bituminous pavement has many problems. It is suggested that attention of the future investigation on the nanophotocatalysts should focus on forms of application. Key words: Photoeatalysis; Automobile Exhaust; Pavement; Degradation 中图分类号:K477文献标识码:A 文章编号: 半导体光催化技术是一门新兴的环保技术,光催化是指光催化剂吸收光后对物质所发生的光化学反应,可将光能转化为化学能,促进有机物的合成或分解,自1972年日本东京大学藤岛昭等人发现现受辐射后的TiO2 电极上能发生持续氧化还原反应以来[1],半导体光催化研究正处于快速发展阶段,已被成功应用于工业废气废水的降解处理[2-7]。由于汽车尾气排出后首先接触的是路面,若能将光催化剂负载于路面,利用阳光净化汽车尾气中的污染物,则能成为一种新型防治汽车尾气污染的方法。 1.光催化降解汽车尾气机理分析 光催化剂在吸收光线能量后,可将吸附于表面的一氧化碳、氮氧化合物和碳氢化合物转化为二氧化碳和硝酸盐等,从而实现对汽车尾气污染物的降解。下面以二氧化钛为例介绍光催化剂对污染物的降解过程:二氧化钛受紫外线激发后生成光生电子与空穴: 光催化材料表面吸附的O2与和反应生成具有强氧化性的活性氧:

光催化研究进展

光催化材料最新研究进展 1.简介 当今世界正面临着能源短缺和环境污染的严峻挑战,解决这两大问题是人类社会实现可持续发展的迫切需要。中国既是能源短缺国,又是能源消耗大国。近年来,伴随社会经济的快速发展,中国石油对外依存度不断攀升,已经严重影响国家经济健康发展和社会稳定,并威胁到国家能源安全。同时,石油等化石能源的过度消耗导致污染物大量排放,加剧了环境污染,尤其是我国近年来雾霾天气的频繁出现,严重影响了人民的生活和身体健康,开发和利用太阳能是解决这一难题的有效方法之一。 我国太阳能资源十分丰富,每年可供开发利用的太阳能约1.6×1015W,大约是2010年中国能源消耗的500倍。从长远看,太阳能的有效开发与利用对优化中国能源结构具有重大意义。然而太阳能存在能量密度低、分布不均匀、昼夜/季节变化大、不易储存等缺点。 如图1所示,光催化技术可以将太阳能转换为氢能。氢能能量密度高、清洁环保、使用方便,被认为是一种理想的能源载体。目前氢能的利用技术逐渐趋于成熟,以氢气为燃料的燃料电池已开始实用化,氢气汽车和氢气汽轮机等一些“绿色能源”产品已开始投入市场。氢利用技术的成熟提高了对制氢技术快速发展的要求。高效、低成本、大规模制氢技术的开发成为了“氢经济”时代的迫切需求。自20世纪70年代日本科学家利用TiO2光催化分解水产生氢气和氧气以来,光催化材料一直是国内外研究的热点之一。光催化太阳能制氢方法是一种成本低廉、集光转换与能量存储于一体的方法,该领域的研究越来越受到各国的广泛关注。国际上光催化材料研究竞争十分激烈。光催化材料不仅具有分解水制氢的功能,而且具有环境净化功能。利用光催化材料净化空气和水已成为当今世界引人注目的高新环境净化技术。太阳能转换效率是制约光催化技术走向实用化的关键因素之一,光催化材料的光响应范围决定了太阳能转换氢能的最大理论转化效率。光催化领域经过40余年的发展和积累,正孕育着重大突破,光催化太阳能转换效率不断提高,光催化技术正处于迈向大规模应用的关键阶段,国际竞争十分激烈。 在能源和环境问题强大需求的推动下,国际上光催化领域的研究已经从最初的实验现象发现,逐步由基础理论研究转向光催化材料的应用基础研究;由光催化材料探索逐步转向高效光催化材料体系设计。在研究手段上,已经能够从分子、原子水平上揭示光催化材料基本物性以及光催化材料的构-效关系,从飞秒时间尺度上研究光催化反应过程与反应机理。包括第一性原理与分子动力学模拟在内的现代科学计算方法,逐渐在光催化材料物性与光催化反应机理研究方面起到重要作用。以半导体物理学、材料科学和催化化学为基础的较为完整的光催化基础理论体系已经初步建立。光催化已经发展为物理、化学、能源和环境等多学科交叉领域,成为了热点研究领域之一。光催化领域最新的研究进展主要集中体现在认识光催化太阳能转换效率限制因素;揭示光催化机理与发展表征手段;设计基于新奇物理机制的光催化材料(改善光催化反应效率)阐明光催化材料构-效关系以及构建复杂、高选择性环境净化体系等方面。

光催化剂的发展前景与突破

一、解决人类生存的重大问题 光催化学科是催化化学、光电化学、半导体物理、材料科学和环境科学等多学科交叉的新兴研究领域。光催化剂的研究应用一旦获得突破,将可以使环境和能源这两个二十一世纪人类面临的重大生存问题得以解决。 利用太阳能光催化分解水制氢H2O → H2 + ? O2 彻底解决能源问题 利用环境光催化 C6H6 + 7 ? O2 → 6 CO2 + 3H2O 彻底解决污染问题光催化以其室温深度反应和可直接利用太阳光作为光源来驱动反应等独特性能而成为一种理想的环境污染治理技术和洁净能源生产技术。 二、光催化研究领域急需解决的重大科技问题 目前以二氧化钛为基础的半导体光催化存在一些关键科学技术难题,使其广泛的工业应用受到极大制约,而这些问题的解决有赖于深入系统的基础研究。 最突出的问题在于: (1)量子效率低(~4%) 难以处理量大且浓度高的废气和废水,难以实现光催化分解水制氢的产业化。 (2)太阳能利用率低 由于TiO2半导体的能带结构(Eg=决定了其只能吸收利用紫外光或太阳光中的紫外线部分(太阳光中紫外辐射仅占~5 %)。

(3)多相光催化反应机理尚不十分明确 以半导体能带理论为基础的光催化理论难以解释许多实验现象,使得改进和开发新型高效光催化剂的研究工作盲目性大。 (4)光催化应用中的技术难题 如在液相反应体系中光催化剂的负载技术和分离回收技术,在气相反应体系中光催化剂的成膜技术及光催化剂活性稳定性问题。 上述关键问题也是目前国内外光催化领域的研究焦点,围绕这些问题开展进一步的研究不仅可望在光催化基础理论方面获得较大的突破,而且有利于促进光催化技术真正能在上述众多领域得到大规模广泛工业应用。 三、光催化领域的最新研究进展 近年来,光催化的基础与应用研究发展非常迅速,特别是在可见光诱导的新型光催化剂的研究、提高光催化过程效率的研究和光催化功能材料的研究等方面都取得了重要进展。 1、可见光诱导的光催化剂研究方面取得重大突破 采用固相合成、过渡金属离子和非金属离子掺杂、金属-有机络合物、表面敏化、半导体复合等多种方法,制备出了一系列新型非二氧化钛系或二氧化钛基可见光光催化材料,这些材料在可见光的照射下,能将H2O分解为H2和O2,或能有效降解空气、水中的有机和无机污染物。 2、为解决多相光催化过程效率偏低的问题,近年从提高催化剂自身的量子效率和改进反应过来程条件两个方面开展了大量的研究工作,取得了重要进展。 采用离子掺杂、半导体复合、纳米晶粒制备、超强酸化等方法,提高光生载流子的分离效率和抑制电子-空穴的重新复合,在一定程度上改善了光催化剂的量子效率。 3、光催化材料超亲水性的发现,开辟了光催化研究和应用的新领域 利用光催化膜的超亲水性和强氧化性等特性,研制开发出一系列光催化功能材料,如光催化自清洁抗雾玻璃、光催化自清洁抗菌陶瓷和光催化环保涂料等。这些功能材料已开始在建筑材料领域应用。与之相应的光催化膜功能材料的基

光催化剂载体的分类及其应用发展

光催化剂载体的分类及其应用发展 摘要:近年来,为解决废水的降解,已经发展了很多治理技术,常见的有化学法,物理法等。光催化技术由于其热稳定性好,物美价廉,得到广泛应用,但是 光催化技术中催化剂粉末难分离,易失活限制其使用范围,故采用载体提高光催 化活性性能和回收率。 关键词:光催化,载体,回收率,发展; 1.前言 随着工业的大力发展,能源匮乏、环境污染日益加重,能源与环境问题是当代面临的两 大主题。在解决两大问题过程中,光催化崭露头角,作为一种极具魅力的技术被广泛研究。 光催化是一种具有反应条件温和、净化效果较好的工艺手段[1]。而一些纳米光催化剂,例如TiO2,粒径小,光生电子-空穴对复合率高,比表面积小,易于悬浮,凝聚,活性不稳定,循 环利用困难,并且分离回收之后的光催化剂也会有所损失,活性也有所降低。在保证光催化 性能的前提下,采用催化剂负载提高催化剂催化性能并且提高回收利用率[2-4]。为了有效解 决以上问题,本文就典型的光催化剂载体进行分类综述,分析其特点性能,并且指出其未来 应用发展方向。 2.光催化剂负载的分类及性能 光催化剂载体按大的分类,可分为无机载体和有机载体。 2.1硅基类载体 硅基载体包括SiO2,硅酸盐化合物以及衍生出来的硅酸盐产品等,种类繁多,易于获取、性质稳定,是良好的光催化剂载体。 2.1.1玻璃 常用的硅酸盐玻璃类载体有玻璃纤维,平板玻璃,微型玻璃珠等。Hui等[5]在多孔微型 玻璃珠上重复涂覆g-C3N4,550℃下煅烧,达到12wt%催化剂负载量。在可见光的照射下, 将所制备的黄色珠粒用以甲基橙的光催化降解,结果表明虽然负载后,g-C3N4光催化活性有 所下降,但成功的提高了催化剂回收率和稳定性,应用发展空间比较大。Wu等[6]以玻璃片 为载体,制备负载型氮掺杂二氧化钛,在可见光的照射下光催化降解亚甲基蓝,经过6h,降 解率达到62.58%,光催化剂复合载体表现出良好的光催化降解性能。 玻璃类材料物美价廉,模量高且部分具有良好的透光性,但玻璃是亚稳产物,热稳定性差,易折断。 2.1.2 硅胶 负载硅胶后的光催化剂比表面积大,吸附性能优异。除此之外,硅胶的存在提高了样品 的亲水性,Chen等[7]制备的硅胶负载型TiO2,对甲基橙的降解率比P25和TiO2提高了2和12倍。 2.2陶瓷基载体

相关文档
最新文档